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Standard energy methods are used to study the relation between the solutions of 
one parameter families of hyperbolic systems of equations describing heat propa- 
gation near their parabolic limits, which for these cases are the usual diffusive heat 
equation. In the linear case it is proven that given any solution to the hyperbolic 
equations there is always a solution to the diffusion equation which after a short 
time stays very close to it for all times. The separation between these solutions 
depends on the square of the ratio between the assumed very short decay time 
appearing in Cattaneo’s relation and the usual characteristic smoothing time (initial 
data dependent) of the limiting diffusive equation. The techniques used in the linear 
case can be readily used for nonlinear equations. As an example we consider the 
theories of heat propagation introduced by Coleman, Fabrizio, and Owen, and 
prove that near a solution to the limiting diffusive equation there is always a 
solution to the nonlinear hyperbolic equations for a time which usually is much 
longer than the decay time of the corresponding Cattaneo relation. An alternative 
derivation of the heat theories of divergence type, which are consistent with ther- 
modynamic principles, is given as an appendix. 

I. INTRODUCTION 

It is usually understood that heat propagation in a solid is governed by Fourier’s law 

q= -k(T)VT, 

where q is the heat flux, T is the absolute temperature, and k is the thermal conductivity. If we 
assume that the specific internal energy e is only dependent on the temperature (so that 
de = ‘y. dT where ‘y. is the specific heat of the body) and that k is constant, then conservation of 
energy 

combined with Eq. (1) leads us to the well-known heat diffusion equation for the temperature 

where K=k/yo is the thermal diffusivity. 
Equation (3) is a parabolic equation and consequently has the unphysical property that the 

information propagates at arbitrarily high speed. If, for example, we solve the Cauchy problem for 
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Eq. (3) on the real line with initial data of compact support, then the corresponding solution will 
not have compact support for any t>O. The first attempt to solve this problem was carried out by 
Cattaneo,’ who suggested that Fourier’s law should be replaced by a more general law, now 
known as Cattaneo’s equation 

7(T) 2 +q= -k(T)VT, 

where r is a relaxation time which depends on the mechanism of heat transport. [Other equations 
which modify Fourier law, like the heat flux of Jeffrey’s type, have been considered in the 
literature.* However, Jeffrey’s type equations together with Eq. (2) do not give rise to hyperbolic 
systems of equations, and so its study is beyond the strength of the techniques used here.] Equa- 
tions (2) and (4) cannot in general be combined to obtain a single scalar equation for the tem- 
perature. However, we can consider the particular case in which G- and k are constants, and the 
energy e depends only on T in a linear way; then conservation of energy (2) combined with (4) 
leads us to the so-called Telegraph eqt&on for the temperature 

lc?*T 1dT 
7 at2 +; x-V*T=O. (5) 

Equation (5) is hyperbolic and c = JK/7 is its characteristic speed. The solutions of Eq. (5) are 
dissipative wavelike solutions (in the sense that no information at a given time can propagate with 
speed higher than c). If we now solve the Cauchy problem for Eq. (5) on the real line with initial 
data of compact support, then the solution will have compact support for all t>O. This is not a 
property of Eq. (5) alone, but also of the system (2), (4), which in most cases of interest-that is, 
choosing an energy e such that the theory is physically meaningful-is a hyperbolic system of 
equations. This property solves the “paradox of instant propagation” of information, and consti- 
tutes a fundamental difference between the Cauchy problems for Eq. (3) and system (2), (4). 

There exists another important difference between the Cauchy problems for Eq. (3) and 
system (2), (4). To obtain a unique solution one has to give, in the first case, only one function as 
initial data, namely, the temperature at t=O. Instead, in the second case one has to give two 
functions, the temperature and the heat flux at t=O. Thus, system (2,4) has many more solutions 
than system (3). From a physical point of view this means that if one were to prepare an experi- 
ment in which the temperature of a body is a relevant variable, then, not only the initial tempera- 
ture of the body would have to be controlled, but also “extra” initial data, namely, its initial heat 
flux. This would not be necessary if one knew that the extra data had no appreciable influence on 
the future temperature of the body or, in other words, if the temperature remained near the 
temperature predicted by diffusion equation (3). Then the question arises, why if the physically 
reasonable equations of heat propagation are hyperbolic, the more simple parabolic heat equation 
is, in most cases, in excellent agreement with experiments? Or why is it that only under very 
special circumstances, heat waves (hyperbolic phenomena) have been measured?3 

In this article we will try to answer the questions above for two different theories of heat 
propagation, a simple linear one and a more complicated nonlinear one. The way to study this 
problem will be the following. We will think about the system of equations (2), (4) as a mono- 
parametric system of equations-where r is the parameter that recovers a parabolic “limiting” 
system of equations when the parameter goes to zero. In this limit, one has to replace Cattaneo’s 
equation by Fourier’s law. We will then study the relation between the solution of the parabolic 
system with some initial data, and the solution of the hyperbolic system with the same data for the 
temperature and some appropriate initial data for the other component. 

Usual energy techniques, as those used in studies of hyperbolic partial differential equations, 
will be used to treat these problems. The energy (not to be confused with the real energy e of the 
physical system), a positive definite functional, will be defined essentially as an appropriate Sobo- 
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lev norm of the difference between the solutions of the hyperbolic and parabolic systems. This 
energy will then be bounded as is usually done in the existence of solutions’ theorems. 

In Sec. II the simplest hyperbolic linear theory of heat propagation will be treated. The 
equations in this theory are (2) and (4) with constant coefficients and an energy which is linear in 
T [this system is thus equivalent to the Telegraph equation (~$1. It will be proven that given any 
arbitrary initial data for this hyperbolic system, the corresponding solution converges uniformly, as 
the parameter of the hyperbolic family goes to zero, to the solution of the limiting equation (3) 
with the same initial data for the temperature. Furthermore, given a finite value of the parameter, 
a bound for the difference between both solutions will be given in terms of their initial data and 
the parameter. In this simple linear case it will also be shown that the contribution of the extra data 
(mentioned above) to the solution of the hyperbolic system is the sum of two terms, one of which 
vanishes exponentially as t grows while the other is always small. All these assertions will be 
shown to hold globally-that is, for all t>O. 

For this linear system some of these results have already been shown. Caffarelli and Virga4 
partially obtained them by comparing the solutions of Eqs. (3) and (5) but using Green’s functions 
to write the general solutions of those equations. Geroch’ used Fourier transform techniques. The 
advantage of the energy techniques we use here, resides in the fact that they also work for 
nonlinear systems of equations. 

