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It is well-known that the equations for a simple fluid can be cast into what is called
their Lagrange formulation. We introduce a notion of a generalized Lagrange for-
mulation, which is applicable to a wide variety of systems of partial differential
equations. These include numerous systems of physical interest, in particular, those
for various material media in general relativity. There is proved a key theorem, to
the effect that, if the original~Euler! system admits an initial-value formulation,
then so does its generalized Lagrange formulation. ©2001 American Institute of
Physics. @DOI: 10.1063/1.1364502#

I. INTRODUCTION

Consider a simple perfect fluid in general relativity. That is, fix a space-time
4-dimensional manifoldM with metric gab of Lorentz signature (2,1,1,1). The fluid is de-
scribed thereon by two fields, a unit timelike vector fieldua ~which is interpreted as the velocit
field of the fluid!, and a scalar fieldr ~which is interpreted as its mass density!. These fields must
satisfy the fluid equations,

~r1p!um¹mua52~gam1uaum!¹mp, ~1!

¹m~rum!52p¹mum. ~2!

Herep is specified as some fixed function ofr, the function of state.
This treatment is usually called the Euler formulation of a fluid. Its characteristic featu

that the fluid is described by means of fields on space–time. That is, the ‘‘independent var
in this formulation—the thing the fields are functions of—is the event of space-time. There
alternative treatment of a fluid, called the Lagrange formulation, in which we ‘‘move with
fluid, rather than remain fixed in space–time.’’ In other words, the independent variable in
formulation is the fluid-element, and so the fluid is described by fields that are functions o
manifold of fluid-elements.1

Each of these two formulations has its advantages. The Euler formulation is less tightl
down to the fluid itself, and so is usually more convenient when other systems—which w
naturally be described with reference to space–time—are involved. In particular, the Eule
mulation is normally used for a fluid in interaction with other fields, as, for example, in
Einstein-fluid system. The Lagrange formulation, by contrast, tends to be more convenient
one wishes to identify and follow individual fluid elements. For example, the Lagrange form
tion might be used to describe a fluid object with a boundary. The boundary, in this formul

a!Electronic mail: geroch@midway.uchicago.edu
b!Fellowship of the Regional Center, France. Electronic mail: nagy@gargan.math.univ-tours.fr
c!Member of CONICET. Electronic mail: reula@fis.uncor.edu
37890022-2488/2001/42(8)/3789/20/$18.00 © 2001 American Institute of Physics

 16 Oct 2003 to 132.239.145.22. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp



ti-
ject,

o are
hysics.
t least
ht be
on the
inate
s, for
nts a

ns for
.
tly, by
in

ich’s

anism
a deter-

ing for

tions
se
ics.
ector
e is
re the
me, it
a gen-
n any

d also
as an

nly to
s and
interac-
ow in

A, we
aking
tems
few

given

e

3790 J. Math. Phys., Vol. 42, No. 8, August 2001 Geroch, Nagy, and Reula

Downloaded
would be fixed once and for all at the beginning~by designating those fluid-elements that cons
tute the boundary! as part of the kinematical structure. In the Euler formulation of such an ob
by contrast, the boundary would be ‘‘dynamical.’’

How are the Euler and Lagrange formulations related to each other? Certainly, the tw
physically equivalent, i.e., they represent mere mathematical reformulations of the same p
That is, all physical predictions will be the same, no matter which formulation is used; and, a
in principle, either formulation could be used to solve any given problem. Indeed, one mig
tempted to go further than this, to view them as related by a mere coordinate transformation
manifold of independent variables. But such a viewpoint would be misleading, for the ‘‘coord
transformation’’ between the two sets of variables involves the dynamics of the system. Thu
example, from the standpoint of the Euler formulation the Lagrange formulation represe
curious mixing of kinematics with dynamics.

These mathematical differences in fact go even deeper. It is well-known that the equatio
a perfect fluid in the Euler formulation, Eqs.~1!–~2!, have a well-posed initial-value formulation3

But the corresponding equations in the Lagrange formulation—at least, those obtained direc
simply ‘‘transforming’’ the Euler equations—do not.5 However, it has been shown by Friedrich,
Ref. 17, that, at least for a certain fluid system in general relativity, therecan be introduced a
Lagrange formulation having also an initial-value formulation. It is necessary, in Friedr
treatment, to introduce a substantial number of additional fields~including a frame-field! together
with additional equations on those fields. What is not so transparent, however, is the mech
behind this treatment. Precisely what features of these fluid systems are needed for such
ministic Lagrange formulation?

Our purpose in this paper is to introduce and explore a certain, broad, geometrical sett
the Lagrange formulation of systems of partial differential equations.

In Sec. II, we introduce that setting. Our framework is systems of partial differential equa
that are first-order and quasi-linear~i.e., involving only first derivatives of the fields, and tho
only linearly!—a framework that includes virtually every partial differential equation in phys
Given any such system—provided only that it has among its fields a distinguished v
field—we write out a new system, its ‘‘Lagrange formulation.’’ The key idea of this schem
what one might expect: Include, among the dynamical variables of the new system, what we
independent variables of the original system. It turns out that, in order to execute this sche
is normally necessary to introduce additional dynamical variables and equations. We give
eral scheme for choosing these variables. The key result of this section is the following: Give
system of partial differential equations having a distinguished vector field as above, an
having an initial-value formulation, then a certain version of its Lagrange formulation also h
initial-value formulation.

In Sec. III, we give some examples of this scheme. We apply the present scheme not o
ordinary fluids, but also to various other types of material systems, including dissipative fluid
elastic solids. This scheme is also applicable when such material systems are undergoing
tion, e.g., when they are coupled to an electromagnetic or gravitational field. Finally, we sh
Sec. III how Friedrich’s original system fits within the present framework.

A number of related mathematical issues are discussed in the appendices. In Appendix
describe a general procedure for modifying any system of partial differential equations by ‘‘t
derivatives’’ of the fields of that system. This procedure, it turns out, is crucial for casting sys
into a form in which our Lagrange formulation can be applied. In Appendix B, we review a
facts about the initial-value formulation of systems of partial differential equations.~For a more
detailed treatment, see, for example, Ref. 2.!

II. LAGRANGE FORMULATION

Fix a first-order, quasilinear system of partial differential equations. That is, let there be
a fiber bundle, consisting of some base manifoldM , some bundle manifoldB, and some smooth

projection mappingB→
p

M . Typically, M will be the 4-dimensional manifold of space–tim
 16 Oct 2003 to 132.239.145.22. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp
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events~but it could be any smooth manifold!. By thefiber over a pointx of M , we mean the se
of all points y of B such thatp(y)5x. Think of the fiber overxPM as ‘‘the set of possible
field-values atx. ’’ Then B is interpreted as the set of ‘‘all possible choices of field-values a
points ofM , ’’ and p as the mapping that assigns, to each such choice, the underlying pointM .
Thus, pointy of B could be written asy5(x,f), with xPM andf in the fiber overx. The action
of the projection mapping would then be given byp(x,f)5x. Typically, the fiber over a point
xPM will be some collection of tensors, with given index structure~possibly subject to various
algebraic conditions!, atx, whenceB will be a manifold of all such tensor-collections at all poin
of M . In this case,B is called atensor bundle. However,B could in general be any smoot
manifold, subject only to the local-product condition in the definition of a fiber bundle.6

By a cross-sectionof such a bundle we mean a smooth mappingM→
f

B such thatp+f is the
identity map onM . In other words, a cross-section assigns, to each pointx of M , a point of the
fiber overx; i.e., it assigns a ‘‘field-value’’ at each point ofM . In the case of a tensor bundle,
cross-section is simply a certain collection of smooth tensor fields onM . Our partial differential
equation will be an equation on this map, linear in its first derivative. In order to write out
equation, we introduce two smooth fields,kAa

a and j A, on B. Since these are fields onB, they
depend on pointy5(x,f) of B, i.e., they depend on a choice of ‘‘pointx of the base manifold, as
well as field-valuef at that point.’’ The index ‘‘a’’ on kAa

a is a tensor index inB at the point,
yPB, at which this field is evaluated; the index ‘‘a’’ is a tensor index inM at the corresponding
point, p(y), of the base manifold. The index ‘‘A, ’’ on both kAa

a and j A, lies in some new vector
space~which will turn out, shortly, to be the vector space of equations!. Finally, our partial
differential equation, on a cross-sectionf, is

kAa
a~¹f!a

a5 j A. ~3!

This equation is to be imposed at each pointxPM , with the fieldsk and j evaluated atf(x)
PB, i.e., on the cross-section. Here, (¹f)a

a denotes the derivative of the mapf @i.e., a map from
tangent vectors inM at x to tangent vectors inB at f(x)#. The index ‘‘A’’ in Eq. ~3! is free, i.e.,
Eq. ~3! represents a number of scalar equations equal to the dimension of the vector sp
which ‘‘A’’ lies.

Here is an example. Fix a 4-dimensional manifoldM , together with a Lorentz-signatur
metric gab on thisM . Let B be the 8-manifold consisting of triples, (x,ua,r), wherex is a point
of M , ua is a unit timelike vector atx, and r is a number. Letp(x,ua,r)5x. This is a fiber
bundle; in fact, a tensor bundle. The fiber over a pointxPM consists of (ua,r), a vector atx
together with a number. A cross-section of this bundle is represented by smooth fields,ua andr,
on M . Let the equations, on such a cross-section, be~1!–~2!, wherep(r) is some given, fixed
function of one variable, and¹a is the derivative operator defined by the space–time metricgab .
This is a first-order, quasilinear system of partial differential equations, i.e., the equation
linear in the first derivatives of the fields. The vector space of equations, in this example
dimension four. This system, of course, describes a simple perfect fluid in general relativit

We shall now introduce a technique that transforms a given first-order, quasilinear syst
partial differential equations—provided that system lies within a certain class—into a new
order, quasilinear system of partial differential equations. This new system will be calle
Lagrange formulationof the original. While the new system will differ in many respects from
original one—e.g., it will have a different base manifold, a different bundle manifold, an
different number of equations—the two will be intimately related to each other. In particul
will turn out that there is a natural correspondence between the solutions of the original s
and those of its Lagrange formulation.

