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The Cauchy problem for Einstein’s equations of classical general relativity contains a

difficulty usually not present in other evolution equations. The initial data fields

cannot be freely specified but they must satisfy certain constraint equations. In this

sense the Cauchy problem for Einstein’s equations is similar to Maxwell’s equations of

electromagnetism. We review a well known method, called the conformal method, to

find solutions of the Einstein constraint equations. We summarize few old and new

results on the existence of solutions to the constraint equations representing closed

manifolds with constant or non-constant mean curvature.
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A constrained Cauchy problem: Maxwell’s equations.

Definition
Consider a manifold (R4, η), with η = diag[−1, 1, 1, 1] the
Minkowski metric, and fix on R4 a one-form field J ∈ Λ(R4),
satisfying the conservation equation d(∗J) = 0, with ∗ the Hodge
star operator. The two-form field F ∈ Λ2(R4) is the
electromagnetic field on R4 produced by the current J iff the
two-form F is solution of the Maxwell equations

d(∗F) = 4π(∗J), dF = 0.

Remark: To formulate a Cauchy problem requires to rewrite
Maxwell’s equations as evolution equations in spacetime.

Notation: Let δ = diag[1, 1, 1] be the Euclidean metric on
spacelike hypersurfaces on R4.

A constrained Cauchy problem: Maxwell’s equations.

Theorem (Space and time decomposition)

Consider Maxwell’s equations

d(∗F) = 4π(∗J), dF = 0.

Given a foliation {Σt} of (R4, η) by spacelike hypersurfaces with
unit, future directed, normal vector field n, introduce the electric
and magnetic vector fields, respectively,

E = −η−1
(
inF

)
, B = η−1

(
in(∗F)

)
,

and the source fields ρ = inJ and j = −δ−1(J). Then, Maxwell’s
equations are given by (cgs units, c = 1)

∂tE−∇ ∧ B = −4πj , ∂tB +∇∧ E = 0, (Evolution),

∇ · E = 4πρ, ∇ · B = 0, (Constraint),

where the sources satisfy ∂tρ +∇ · j = 0.



A constrained Cauchy problem: Maxwell’s equations.

Theorem (Evolution equations)

Given smooth source fields ρ, j on R4 and E0, B0 on Σ0, there
exists a unique smooth solution to the Cauchy problem

∂tE−∇ ∧ B = −4πj , (1)

∂tB +∇∧ E = 0. (2)

satisfying the initial conditions E
∣∣∣
Σ0

= E0 and B
∣∣
Σ0

= B0.

Theorem (Constraint propagation)

Given any smooth solution of Eqs. (1)-(2), the constraint fields

CE = ∇ · E− 4πρ, CB = ∇ · B,

satisfy the equations ∂tCE = 0, ∂tCB = 0.

Proof: ∇ · (∇∧ v) = 0, ∂tρ +∇ · j = 0. (dd = 0, d(∗J) = 0.)
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The problem of initial data for Maxwell’s equations.

Definition
The 3-surface and the fields (R3,E0,B0, ρ) form an initial data set
for Maxwell’s equations iff hold

∇ · E0 = 4πρ, ∇ · B0 = 0. (3)

Remarks:
I The symbol in Eqs. (3) is surjective but not injective.
I Transform the Eqs. (3) into PDEs with invertible symbol.

Theorem (Grad-Curl decomposition)

Fix arbitrary vector fields AE , AB , and denote by φE , φB scalar
fields on (R3, δ). The vector fields E0 = ∇φE +∇∧ AE and
B0 = ∇φB +∇∧ AB are solutions of the Maxwell constraint
equations iff the fields φE and φB are solutions of

∆φE = 4πρ, ∆φB = 0, φE , φB → 0 as |x | → ∞.
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The problem of initial data for Einstein’s equations.

Definition
The manifold and fields (M, ĥab, k̂

ab, ĵa, ρ̂) form an initial data set
for Einstein’s equation iff hold:

(a) M is a 3-dimensional smooth manifold;

(b) ĥab is a Riemannian metric on M;

(c) k̂ab is a symmetric tensor field on M;

(d) ĵa and ρ̂ are a vector and a non-negative scalar field on M;

and the following equations hold on M,

R̂ + k̂2 − k̂abk̂
ab = 2κρ̂, ∇̂ak̂

ab − ∇̂bk̂ = κĵb, (4)

together with the energy condition −ρ̂2 + ĵa ĵ
a 6 0, with strict

inequality at points in M where ρ̂ 6= 0. Here ∇̂a is the Levi-Civita
connection of ĥab, R̂ is the Ricci scalar of ∇̂a, and k = 8π.

The problem of initial data for Einstein’s equations.

Remarks:
Once the spacetime is constructed with the initial data above, the
following statements hold:

I The 3-dim manifold M is space at the initial time;

I The fields ĥab and k̂ab are the first and second fundamental
forms of M when embedded in the spacetime;

I The ĵ
a

and ρ̂ are the matter and radiation at the initial time.

I The Eqs. R̂ + k̂2 − k̂abk̂
ab = 2κρ̂, and ∇̂ak̂

ab − ∇̂bk̂ = κĵb,
are the Gauss and Codazzi equations written in terms of
intrinsic fields of the 3-surface M after using Einstein’s
equations.

I The constraint eqs. have surjective but not injective symbol.