Many authors have studied the problem of heat propagation and heat waves from different 
points of view. A broad review containing a bibliography was written by Joseph and Preziosi.2 It 
turns out that the simple linear system we treat in Sec. II [and Eq. (5)] is incompatible with 
thermodynamic principles. Coleman, Fabrizio, and Owen (CF0)6 have found that Eq. (4) is 
compatible with thermodynamics when the specific internal energy e is not only a function of the 
temperature but also of the heat flux 

Z(T) Z’(T) 
e=e~(T)+a(T)q~, where a(T)=y-2, 

with Z(T)= 7(T)lk(T). We will refer to CFO theories as the system of Eqs. (2), (4), and (6). 
Given three positive functions k(T), eu( T>, and r (T) one obtains a particular theory. Morro and 
Ruggeri7 have also found a family (closely related but different than the CFO) of nonlinear 
generalizations of Cattaneo’s equations which is also compatible with thermodynamics and has 
better stability properties than the CFO family. The energy in Morro and Ruggeri theories is a 
function of only the temperature, and the corresponding system of equations is determined in 
terms of three functions of the temperature: the thermal conductivity k(T), the specific heat yr,( T), 
and the temperature pulse speed Uo(T). We will refer to these theories as MR theories. 

Following the ideas of Liu,’ and subsequent works culminating in that of Geroch and 
Lindblom,’ we give in the Appendix a derivation of a class of dissipative heat theories of diver- 
gence type, that emerge from a set of postulates which are consistent with thermodynamic prin- 
ciples. After making some further assumptions it will be seen that subsets of these theories are, 
respectively, coincident with the CFO theories and with the Morro-Ruggeri ones. 

In Sec. III the nonlinear system of equations of CFO theories will be studied. In this case the 
limiting system is a nonlinear parabolic equation. It will be proven that given a solution to the 
limiting equation near enough to equilibrium, that is near enough to the solution T=const and 
q=O, there always exist a solution to the hyperbolic system that is close to it during a finite 
(nonempty) time interval. Even more, it will be concluded that within this time interval, the 
difference between both temperatures uniformly converges to zero as the parameter goes to zero. 
The initial data for the hyperbolic system has to be chosen coincident with the data for the given 
parabolic solution. (This choice of the initial data is known as the Initialization Procedure,lo~‘l and 
it essentially means that the extra data we mentioned above cannot be arbitrary. It has to be 
coincident with the value at t =0 of the corresponding variable in the limiting theory.) 
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The techniques employed here can be used for many classes of nonlinear systems, in particu- 
lar they are applicable to the theories of heat propagation recently introduced by Morro and 
Ruggeri7 These theories have a simpler structure than the CFO ones treated here and so allow for 
greater generality (stronger results) and complete estimates which can then be used in real physical 
situations. Some progress is being made in this subject and the results will be published elsewhere, 
for they need a rather more detailed use of the structure of the equations. 

II. LINEAR HYPERBOLIC HEAT THEORY 

We consider the problem of heat propagation in the cylinder (we only consider a one dimen- 
sional problem for simplicity, the proofs for higher dimensional cases are more involved but do 
not add any substantial understanding) S’ XR+ given by, 0 6x&!. with 0 and L identified, and 
t>O. The linear hyperbolic heat theory we are going to consider in this section emerges from Eqs. 
(2) and (4) when all the coefficients are constant, plus an energy linear with respect to the 
temperature. Then the equations are 

aT aq 
Yo;=-z’ 

We remind that y. is the specific heat, k is the thermal conductivity, and T is a relaxation time. 
Now, if we divide the first equation by y. and the second by -k, and introduce new variables 
u = T and u = -q/ye, the equations become (subscript t and x denote partial derivatives) 

ut=ux, (7) 

1 
e2vr=ux-- u, 

K (8) 

where K=k/y, is the thermal diffusivity and E = l/c = fi is the reciprocal of the character- 
istic speed of the system, which will be taken as the parameter of the family. [In the Introduction 
we said that T  was the parameter of the system. Notice that 2 is proportional to T, so that it is an 
equally good parameter. It is easy to see, eliminating u from the system (7), (8), that the tempera- 
ture u obeys the Telegraph equation (5).] The equations so written are explicitly seen to be a 
symmetric hyperbolic12 system for all 00. In the lim it E --+ 0 the system becomes 

U~=vXr o=u,-; u. 

Eliminating u and calling u” the solution of this limiting equation, we obtain 

1 
i uj)-u~x=o, 

which is nothing but the usual diffusive heat equation (3) and u” is the parabolic temperature. 
Now let us think about the Cauchy problem (initial value problem) for both Eq. (9) and 

system (7), (8). To solve the parabolic equation (9) one has to give only one function as initial 
data, while to solve the hyperbolic system (7), (8) one has to give two functions. We want to study 
the relation between the solution (u,v) of the hyperbolic system (7), (8) and the solution u” of the 
parabolic equation (9) when both temperatures (U and u”) have the same initial datum (to order 
2), and u has arbitrary initial datum. That is to say 

4=o=fb)? (10) 

J. Math. Phys., Vol. 35, No. 8, August 1994 

Downloaded 16 Oct 2003 to 132.239.145.22. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp



4338 Nagy, Ortiz, and Reula: Behavior of hyperbolic heat equations’ solutions 

~l,=o=stx>l (11) 

uOl,=o=fb) + Ke2ktX>- Kfx,(X)). (12) 

The questions we want to answer are the following. What is the relation between (u,u) and u” for 
a finite value of e? Does the hyperbolic solution u tend to the parabolic solution u” in the limit 
E + O?; and what happens to the extra initial data g we have to give to solve system (7), (8)? 
Finally, can we bound the difference u - u” in terms of E and the initial data? We answer these 
questions through the theorem we state below. 

Theorem 1: Let f E Cn+2(S1) and g E Cn”(S’) be the initial data for the system (7). (8) and 
Eq. (9) as shown in Eqs. (IO), (II), (12) with r&-2. Then the corresponding solutions (u,v) and u” 
are related as follows: 

u=u~-KE%, exp(-tk2)+uR, (13) 

u=Ku~+A exp(-t/Ke2)+vR, (14) 

where A(x)=g(x)- KfX(x) E C”+‘(S’) and 
(i) The Sobolev norms of uR and vR can be bounded for all t>O in terms of the Sobolev norms 

of the initial data as follows: 

(15) 

with Osrn<n-2. 
(ii) When n%=3, uR=O(e2), us=O(e) pointwiseand u,u EC”-~(S’) even in the limit E+ 0. 

