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1 Introduction

Pseudodifferential operators are a generalization of differential operators. The
idea is to think of a differential operator acting upon a function as the inverse
Fourier transform of a polynomial in the Fourier variable times the Fourier
transform of the function. This integral representation leads to a generalization
of differential operators, which correspond to functions other than polynomials
in the Fourier variable, as far as the integral converges.

In other words, given a smooth, complex valued function p(x, y) from Rn ×
Rn with a given asymptotic behavior at infinity, associate with it an operator
p(x, ∂x) : S → S, where S is the Schwartz space, that is, the set of complex
valued smooth functions in Rn, such that the function and every derivative
decay faster than any polynomial at infinity. The association p → p, that
is, functions into differential operators, is not unique. This is known to anyone
acquainted with quantum mechanics. Different maps from functions p(x, y) into
operators p(x, ∂x) give rise to different theories of pseudodifferential calculus.
Every generalization must coincide in the following: The polynomial p(x, y) =∑
|α|≤m aα(x)(iy)α where α is a multi-index in Rn must be associated with the

operator p(x, ∂x) =
∑
|α|≤m aα(x)∂αx , that is, with a differential operator of

order m. The map p → p used in these notes is introduced in Sec. 3. It is the
most used definition of pseudodifferential operators in the literature, and the
one most studied.

The Fourier transform is used to rewrite the differential operator because
it maps derivatives into multiplication, that is, [∂xu(x)]̂ = iyû(y). This prop-
erty is used to solve constant coefficient partial differential equations (PDEs)
by transforming the whole equation into an algebraic equation. This technique
is not useful on variable coefficient PDEs, because of the inverse property, that
is, [xu(x)]̂ = i∂yû(y). For example, one has [∂xu + xu]̂ = i[∂yû + yû], and
nothing has been simplified by the Fourier transform. That is why one looks for

∗These notes are included as an appendix in the work: G. Nagy. O. Ortiz, O. Reula,
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(2004). G.N. thanks Omar Ortiz, Oscar Reula, and Bruce Driver for nice discussions, and for
their help to improve these notes.
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other ways of rewriting differential operators. The generalization to pseudodif-
ferential operators is an additional consequence. Other transforms can be used
to define different generalizations of differential operators. For example, Mellin
transforms are used in [14].

The functions p(x, y) are called symbols. Differential operators correspond
to polynomial symbols in y. They contain the main equations from physics.
Even strongly hyperbolic PDEs have polynomial symbols. Why should one
consider more general symbols? Because the generalization is evident, and it
has proved worth doing it. The Atiyah and Singer index theorem is proved
using pseudodifferential operators with smooth symbols, which are more suitable
for studying homotopy invariants than polynomial symbols, [17]. Techniques
to prove the well posedness of the Cauchy problem for a strongly hyperbolic
system require one to mollify polynomial symbols into smooth non-polynomial
ones, [15]. The main application in these notes is simple: to reduce a second
order partial differential equation to a first order system without adding new
characteristics into the system. This is done by introducing the operator, a
square root of the Laplacian, which is a first order pseudodifferential, but not
differential, operator. The main idea for this type of reduction was introduced
in [1].

How far should this generalization be carried? In other words, how is the set
of symbols that define the pseudodifferential operators determined? The answer
depends on which properties of differential operators one wants to be preserved
by the general operators, and which additional properties one wants the latter to
have. There are different spaces of symbols defined in the literature. Essentially
all of them agree that the associated space of pseudodifferential operators is
closed under taking the inverse. The inverse of a pseudodifferential operator is
another pseudodifferential operator. This statement is not true for differential
operators. The algebra developed in studying pseudodifferential operators is
useful to compute their inverses. This is important from a physical point of
view, because the behavior of solutions of PDEs can be inferred from the inverse
operator. One could even say that pseudodifferential operators were created
in the middle 1950s from the procedure to compute parametrices to elliptic
equations. [A parametrix is a function that differs from a solution of the equation
p(u) = δ by a smooth function, where p is a differential operator, and δ is Dirac’s
delta distribution.] To know the parametrix is essentially the same as to have
the inverse operator.