In order to apply this technique to a given system of equations, it is necessary that that s
satisfy the following condition: Among the various fields of the system there must be d
guished one consisting of a nowhere-vanishing vector field on the base manifoldM . This condi-
tion means, then, that the fields of our system take the form (ua,w), whereua represents the
 16 Oct 2003 to 132.239.145.22. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp
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nowhere-vanishing vector field onM , andw represents ‘‘the rest of the fields.’’ Thus, given
system that has, among its various fields, no vector field at all, then we shall be unable to wr
any Lagrange formulation for it; and if it has several vector fields, then we must, at this s

distinguish a particular one. We shall denote byB→
p

M the bundle in which the rest of the fields
thew, lie, and use Greek indices for tensors in the manifoldB. Note that these aredifferentfrom
the Greek indices, e.g., in Eq.~3!, for tensors in the manifoldB. The equation for our system ma
now be written as

k8Aa
b¹aub1k9Aa

a~¹w!a
a5 j A, ~4!

wherek8Aa
b , k9Aa

a , and j A are all functions ofua, w, and point ofM . In Eq. ~4!, the¹a in the
first term can be any derivative operator onM ; and the form ofj A depends, of course, on wha
operator has been chosen. We could, for example, simply fix, once and for all, some der
operator¹a , and use it to write Eq.~4!. Should it happen that the manifoldM comes equipped
with a kinematical metric~i.e., one not included among the physical fieldsw!, then it is often
convenient to use its derivative operator in Eq.~4!. This possibility is available, e.g., for system
representing fluids in special relativity, or in general relativity with a fixed background metri
fact, we could even choose the derivative operator¹a in Eq. ~4! to depend on the fields (ua,w)
themselves, provided only that its dependence on these fields is algebraic, rather than throu
derivatives. We now obtain the Lagrange formulation of this system.

For the base manifold of the Lagrange formulation, we choose any manifoldM̂ having the
same dimension asM . Tensors over thisM̂ will be denoted by lower-case Latin indices with ha
We also fix, once and for all on this manifoldM̂ , a nowhere-vanishing vector field,ûâ. This ûâ is
a purely kinematical object, i.e., it is fixed right at the beginning, and will not be subject to
dynamical equations.

We next specify the bundle manifold,B̂, of the Lagrange formulation. Fix a point,x̂, of the
base manifoldM̂ . Let the fiber over this point consist of a triple, (x,w,k â

b), where~i! x is a point
of M , the base manifold of the original system,~ii ! w is a point of the fiber overx in B, the bundle
manifold for the original system, and~iii ! k â

b is an invertible tensor, where the index ‘‘â’’ refers
to tensors inM̂ at the pointx̂PM̂ and the index ‘‘b’’ refers to tensors inM at the pointxPM . A
more detailed discussion of these three objects follows.

~i! The points (x) of the base manifoldM of the original system become, in its Lagrang
formulation,field-values. In the case of a simple perfect fluid, for example, each poin
the original base manifoldM represents an event of space–time; while each point of
new base manifoldM̂ represents ‘‘a particular fluid-element at a particular moment of
life.’’ Thus, in the Lagrange formulation of such a fluid,x will be a field overx̂, a field that
specifies ‘‘which event in space–time that particular fluid-element occupies at that pa
lar moment.’’

~ii ! The field-values, thew, of the original system become field-values also in its Lagra
formulation. But there is one important change: What were fields overM in the original
system become, in its Lagrange formulation, fields overM̂ . Thus, were the fields collecte
in w all tensor fields onM , then the corresponding fields in the Lagrange formulat
would depend on pointx̂ of M̂ , but would continue to be tensors in the tangent space a
point x of M .7 In the case of a simple perfect fluid, this step amounts, physically
‘‘attaching the densityr to the fluid element, rather than to the point of space–time.’’

~iii ! There is introduced a new object,k â
b, an invertible two-point tensor, with one index

x̂PM̂ , the other atxPM . Nothing analogous was present in the original system. Den
the inverse ofk â

b by k̄b
â, so we havek â

bk̄b
ĉ5d â

ĉ and k̄b
âk â

c5db
c . The role of this

tensork â
b is, as we shall see, to preserve the first-order character of the final syste
 16 Oct 2003 to 132.239.145.22. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp
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equations. Note that the dynamical fieldua in the original system has disappeared entire
There is no analog of it as a dynamical field in the Lagrange formulation.

Next note that the pair (x,w), wherex is a point ofM andw is a point of the fiber inB over
x, is precisely the same thing as a point of the bundle manifoldB. Call that point~for later
convenience! ŵ, so we haveŵ5(x,w)PB. Then we may recover the pointx of the original
base-manifold from the pointŵPB using the projectionp: We havex5p(ŵ). Thus, our con-
struction of the bundle manifoldB̂ for the Lagrange formulation could have been stated as
lows: The fiber over pointx̂PM̂ consists of a pair, (ŵ,k â

b), whereŵ is a point of the manifold
B, andk â

b is an invertible tensor with one index atx̂PM̂ , the other atp(ŵ)PM .
We have now completed the specification of the fiber bundle in which the Lagrange fo

lation of our system will be written. The base manifold,M̂ , is some new manifold, of the sam
dimension asM , while the bundle manifoldB̂ is such that the fiber overx̂PM̂ consists of a pair,
(ŵ,k â

b), whereŵPB, andk â
b is a certain 2-point tensor. A cross-section of this bundle, then

a smooth map~a map we also denote byŵ! that assigns, to each pointx̂PM̂ , a point ŵ of B
together with a suitable tensork â

b. On such a cross-section, we now impose the follow
equations:

„¹~p+ŵ !…â
b5k â

b, ~5!

¹ [ ĉ~k â]
b!5 f ĉâ

b, ~6!

k8Aa
bk̄a

d̂¹ d̂~k ĉ
bûĉ!1k9Aa

ak̄a
ĉ~¹ŵ! ĉ

a5 j A. ~7!

These are the equations of the Lagrange formulation. In Eq.~5!, the combinationp+ŵ is a map
from M̂ to M , for ŵ goes fromM̂ to B, andp from B down toM . Equation~5! asserts that the
derivative of this map is precisely the tensork â

b. Thus, this equation provides the geometric
meaning of the fieldk â

b. Note that invertibility ofk â
b in Eq. ~5! implies that the mapp+ŵ from

M̂ to M is a local diffeomorphism between these two manifolds. It was to achieve this featur
we originally chooseM̂ to have the same dimension asM . Equation~6! is merely the curl8 of Eq.
~5!. Any derivative9 may be used on the left in Eq.~6!, but the exact form of the functionf ĉâ

b @of
(ŵ,k â

b)# that appears on the right will depend on which derivative was chosen. This situat
analogous to that of Eq.~4!. Equation~7! is the translation of the equation of the original syste
~4! to our new system. Here, everywhere in the fieldsf ĉâ

b, k8Aa
b , k9Aa

a , and j A there is to be
substituted the combination ‘‘k â

bûâ’’ for ‘‘ ub; ’’ and ‘‘ ŵ ’’ for ‘‘ w.’’ In Eq. ~7!, this ‘‘replace-
ment’’ takes place even inside the derivative. Note that the fieldub of the original system has now

disappeared entirely, having been replaced by the image of the kinematical fieldûb̂ under the
mappingp+ŵ.

Thus, beginning with any first-order, quasilinear system of partial differential equations o
form ~4!, we obtain a new system of equations, its Lagrange formulation, of the form~5!–~7!. The
Lagrange formulation has a completely new base space, but fields and equations that echo
the original system.

We now claim the following: Every solution of the Lagrange formulation gives rise, at l
locally, to a solution of the original system. Indeed, let (ŵ,k â

b) be fields satisfying~5!–~7!. Then,
as we have seen,p+ŵ is a local diffeomorphism betweenM̂ and M . We now introduce the
following two fields onM : ub5„¹(p+ŵ)…â

bûâ, andw5ŵ+(p+ŵ)21. That is, we letub andw be

the images ofûb̂ andŵ, respectively, under the diffeomorphismp+ŵ. Then these fields, (ub,w),
on M satisfy the system~4!, as is immediate from Eqs.~5!, ~7!. We next claim that the convers
also holds: Every solution of the original system gives rise, at least locally, to a solution
Lagrange formulation. Indeed, let (ub,w) be fields satisfying~4!. Choose any manifoldM̂ with the
same dimension as that ofM , and any nowhere-vanishing vector fieldûâ thereon. Now letŵ be
 16 Oct 2003 to 132.239.145.22. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp
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a diffeomorphism betweenM̂ and the cross-section,w@M #, such that (p+ŵ) sendsû to u; and
then definek â

b by Eq.~5!. Then these fields (ŵ,k â
b) on M̂ will satisfy Eqs.~5!–~7! @the first two

by construction, the last by Eq.~4!#.
Thus, the original system and its Lagrange formulation are identical as to solutions. B

two systems are quite different as to form. Their base manifolds,M̂ andM , although of the same
dimension, differ in their geometry. The manifoldM̂ must be endowed with a fixed, kinematic
‘‘velocity field,’’ ûâ, while M has no such kinematical field. On the other hand, various kinem
cal fields that might have been specified overM ~such as a Lorentz metric! yield no analogous
kinematical fields10 on M̂ . Furthermore, the fields of the two systems differ in several respe
Beginning with the fields of the original system, we must delete the dynamical fieldua, while
adding ‘‘point of M ’’ as well as the invertible tensork â

b, to obtain the fields of the Lagrang
formulation. Finally, the equations for the two systems differ in that, for the Lagrange formula
there must be introduced one new equation~5! on the derivative of the ‘‘point ofM , ’’ as well as
is the curl~6! of this new equation.