[We say that a function F(x,t,e) is of order &’ in the Hm sense-and write F=O(eP), if 
0 # lim c-tO[e-PF(x,t,e)] EH~. 0(1)=0(~‘).] 

We can now answer the questions asked prior to the theorem. Theorem 1 explicitly shows that 
the new temperature u equals the usual temperature u” plus terms of order 2, so that these terms 
vanish when E -+ 0. The second component u [Eq. (14)] behaves as the derivative of the tempera- 
ture plus two terms; one is of order one for t=O but exponentially decreasing as t grows-this 
allows the initial data to be arbitrary (no “initialization procedure”” is necessary here); while the 
other term is of order E. 

To see the physical implications of this inequality we can take the expression for m  =O, and 
after dividing by the whole initial Sobolev energy rewrite it as 

where rd is a time constructed from the initial data. For the case where g(x) = Kf,(x), (A=O), we 
have 

PC 1 l/f&+ ~‘df& 
d;;2 llf& . 

If we now assume f(x) a f o sin(( 2 rrlZ)x) we see that 

(17) 

and so 
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ER ? (2’7T)42K2 

ET(O)=Yy=+ l4 ’ (19) 

As an example of everyday material consider a piece of iron at room temperature, then we have 
~a2.1 X 10-l cm2/s, e=l/(speed of sound)=2.0X IO-%/cm, and so 7=t?~=8.4X lo-l3 s. So we 
see that for perturbations off equilibrium (constant temperature) to behave in a different form than 
the usual dissipation their length scale has to be 1~2.2X 10e6 cm. 

For other initial data configurations similar order of magnitude estimates follow. Notice also 
that while the heat flow and the gradient of temperature approach their equilibrium configurations, 
T=const, ~7 =O, at a rate given by the initial data time, rd , their difference approaches zero at the 
much faster rate given by 7. So that the statement of the theorem is not that “things go to 
equilibrium,” but rather that “the failure of the Fourier Law approach a small value in a time 
much shorter than the time needed for equilibrium to settle.” 

It is well known that the solution (u,v) of a symmetric hyperbolic system like (7), (8) has a 
certain degree of differentiability (depending on the smoothness of the initial data). What is 
important about this point in Theorem 1, is that even in the limit E -+ 0 the solution preserves 
certain differentiability; even more, if n S3 then u uniformly converges to u” when E --t 0, as 
follows from the following inequality: 

where we have used Sobolev’s embedding theorem in the second inequality, and inequality (15) in 
the last one. The whole factor in square brackets is a regular function of E; thus, the inequality 
above shows uniform convergence, and gives an upper-bound for the difference between u and u” 
in terms of E and the initial data. 

Proof of Theorem I: We can always write the solution of Eqs. (7), (8) as is done in Eqs. (13), 
(14). Then we have to prove that statements (i) and (ii) of the theorem hold. To do this we first 
obtain the equations that uR and uR satisfy; this is done by replacing u and u in Eqs. (7), (8) for 
the expressions given in Eqs. (13) and (14). The resulting equations are 

URt=vRx, (20) 

1 
e2vRt=URx-K UR+c2p, (21) 

where p= - K(A,, exp( - t/m?) + uz,). We now define the energy for ( uR ,v,) as 

To bound this energy we proceed as follows. Taking the time derivative of Eq. (22) 

2 L 
&=, 

I dXbRuRt+E2vRvRtl 
0 

(23) 

and using Eqs. (20), (21) we get 
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1 
uRuR*+ URUR+-; ( uR)*+ 2pJR . 

I 

The first and second terms in the integral cancel each other under integration by parts, so that 

L 

f [ 0 
dx -; (vR)*+~*puR . 1 

At this point we could drop the first term and conclude that bRc ( 1 /r)ER + 7.f; dx p’. But we can 
do better; completing squares we obtain 

2 L 
iR=- j- dx[ -[$-e*p $I*+; c4p2/cz4; I,’ dx p* 

L 0 
(24) 

gaining an e4 factor. Integrating this inequality we obtain 

ER(r)SER(0)+~4 $ 
I 

’ df’ll&(f’,4 
0 

(25) 

with 

ll&W : = e4 2 foL dx p2kt,4. 

But the choice of initial data implies u,( t= 0) =0 and uR( r= 0) = - E*KA,, , so that 

ER(O)= ~6~411&xll~~ 

and the bound for the energy is 

ER(t)~~6~41(Ax11~2+~4 2 ’ dt’~/&(t’,~). 
f 0 

(26) 

The quantity p is made out of initial data and solutions of the limiting equation, so that 
p=O( 1) Vt>O, and consequently the expression in brackets is finite even in the limit E + 0. Then 
from Eq. (26) and the definition of energy it follows that 11~~11~2 = 0( c4) and jluRll~2 = 0( E*). The 
next step in the proof is to express the term involving p of Eq. (26) in terms of the initial data. 
Recalling the definition of p we have 

5 s,’ dt’llpll~~=~ 1: dt’ I,’ dx(A,, exp(-t’lKE2)+Uzt,)* 

K*t L 
S--- 

L odr’ 0 I f 
dx[(A,,)* exp(-2t’lKE2)+(uT,,)2], (27) 

where we have used (a+b)*~2(a2+b2). Performing the time integral in the first term in Eq. 
(27) and throwing away negative terms we obtain 

t I f L 2 L 
dt’ WA,J2. 

0 0 
dx(A,,)* exp( -2t’lKe*)CT f 0 
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Using the limiting equation (9) we obtain for the second term in Eq. (27) 

f f f L t L 
dt’ 

0 0 
dx(u,ot,)2s /c dt’ f f 0 0 

dx & uzxx 

t f f L 
s--K dt’ 

0 0 
dx uzxt, uzx 

=s - KfoL dx[; (u;X)2];=-/oL dx[(f,,)2+ ~4K2(‘h,,)21- 

Putting all this into Eq. (26) we obtain 

(28) 

We thus have the inequality sought but for m  =O. To obtain the inequality for arbitrary m  notice 
that Eqs. (20), (21) for (u,, uR) are linear and consequently the first spatial derivative of these 
functions will obey the ST equations if we change p by px in Eq. (21). Then, using an energy 
E;, =I/ u~xll;z + ~*1b~x11~z we obtain exactly the same inequality (28) but with each function dif- 
ferentiated once with respect to x. Now, adding l/L2 times this last inequality plus Eq. (28) we 
obtain the inequality (15) for the H’ norm of (uR ,uR). It is clear that we can continue this 
procedure increasing one spatial derivative every time. We then obtain the inequality (15) for all 
the H”’ norms of ( uR ,uR). These inequalities will be meaningful only if their right hand sides 
remain finite; and, because of the differentiability of the initial data, this is true for Osrn G n -2, 
but may be not true for m  > n - 1. This concludes the proof of statement (i). 