Spaces of pseudodifferential operators are usually defined to be closed under
composition and transpose, and to act on distribution spaces and on Sobolev
spaces. They can be invariant under diffeomorphism, so they can be defined on
a manifold. This definition for pseudodifferential operators is not so simple as
for differential operators, because the latter are local operators and the former
are not. Pseudodifferential operators are pseudolocal. An operator p acting on
a distribution u is local if p(u) is smooth in the same set where u is smooth.
Pseudolocal means that the set where p(u) is smooth includes the set where u is
smooth. This means that p could smooth out a nonsmoothness of u. Mollifiers
are an example of this kind of smoothing operator. They are integral opera-
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tors, which justifies the name of pseudolocal. Differential operators with smooth
coefficients are an example of local operators. The proofs of all these proper-
ties of pseudodifferential operators are essentially algebraic calculations on the
symbols. One could say that the main practical advantage of pseudodifferential
calculus is, precisely, turning differential problems into algebraic ones.

2 Function spaces

The study of the existence and uniqueness of solutions to PDEs, as well as the
qualitative behavior of these solutions, is at the core of mathematical physics.
Function spaces are the basic ground for carrying on this study. The mathemat-
ical structure needed is that of the Hilbert space, or Banach space, or Fréchet
space, which are complete vector spaces having, respectively, an inner product,
a norm, and a particular metric constructed with a family of seminorms. Every
Hilbert space is a Banach space, and every Banach space is a Fréchet space.
The main examples of Hilbert spaces are the space of square integrable func-
tions L2, and the Sobolev spaces Hk, with k a positive integer, which consist
of functions whose k derivatives belong to L2. The Fourier transform makes it
possible to extend Sobolev spaces to real indices. This generalization in the idea
of the derivative is essentially the same as one uses to construct pseudodifferen-
tial operators. Examples of Banach spaces are Lp, spaces of p-power integrable
functions, where L2 is the particular case p = 2. The main examples of Fréchet
spaces are C∞(Ω), the set of smooth functions in any open set Ω ⊂ Rn, with
a particular metric on it, (the case Ω = Rn is denoted C∞), the Schwartz
spaces of smooth functions of rapid decrease, and its dual, which is a space of
distributions.

This section presents only Sobolev spaces, first with non-negative integer
index, and the generalization to a real index. The Fourier transform is needed
to generalize the Sobolev spaces. Therefore, Schwartz spaces are introduced
to present the Fourier transform, and to extend it to L2. The next section is
dedicated to introduce pseudodifferential operators.

Let L2 be the vector space of complex valued, square integrable functions
on Rn, that is functions such that ‖u‖ <∞, where ‖u‖ :=

√
(u, u) and

(u, v) :=

∫

Rn
ū(x)v(x)dx,

with ū the complex conjugate of u. This set is a Hilbert space, that is a complete
vector space with inner product, where the inner product is given by ( , ) and
is complete with respect to the associated norm ‖ ‖.

The Sobolev spaces Hk, for k a non-negative integer, are the elements of L2

such that
‖u‖2k :=

∑

|α|≤k
‖∂αu‖2 <∞,

where α is a multi-index and the notation |α| when α is a multi-index means
the positive integer |α| =

∑n
i=1 αi. The inner product in L2 defines an inner
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product in Hk given by

(u, v)k :=
∑

|α|≤k
(∂αu, ∂αv).

Let S be the space of functions of rapid decrease, also called the Schwartz
space, that is, the set of complex valued, smooth functions on Rn, satisfying

|u|k,α := sup
x∈Rn

|(1 + |x|2)k/2∂αu| <∞

for every multi-index α, and all k ∈ N natural, with |x| the Euclidean length
in Rn. The Schwartz space is useful in several contexts. It is the appropriate
space to introduce the Fourier transform. It is simple to check that the Fourier
transform is well defined on elements in that space, in other words, the integral
converges. It is also simple to check the main properties of the transformed
function. More important is that the Fourier transform is an isomorphism be-
tween Schwartz spaces. As mentioned earlier, the Schwartz space provided with
an appropriate metric is an example of a Fréchet space, a slight generalization
of a Banach space. Its dual space is the set of distributions, which generalizes
the usual concept of functions.

The Fourier transform of any function u ∈ S is given by

F [u](x) = û(x) :=

∫

Rn
e−ix·yu(y)d̄y,

where d̄y = dy/(2π)n/2, while dy and x · y = δijx
iyj are the Euclidean volume

element and scalar product in Rn, respectively. The map F : S → S is an
isomorphism. The inverse map is given by

F−1[u](x) = ǔ(x) :=

∫

Rn
eix·yu(y)d̄y.