What we have described above is precisely what is usually done in writing down the Lag
formulation for a fluid. For example, consider again the simple perfect fluid, with fields (ua,r) on
M and Eqs.~1!–~2!. Its Lagrange formulation consists of fields11,12 (x,k b̂

a,r̂) on M̂ , with equa-
tions consisting of~5!, ~6!, and

„r̂1p~ r̂ !…ûĉ¹ ĉ~km̂
aûm̂!1~gam1ûĉk ĉ

aûn̂k n̂
m!k̄m

b̂¹ b̂p~ r̂ !50, ~8!

ûb̂¹ b̂r̂1„r̂1p~ r̂ !…k̄a
b̂¹ b̂~km̂

aûm̂!50. ~9!

We now return to the general case. It turns out that the procedure given above—startin
a system and ending with its Lagrange formulation—suffers from a serious difficulty. In gen
the equations of the Lagrange formulation,~5!–~7!, will fail to have an initial-value formulation,
even if the original system,~4!, did have such a formulation. For example, the system~5!–~6!,
~8!–~9! has no initial-value formulation, although the system~1!–~2! of course does. But it turns
out that this difficulty does not arise—i.e., the Lagrange formulation does inherit an initial-v
formulation from the original system—provided the original system satisfies the following co
tion: There can be derived from Eq.~4! an expression for the derivative of the vector fieldua,
without contractions, back in terms of the various fields of the system. In other words, it mu
possible to cast Eq.~4! into the form

¹aub5wa
b , ~10!

k9Aa
a~¹w!a

a5 j 8A, ~11!

wherewa
b , k9Aa

a , and j 8A are functions of (x,ua,w), i.e., are functions of the point ofB and the
vectorua. In Eq. ~10!, ¹a can, again, be any derivative operator on the manifoldM ; and the form
of wa

b depends, of course, on what operator has been chosen. Note that, once we have
from Eq.~4! an equation of the form~10!, then it is easy to cast the equations that remain into
form ~11!: Simply use Eq.~10! to remove allu-derivatives from Eq.~4!. Indeed, we havej 8A

5 j A2k8Aa
bwa

b.
The equations for systems of physical interest typically donot take the form of Eqs.~10!–

~11!, i.e., they do not express the derivative ofua in terms of the other fields. For example, Eq
~1!–~2! do not have this form. But it turns out that there is a simple, general procedure by w
any first-order, quasilinear system of partial differential equations having a preferred vector
ua can be recast so as to take the form~10!–~11!. This procedure, called taking thederivative
system, is spelled out in Appendix A. It consists of modifying the original system by introduc
additional fields, which represent the derivatives of the original fields, as well as additional
tions on those fields. The result of taking the derivative system is to produce a new syst
 16 Oct 2003 to 132.239.145.22. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp
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partial differential equations, having, in an appropriate sense, identical solutions to the or
Applied to a system in which a preferred vector fieldua has been distinguished, it produces
system in which¹aub is expressed back in terms of the fields of the system. Furthermore, ap
to any system having an initial-value formulation, the derivative system also has an initial-
formulation.

As an example of this procedure, we return to the system,~1!–~2!, for a simple perfect fluid
in general relativity. For the distinguished nowhere-vanishing vector field in this case, we ch
of course, the velocity fieldua of the fluid. The result of taking the derivative system of th
system is the following. The fields consist of (ua,r,wa

b ,va), whereua is a unit timelike vector
field, r a positive scalar field,wa

b a tensor field satisfyinggabu
awc

b50, andva a vector field, all
subject to the algebraic conditions

~r1p!umwm
a1~gam1uaum!~]p/]r!vm50, ~12!

umvm1~r1p!wm
m50. ~13!

On these fields is imposed the following system of first-order, quasilinear partial differe
equations:

¹aub5wa
b , ~14!

¹ [awb]
c5Rabm

cum, ~15!

¹ar5va , ~16!

¹ [avb]50. ~17!

Note what has happened here. We have introduced two new fields,wa
b andva . The ‘‘interpre-

tation’’ of wa
b @via ~14!# is as the derivative ofub; and ofva @via ~16!# as the derivative ofr. The

original fluid equations,~1!–~2!, have been converted into algebraic conditions,~12!–~13!, on
these new fields. That is, the original fluid equations serve merely to define the bundle of fie
this new system. Finally, the new system contains two other equations, Eqs.~15! and~17!, that are
merely the curls of Eqs.~14! and ~16!, respectively.

In short, our ‘‘procedure’’ has done nothing of substance. But note that, starting with a sy
~1!–~2!, which fails to express¹aub in terms of the fields of the system, our procedure produ
a new system satisfying, via~14!, this condition. Furthermore—and this is perhaps the strik
feature—the system~14!–~17! inherits from the original fluid system,~1!–~2!, its initial-value
formulation.

The key result of this section is the following:Consider any system (4) of partial differentia
equations in which there has been selected a preferred vector field ua. Let ( i ) that system have an
initial-value formulation, and( i i ) the equations of that system express the derivative of ua in
terms of the fields of the system [as in (10)–(11)]. Then the Lagrange formulation of that syste
also admits an initial-value formulation.

First note that the Lagrange formulation of the system~10!–~11! consists of Eqs.~5!–~6!,
together with

k̄a
ĉ¹ ĉ~km̂

bûm̂!5wa
b, ~18!

k9Aa
ak̄a

b̂~¹ŵ! b̂
a5 j 8A. ~19!

As discussed in Appendix B, in order that a general first-order, quasilinear system of p
differential equations have an initial-value formulation it is necessary that it satisfy three c
tions: ~i! the system admits a hyperbolization;~ii ! all the constraints of the system are integrab
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and ~iii ! the system has the correct number of equations relative to the number of its unkn
What these conditions mean is also explained in Appendix B. We check these three condit
turn.

Let the original system, Eqs.~10!–~11!, admit a hyperbolization. Then the construction th
applied to Eqs.~10!–~11! to obtain a bilinear expression indwa yields, when applied to Eqs
~18!–~19!, a corresponding bilinear expression indŵâ. Next, contract Eq.~6! with ûĉ and use Eq.
~18! to obtain an equation expressingûm̂¹m̂ k â

b algebraically in terms of the fields. From th
there follows immediately an appropriate bilinear expression indk â

b. Finally, a bilinear expres-
sion in dx arises from Eq.~5!. These three bilinear expressions, taken together, represe
hyperbolization for the system~5!–~6!, ~18!–~19!.

Every constraint of the original system~10!–~11! gives rise to a constraint of its Lagrang
formulation; and, furthermore, if these constraints of the original system are integrable, then
the corresponding constraints of the Lagrange formulation.13 This assertion is immediate from th
fact that Eqs.~18! and~19! mimic Eqs.~10! and~11!, respectively. But, it turns out, there are tw
additional classes of constraints for the system of the Lagrange formulation. The first class
from taking the curl of each side of Eq.~5!. These constraints are certainly integrable, and, inde
the corresponding integrability conditions are precisely Eq.~6!. The second class of constrain
arises from taking the curl of each side of Eq.~6!. These constraints are also integrable, and ind
their integrability conditions are identities, simply from the way Eq.~6! was obtained. We con
clude, thus, that a system of the form~10!–~11! having all its constraints integrable leads to
Lagrange formulation~5!–~6! ~18!–~19!, also having all its constraints integrable.

Finally, in order to check the third condition, we introduce the following integers. Denot
n the dimension of the base spaceM ~the number of independent variables of the system!, by u
the dimension of the fibers in the bundleB ~the number of unknowns represented byw!, by e the
dimension of the vector space in which the index ‘‘A’’ of Eq. ~11! lies, and byc the dimension of
the space of vectors of the formwmcm

A , ascm
A runs over constraints for Eq.~11!. Then, for the

original system, we have the number of unknowns is given byu05u1n ~the term ‘‘n’’ arising
from the fieldua!; the number of equations is given bye05n21e @these terms arising from Eqs
~10! and ~11!, respectively#; and the number of effective constraints is given byc05n(n21)
1c @these terms arising from the constraints of Eqs.~10! and~11!, respectively#. For the Lagrange
formulation, on the other hand, we have: the number of unknowns is given byuL5u1n1n2 ~the
term ‘‘n’’ arising from the field ‘‘point ofM , ’’ the term ‘‘n2’’ from the field k â

b); the number of
equations is given byeL5n21n2(n21)/21n21e @these terms arising from Eqs.~5!–~6!, ~18!–
~19!, respectively#; and the dimension of the space of effective constraints is given bycL5n(n
21)1n(n21)(n22)/21n(n21)1c @these terms arising from the constraints of Eqs.~5!–~6!,
~18!–~19!, respectively#. It is easy to check from these formulas thate02c05u0 implies eL

2cL5uL . In other words, if the original system has the appropriate number of equations re
to its number of unknowns, then so does its Lagrange formulation.

Thus, we have shown a system of the form~10!–~11! having an initial-value formulation
gives rise to a Lagrange formulation also with an initial-value formulation.