Finally, comparing the E orders of each term in the inequality (15), we note that statement (ii) 
is a direct consequence of statement (i) and Sobolev’s embedding theorem. 

III. NONLINEAR EQUATIONS OF HEAT PROPAGATION 

As in Sec. II we consider the problem of heat propagation in the cylinder (the restriction to 
one spatial dimension is only for simplicity) S1 XR+ given by, O<xGL with 0 and L identified, 
and t Z-0. We shall study in this section the nonlinear theories introduced by Coleman, Fabrizio, 
and Ower$ see the Appendix. Equations (A29) and (A30) for the temperature T and heat flux 4, 
when restricted to one spatial dimension and written as a symmetric system, become (the prime 
denotes the derivative of a function of a single variable) 

4T)k(T) 40 [~oV)+a’(T)q*lTt= -qx+2 T(T) @ ‘x+2 7( 4*9 

427 1 
- qt= -L-k(r) 4, k(T) 

(2% 

(30) 

where-as explained in the Appendix, yo( T)>O is the specific heat, k( T)>O is the thermal 
conductivity, 7(T) is a relaxation time, and u(Z) = - T*( T/T*k) ‘/2. We shall consider the system 
(29),(30) as a monoparametric family of systems; instead of thinking of r as that parameter-with 
the complication that it is a function-we introduce a parameter E such that r(T) = e*?(T), that is 
r(r>=O(P) while ?(T>=O(l). Th us a(T) = 2Z( T) with a”(Z) = - T*( 3T*k) ‘/2, so that Eqs. 
(29),(30) can be written as 
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rTTr= -q,+2 $ qT,+2 0 q*, 

1 
e*&q,= -TX-g q, 

(31) 

(32) 

where 

I’T(T,q)=yo+e2a”‘q2, T,(T)=;. (33) 

The limiting system, which is obtained taking the limit E + 0, is a parabolic system.[Strictly 
speaking, one knows that this is the limiting system only in the cases for which the initial data for 
both systems (hyperbolic and parabolic) are chosen so that the theorem below holds, which 
implies that T- Tc and q-q’ do not diverge when E + 0.1 Calling (p,q’) the solution of this 
system, it can be written as 

rome= -q,o, (34) 

o=-Ty&qo (35) 

or equivalently (as q” is a dependent variable) 

roV”U”?=[Wo)~l,. (36) 

Notice that (T=const, q =0) is an equilibrium (stationary) solution for both the hyperbolic and 
the parabolic systems. Also notice that to solve the initial value problem for Eqs. (31), (32) it is 
necessary to give two functions as initial data, while for Eqs. (34), (35) [or equivalently Eq. (36)] 
it is necessary to give only one function. We write the initial datum for Eq. (36) as 

Pl,,o=?“+f(x), with F=i 1’ dx ~I,,,>O. 
0 

Now, given a solution Te of Eq. (36) we want to find out whether or not there exists a solution 
(T,q) of the hyperbolic system that “approximates” (Tc, - kc) during a finite time interval. It 
will be shown that the answer is affirmative provided that the parabolic solution Tc is near enough 
to equilibrium. The solution (T,q) of the hyperbolic system will be obtained by choosing the 
following initial data: 

T/,=0= ~l,,o=?j+f(x) and qltzo= -k g . 

This choice of initial data is known as the Initialization Procedure for the system (29), (30) (see 
the introduction and Refs. 10, 11). In what follows we shall restrict our study to the case where the 
thermal conductivity k is constant. This will be assumed just to simplify some calculations, though 
there is a version of the theorem below without this restriction. 

Theorem 2: Let ydT) and F(T) be smooth undpositivefinctions when T>O. Given a solution 
ire of Eq. (36) with initial datum chosen us in Eq. (37) with l/fllHs < Cp [How small the constant 
C is required to be will be stated in the proof of the theorem. See Eqs. (44), (67).], there exists a 
time interval [0, to],tO>O such that the solution (Tq) of Eqs. (31), (32) with initial data chosen us 
in Eq. (38) satisfy 
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T=p+T, and q=-kc+qR, te[O, to], (39) 

with TR=O(~) and qR=O(e) in the H2 sense. 
Before giving the proof we want to remark on an important difference between the linear and 

nonlinear cases. In the former, the Ho Sobolev norm of any derivative of the difference between 
the hyperbolic and parabolic solutions could be bounded independently. Whereas in the latter, 
different order derivatives cannot be bounded independently; one has to choose a precise Sobolev 
norm order (depending only on the number of spatial dimensions of the problem) to define the 
energy, so that all the derivatives involved can be bounded together. In the one dimensional case 
the lowest Sobolev norm that can be bounded is H2. Thus our energy for this case contains up to 
second derivatives of the variables. 

Proof We can always write (T,q) as done in Eq. (39); we have to prove that TR and qR are, 
respectively, O(2) and O(E) in the H* sense. 

Using Eqs. (3 l), (32), and (36) we get the equations for ( TR ,qR) 

rTTRf= -qR*+2 $ 
4 

qTR,+2k ; qqR-- e*Li”cq*+ H, 
4 

E2rqqRt=- T qR+ E2krqC,, 

(40) 

(41) 

where 

l-he equations for ( TR,, qd and ( TR,, , qRxx) are obtained taking derivatives of Eqs. (40), (41). 
The choice of initial data implies 
4Rlt=0=~Rxlt=O=~R*xlr=O=~. 

that TRlt=O=TRxlr=O=TRxxlr=O=O and 

We now write the solution To as follows: 

TO(x,t) =P+ P(x,t) 

so that ? obeys the nonlinear heat equation 

c=K(?)f$, K(p):= k >o, (42) 

with initial datum Flt=o= f(x). It is known13 that the solution ?c of a strongly parabolic equation 
like Eq. (42) obeys the energy estimate 

(43) 

where P is a regular function of all its arguments that vanishes when ~/P~l,O~)HS --+ 0. This 
implies that if we take s=5 in Eq. (43) and C small enough in the hypothesis that bounds the fifth 
norm of f, ?’ will obey ~~?‘~~,~ G p/3vT during a finite time interval [0, tJ, then IPI 
6 ~‘Z/21/?/1~i G F/3 andconsequently 

$%Q(x,t)+F, fE[O, tJ* 
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To be able to built the energy estimate we make some a priori assumptions. We take O<tig 
(q to be chosen by the end of the proof). 
(i) The first a priori assumption is that there exists a pair of positive constants K, and K, such that 
l-,>K, and r,>K,. 