An important property of the Fourier transform useful in PDE theory is the
following: [∂αxu(x)]̂ = i|α|yαû(y), and [xαu(x)]̂ = i|α|∂αy û(y), that is, it converts
smoothness of the function into decay properties of the transformed function,
and vice versa. The Fourier transform is extended to an isomorphism F : L2 →
L2, first proving Parseval’s theorem, that is, (u, v) = (û, v̂) for all u, v ∈ S
(which gives Plancherel’s formula for norms, ‖u‖ = ‖û‖, in the case that the
norm comes from an inner product, with u = v) and second recalling that S is
dense in L2.

The definition of Sobolev spaces Hs for s real is based on Parseval’s theorem.
First recall that every u ∈ Hk with non-negative integer k satisfies ∂αu ∈ L2

for |α| ≤ k, so Parseval’s theorem implies |y|kû(y) ∈ L2. Second, notice that
there exists a positive constant c such that (1/c)〈y〉 ≤ (1 + |y|) ≤ c〈y〉, where
〈y〉 = (1 + |y|2)1/2. Therefore, one arrives at the following definition. The
Sobolev space Hs for any s ∈ R consists of locally square integrable functions in
Rn such that 〈y〉sû ∈ L2. This space is a Hilbert space with the inner product

(u, v)s :=

∫

Rn
〈y〉2s ¯̂u(y)v̂(y)dy,
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and the associated norm is denoted by

‖u‖2s :=

∫

Rn
〈y〉2s|û(y)|2dy.

The definition is based on a property of the Fourier Transform, that converts
smoothness of the function into decay at infinity of the transformed function.
One can check that Hs ⊂ Hs′ whenever s′ ≤ s. Notice that negative indices
are allowed. The elements of those spaces are distributions. Furthermore, the
Hilbert space H−s is the dual of Hs. Finally, two more spaces are needed later
on, H−∞ := ∪s∈RHs and H∞ := ∩s∈RHs. These spaces are, with appropriate
metrics on them, Fréchet spaces. A closer picture of the kind of element these
spaces may contain is given by the following observations. The Sobolev embed-
ding lemma implies that H∞ ⊂ C∞, while the opposite inclusion is not true.
Also notice that S ⊂ H∞, therefore H−∞ ⊂ S ′, so the elements of H−∞ are
tempered distributions.

3 Pseudodifferential operators

Let Sm with m ∈ R, be the set of complex valued, smooth functions p(x, y),
from Rn × Rn such that

|∂βx∂αy p(x, y)| ≤ Cα〈y〉m−|α|, (1)

with Cα a constant depending on the multi-index α, and 〈y〉 = (1 + |y|2)1/2.
This is the space of functions whose elements are associated with operators.
It is called the space of symbols, and its elements p(x, y) symbols. There is
no asymptotic behavior needed in the x variable, because Fourier integrals are
thought to be carried out in the y variable. And the asymptotic behavior of
this variable is related to the order of the associated differential operator, as
one can shortly see in the definition of the map that associates functions p(x, y)

with operators p(x, ∂x). One can check that Sm
′ ⊂ Sm whenever m′ ≤ m. Two

more spaces are needed later on, S∞ := ∪m∈RSm and S−∞ := ∩m∈RSm.
Given any p(x, y) ∈ Sm, then the associated operator p(x, ∂x) : S → S is

said to belong to ψm and is determined by

p(x, ∂x)(u) =

∫

Rn
eix·yp(x, y)û(y)d̄y, (2)

for all u ∈ S. The constant m is called the order of the operator. It is clear
that u ∈ S implies p(x, ∂x)(u) ∈ C∞; however, the proof that p(u) ∈ S is more
involved. One has to show that p(u) and its derivatives decay faster than any
polynomial in x. The idea is to multiply Eq. (2) by xα and recall the relation
i|α|xαeiy·x = ∂αy e

iy·x. Integration by parts and the inequality (1) imply that the
resulting integral converge and is bounded in x. This gives the decay.