III. EXAMPLES

In this section, we introduce various examples of physical systems, the partial differ
equations that describe them, and the Lagrange formulations of those partial differential equ

One such example, the simple perfect fluid, has been discussed already in Sec. II. The
on space–time,M ,gab , consist of a unit timelike vector fieldua ~interpreted as the fluid velocity!
and a positive scalar fieldr ~interpreted as the mass density!; and the equations are~1!–~2!, where
p(r) is some fixed function~the function of state!, which specifies the type of fluid under con
sideration. This is the Euler formulation. In order to achieve a Lagrange formulation for
system, the first step is to modify these equations so that the derivative ofua, without contractions,
is expressed in terms of the other fields. This was achieved by taking the derivative syste
introduced two new~tensor! fields,wa

b andva , subject to the algebraic conditions~12!–~13!. We
 16 Oct 2003 to 132.239.145.22. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp



it

result
-

ass of
nt-

e
e

of the

s,

the

may
nd
rgence
id
of that

of

ns can
f

B, for
stem

dmits
s

to
ystem

3797J. Math. Phys., Vol. 42, No. 8, August 2001 Relativistic Lagrange formulation

Downloaded
then imposed on the total set of fields, (ua,r,wa
b ,va), the partial differential equations~14!–~17!.

This new system~14!–~17! is, by virtue of Eq.~14!, of the required form, and, in addition,
inherits from the original system,~1!–~2!, its initial-value formulation. To this system,~14!–~17!,
we may therefore apply the methods of Sec. II to obtain its Lagrange formulation. There
fields (x,r̂,ŵa

b,v̂a ,k â
b) on M̂ , subject to the equations~5!–~7!. This new system, as demon

strated in Sec. II, again has an initial-value formulation.
There is a natural generalization of this simple perfect-fluid system to a much broader cl

fluids. Fix some smooth manifoldS, the points of which will, shortly, be interpreted as represe
ing ‘‘local, internal, states of the fluid.’’ Also fix any space–time (M ,gab). Let the fields, on this
space–time, consist of a unit, timelike vector field,ua ~again interpreted as the velocity field of th
fluid!, together with a second field,w, which is valued inS ~and which is interpreted as giving th

local state of the fluid at each point of space–time!. Thus,w is a mapping,M→
w

S. As an example,
the simple perfect-fluid system discussed above is the special case in whichS is a 1-manifold
~whose points are labeled by a coordinater, whencew reduces to the density fieldr!. That is, our
simple perfect fluid is one whose local state is completely characterized by the value
density.

We next wish to write equations on these fields. To this end, fix two tangent vector fieldVa

andTa, and one covector field,Fa , on the manifoldS, where we have introduced Greek indices14

to represent tensors inS. The physical interpretations of these fields will be given shortly. Let
equations for this system be

ua¹aub1~gab1uaub!~¹w!a
aFa50, ~20!

ua~¹w!a
a1Va ¹aua1Ta50. ~21!

The first equation gives the fluid acceleration in terms of the derivative of the fluid state. We
interpret the fieldFa , which acts by driving the fluid, as an ‘‘effective force.’’ The seco
equation gives the time rate of change of the fluid state in terms of that state and the dive
of ua.15 We may interpret the fieldsVa andTa, respectively, as giving the rate of change of flu
state under small volume-changes of a sample of that fluid, and under allowing a sample
fluid to evolve in time. The simple perfect fluid, for example, hasFa5(r1p)21 ¹ap, Va5(r
1p)]/]r, andTa50 @for these choices reproduce Eqs.~1!–~2!#. Another familiar example is the
perfect fluid with 2-dimensional manifoldS of internal states, where the additional degree
freedom is represented by a conserved particle-numbern. In this case,Fa is given by the same
expression as above,Va by (r1p)]/]run1n ]/]nur , and againTa by 0. A more exotic example
is that of a fluid consisting of several species of particles, between which chemical reactio
take place as the fluid evolves. In this case, we would have dim(S).2 ~the additional degrees o
freedom describing the chemical composition of the fluid! andTa nonzero~representing the rate
and direction of the chemical reactions!.

When does the system above satisfy the three properties, as discussed in Appendix
having an initial-value formulation? Two of these properties are immediate: Clearly, this sy
has no constraints, and the dimension of its space of equations is the same@namely, dim(S)13#
as the dimension of its space of fields. As for the third condition, this system, it turns out, a
a hyperbolization if and only if16 VaFa.0 everywhere onS. Note that, in the explicit example
given above, the combinationVaFa is precisely the square of the sound speed.

We now have a system of equations~20!–~21!, having a preferred vector field,ua, and,
subject only to the inequalityVaFa.0, having an initial-value formulation. So, we may apply
this system the results of Appendix A and Sec. II. The first step is to take the derivative s
~Appendix A!. The result of this step is to include, in addition to the fieldsua,w above, two new
fields, wa

b ~with ubwa
b50! and za

a, subject to the algebraic conditionsuawa
b1(gab

1uaub)za
aFa50 and uaza

a1Vawa
a1Ta50. @These algebraic conditions reflect Eqs.~20!–

~21!.# The equations on these fields for the derivative system are given by
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¹aub5wa
b, ~22!

¹ [awb]
c5Rabd

cud, ~23!

~¹w!a
a5za

a, ~24!

¹ [azb]
a50. ~25!

This system indeed has a preferred vector field,ua; has among its equations one@Eq. ~22!# that
expresses the derivative of thisua algebraically in terms of the fields; and has an initial-val
formulation @by virtue of that for Eqs.~20!–~21!#. So, we may, as described in Sec. II, take t
Lagrange formulation of this system. There results a new system of partial differential equa
~5!–~7!, again having an initial-value formulation.

Even the broad class of generalized fluids above does not include all possible type
example, there exist fluids manifesting dissipative effects, such as heat-flow and viscosity
description of such a fluid in relativity~Refs. 18–21! proceeds as follows. The fields consist of
unit timelike vector fieldua ~interpreted as the fluid 4-velocity!, two scalar fields,r andn ~inter-
preted, respectively, as the fluid mass density and particle-number density!, a vector fieldqa

satisfyinguaqa50 ~interpreted as the heat-flow vector!, and a symmetric tensor fieldtab satisfy-
ing uatab50 ~interpreted as the stress tensor!. Thus, the space of field-values at each point ofM
is 14-dimensional. The equations on these fields consist of~i! vanishing of the divergence ofnua

~conservation of particle number!, ~ii ! vanishing of the divergence of (r1p)uaub1pgab

12u(aqb)1tab ~conservation of stress-energy!, and~iii ! a certain system of nine additional equ
tions that, effectively, governs the dynamical evolution ofqa andtab. It turns out that the resulting
system, consisting of~i!–~iii !, has an initial-value formulation: Specifically, it has a hyperboliz
tion and no constraints. Furthermore—and this is perhaps surprising—this system of equatio
be so chosen that it reduces, in an appropriate limit, to the familiar Navier–Stokes system
dissipative fluid. @The Navier–Stokes dissipation coefficients—the thermal conductivity
viscosity—arise from within the nine equations~iii !.# Here, in any case, is a system of equatio
with a preferred vector fieldua—a system, therefore, to which the present methods can be app
Thus, we take the derivative system, as described in Appendix A, and then the Lagrange
lation, as described in Sec. II. There results a Lagrange formulation for a dissipative, relat
fluid.

There exist still other types of material systems, e.g., some that are not fluids at all. Con
for example, the elastic solid. In one treatment22 of such a system in relativity, the fields consist
a unit timelike vector fieldua ~the material 4-velocity!, a positive functionr ~the mass density o
the material!, and a symmetric tensor fieldhab satisfying habu

b50. This hab represents the
geometry of the material as it was ‘‘frozen in’’ at the time the material originally solidified
describes the shape to which the material would ‘‘like to return.’’ Thus, the combinationhab

2(gab1uaub), the difference between this natural geometry and the actual spatial geome
which the material currently finds itself, is interpreted as the strain of the solid material.
equations on these fields areLuhab50 ~the vanishing of the Lie derivative ofhab , interpreted as
asserting that the material remembers, over time, its frozen-in geometry!, and ¹b(ruaub1tab)
50, ~interpreted as the conservation of stress-energy, whencetab is interpreted as the stress of th
material!. Here, tab is to be given as some fixed function ofhab , gab , and ua. This is the
stress–strain relation. Provided this stress–strain relation is chosen appropriately, the final
it turns out, has an initial-value formulation: Specifically, it has a hyperbolization and no
straints. Again, we have a system to which the present methods can be applied. There re
Lagrange formulation for an elastic solid.

There are, presumably, a variety of other systems of equations, representing ‘‘materia
various sorts, having, among their fields, a preferred 4-velocity. Examples might includ
systems for a plasma, for a superconductor, or for a solid~such as ice! that is able to flow. These
systems, too, will have Lagrange formulations.
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These various material systems may, of course, interact with their environment in a vari
ways, e.g., electromagnetically, gravitationally, or through contact forces. What impact do
interactions have on their Lagrange formulations?

Consider, as an example, the fluid of Eqs.~20!–~21! interacting electromagnetically. Thi
charged-fluid system is described by fields consisting of the original fluid variables,ua and w,
together with an antisymmetric~electromagnetic! tensor fieldFab . The equations on these field
consist of Eq.~20!, modified by the inclusion of a term on the right of the formmFb

aua, Eq.~21!23

and Maxwell’s equations,

¹bFab5sua , ~26!

¹ [aFbc]50. ~27!

