Gabriel Nagy

Visiting Assistant Professor
Department of Mathematics
Michigan State University
619 Red Cedar Road
East Lansing, MI 48824

Office: C-129 Wells Hall
Phone: Not yet.
email: gnagy@math.msu.edu

General Information
Publications
Teaching
Research Interests (pdf)
Teaching Statement (pdf)
CV (pdf)

Publications

[14] M. Holst, G. Nagy, G. Tsogtgerel, Rough solutions of the Einstein constraint equations on closed manifolds without near-CMC conditions. Accepted for publication in Commun. Math. Phys. (2008).

[13] M. Holst, G. Nagy, G. Tsogtgerel, Far-from-constant mean curvature solutions of Einstein's constraint equations with positive Yamabe metrics. Phys. Rev. Letters, 100, 161101, (2008).

[12] G. Nagy, O. Sarbach, A minimization problem for the lapse and the initial-boundary value problem for Einstein's field equations, Class. Quantum Grav., 23, S477-S504, (2006).

[11] G. Nagy, O. E. Ortiz, O. A. Reula, Strongly hyperbolic second order Einstein's evolution equations, Phys. Rev. D,70, 044012 (2004).

[10] S. Dain, G. Nagy, Initial data for fluid bodies in general relativity, Phys. Rev. D, 65(8) 084020 (2002).

[9] P. Chrusciel, G. Nagy, The mass of spacelike hypersurfaces in asymptotically anti-de Sitter space-times, Advances on Theoretical and Mathematical Physics, 5(4), July (2001).

[8] P. Chrusciel, G. Nagy, The Hamiltonian mass of asymptotically anti-de Sitter space-times, Class. Quantum Grav. 18(9) (2001) L61-L68.

[7] R. Geroch, G. Nagy, O. Reula, Relativistic Lagrange formulation, J. Math. Phys. 42 (2001) 3789-3808.

[6] H. Friedrich, G. Nagy, The initial boundary value problem for Einstein's vacuum field equation, Commun. Math. Phys., 201 (1999) 619-655.

[5] G. Nagy, O. Ortiz, O. Reula, Exponential decay rates in quasi-linear hyperbolic heat conduction, J. Non-equilib. Thermodyn., 22 (1997) 248-259.

[4] H. Kreiss, G. Nagy, O. Ortiz, O. Reula, Global existence and exponential decay for hyperbolic theories of relativistic dissipative fluids, J. Math. Phys., 38 (1997) 5272-5279.

[3] G. Nagy, O. Reula, A causal statistical family of dissipative divergence type fluids, J. Phys. A: Math. Gen., 30 (1997) 1695-1709.

[2] G. Nagy, O. Reula, On the causality of dilute gas as a dissipative relativistic fluid theory of the divergence type, J. Phys. A: Math. Gen., 28 (1995) 6943-6959.

[1] G. Nagy, O. Ortiz, O. Reula, The Behavior of the Solutions of Hyperbolic Heat Equations Near their Parabolic Limits, J. Math. Phys., 35 (1994) 4334-4356.

Talks

[1] The problem of initial data in general relativity, 2010.

Preprints

[1] M. Holst, G. Nagy, O. Sarbach, Stability reversal in fluid models of black strings for high space dimensions.

Research Notes

[3] M. Holst, J. Kommemi, G. Nagy, Rough solutions of the Einstein constraint equations with non-constant mean curvature. (2007).

[2] U. Brauer, G. Nagy, Linear stability of a self-gravitating compressible fluid with a free boundary. (2005).

[1] G. Nagy, Pseudodifferential operators (2004).