The polynomial symbols p(x, y) =
∑m
|α|=0 aα(x)(iy)α with non-negative in-

teger m correspond to differential operators p(x, ∂x) =
∑m
|α|=0 aα(x)∂αx of or-

der m. An example of a pseudodifferential operator that is not differential is
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given by the symbol p(y) = χ(y)|y|k sin[ln(|y|)], where k is a real constant and
χ(y) is a cut function at |y| = 1/2, that is a smooth function that vanishes
for |y| ≤ 1/2 and is identically 1 for |y| ≥ 1. The cut function is needed to
have a smooth function at y = 0. This symbol belongs to Sk. The function
p(y) = χ(y) ln(|y|) is not a symbol, because |p(y)| ≤ c0〈y〉ε, for every ε > 0,

but |∂yp(y)| ≤ c1〈y〉−1, and the change in the decay is bigger than 1, which is
the value of |α| in this case. Another useful example to understand the symbol
spaces is p(y) = χ(y)|y|k ln(|y|), with k a real constant. This function is not a
symbol for k natural or zero, for the same reason as in the previous example.
However, it is a symbol for the remaining cases, belonging to Sk+ε, for every
ε > 0.

A very useful operator is Λs : S → S given by

Λs(u) :=

∫

Rn
eiy·x〈y〉sû(y)d̄y,

where s is any real constant. This is a pseudodifferential operator that is not
differential. Its symbol is Λs = 〈y〉s, which belongs to Ss, and then one says
Λs ∈ ψs. It is usually denoted as Λs = (1 − ∆)s/2. It can be extended to
Sobolev spaces, that is, to an operator Λs : Hs → L2. This is done by noticing
the bound ‖Λs(u)‖ = ‖u‖s for all u ∈ S, and recalling that S is a dense subset
of L2. This operator gives a picture of what is meant by an s derivative, for s
real. One can also rewrite the definition of Hs, saying that u ∈ Hs if and only
if Λs(u) ∈ L2.

Pseudodifferential operators can be extended to operators acting on Sobolev
spaces. Given p ∈ ψm, it defines an operator p(x, ∂x) : Hs+m → Hs. This is
the reason to call m the order of the operator. The main idea of the proof is
again to translate the basic estimate (1) in to the symbol to an L2-type esti-
mate for the operator, and then use the density of S in L2. The translation is
more complicated for a general pseudodifferential operator than for Λs, because
symbols can depend on x. Intermediate steps are needed, involving estimates
on an integral representation of the symbol, called the kernel of the pseudodif-
ferential operator. Pseudodifferential operators can also be extended to act on
distribution spaces S ′, the dual of Schwartz spaces S.

An operator p : H−∞ → H−∞ is called a smoothing operator if p(H−∞) ⊂
C∞. That means p(u) is smooth regardless of u being smooth. One can check
that a pseudodifferential operator whose symbol belongs to S−∞ is a smoothing
operator. For example, p(y) = e−|y|

2 ∈ S−∞. However, not every smoothing
operator is pseudodifferential. For example, p(y) = ρ(y), with ρ ∈ Hs for
some s and having compact support, is a smoothing operator which is not
pseudodifferential unless ρ is smooth. Friedrichs’ mollifiers, Jε for ε ∈ (0, 1], are
a useful family of smoothing operators, which satisfy Jε(u)→ u in the L2 sense,
in the limit ε→ 0, for each u ∈ L2.

Consider one more example, the operator λ : S → S given by

λ(u) :=

∫

Rn
eiy·xi|y|χ(y)û(y)d̄y,
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where χ(y) is again a cut function at |y| = 1/2. The symbol is λ(y) = i|y|χ(y).
The cut function χ makes λ smooth at y = 0. The operator without the cut
function is ` : S → L2 given by

`(u) :=

∫

Rn
eiy·xi|y|û(y)d̄y.

Its symbol `(y) = i|y| does not belong to any Sm because it is not smooth at
y = 0. Both operators λ, ` can be extended to maps H1 → L2. What is more
important, their extensions are essentially the same, because they differ in a
smoothing, although not pseudodifferential, operator.

The asymptotic expansion of symbols is maybe the most useful notion related
to pseudodifferential calculus. Consider a decreasing sequence {mj}∞j=1, with
limj→∞mj = −∞. Let {p

j
}∞j=1 be a sequence of symbols p

j
(x, y) ∈ Smj .