Here, them in the first equation and thes in Eq. ~26! must be given as fixed fields on the manifo
S of fluid states. The fields describes how the fluid drives the electromagnetic field, and s
interpreted as the charge density. We require that it satisfy charge conservation:Va ¹as5s,
Ta ¹as50. The fieldm, which describes how the electromagnetic field drives the fluid, migh
called the specific charge density.@For a normal fluid,s andm are in ratio (r1p).# Here, in any
case, is a list of fields, together with a system of equations on those fields. This system
initial-value formulation, which it inherits from the separate initial-value formulations for
original fluid system@~20!–~21!# and for Maxwell’s equations. We wish to take the Lagran
formulation for this system. Since the system does not express the derivative ofua in terms of the
other fields, the first step is to take the derivative system. But note that, in taking the deri
system, it is necessary to introduce, not only the new fieldswa

b andza
a that represent@via Eqs.

~22! and~24!, respectively# the derivatives ofub andw, but also the fieldzabc that represents@via
Eq. ~A5!# the derivative ofFab . One might have hoped that it would be possible, exploit
somehow the fact that our system of equations splits naturally into ‘‘fluid equations’’
‘‘Maxwell-field equations,’’ to avoid introducing the additional fieldzabc . Unfortunately, this
seems not to be the case. This issue is discussed briefly in Appendix A. In any case, this de
system has the appropriate form~a preferred vector fieldua, whose derivative is expressed
terms of the fields of the system!, and an initial-value formulation~which it inherits from that of
the original coupled system!. So, we may apply the methods of Sec. II. Thus, there is a Lagra
formulation for a charged fluid, but it requires the introduction of a further fieldzabc , representing
the derivative of the Maxwell field.

In a similar way, we may write down the Lagrange formulation for a charged dissipative
a charged elastic solid, etc. In each of these cases, it is necessary to introduce the auxilia
zabc .

The situation for gravitational interactions is similar. Consider, again, the fluid of~20!–~21!,
now interacting gravitationally. The interacting system is described by fields consisting o
original fluid variables,ua andw, together with the variables for gravitation: a Lorentz-signat
metric gab , and a derivative operator,¹a . The equations of this system consist of Eq
~20!–~21!,24 the equation¹agbc50, and Einstein’s equation,

Gab5Tab , ~28!

whereGab is the Einstein tensor. Here,Tab is some fixed symmetric tensor function ofgab and the
fluid variables~which we interpret as the stress-energy tensor of the fluid!. It plays a role analo-
gous to that of the functionsm ands for electromagnetic interactions. We demand of this ten
function that, as a consequence of Eqs.~20!–~21!, it be conserved.25 This system of equations doe
not have an initial-value formulation, in the sense we are using this term. But this is mer
consequence of the fact that our sense of this term is overly restrictive, in that it does not to
the diffeomorphism freedom characteristic of all systems in general relativity. In a physical s
i.e., once the diffeomorphism freedom has been treated properly, the fluid-Einstein system d
course, have an initial-value formulation. Now take the derivative system of this system. Not
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in doing so we must, as in the electromagnetic case, include also fields to represent the der
of the gravitational fields.26 Take the Lagrange formulation of the result. The resulting syst
again, will not have an initial-value formulation in our restrictive sense, but it will have su
formulation when the diffeomorphism-freedom is properly taken into account. We conclude,
that there does exist a Lagrange formulation for a gravitating fluid, but that it requires th
introduce further fields to represent the derivatives of the gravitational fields.

In a similar way, we may write down the Lagrange formulation for a gravitating dissipa
fluid, a gravitating elastic solid, etc. In each case, it is necessary to introduce fields repres
the derivatives of the gravitational fields; and in each case the Lagrange formulation retai
initial-value formulation of the original system.

A similar treatment is available for systems consisting of two or more different materia
interaction. In these cases, there will be two or more 4-velocity fields present, and we sha
to select one to be that with respect to which the Lagrange formulation is taken.

The treatment of systems in which several interactions are turned on simultaneously, e
charged gravitating fluid, is similar.

Finally, we briefly characterize, within the present framework, Friedrich’s17 original example
of a relativistic Lagrange formulation. Begin with the system for a gravitating fluid, as desc
above, for the case in which the fluid has a 2-dimensional manifoldS of local states, i.e., that in
which Ta50 andVa5(r1p)]/]run1n]/]nur . For this system, first take the derivative syste
and then the Lagrange formulation. The result of this process—after three, essentially cos
further modifications—is precisely Friedrich’s original example. The three further modifica
are the following.

~1! Introduce, already in the original Einstein-fluid system, before taking the derivative syst
3-dimensional space of additional variables, consisting of three unit vector fields,xa, ya, and
za, that are required to be orthogonal to each other and to the 4-velocityua. On these fields,
impose the equations that they be Fermi-transported byua. The introduction of these fields
with these equations does not interfere with the initial-value formulation. These fields, w
have no direct physical significance, are introduced to facilitate the writing of various e
tions.

~2! After taking the derivative system, but before passing to the Lagrange formulation, sup
half of the fieldza

a, which represents the derivative of the fluid state.27 While such suppres-
sion of variables will in general destroy the initial-value formulation for a system, it turns
that, in this particular instance, it does not. Thus, the essential effect of this modification
reduce by four the number of independent variables.

~3! Write the final equations, after passing to the Lagrange formulation, not in terms o
specific fields listed above, but rather in terms of others that are algebraic functions of
This choice of variables—choice of ‘‘coordinates’’ on the bundle space—is, of cours
matter of convenience.

IV. CONCLUSION

We have introduced a scheme that takes a first-order, quasilinear system of partial diffe
equations and produces from it a new first-order, quasilinear system, its ‘‘Lagrange formula
The key requirement, on a given system of equations, in order that this scheme be applicab
is that that system have, among its fields, some nowhere-vanishing vector field. Why this s
role of a vector field? Could, for example, a similar scheme be developed based on som
geometrical object~s!? It turns out that there are two special features of vector fields that we
in the construction of the Lagrange formulation.

First, nowhere-vanishing vector fields on manifolds are locally homogeneous. This mea
following. Let there be given any manifoldM , any nowhere-vanishing vector fieldua thereon, and
any pointxPM ; and, similarly, some other manifoldM̂ ~of the same dimension!, vector fieldûâ

and pointx̂PM̂ . Then there always exists a diffeomorphism between neighborhoods ofx and x̂
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that sendsua to ûâ. In other words, nowhere-vanishing vector fields are ‘‘locally all the sam
They carry no local structure. We used this fact in Sec. II in order to replaceua on M by some
kinematical fieldûâ on M̂ .

Second, by virtue of the appearance of the vector fieldûâ on the left in Eq.~18!, the system
~6!, ~18! for the two-point tensork â

b admits a hyperbolization. We used this fact in Sec. II in ord
to achieve a hyperbolization, and consequently an initial-value formulation, for the entire s
~5!–~6!, ~18!–~19!.

It appears that, given any other geometrical structure manifesting these two features
there could be developed a ‘‘Lagrange formulation’’ based on it. It is only necessary to make
key modifications in Sec. II~all involving replacing the vector field by the totality of fields in th
new geometrical structure!: ~i! Replace Eq.~10! by equations for the derivatives of all the fields
the geometrical structure;~ii ! endow the base manifoldM̂ of the Lagrange formulation with
kinematical fields consisting of all the fields of the geometrical structure; and~iii ! replace Eq.~18!
by the corresponding equation involving all the fields of the geometrical structure. Unfortun
it is not so easy to find geometrical structures having the two features described above,
because they are somewhat in opposition to each other: The first feature, local homog
prefers fewer fields, relatively devoid of structure; while the second feature, hyperbolicity o~6!,
~18!, prefers many fields, of rich structure.

There are a variety of geometrical structures that are locally homogeneous. Examples in
two commuting, pointwise independent vector fields; a nowhere-vanishing, curl-free 1-fo
symplectic structure; a flat, Lorentz-signature metric. Examples of geometrical structure
yield a hyperbolization for~6!, ~18! are somewhat less plentiful. One simple class consists of th
in which the geometrical structure is comprised of a nowhere-vanishing vector fieldua, together
with any additional fields of whatever type. For structures in this class, a hyperbolization fo~6!,
~18! ~suitably generalized! is guaranteed already by the presence of the vector fieldua in the
structure.

Here is an application of these ideas. Consider the geometrical structure consisting
nowhere-vanishing vector fieldua, together with a nowhere-vanishing 3-form,vabc , that has zero
curl and is annihilated byua. This structure satisfies both of the features above—it is loc
homogeneous, and it gives rise to a hyperbolization for~6!, ~18!. So, this geometrical structur
could serve as the basis for a Lagrange formulation. In fact, this formulation is appropriate
physical system, namely that of a fluid with a 2-dimensional manifold of internal state
discussed in Sec. III. Identifyua with the velocity field of the fluid, andvabc with the particle-
number density, viavabc5neabcdu

d.
It is curious that the original system and its Lagrange formulation, while so similar

regard to their solutions, are completely different with regard to their initial-value formulati
Indeed, as we have seen in Sec. II, it is frequently the case that the original system of equati~4!
has an initial-value formulation, while its Lagrange formulation,~5!–~7!, does not. Perhaps ther
is some more natural or more general notion of ‘‘initial-value formulation’’ that would resolve
disparity.

APPENDIX A: DERIVATIVE SYSTEMS

Fix, once and for all, a first-order, quasilinear system of partial differential equation
described in Sec. II. That is, fix a fiber bundle, with bundle manifoldB, base manifoldM , and

projection mappingB→
p

M , together with smooth fieldskAa
a , j A on the bundle manifoldB. Our

system of equations, on a cross-section,M→
f

B, of this fiber bundle, is given by

kAa
a~¹f!a

a5 j A. ~A1!
 16 Oct 2003 to 132.239.145.22. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp



artial

base

f
es
ust

of

-

on this
,

at

sed
f
nd all

ed
e

undle
on-
,

3802 J. Math. Phys., Vol. 42, No. 8, August 2001 Geroch, Nagy, and Reula

Downloaded
We shall now construct from this system a new first-order, quasilinear system of p
differential equations. The idea is to ‘‘take one derivative’’~with respect to the point ofM ) of Eq.
~A1!.