I The energy condition −ρ̂2 + ĵa ĵ
a 6 0, on the matter fields is

the reason why the constraint equations are indeed equations
for ĥab and k̂ab.
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Theorem (Conformal decomposition)

Fix on a 3-dimensional manifold M the following:

(a) A Riemannian metric hab with conn. ∇a and Ricci sclr. R;

(b) A symmetric tensor σab with habσ
ab = 0 and ∇aσ

ab = 0;

(c) Scalar fields τ and ρ and a vector field j a, satisfying the
condition −ρ2 + hab j aj b 6 0, with < where ρ 6= 0.

Let (Lv)ab = ∇avb +∇bva − (2/3)(∇cvc) hab be the conformal
Killing operator, with va a smooth vector field on M. The fields

ĥab = φ4hab, ĵ
a

= φ−10j a, ρ̂ = φ−8ρ,

k̂ab = φ−10
[
(Lw)ab + σab

]
+

τ

3
φ−4hab,

solve the Einstein constraints and energy cond. iff φ and wa solve

−∆φ +
R

8
φ +

τ2

12
φ5 − [σ + (Lw)]2

8
φ−7 − κρ

4
φ−3 = 0,

−∇a(Lw)ab +
2

3
(∇bτ)φ6 + κ j b = 0.



The conformal method to solve the constraint equations.

Remarks:

I The Conformal method: Lichnerowicz 1944, York 1972, [1].

I The undetermined constraint equations for the physical
(hatted) fields ĥab, k̂ab are transformed into an elliptic system
for φ and wa.

I ĥab = φ4hab, k̂ab = φ−10
[
(Lw)ab + σab

]
+ τ

3φ−4hab.
These definitions imply: φ is the metric conformal factor, and
wa is the longitudinal part of of the extrinsic curvature.

I The field τ is the mean extrinsic curvature of the initial data.
τ couples the two elliptic equations in the system.

I τ constant case is called constant mean curvature (CMC):

−∆φ+aRφ+aτφ
5−awφ−7−aρφ

−3 = 0, −∇a(Lw)ab+bb
j = 0.

First solve the linear equation, then solve the equation for φ.
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The CMC case: Understood by 1995.

Theorem (Isenberg, 1995, [3].)

If M is a smooth closed manifold, hab ∈ C 3(M), σab ∈ W 2,p(M),
p > 3, τ constant, ρ = 0, j a = 0, then the Lichnerowicz equation

−∆φ + aRφ + aτφ
5 − aσφ−7 = 0,

admits or does not admit a positive definite solution φ ∈ C 2,α(M),
with α ∈ (0, 1), as indicated in the following table:

Yamabe

class of hab

σ2 = 0

τ = 0

σ2 = 0

τ 6= 0

σ2 6= 0

τ = 0

σ2 6= 0

τ 6= 0

Y+ No No Yes Yes

Y0 Yes No No Yes

Y− No Yes No Yes

Idea of the proof: Maximum principles and barriers.
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|∇τ | � 1, Maximum principles, barriers, for φ;
Linear elliptic theory for wa;
And a contraction fixed-point argument
for the coupled system, [4].
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The far-CMC case.

Recall the problem we want to solve:
Find φ and wa solutions of the Lichnerowicz-York equations

−∆φ + aRφ + aτφ
5 − awφ−7 − aρφ

−3 = 0,

−∇a(Lw)ab +
2

3
(∇bτ) φ6 + bb

j = 0.

when all the other fields are properly given on a closed manifold.

Definition
The smooth functions φ− and φ+ are barriers (sub- and
super-solutions, respectively) iff holds

−∆φ− + aRφ− + aτφ
5
− − awφ−7

− − aρφ
−3
− 6 0, (5)

−∆φ+ + aRφ+ + aτφ
5
+ − awφ−7

+ − aρφ
−3
+ > 0. (6)

The barriers are compatible iff 0 < φ− 6 φ+; they are global iff
Eqs.(5)-(6) hold for all wa solving York’s equation ∀φ ∈ [φ−, φ+].



The far-CMC case.

Theorem (Host, Nagy, Tsogtgerel, 2008, [2].)

Let (M, hab) be a smooth, closed, Riemannian manifold with
hab ∈ Y+ and no conformal Killing vectors, τ ∈ W 1,p(M), p > 3,
and σ2, j a, ρ ∈ Lp(M). If φ−, φ+ are compatible, global barriers
to the Lichnerowicz equation, then there exist

φ ∈ [φ−, φ+] ∩W 2,p(M), wa ∈ W 2,p(M),

solutions of the Lichnerowicz-York constraint equations.

The proof is based on:

I A version of Schauder Fixed-Point Theorem.

I Compact embedding W 2,p(M) ⊂ L∞(M).

I The order structure of L∞(M).

The previous items hold without the condition |∇τ | � 1.

Remark: We only need compatible, global barriers φ±.

The far-CMC case.

Remark: Global super-solutions are harder to find than global
sub-solutions.

Theorem (Global super-solution, [2].)

Let (M, hab) be a smooth, closed, Riemannian manifold with
hab ∈ Y+ and no conformal Killing vectors, and let the smooth
function u be solution of the Yamabe problem

−∆u +
R

8
u − u5 = 0.

Denote k = sup u/ inf u, and let K > 0 a constant related to
bounds in the norm of the conformal Killing op. L : W 2,p → W 1,p.
If τ , σ2, j a, ρ are all small enough, then

φ+ = ε u, ε =
( 1

k12K

)1/4

is a global super-solution of the Lichnerowicz equation.
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