Assume that these symbols are asymptotically homogeneous in y of degree mj ,
that is, they satisfy p

j
(x, ty) = tmjp

j
(x, y) for |y| ≥ 1. Then, a symbol p ∈ Sm1

has the asymptotic expansion
∑

j pj if and only if


p−

k∑

j=1

p
j


 ∈ Sm(k+1) , ∀ k ≥ 1, (3)

and it is denoted by p ∼ ∑j pj . The first order term in the expansion, p
1
, is

called the principal symbol. Notice that mj are real constants, not necessarily
integers. Every asymptotic expansion defines a symbol, that is, every function
of the form

∑
j pj belongs to some symbol space Sm1 . However, not every

symbol p ∈ Sm has an asymptotic expansion. Consider the example p(y) =

χ(y)|y|1/2 ln(|y|). The set of symbols that admit an asymptotic expansion of
the form (3) is called classical, it is denoted by Smcl , and the corresponding
operators are said to belong to ψmcl . One then has Smcl ⊂ Sm. Notice that if two
symbols p and q have the same asymptotic expansion

∑
j pj , then they differ in

a pseudodifferential smoothing operator, because

p− q =


p−

k∑

j=1

p
j


−


q −

k∑

j=1

p
j


 ∈ Sm(k+1)

for all k, and limk→∞mj = −∞, so (p− q) ∈ S−∞. This is the precise meaning
for the rough sentence, “what really matters is the asymptotic expansion.”

There is in the literature a more general concept of asymptotic expansion.
It does not require that the p

j
to be asymptotically homogeneous. We do not

consider this generalization in these notes.
Most of the calculus of pseudodifferential operators consists of performing

calculations with the highest order term in the asymptotic expansion and keep-
ing careful track of the lower order terms. The symbol of a product of pseu-
dodifferential operators is not the product of the individual symbols. Moreover,
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the former is difficult to compute. However, an asymptotic expansion can be
explicitly written, and one can check that the principal symbol of the product is
equal to the product of the individual principal symbols. More precisely, given
p ∈ ψr and q ∈ ψs, then the product is a well defined operator pq ∈ ψr+s and
the asymptotic expansion of its symbol is

pq ∼
∑

|α|≥0

1

i|α|α!

[
∂αy p(x, y)

] [
∂αx q(x, y)

]
.

Notice that the first term in the asymptotic expansion of a commutator [p, q] =
pq − qp, that is its principal symbol, is precisely 1/i times the Poisson bracket
of their respective symbols, {p, q} =

∑
j

(
∂yjp∂xjq − ∂xjp∂yjq

)
. Similarly, the

symbol of the adjoint pseudodifferential operator is not the adjoint of the original
symbol. However, this is true for the principal symbols. The proof is based in
an asymptotic expansion of the following equation:

(p∗)(x, y) =

∫ ∫

Rn
e−i(x−x

′)·(y−y′)(p)∗(x′, y′) d̄xd̄y.

There are three main generalizations of the theory of pseudodifferential
operators present in the literature. First, the operators act on vector val-
ued functions instead of on scalar functions. While this is straightforward,
the other generalizations are more involved. Second, the space of symbols
is enlarged, first done in [6]. It is denoted as Smρδ , and its elements satisfy

|∂βx∂αy p(x, y)| ≤ Cα,β〈y〉m−ρ|α|+δ|β|, with Cα,β a constant depending on the
multi-indices α and β. The extra indices have been tuned to balance two op-
posite tendencies; on the one hand, to preserve some properties of differential
operators; on the other hand, to maximize the amount of new objects in the gen-
eralization. These symbol spaces contain functions like p(x, y) = 〈y〉a(x), which
belongs to Sm1,δ, where δ > 0 and m = maxx∈Rn a(x). Third, the domain of the
functions p(x, y) is changed from Rn × Rn to Ω × Rn, with Ω ⊂ Rn any open
set. A consequence in the change of the domain is that p : C∞0 (Ω) → C∞(Ω),
so the domain and range of p are not the same, which makes it more difficult
to define the product of pseudodifferential operators. These notes are intended
to be applied to hyperbolic PDEs on Rn, which are going to be converted to
pseudodifferential operators in S1, so there is no need to consider the last two
generalizations.