The first step is to introduce the appropriate bundle of fields for the new system. Let the
manifold again beM . But now let the fiber, over a pointxPM , consist of all pairs, (f,za

a),
wheref is point of B satisfyingp(f)5x andza

a is a tensor atf satisfying

kAa
aza

a5 j A. ~A2!

Thus,f is merely a point of the fiber overxPM , in the original bundleB. It represents a set o
‘‘values for the original fields’’ atx. The tensorza

a represents a set of ‘‘values for the derivativ
of the original fields.’’ In order that a givenza

a be a viable candidate for these derivatives, it m
satisfy Eq.~A2!, the algebraic equation that results from replacing (¹f)a

a in Eq. ~A1! by za
a .

We impose this algebraic condition onz in the very construction of the new bundle~as opposed,
e.g., to introducing it later as an ‘‘algebraic constraint’’!. In short, thedynamics@Eq. ~A1!# of the
original system goes into thekinematics@Eq. ~A2!# of the new system. Call the bundle space
this new fiber bundleB8. Thus, the dimension of the fibers ofB8 is given by:~dim fibers ofB!
„11dim(M )…-~dim vector space of equations inB!.

Consider, as an example, Maxwell’s equations. ThenM is a 4-dimensional manifold, with
fixed smooth metricgab of Lorentz signature. For the bundleB, the fiber overxPM consists of all
antisymmetric tensors,Fbc , at x. Equation~A1! is Maxwell’s equations:gab ¹aFbc50, ¹ [aFbc]

50. For this example, the new bundle,B8, has, as its fiber overxPM , the collection of all pairs,
(Fbc ,zabc), with symmetriesFbc5F [bc] ,zabc5za[bc] , and withz satisfying the algebraic condi
tions @Eq. ~A2!# gabzabc50,z [abc]50. Thus, the fibers ofB have dimension six, those ofB8
dimension twenty-two.

Returning to the general case, the second step is to introduce appropriate equations
bundle. A cross-section of the bundleB8 consists of fieldsf,za

a on M . On such a cross-section
we impose the following system of partial differential equations:

~¹f!a
a5za

a , ~A3!

¹ [azb]
a5 f ab

a . ~A4!

Equation~A3! provides the ‘‘interpretation’’ ofz, as the derivative off. The f ab
a on the right of

~A4! is some field onB8 @i.e., some function of (x,f,z)#, whose exact form depends on wh
derivative operator is used on the left side of that equation. The general rule is that Eq.~A4! to be
the result of taking the curl of Eq.~A3!. For example, iff is represented by tensor fields overM ,
if z is represented by the tensor fields obtained by taking the covariant derivatives~with respect to
some fixed derivative operator onM ! of those fields, and if that same derivative operator is u
on the left in Eq.~A4!, then f will consist of certain terms involvingf and the curvature tensor o
that derivative operator. If, on the other hand, all bundles are taken as simple products, a
derivatives are taken using the corresponding~flat! connection, thenf ab

a50. Note that we have
not included in our system the derivative of Eq.~A2!. The reason is that Eq.~A2! has already been
included at the algebraic level in the construction of the bundleB8. Its derivative is thus an
identity in B8. On the other hand, wedo include in our system Eq.~A4!, even though it merely
results from taking a derivative of Eq.~A3!. In short, all algebraic conditions on fields are includ
in the construction of the bundle,28 while all differential conditions on fields are included in th
equations on a cross-section of that bundle. We note that the system of Eqs.~A3!–~A4! is indeed
first-order and quasilinear.

Consider again the example, above, of Maxwell’s equations. Then a cross-section of b
B8 consists of smooth fields,Fbc ,zabc , satisfying everywhere the symmetries and algebraic c
ditions given above. The equations,~A3!–~A4!, on such a cross-section become, respectively

¹aFbc5zabc , ~A5!
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¹ [dza]bc52Rda[b
mFc]m . ~A6!

Given a system, consisting of bundleB and partial differential equations~A1!, then by its
derivative systemwe mean the system, consisting of bundleB8 and partial differential equation
~A3!–~A4!, constructed above. Note that every solution of the original system gives rise
solution of its derivative system@by merely settingza

a5(¹f)a
a#. Conversely, every solution o

the derivative system gives rise to a solution of the original system~by merely ignoringz!. The
two systems of partial differential equations are, in this sense, ‘‘equivalent as to solutions.
they are not ‘‘equivalent as to form,’’ a feature we exploit in Sec. II.

We next turn to the issue of the existence of an initial-value formulation for these system
discussed in Appendix B, we say that a general first-order quasilinear system~A1! of partial
differential equations admits aninitial-value formulationprovided it satisfies the following thre
conditions:~i! the system admits a hyperbolization;~ii ! all constraints of the system are integrab
and ~iii ! the system has the correct number of equations relative to the number of its unkn
See Appendix B for the details of what these conditions mean. A key property of the deriv
system is the following:If the original system, (A1) admits an initial-value formulation, then
does its derivative system, (A3)–(A4). We check the three conditions in turn.

Let the original system~A1! admit a hyperbolization~say,hbA , with wa!. Then, we claim, so
does its derivative system. Indeed, the corresponding bilinear expression@on a pair of tangent
vectors, represented as (dfa,dza

a) and (d8fa,d8za
a)# is given by

wmhaAkAm
b@g

1
abdza

ad8zb
b1dfad8fb#, ~A7!

where g
1

ab is any positive-definite metric field onM . It is apparently not known whether th
converse is true, i.e., whether the existence of a hyperbolization for the derivative system,~A3!–
~A4!, implies the existence of a hyperbolization for the original system~A1!. Simple examples
suggest that this is a reasonable conjecture.

Integrable constraints of the system~A1! do not lead to constraints of the correspondin
derivative system. Rather, they lead to a reduction in the number of effective equations. Inde
cb

A be any constraint. Then the result of contracting Eq.~A4! with ca
AkAb

a is an identity: It holds
automatically, by virtue of Eq.~A2!. Thus, each constraint for the system~A1! reduces by one the
number of effective equations represented by Eqs.~A3!–~A4!.

What, then,are the constraints of the derivative system~A3!–~A4!? These fall into two
classes. The first class consists of those constraints that correspond to taking the curl of Eq~A3!.
These constraints are of course integrable: Their integrability conditions are precisely~A4!. The
second class of constraints consists of those that correspond to taking the curl of Eq.~A4!. These
constraints, too, are integrable, by virtue of the fact that Eq.~A4! is itself a curl. Not all of these
constraints, it turns out, are in general algebraically independent.

Let us return to our original partial differential equation~A1!. Denote byn the dimension of
the base manifoldM ~the ‘‘number of independent variables’’!, by u the dimension of the fibers in
the bundleB ~the ‘‘number of unknown functions’’!, and bye the dimension of the vector spac
of equations,~A1!. Further, denote byĉ the dimension of the vector space of constraints, and,
fixed nonzero covectorwa , by c the dimension of the space of vectors of the formwaca

A , asca
A

runs over the constraints. Then, as discussed in Appendix B, the condition that the original s
~A1! have the ‘‘correct number of equations’’ becomese2c5u. We turn now to the derivative
system~A3!–~A4!. The number of its unknowns is given byu85u1(nu2e) ~the two terms
representing the numbers of unknowns contained in the fieldsf andz, respectively!. The number
of its equations is given bye85nu1@un(n21)/22 ĉ# @the two terms representing the number
effective equations in~A3! and~A4!#, respectively. Finally, the number of effective constraints
the derivative system is given byc85u(n21)1@(n21)(n22)u/21c2 ĉ#, ~the two terms rep-
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resenting the number of effective constraints in~A3! and ~A4!, respectively29!. From these for-
mulas, it is easy to check: Ife2c5u, thene82c85u8. In other words, if the original system ha
the correct number of equations, then so does the derivative system.

We conclude, then, that, beginning with a system~A1! having an initial-value formulation, its
derivative system,~A3!–~A4!, also has an initial-value formulation.

The construction above of the derivative system is useful because it permits a large c
systems of partial differential equations to be cast into a form to which the Lagrange formu
of Sec. II can be applied. But, unfortunately, passing to the derivative system and then
Lagrange formulation is often a cumbersome procedure. The reason is that the derivative
requires the introduction of additional fields to represent the derivatives ofall the fields of the
original system—even of those fields only remotely related to the one real interest: the ve
field. The result is a large number of extraneous fields. More useful would be a constructio
goes only part way to the full derivative system—one that introduces additional fields to rep
the derivatives of onlysomeof the original fields, leaving the remaining ones intact. It turns
that, while there are one or two systems~e.g., that for dust! for which a smaller derivative system
along these lines is available, for the vast majority of systems of partial differential equatio
physical interest there is none. Here, briefly, is why.

First, we must designate which of the dependent variables~the fields represented byf) are to
be derived and which not. This is done by writing the original bundle,B, as a product of two
bundles,B8 and B9, with the same base space30 M . The bundleB8 carries the fields whose
derivatives will be represented by new variables, whileB9 carries the remaining fields. A cross
sectionf of B consists precisely of a pair, (f8,f9), wheref8 is a cross-section of the bundleB8,
andf9 is a cross-section of the bundleB9. In terms of these variables, Eq.~A1! becomes

k8Aa
a8~¹f8!a

a81k9Aa
a9~¹f9!a

a95 j A, ~A8!

where primed Greek indices denote tensors inB8, and double-primed inB9. Here, the fieldsk8, k9
and j are all functions onB, i.e., are functions of (x,f8,f9). We now proceed just as with th
derivative system. Introduce a new fiber bundle, with base manifold againM , but with fiber over
xPM consisting of certain triples, (f8,za

a8,f9). There must now be imposed on such triples
those algebraic conditions that flow from~A8!. This is done as follows. At each point, denote
V the vector space ofmA satisfyingmAk9Aa

a950. That is,V captures ‘‘those equations in~A8! that
contain no derivative off9. ’’ We now demand, in order that a triple (f8,za

a8,f9) give rise to a
point of the fiber, the following: For everymAPV, mAk8Aa

a8za
a85mAj A. This is the fiber bundle

for our new system. Let the equations of the new system be

~¹f!a
a85za

a8, ~A9!