This assumption allows us to define the energy functional for ( TR ,qR) as follows: 

1 L 
ER(r,4=~ o I 

r~(T,)Z+~2(TRI)2+Ld(TRlr)21~x+~ 

I L 
X 

0 
r4E(4R)2+L2(qRx)2+L4(qRxx)21dX, (45) 

where n is non-negative. A direct consequence of assumption (i) is that the H2 Sobolev norms of 
TR and qR satisfy 

65” 
11T&p~gE~9 (46) 

&-2) 
h?&2~~E~~ 

4 
(47) 

These inequalities and the Sobolev’s embedding theorem imply that 

(49) 

(50) 

(51) 

which say that while the energy E, remains small, the variables TR , qR , T,, , and qRx also remain 
small. 

As our aim is not to find explicitly the best estimate for the energy E, , but just to show that 
there exists an estimate regular in E, we now make a second a priori assumption that allows us to 
restrict the variables TR , TRx , qR , and qRx to some finite intervals, and consequently to bound the 
functions of these variables by their infinite norms. This eases the building of the energy estimate. 
(ii) The second a priori assumption is then 

Assumption (ii) allows us to write inequalities (48)-(51) in terms of !?, e, ea K,, and K, 
as follows: 

(52) 
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IT 1 

E  42 

(-) 
P  

Rx == 
EO 3L' (53) 

- 
lqRl< J 2 ‘(-$” $ , (54) 

4 

(55) 

Finally, notice that Eqs. (44) and (52) imply that 0 <T0/3~TG5p/3 and then 11TG31?i<co. 
Consequently 7(T) >O and so l/;i( T) is a smooth function within the allowed range of T. This will 
be used in what follows. 

The key step in the proof is to build an energy estimate regular in E. To obtain it we take the 
time derivative of Eq. (45) to get 

1 L 
ERr=E”L o 

I 
r,r[(TR)2+L2(TR,)2+L4tTR~~)2idX+~ IL 

0 
rqt[(qR)2+L2(qRx)2 

+L4(~Rxx)21dX+~ ," 
I 

rT[TRTRrt-L2TRxTRnrfL4TRxxTRxxtldX 

(56) 

Now, we use equations [the equations for the spatial derivatives are obtained taking the corre- 
sponding derivatives of Eqs. (40), (41), and using (40), (41) back to arrange the equations] for TR , 
TRX 7 TRXX 9 qR 7 qRx 9 and qRrx and the definitions of l?r and rq . Then, using integrations by parts, 
Eq. (56) can be written (after some algebra) in the form [It is convenient to remark that the 
expression given here is highly nonunique. Many of the terms that appear when one develops Eq. 
(56) can be treated in different ways, thus contributing to different functions in Eq. (57).] 

ERr(r)=& 
I 

oL[~,(r,,2+~2~2tr,,,2+~~~4~r,,,,2]d~+~ /L[&TR+p2LTR, 
0 

1 
+W2T,xxldx+p=q- o I L[Qdqd2+ QsL2(Gd2+ QsL4tc7d21dX 

+-&jy, I oL[R,q,+R,Lq,,+R,L2qR~~ldX+~ fL[R4q,+R,LqR,+R6L2q...ldr 
0 

(57) 

where (functions Qi , Pi, and Ri will not be given explicitly because some of their expressions are 
too complicated-and give no insight into the calculation-and none of them are uniquely deter- 
mined) Qi for i=1,...,6, Pi and Ri for i= 1,2,3 are smooth functions of the variables TR , TRx , qR 
and qRx v and the parameter E. That is, they are bounded while the variables move in the ranges 
allowed by the a priori assumptions and OS&%. 

Ri for i=4,5,6 are of the form 
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where Rij , j = 1,2,3 are smooth functions of the variables TR , TRX, qR , and qRX, and the param- 
eter E, and 

dAT, dAT dAlY 
+6 dT ATqL4(~)2~X-4 --$ L4ccX,-3 $ L4(cX)2 

+2 3 L4Arq(e)4+6 (58) 

3 dA.T 
2+; ArqL2~X-2(Arq)zL2(~)2+2 -$ L2(7y ) 1 

where 

Arq(T)=g . 
4 

(f-51) 

Equation (57) gives an exact expression for the derivative of ER . Now we bound each term in 
Es. (57). 

The first term is bounded as follows: 

(62) 

where I Qiloo<~ can be thought of as the least upper bound of the function Qi while the variables 
obey Eqs. (52)-(55) and 6%. 

The second term is bounded as follows: 

-$q foL[P,7,fP2LTR,fP3L2TR,,ldx 
=& I,“[ (&PJ( 3) +(&Pl)L( 3) +(&P3)L2[$)]dx 

1 
s 

L 1 
s 

2&2)L 0 E2iC(P1)2+(P2)2+(P3)21dx+~ I ," $$(TR)~ 

E(4-n) 
+L2(T,,)2+L4(TRXr)2]dxST 

1 I~TRI& 
~tlP:l,+lP~lm+lP:l,,+~~, (63) 
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where we have used inequality ubGgu2+ b2). The constant O<i<m has units of time, and is 
chosen to minimize the bound (63). 