4 Strongly hyperbolic systems

Consider the Cauchy problem for a linear first order pseudodifferential system

∂tu = p(t, x, ∂x)u, u|t=0 = f, (4)

where u, f are m-dimensional vector valued functions, m ≥ 1, and x represents
Cartesian coordinates in Rn, n ≥ 1. Here p(t, x, ∂x) is a smooth family of
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pseudodifferential operators in ψ1
cl, parametrized by t ∈ R+. Let p(t, x, y) and

p
1
(t, x, y) be their symbols and principal symbols, respectively.
If p is a differential operator with analytic coefficients, then the Cauchy-

Kowalewski Theorem asserts that there exists a unique solution for every an-
alytic data f . However, solutions corresponding to smooth data behave very
different depending on the type of operator p. For example, write the Laplace
equation in Rn+1 and the wave equation in Rn+1 as a first order system in
the form ∂tu = Ai∂iu. Matrices Ai are skew-symmetric for the Laplacian, and
symmetric for the wave operator. Therefore the eigenvalues are pure imaginary
for the former and real for the latter. Write the equations in the base of their
respective eigenvectors. Try solutions of the form u(t, x) = û(t)eiy·x. The so-
lutions are û(t) = e(λ·y)tû(0) and û(t) = ei(λ·y)tû(0), respectively, for some real
constants λ, and for all y ∈ Rn. Therefore, the high frequency solutions of the
Cauchy problem for the Laplace equation diverge in the limit |y| → ∞, while
the solutions of the wave equation do not diverge in that limit.

An explicit example in R2, presented by Hadamard in [4], may clarify this.
Consider the functions

v(t, x) = sin(nt) sin(nx)/np+1,

w(t, x) = sinh(nt) sin(nx)/np+1,

with p ≥ 1, n, constants, defined on t ≥ 0, x ∈ [0, 1]. They are solutions of the
Cauchy problem for wave equation and the Laplace equation, respectively, with
precisely the same Cauchy data on t = 0, that is

vtt − vxx = 0, v|t=0 = 0, vt|t=0 = sin(nx)/np,

wtt + wxx = 0, w|t=0 = 0, wt|t=0 = sin(nx)/np.

As n → ∞, the Cauchy data converges to zero in Cp−1([0, 1]). In this limit,
the solution of the wave equation converges to zero, while the solution of the
Laplace equation diverges. The concept of well posedness is introduced in order
to capture this behavior of the wave equation’s solution under high frequency
perturbations on its Cauchy data.

The Cauchy problem (4) is well posed in a norm ‖ ‖ if given the data f(x)
there exists a unique solution u(t, x) in [0, T )× Rn for some T > 0; and given
any number ε > 0 there exists δ > 0 such that, for every data f̃(x) satisfying
‖f̃ − f‖ < δ there exists a unique solution ũ(t, x) in [0, T̃ )×Rn for some T̃ > 0
with |T̃ −T | < ε, and satisfying ‖ũ(t)−u(t)‖ < ε, for all t ∈ [0,min(T̃ , T )). This
means that the solution depends continuously on the data in the norm ‖ ‖.

As pointed out above, well posedness is essentially a statement about the be-
havior of the solutions of a Cauchy problem under high frequency perturbations
on the initial data. Here is where pseudodifferential calculus is most useful to
study solutions of the Cauchy problem. The high frequency part of the solution
can be determined studying the higher order terms in the asymptotic expansion
of symbols.
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A wide class of operators with well posed Cauchy problem is called strongly
hyperbolic. A first order pseudodifferential system (4) is strongly hyperbolic if
p ∈ ψ1

cl and the principal symbol is symmetrizable. This means that there exists
a positive definite, Hermitian operator, H(t, x, y), homogeneous of degree zero
in y, smooth in all its arguments for y 6= 0, such that

(Hp
1

+ p∗
1
H) ∈ S0,

where p∗
1

is the adjoint of the principal symbol p
1
.

Consider first order differential systems of the form ∂tu = Ai(t, x)∂iu +
B(t, x)u. The symbol is p(t, x, y) = iAj(t, x)yj + B(t, x), and the principal

symbol is p
1
(t, x, y) = iAjyj . If the matrices Ai are all symmetric, then the

system is called symmetric hyperbolic. The symmetrizer H is the identity, and
p

1
+ p∗

1
= 0. The wave equation on a fixed background, written as a first order

system is an example of a symmetric hyperbolic system. Well posedness for
symmetric hyperbolic systems can be shown without pseudodifferential calculus.
The basic energy estimate can be obtained by integration by parts in space-time.