¹ [azb]
a85 f ab

a8, ~A10!

nAk8Aa
a8za

a81nAk9Aa
a9~¹f9!a

a95nAj A. ~A11!

In ~A11!, nA is any vector in some fixed subspace complementary to the subspaceV. In other
words, Eq.~A11! reflects those equations of~A8! that do involve the derivative off9.

The system~A9!–~A11! is, certainly, a first-order, quasilinear system of partial differen
equations; and it has as its variables precisely the ones we intended, namely (f8,za

a8,f9). But,
unfortunately, this system is subject to a variety of maladies—and these can arise even
original system was quite well-behaved. For example—and this happens frequently—there
constraints for the system~A9!–~A11! that are hidden in Eq.~A11!, and thus do not arise from an
constraints for the original system,~A8!. Furthermore, these new constraints are not in gen
integrable. One could attempt to include the integrability conditions of these new constrai
new equations for the system. But two further problems can arise. First, some integrability
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ditions can turn out to be mere algebraic equations on the fields, (f8,za
a8,f9). The only way to

‘‘include’’ such equations is to start over, introducing a new bundle right from the beginn
Second, some integrability conditions can turn out to be quadratic, rather than linear,
field-derivatives. These cannot simply be ‘‘included’’—at least, not if we wish to retain a qu
linear system. The system~A9!–~A11! can also manifest a number of other types of difficulti
e.g., the absence of a hyperbolization or the wrong number of equations. There appears t
simple, general condition that guarantees that Eqs.~A9!–~A11! lead to a system with an initial
value formulation.

As an example of this construction consider again the simple fluid,~1!–~2!. Let B8 be the
bundle whose fiber consists only of the variableua; andB9 the bundle whose fiber consists on
of the variabler. In this example, the vector spaceV, capturing those equations in~1!–~2!
involving no derivative ofr, is zero-dimensional. The corresponding new bundle space, the
that whose fiber, overxPM , consists of (ua,wb

a ,r), with ua unit timelike andwb
a satisfying

gacu
cwb

a50 ~unit-ness ofua). The equations for the new system, in this example, are

¹bua5wb
a , ~A12!

¹ [awb]
c5Rabd

cud, ~A13!

~gam1uaum!¹mp1~r1p!umwm
a50, ~A14!

um ¹mr1~r1p!wm
m50. ~A15!

This system has a new constraint@obtained by combining Eqs.~A14! and ~A15! to obtain an
expression for¹mr, and then taking its curl#, which turns out not to be integrable. But i
integrability condition turns out to be quasilinear in field-derivatives, and so may be included
further equation of the system. The resulting system in this case~but not for the case of an eve
slightly more complicated fluid! actually admits a hyperbolization.

APPENDIX B: INITIAL-VALUE FORMULATION

Consider a first-order, quasilinear system of partial differential equations, as described i
II. That is, we have a fiber bundle, with base manifoldM , bundle manifoldB, and projection

mappingB→
p

M . The system of partial differential equations, on a cross-section,M→
f

B, of this
bundle, is given by Eq.~3!. We are concerned here with the issue of under what circumsta
such a system admits an initial-value formulation, i.e., a formulation in which the fields are
specified on some ‘‘initial surface’’ inM , and are then determined elsewhere inM by Eq. ~3!
itself.

The key to achieving such a formulation is an object called ahyperbolizationof the system
~3!, a field hbA on the bundle manifoldB having the properties described below. Consider,
(x,f) any point of the bundle manifoldB, wm any covector atxPM , anddfa,d8fa any two
vectors at (x,f)PB tangent to the fiber~‘‘vertical’’ !, the expression

wmhbAkAm
adfad8fb. ~B1!

We demand, in order that thishbA be a hyperbolization, that, everywhere inB, this expression be
symmetric indfa,d8fa for all wm , and positive-definite~i.e., positive for any nonzerod8fb

5dfb! for somewm . The most direct way to specify a hyperbolization for a system of pa
differential equations is simply to give the bilinear expression~B1!. Such an expression indee
defines a hyperbolization provided it is symmetric and positive-definite, as described abov
furthermore, that it is some multiple of the result of replacing, in the left side of Eq.~3!,
‘ ‘( ¹f)a

a’ ’ by ‘‘ wa dfa. ’ ’ As an example, consider the system,~1!–~2!, for a simple perfect
fluid. Consider the bilinear expression
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d8ua@~r1p!~umwm!gabdub1~]p/]r!wadr#

1~]p/]r!~r1p!21d8r@~r1p!dum wm1umwm dr#. ~B2!

We note that this expression is symmetric under interchange of the two vectors (dr,dua) and
(d8r,d8ua), and that@provided (r1p).0 and 1>(]p/]r).0# it is positive-definite wheneve
wm is future-directed timelike. Furthermore, this expression arises, as described above, fro
~1!–~2!. This bilinear expression, then, specifies a hyperbolization for this system.

Let there be given a hyperbolization,haA , for the system~3!. Then this object gives rise to a
initial-value formulation for a portion of that system, in the following manner. Fix initial da
consisting of a submanifoldT of M of codimension one~an ‘‘initial surface’’! together with a
cross-sectionf0 over this submanifold~‘‘data’’ on that surface!, such that at each point ofT, the
normal toT is one of the vectorswm for which the bilinear expression~B1! is positive-definite~the
surface is ‘‘noncharacteristic’’!. Then, in some neighborhood of the submanifoldT, there exists
one and only one solutionf of the system

hbAkAa
a~¹f!a

a5hbAj A, ~B3!

such thatf5f0 on T. Note that we do not guarantee a solution of the entire system~3!, but rather
only of those components that are involved in the hyperbolization. While the proof of this the
is technically difficult, the key idea is to construct, using the hyperbolization, an energy inte
which is positive-definite, and, effectively, conserved.

Denote byu the number of unknowns of the system~3! ~i.e., the dimension of the fibers inB!,
and bye the number of equations~i.e., the dimension of the vector space in which the index ‘‘A’’
lies!. Then the mere existence of a hyperbolization for this system already impliese>u ~i.e., that
there are at least as many equations as unknowns!. Should it happen that this inequality is a
equality, i.e., thate5u, then it follows that the hyperbolization tensorhaA is invertible, and so
that the system~B3! exhausts the original system of equations~3!. Thus, in this case we are don
We have achieved our full initial-value formulation. In the example of the simple perfect
above, for instance, we havee5u54, and so the hyperbolization~B2! gives rise to an initial-value
formulation for the fluid system~1!–~2!. Unfortunately, in many cases of interest we have
strict inequalitye.u, i.e., there are additional equations in~3! that are not accounted for in~B3!.
Such ‘‘additional equations’’ are dealt with in the following manner.

By a constraintof the system,~3!, of partial differential equations, at a point ofB, we mean
a tensorca

A at that point such that the tensorca
AkAb

a is antisymmetric in the indices ‘‘a,b. ’’ This
definition has two facets. First, each constraint gives rise to an integrability condition. F
constraint field,ca

A , and a solutionf of Eq. ~3!. Contract both sides of Eq.~3! with cb
A , and

apply to both sides some derivative operator,¹b , on M . Then, by the constraint-condition, term
involving second derivatives off vanish, leaving an algebraic equation~indeed, a polynomial of
degree at most two! in the first derivative, (¹f)a

a , of f. The constraint field is said to b
integrableif this equation is an algebraic consequence of Eq.~3!, i.e., if the difference of its two
sides is the product of some expression~at most linear in field-derivatives! and the difference of
the two sides of~3!. The lack of integrability of a constraint generally indicates that ‘‘not all
equations have been included in the original system~3!.’’ As to the second facet, each constrai
gives rise to a compatibility condition on initial data. Fix constraint field,ca

A , solutionf of Eq.
~3!, and submanifoldT of M of codimension one. Then, at each point ofT, we have

nmcm
AkAa

a~¹f!a
a5nmcm

Aj A, ~B4!

wherenm is the normal toT at that point. But, by virtue of the constraint-condition, the ind
‘‘ a’’ in the tensornmcm

AkAa
a is tangent toT. Thus, Eq.~B4! takes the derivative off only in

directions tangent toT, and so it refers only to the value off on T, i.e., only to the initial data on
T. In short, Eq.~B4! represents a compatibility condition on initial data. If these compatib
conditions were not satisfied, then we would have have no hope of finding a correspo
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solution of Eq.~3!. As an example, consider the Maxwell equation¹ [aFbc]50. This equation has
a constraint. The corresponding integrability condition, obtained by taking the curl of this e
tion, is an identity, and so this constraint is integrable. The compatibility condition~B4! on initial
data becomes, in this example,¹•B50.