The third term, in analogy with the first one, is bounded as follows: 

(64) 

To bound the fourth, fifth, and sixth terms we proceed as follows. Notice that S1 and S2 obey 
the inequalities 

d2Ar 
-2 + L41Arq11~14-6 7 I I Id2Arq~~41A~q~l~12~~~~-~~~L41~~4], (65) 

S2't(2--flArqlL21~~/-2/Arq~2L21~~2-~ fg- / +w]. (66) 

Notice that these inequalities involve up to fourth derivatives of To. We now require that the 
constant C to be small enough so that IZq. (43) and Sobolev’s embedding theorem guarantee that 

during the time interval [0, rl]. These conditions together with Eqs. (65), (66) imply that 

67) 

1 
s,a->o 

k 

and 

1 
s,a->o. 

k 

(68) 

(69) 
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We also have 

s,=go. (70) 

All this tells us that the sixth line in Eq. (57) is negative definite. [Notice that in the case we are 
considering (k =const), Al?, = +I/+= d/r. Thus, the smaller the spatial variations of T, the weaker 
the condition on the initial data f(x) has to be. In particular, if rq=const, it is not necessary that 
the parabolic solution 7c be near equilibrium.] We can then, by completing squares, bound the 
fourth, fifth, and sixth terms in Eq. (57) as follows: 

$q f oL[R,q,+R2Lq,,+R,L2~,,ldx+~ fL[R4qRfRILqR,+RsL2qR~~ldX 
0 

-&, foL[~,(qR)2+~2~2tqRr)2+~3~4(qRrr)21dx 
1 L 

YE 0 fi (E2R,+R4)qR+(E2R2+R5)LqRx+(E2R3+R6)L2qR,, 

-kqRj2-$qn,12-$ b?Rd2 dx 
1 

1 Lk 
<E”L 04 f [ (E’R,+R,)~+(E~R,+R,)~+; (E~R~+R~)~ dx 1 

E(4-n) L 1 
G- 

L f 1 o z UW2+UM2+; W2 +E 1 1 I,“;[ (R4)2+(R5)2+; (R6)2 dx 1 
,$+?;[m+ jR:,+f jR:la]+--& I,' ; ([(&~)~+(Rrl)~+; &,)2]tr,)2 

+L2 (&z)~+(Rs~)~+~ (&2j2 (R4312+(R53)2+k (Re3j2 (TRXJ~ 1 I 
&4-n) 

G- [ 1~:1,+18:1,+~ l~:l~]+i [ l~~~l~+l~~J~+~ ~R~,I~+~R~~~~+IR~~~~ 2 

IITRI& 
+; IR~21,+IR:,I,+IR:,I,+-f- 1@31m -yii-- 9  1 (71) 

where we have used Eqs. (68), (69), (70) to get the first inequality; we have completed squares and 
thrown away the negative terms to get the second inequality, and have done some algebra to get 
the rest of Eq. (71). 

Now, using all the bounds (62), (63), (64), and (71) together with (46) and (47) we get 

ER,(r)~E(4-“)P(r,E)+Q(r,E)ER, (72) 

where P(r,E) and Q(r,e) are O(1) functions given by 

p(r,4= %ClP&+ IP&+ Ip$J+ IR&+ IR&+ IR&J, 
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+ IR;21m+ IR;21m+ tl&lm+lR:,Ico+ lR:&+ ilR;&). 

It is now obvious that the highest possible value for n, so that the right hand side of Eq. (72) 
is order one, is n =4. We thus conclude that the energy ER( r, E) is bounded by the solution of an 
ordinary differential equation of the form 

yttrt4=W,r,4, (73) 

with F a regular function of all variables and with initial data Y/,=~= ER(t= 0, E) = 0. Thus there 
is a finite time interval for which a solution to this equation exists and is a smooth function of r 
and E. 

Now we turn our attention to the a priori assumptions (i) and (ii). At r =O, on the one hand, 
all the functions are evaluated in T=f(x)>2p/3 and q”= -kf, so that the positivity of y. 
ensures that there exists a positive constant K, such that yo>2K,, and consequently there exists 
e>O small enough such that r,> K, [see Eq. (33)]. On the other hand, existence of K, is ensured 
just because T=f>O and rqcf )>O. All this says that at r=O both a priori assumptions hold. 
Thus, since the solution to Eq. (73) is smooth for a finite interval, there will be another smaller 
finite interval, [0, to] (to< rl), in which the a priori assumptions will be valid and so a finite 
interval in which the energy is a smooth function of e. More precisely, there exist Q,>O such that 
ER is a smooth function of (r,g) in [0, ro]x[O, Q]; and thus the statement of the theorem follows 
from Eqs. (46), (47). w 

A direct consequence of this theorem and the Sobolev’s embedding theorem is that under the 
hypothesis of Theorem 2, the absolute hyperbolic temperature T uniformly converges to the 
parabolic temperature 74 as E -+ 0, for r E  [0, to]. 

It is interesting from a practical point of view to know how long the E smoothness of the 
energy lasts for a finite (small) value of e, that is, to have an idea of the order of magnitude of ro. 
For if to were of the order of magnitude of the relaxation time T, the theorem, though true, would 
not be interesting. We can give a simple argument to see that this is not the case. Given a finite 
(small) value of e, the energy E, will remain small and smooth in E during a finite interval 
C&r,(4). [Th e rme to>0 previously mentioned is such that [0, r,]C n l sLO, JO, ro( c)).] At t’ 
to(e), ER would grow so much that some of the a priori assumption made in the proof would cease 
to hold, being then that ER would not be bounded anymore by the solution of Eq. (73). However 
while the energy remains small, the bound obtained from Eq. (73) holds; and as F is smooth in C, 
we can approximate to(e) by its value at e=O. But in this limit F is just an expression involving 
the nonlinearities evaluated at the parabolic solutions and these solutions themselves, so the time 
interval [0, to(O)] will not have any relation with-and therefore will have a different magnitude 
than-the presumably much shorter relaxation time T (see Sec. II). Thus the expectation, which 
depends on the particular choice of the model-that is, the choice of the functions y. and T, is that 
to is indeed relevant and is of the order of the cooling time Q, a function of the initial data and the 
nonlinearities. [In fact, it can be shown that as the energy of the system goes to zero, P(r, E) can 
be taken smaller and smaller, so that the existence time can be made larger and larger, and in 
principle the time r. can be much larger than the decay time. However, the restriction obtained that 
way on the initial data could be too strong on physical grounds.] 

IV. CONCLUSIONS 

The behavior of the solutions of hyperbolic systems of equations for heat propagation com- 
pared with the solutions of the corresponding parabolic limiting systems have been studied. The 
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hyperbolic systems of equations have been treated as monoparametric families, such that the 
(linear and nonlinear) heat equation is recovered when the parameter goes to zero. 

In Sec. II the hyperbolic linear system for temperature T and heat flux 4 given by the 
conservation of energy (2) with constant specific heat, and Cattaneo’s equation (4) with constant 
coefficients has been studied. 