If the matrices Ai are symmetrizable, then the differential system is called
strongly hyperbolic. The symmetrizer H = H(t, x, y) is assumed to depend
smoothly on ω. Every symmetric hyperbolic system is strongly hyperbolic.
pseudodifferential calculus must be used to show well posedness for variable
coefficient strongly hyperbolic systems that are not symmetric hyperbolic [15].
The definition given two paragraphs above is more general because the symbol
does not need to be a polynomial in y. The definition given above includes first
order pseudodifferential reductions of second order differential systems. These
type of reductions are performed with operators like Λ, λ, or `.

In the particular case of constant coefficient systems there exists in the lit-
erature a more general definition of strong hyperbolicity [3, 8]. The principal
symbol p

1
must have only imaginary eigenvalues, and a complete set of linearly

independent eigenvectors. The latter must be uniformly linear independent in
y 6= 0 over the whole integration region. Kreiss’s matrix theorem (see Sec. 2.3
in [8]) says that this definition is equivalent to the existence of a symmetrizer
H . Nothing is known about the smoothness of H with respect to t, x, and y.
The existence of this symmetrizer is equivalent to well posedness for constant
coefficient systems. However, the proof of well posedness for variable coefficient
and quasilinear systems does require the smoothness of the symmetrizer. There
are examples showing that this smoothness does not follow from the previous
hypothesis on eigenvalues and eigenvectors of p

1
. Because it is not known what

additional hypothesis on the latter could imply this smoothness, one has to in-
clude it into the definition of strong hyperbolicity for nonconstant coefficient
systems.

A more fragile notion of hyperbolicity is called weak hyperbolicity, where the
operator p

1
has imaginary eigenvalues, but nothing is required of its eigenvec-

tors. Quasilinear weakly hyperbolic systems are not well posed. The following
example gives an idea of the problem. The 2 × 2 system ∂tu = A∂xu with
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t, x ∈ R and

A =

(
1 1
0 1

)
,

is weakly hyperbolic. Plane wave solutions of the form u(t, x) = û(t)eiy·x satisfy
|û(t)| ≤ |û(0)|(1 + |y|t). Therefore, plane wave solutions to a weakly hyperbolic
system do not diverge exponentially in the high frequency limit (as in the case
of Cauchy problem for the Laplace equation) but only polynomically. This
divergence causes solutions to variable coefficient weak hyperbolic systems to
be unstable under perturbations in the lower order terms of the operator, as
well as in the initial data.

The main theorem about well posedness for strongly hyperbolic systems is
the following. The Cauchy problem (4) for a strongly hyperbolic system is well
posed with respect to the Sobolev norm ‖ ‖s with s > n/2 + 1. The solution
belongs to C([0, T ), Hs), and T > 0 depends only on ‖f‖s.

In the case of strongly hyperbolic differential systems, this is Theorem 5.2.D
in [16]. The proof for pseudodifferential strongly hyperbolic systems is essen-
tially the same. One builds an estimate for the solution in a norm, defined
using the symmetrizer, equivalent to the Sobolev norm Hs. Then the argu-
ment follows the standard proof for differential systems. The construction of
the symmetrizer is basically the one carried out in [9].

5 Further reading

There is no main reference followed in these notes; however, a good place to
start is [15]. Notice that the notation is not precisely the one in that reference.
The introduction is good, and the definitions are clear. The proofs are difficult
to follow. More extended proofs can be found in [13], together with some his-
torical remarks. The whole subject is clearly written in [12]. It is not the most
general theory of pseudodifferential operators, but it is close to these notes. A
slightly different approach can be found in [2], and detailed calculations to find
parametrices are given in [18]. The introduction of [10] is very instructive. The
first order reduction using Λ is due to Calderón in [1], and a clear summary of
this reduction is given in [12].

The field of pseudodifferential operators grew out of a special class of integral
operators called singular integral operators. Mikhlin in 1936, and Calderón and
Zygmund in the begining of 1950s carried out the first investigations. The
field started to develop really fast after a suggestion by Peter Lax in 1963 [11],
who introduced the Fourier transform to represent singular integral operators
in a different way. Finally, the work of Kohn and Nirenberg [7] presented the
pseudodifferential operators as they are known today, and they proved their
main properties. They showed that singular integral operators are the particular
case of pseudodifferential operators of order zero. Further enlargements of the
theory were due to Lars Hörmander [5, 6].
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