In the case in whiche.u, i.e., in which the system~3! has more equations than unknown
two further conditions must be imposed on the system. The first is that all the constrain
integrable. The second is thate2c5u, wherec denotes the dimension of the vector space
vectors of the formwmcm

A , for fixed wm , as cm
A runs through all the constraints. This la

condition means that any additional equations in~3! that are not included already in~B3! are
accounted for, effectively, by constraints. It states that~3! has the ‘‘correct number of equations
for its unknowns. In the case of Maxwell’s equations, for example, all the constraints are
grable, as we have already remarked; and we havee58, c52, andu56, so there is indeed the
correct number of equations. That is, the two further conditions above are satisfied in this ex

Consider now a first-order, quasilinear system of partial differential equations that satisfi
three conditions given above. That is, let the system~i! admit a hyperbolization,~ii ! have all its
constraints integrable, and~iii ! have the correct number of equations, as described above. It s
likely that such a system—possibly with some mild further conditions—must always manife
initial-value formulation in some suitable sense. That is, we would expect that, given initial
for the system on a suitable surfaceT, satisfying onT the compatibility conditions~B4!, then
there exists a unique corresponding solution of Eq.~3! in a neighborhood ofT. A key piece of
evidence prompting this expectation is the following. There certainly exists a solution of Eq.~B3!
manifesting the initial data, as we have already seen. Consider next the left sides of Eq.~B4! ~as
cm

A varies over all constraints!. These expressions of course vanish onT, and, by virtue of the
conditions~ii ! and ~iii ! above, satisfy a system of equations that express the ‘‘time-derivati
~off T! of these expressions in terms of their ‘‘space-derivatives’’~within T!. Naively, we might
expect that, as a consequence, these expressions must vanish in a neighborhood ofT. But the
vanishing of these expressions implies, again by condition~iii ! above, that Eq.~3! itself is satisfied
everywhere in a neighborhood ofT. Indeed, in all physical examples of which we are aware
including all those discussed in this paper—this naive expectation is in fact borne out. Un
nately, there is, apparently, no general theorem to this effect. Nevertheless, we shall, for
nience, use the expression ‘‘having an initial-value formulation’’ to describe systems of p
differential equations that satisfy the three conditions,~i!–~iii !, above.

1See, for example, R. Courant and K. O. Friedrichs,Supersonic Flow and Shock Waves~Interscience, New York, 1948!,
for the Euler and Lagrange formulations of non-relativistic perfect fluids, and Appendix A of Ref. 2 for the
formulation of a relativistic perfect fluid.

2R. Geroch, ‘‘Partial differential equations of physics,’’ inGeneral Relativity, Proceedings of the 46th Scottish Unive
sities Summer School in Physics, edited by G. S. Hall and J. R. Pulham~SUSSP Publications, Edinburgh; IOP, Londo
1996!. Available as gr-qc/9602055.

3For the case of the Einstein-Euler system, for example, see Sec. 4.2 of Ref. 4, and references therein.
4H. Friedrich and A. Rendall, ‘‘The Cauchy problem for the Einstein equations,’’ inEinstein’s Field Equations and their
Physical Interpretation, edited by B. G. Schmidt~Springer-Verlag, Berlin, 2000!, available as gr-qc/0002074.

5In fact, some care must be taken, in the Lagrange formulation, even to say what ‘‘initial-value formulation’’ mea
light of the fact that the independent variables are not the usual space-time events, through which evolution n
proceeds.

6Recall that this condition requires, essentially, that, locally inM, B can be written as a product,M3F, of M with some
other fixed manifoldF, in such a way that the projection mappingp becomes the projection to theM-factor in this
product. This condition guarantees, e.g., that, locally, all the fibres of the bundle are diffeomorphic with this
manifold F, and so with each other.

7Note that we can, in this case, convert these to ordinary tensors on the manifoldM̂ by usingk â
b and its universe. This,

a mere ‘‘coordinate transformation’’ on the fibres, changes nothing, in particular, not the final partial differential
tions of the Lagrange formulation.

8For convenience, we shall always include within our systemall first-order equations on the fields of the system, ev
those that arise from differentiating other equations of the system.

9These derivatives may be characterized in the following manner. Consider the bundle with base spaceM̂ and fibre over
x̂PM̂ consisting of a pair, (x,k â

b), wherexPM andk â
b is a tensor with indices atx andx̂. Then a choice of connection

in this bundle gives rise to an operator“ â for use in the left side of Eq.~6!.
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10A Lorentz metric onM, for example, becomes, onM̂ , an algebraic function of the fields~namely, just ofx! of the
Lagrange formulation.

11In the notation of~5!–~7!, we havew5(x,r), andŵ5(x,r̂).
12There is an unfortunate complication here, involving the normalization condition,uaubgab521, onua. It is awkward

simply to carry this condition through the Lagrange formulation. But there are several other ways—none
elegant—to deal with it. Perhaps the simplest is to rewrite the fluid equations from the outset@by inserting, strategically,
factors of (uaubgab)# in such a way that, while retaining their initial-value formulation, they no longer require
normalization condition. Then take the Lagrange formulation of these new equations.

13Note in particular that the original system,~10!–~11!, always possesses the constraints arising from the curl of Eq.~10!.
Thus, if the constraints of this system are to be integrable, this curl-equation must have been included in the
~10!–~11!.

14These are not to be confused with the indices for tensors on the bundle space, used extensively in Sec. II.
15Note that the last two terms on the left in Eq.~21! constitute the most general expression~involving ua andw! quasilinear

in the derivative ofua.
16For ‘‘if,’’ suppose thatVaFa.0 everywhere onS. It follows that there exists a positive-definite metric field,gab, on the

manifold S such thatVagab5Fb everywhere. Choose one~e.g., the sum ofFaFb/(FgVg) and a suitable positive
semi-definite tensorhab that annihilatesVa! and consider the bilinear expression

2~wmum!@gabduad8ub1gabdwad8wb#2wmFa@dumd8wa1d8umdwa#.

This bilinear expression indeed arises, as described in Appendix B, from Eqs.~20!–~21!, and is indeed positive-definite
~for wm sufficiently close toum!. So, this bilinear expression gives rise to a hyperbolization. The converse is eas

17H. Friedrich, ‘‘Evolution equations for gravitating ideal fluid bodies in general relativity,’’ Phys Rev. D57, 2317–2322
~1998!.

18I. Müller, ‘‘Zum Paradox der Wa¨rmeleitungstheorie,’’ Z. Phys.198, 329–335~1967!.
19R. Geroch and L. Lindblom, ‘‘Causal theories of dissipative relativistic fluids,’’ Ann. Phys.~NY! 207, 394–416~1991!.
20R. Geroch, ‘‘Relativistic theories of dissipative fluids,’’ J. Math. Phys.36, 4226–4241~1995!.
21I. Müller and T. Ruggeri,Extended Thermodynamics, in Springer Tracts in Natural Philosophy, 2nd ed.~Springer, New

York, 1998!, Vol. 7.
22See, e.g., Ref. 2. For other treatments, as well as the local existence theory for solutions, see Y. Choquet-Bruh

Lamoureux-Brousse, ‘‘Sur les e´quations de l’e´lasticité relativiste,’’ C. R. Acad. Sci. Paris276, 1317–1320~1973!; and
also G. Pichon, ‘‘The´orèmes d’existence pour les e´quations des milieux e´lastiques,’’ J. Math. Pures Appl.45, 395–409
~1966!. For a brief summary of this subject, see Ref. 4.

23There could also be included on the right side of this equation terms algebraic in the electromagnetic and othe
Such terms would represent, e.g., an effect of the electromagnetic field on the rates of chemical reactions.

24Note that there are no expressions, algebraic in the gravitational fields, that could be introduced on the right
equations. This is a reflection of ‘‘the equivalence principle.’’

25The most general candidate for such a stress-energy~i.e., the most general algebraic function of our fields, having
correct index-structure! is given byTab5(r1p)uaub1pgab, wherer,p are some functions on the manifoldS of fluid
states. When does there exist such aTab that, in addition, is conserved,“bTab50, by virtue of the field equations
~20!–~21!? It is not difficult to check that~assumingVaFa.0; and demandingr1p.0! a necessary and sufficien
condition is that the fieldsFa, Va, andTa on S satisfy the following three equations:F @a“bFg]50, TaKa50, and
“ @a(Kb]1Fb]50, where we have setKa5(2Vb

“ @bFa]1Fa)/(VgFg).
26In the resulting system, there will initially be two versions of ‘‘the derivative of the metricgab, ’’ one being the original

derivative operator“a, and the other arising~via gab! through passage to the derivative system. These two version
then to be set equal to each other, via Eq.~A2!. A similar phenomenon occurs, e.g., on taking the derivative system
the Klein-Gordon system.

27This ‘‘suppression’’ proceeds, in more detail, as follows. Choose on the 2-manifoldS, a functions ~which is interpreted
in Ref. 17 as the entropy per particle! satisfyingVa

“as50. Now delete the fieldza
a everywhere, by replacing the

componentza
a
“as of za

a by some new fieldf a, and the remaining components ofza
a by (“w)a

a. To the resulting
system add those further equations that are required for integrability of the constraints.

28In fact, there is, at this level of generality, a possible anomaly with the system~A3!–~A4!. In some cases, furthe
algebraicconditions on the fields can follow from Eq.~A4!. In fact, this anomaly will never arise in systems of intere
because it is precluded by the requirement, which we shall impose shortly, that all constraints of the original syste~A1!,
be integrable.

29The number of effective constraints of Eq.~A4! is the dimension of the vector space of tensorsLab
a satisfyingLab

a

5L@ab#
a andwaLab

a50 ~namely, (n21)(n22)u/2), minus the dimension of the vector space of such tensors of
form ca

AkAb
a for ca

A a constraint~namely,ĉ2c!.
30Recall that the product of two bundles, with the same base spaceM, is the bundle, again with the base spaceM, whose

fibre, over pointxPM , is given by the product of the fibres, overx, in the separate bundles.
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