It has been proven that given any arbitrary initial data for the hyperbolic system, the solution 
p of the parabolic equation with the same initial data (to order 2) for the temperature, remains 
near the hyperbolic one for all t==O. More precisely, an O(z) bound for the H” (n >O) Sobolev 
norm of the difference between the hyperbolic and the parabolic temperatures has been found for 
all t30, in terms of E and the initial data. Using this, an explicit O(2), pointwise, bound for the 
absolute difference between both temperatures has been found. In the same way, a pointwise 
bound for the absolute difference between the spatial derivatives of any order of both temperatures 
can be obtained. As regards the difference between the hyperbolic and parabolic heat flux, it has 
been proven that its H” Sobolev norm is O(E) for all t>O, even if that difference is an arbitrary 
smooth function at t =O. This is so, because 0( 1) terms exponentially vanishes as t grows with an 
O(Z) time constant. 

In Sec. III, a family of nonlinear hyperbolic systems of equations has been studied, namely, 
CFO theories. It has been proven that given a solution 7’a of the nonlinear heat equation near 
enough to the equilibrium solution Tc=const, q”=O, there exists a solution of the hyperbolic 
system that remains near the parabolic one. The initial data for the hyperbolic system was chosen 
to be initialized-if a slight generalization could be done, we could have taken initialized data plus 
terms of order O(E) which would have essentially not modified the proof. More precisely, it has 
been shown that there exists a bound of O(z) for the Hz Sobolev norm of the difference between 
the hyperbolic and the parabolic temperatures. This implies that an O(z) pointwise bound for this 
difference can be found. 

The results obtained for the linear case could hardly be made stronger, but the same cannot be 
said for the results in the nonlinear case. There are several important differences between them. 

6) The bounds obtained in the linear case are valid for all t>O, while in the nonlinear case 
they hold only for a finite time interval. We believe that this result can be considerably 
improved, to obtain results like “for a given data the time of existence goes like I/E.” 

(ii) Any given solution of the linear heat equation can always be approximated by (many) 
solutions of a hyperbolic linear system. We do not know if this is so in the nonlinear case, 
because we have shown only the sufficiency of the condition Tc is near enough to equi- 
librium.” It would be interesting to test, at least numerically, whether this condition can be 
relaxed for the approximation. 

(iii) Every solution of the linear hyperbolic system is near a solution of the linear heat equation. 
Though we could not prove the same for the nonlinear case yet, because of the restriction 
imposed on the initial data for the heat flux, we think our results can probably be improved 
in this respect, at least for some nonlinear cases for which the initialization condition could 
be relaxed. Efforts are being done in this sense. 

(iv) In the linear case the bounds were explicitly worked out, while in the nonlinear case only 
the existence of bounds was shown. Though the bounds in this last case could have been 
obtained explicitly’in terms of the initial data and the parabolic solution, both the complex- 
ity of the expressions and the fact that the time intervals of validity would have been only 
implicitly defined, discouraged us to carry out this calculation. However, we are working 
with this aim for the physically more interesting nonlinear theories of Morro and Ruggeri. 
Results will be presented elsewhere. 

The energy techniques we have used to prove the theorems can also be applied in a variety of 
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physical problems that involve hyperbolic partial differential equations. In particular we have been 
working with similar problems to those treated here but for certain “hyperbolizations” of Navier- 
Stoke’s equations. Some of these results will be given in further works. 
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APPENDIX: DISSIPATIVE HEAT THEORIES OF DIVERGENCE TYPE 

In this appendix we give a general formulation of the dissipative theories of divergence type 
for heat propagation in a medium at rest. This subject and some related ones were studied by 
several autbors.“*6*7*9 The present study will be carried out using the basic ideas of extended 
thermodynamics. Our derivation is almost equivalent to that of Morro and Ruggeri, though a little 
more general and including some new results. It will be seen at the end of the appendix that under 
some assumptions these theories become either (see introduction) CFO theories or MR theories. 

We require the theories to obey the following postulates: 
(i) The dynamical variables of the theories are a scalar field and a vector field (the dynamical 

variables could, for instance, be chosen as the physical temperature field T and the heat flux field 
q=), and all the physical fields are pointwise functions of them and the metric tensor h,, . (We 
assume that the properties of the medium are described by a symmetric positive-definite metric 
tensor hab. Throughout this appendix the indices a,b,c,... will run over spatial coordinates. The 
corresponding spatial derivatives will be denoted by D, ,D, ,D, ,..., while a dot over a variable 
will indicate time derivative. Rising and lowering of indices are carried out with the metric tensor 
h,, and its inverse ha’, that is, &= h=b&b, e= habe, where h=,hbc= SC=.) 

(ii) Apart from the conservation of energy 

i+D=q==O 

there will be another divergence type equation 

(Al) 

Aa+DbHba=I= , WI 

where, as assumed in (i), the five tensors e, q=, A=, Hb=, and la are functions of the dynamical 
variables. 

(iii) There exists an entropy density s and an entropy flux sa obeying, as a consequence of 
Eqs. (Al), (A2), the entropy law 

S+D=s==o-, (‘43) 

where (+ is a non-negative function of the dynamical variables. 
Let us analyze the consequences of these postulates. In order that Eq. (A3) be a consequence 

of Eqs. (Al), (A2) and that (+ be just a function of the dynamical fields, i + D=s= must be a linear 
combination of the left hand sides of Eqs. (Al), (A2). We denote the coefficients in this linear 
combination as -5 and -& . Thus 

&-D=s==-&(i+D=q=)-i$=(Aa+DbHba) 

so that Eqs. (Al), (A2) imply a=-&Ja>O. From now on we will think of {&&} as a set of 
dynamical variables. 

Consider now the tensors x and f defined as 
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x=sf~e+~=A=, 644) 

X==Sa+&=+&,Hnb 64% 

and notice that x has units of entropy density, x“ has units of entropy flux, and 5 has units of 
inverse temperature. Now, notice that 

i+D=,y==$ a+-$ i,+s D=@-g D=&, 
U 

and using Eqs. (Al)-(A3) and the definition of cr 

X-l- D=,y== ie + q=D=t+ &=A=+ H=bD=&b. 

Since these last two equations are supposed to be valid for all pairs {&;5,}, it must be true that 

8X aXa JX aXa 

e=z’ 
q==x, A==ag,, and Hub=-. 

%-b 
L46) 

As all the physical fields are pointwise functions of {&&}, the energy density e-as any other 
scalar in the theory-must be a function of 5 and p=hubptb/2. Both vector fields A= and q= must 
be proportional to e, and consequently proportional to each other, that is 

A==US,pL)q=. 647) 

Finally, since the only tensors present are p and the three metric hub, the tensor Hub can only 
have the form 

Hab= 5%4hab+ ~KPE=~~ 
so that Hub is necessarily a symmetric tensor. Equation (A6) and (A7) imply that 

(A@  

A==-$ =iq==i k$ 
U 

but x=x(&u) so that 

1 ax 
4==x z  5”. 

Now, Eq. (A8) implies 

dH=b 
- =dy h=b+!$ ylb, 

at a%$ 

while Eqs. (A6) and (A9) imply 

- =- =~~h=~+$. 

Comparing Eqs. (AlO) and (All) we conclude that 

87 1 ax and -=-- 
a-5 x  a 

649) 

(AlO) 

(All) 

6412) 
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so that X and x uniquely determine 77 and y, and therefore Hub. 
As a direct consequence of Eqs. (A4) and (A6) we get 

ds= -5 de-&, dAa. (A13) 

This equation suggests to us to identify -l/t with the absolute temperature T of the system. 
Assuming this, the transformation between the dynamical variables {&&} and the physical vari- 
ables {T, q’} is given by 

T-k, q.=; 2 E”* 

Now, sa can be written as 

s==x=-t$ 5”-- yp-2/.&?7p. 

Differentiating with respect to 5 and using Eq. (A12) we get 

a.30 -=A- 
at sag I32P$5 i i 

and integrating we get 

s== - 6 2 +2/l -$ 
( 1 

E"+f(p)F. 

(A15) 

6416) 

We now differentiate both Eqs. (A15) and (A16) with respect to p and compare the results to get 
the identities 

37 f(p)=0 and v=-. 
a 

Using this, E!q. (A16) becomes 

w+ S== -5q=-2p - = 
aria6 q . 

These theories describe heat flux in a medium at rest (there is no matter movement); consequently, 
the entropy flux and the heat flux have to obey 

4= s==- 
T 

and as we have chosen 5=-1/T, Eq. (A18) implies dyidp=O. Some consequences can be drawn 
from this fact. First, Eq. (A17) tell us that q=O and consequently the tensor Hub is proportional to 
the metric tensor hub, which simplifies the structure of Eq. (A2) for all these theories. dy/@=O 
also implies &.9’&.&=0 and so-using Eq. (A12)-we get 

for some function p(o; and integrating we get 
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Thus, any particular theory is obtained giving the functions x0, h, and p, and the vector I” as 
functions of 6 and e. From these tensor fields, Eqs. (Al) and (A2) can explicitly be written in 
terms of the physical fields. Notice that the entropy density is given by 

s=x-( dx-zp - ax 
at a’ b420) 

In what follows, we will restrict our study to a subclass of these theories whose “generating 
function” x is quadratic in 4’. 

Quadratic theories. The simplest possible choice for the function X(&L) is to take it linear in 
p, that is, quadratic in q’. These theories are obtained if the function h is only dependent on Q 
Assuming this, the generating function x becomes 

x=xo(5)+V5)P(5)P. 6421) 

Using this x we obtain 

dxo d(W) 
e=z+ d.$ - P* qU=P(5)% 

so that conservation of energy (Al) becomes 

d2xo d2(AP) 
F + de2 - &,i”+Du(Ps”)=O. 

Now, as A==Xpe and Hub= yhab (with ayl@=/3), Eq. (A2) becomes 

. 4W 
‘/%?+ d5 - ~&-/3habDb&-I==0. 

6422) 

6423) 

Finally, the entropy density becomes 

dxo d(W) 
s=xo-f-w-5-g-/4 d5 . 

We will now show how both CFO and MR theories arise making particular choices for x0, A, 
/3, and Ia. 

(i) CFO theories6 
The theories of Coleman, Fabrizio, and Owen arise from these quadratic theories if one 

chooses A=const, so that Eqs. (A22) and (A23) reduce to 

a2Xo A a2p 
x +5-g &A= (+A ; tai=+D,UW”)=O, 6424) 

a . App-tA ag $~+@hubDbr$-I==o. (~25) 
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Now, suppose we are given with the thermal conductivity k(T), the energy for zero heat flux 
eo( T), and the relaxation time T (T), which are the functions needed to fix a particular CFO 
theory (see introduction). We now define x0, fl, and la in terms of these three functions as follows: 

A2 k(-l/c) 
x0(5) = eo(-l/l)dC, /3(5)=X (-“‘) 

E2ti- l/E> ’ and I==--pyyqg E=Y 

W W  

where we have assumed that the energy density vanishes at zero temperature. From these defini- 
tions we get, after some algebra, the physical fields which can be written in terms of T and q= as 
follows (using the notation of Ref. 6): 

e=eo(T)+4T)q,qa, 

s=So(T)+b(T)q,q=, 

where 

Z(T) Z’(T) 
~(T)=T-- 

Z(T) Z’(T) 
2 ’ W)=T- 2T 9 so(T)= 

with Z(T) = tiT)Ik(T) and where a prime denotes differentiation with respect to T. Notice that 
s;(T) = eh(T)/T as expected. Definitions (A26) transform Eqs. (A24) and (A25) into 

[yo(T)+u’(T)q=q=]~+2u(T)q=~=+D=q==0, (~29) 

r(T)~=+k(T)habDbT+q==O, 6430) 

where ye(T) = eA(T) is the specific heat. The entropy source u satisfies the non-negativity 
condition 

4a4= 0-E -I=.&=-y-- 30. 
Tk 

Equations (A27), (A28), (A29), and (A30) constitute CFO theories. 
(ii) MR theories7 
The theories of Morro and Ruggeri arise from the quadratic theories given above if one 

chooses Ap= 1. In this case Eqs. (A22) and (A23) become 

dA.p 1 
Aq=+z .$ y +x habDb[+==O. 

6431) 

(~32) 

Now, suppose we are given with the thermal conductivity k(T), the specific heat yo( 7’), and 
the heat pulse speed U,(T) which are the functions needed to determine a particular MR theory 
(see introduction). We now define x0, A, and I” as follows: 

x0(5)= Ifm dv j-Jm 3/o(- l/Odl, A(5)=Uo(- l,t)5Jyo(-115), and la= $5”. 

(A33) 
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So that the physical fields can be written as 

such that s’(T) 

and 

I T 
e(T)=eo(T)= o yo(rW, 

Tdv u 
s(T)= T f I ov 0 

yo(r)dr+f T 
f o yo(r)dr 

eh(T)IT. Equations (A31) and (A32) become 

yo(T)f+D=q==O 

($) $ ( uo;--) +khabDbT+q==O, 

6434) 

6435) 

(A36) 

6437) 

which are the equations in the Morro-Ruggeri theories. Finally, notice that CT satisfies the non- 
negativity condition 

U 
(T= -5,1==+ 
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