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It is well-known that the equations for a simple fluid can be cast into what is called
their Lagrange formulation. We introduce a notion of a generalized Lagrange for-
mulation, which is applicable to a wide variety of systems of partial differential
equations. These include numerous systems of physical interest, in particular, those
for various material media in general relativity. There is proved a key theorem, to
the effect that, if the originalEulen system admits an initial-value formulation,
then so does its generalized Lagrange formulation.2@1 American Institute of
Physics. [DOI: 10.1063/1.1364502

[. INTRODUCTION

Consider a simple perfect fluid in general relativity. That is, fix a space-time—a
4-dimensional manifold with metric g,,, of Lorentz signature ,+,+,+). The fluid is de-
scribed thereon by two fields, a unit timelike vector fieRi(which is interpreted as the velocity
field of the fluid, and a scalar fielg (which is interpreted as its mass denkiffhese fields must
satisfy the fluid equations,

(p+p)u"Vui=—(g*™+utu™Vp, D
Vin(pu™ =—pV,u™ 2

Herep is specified as some fixed function @fthe function of state.

This treatment is usually called the Euler formulation of a fluid. Its characteristic feature is
that the fluid is described by means of fields on space—time. That is, the “independent variable
in this formulation—the thing the fields are functions of—is the event of space-time. There is an
alternative treatment of a fluid, called the Lagrange formulation, in which we “move with the
fluid, rather than remain fixed in space—time.” In other words, the independent variable in this
formulation is the fluid-element, and so the fluid is described by fields that are functions on the
manifold of fluid-elements.

Each of these two formulations has its advantages. The Euler formulation is less tightly tied
down to the fluid itself, and so is usually more convenient when other systems—which would
naturally be described with reference to space—time—are involved. In particular, the Euler for-
mulation is normally used for a fluid in interaction with other fields, as, for example, in the
Einstein-fluid system. The Lagrange formulation, by contrast, tends to be more convenient when
one wishes to identify and follow individual fluid elements. For example, the Lagrange formula-
tion might be used to describe a fluid object with a boundary. The boundary, in this formulation,
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would be fixed once and for all at the beginniiy designating those fluid-elements that consti-
tute the boundanyas part of the kinematical structure. In the Euler formulation of such an object,
by contrast, the boundary would be “dynamical.”

How are the Euler and Lagrange formulations related to each other? Certainly, the two are
physically equivalent, i.e., they represent mere mathematical reformulations of the same physics.
That is, all physical predictions will be the same, no matter which formulation is used; and, at least
in principle, either formulation could be used to solve any given problem. Indeed, one might be
tempted to go further than this, to view them as related by a mere coordinate transformation on the
manifold of independent variables. But such a viewpoint would be misleading, for the “coordinate
transformation” between the two sets of variables involves the dynamics of the system. Thus, for
example, from the standpoint of the Euler formulation the Lagrange formulation represents a
curious mixing of kinematics with dynamics.

These mathematical differences in fact go even deeper. It is well-known that the equations for
a perfect fluid in the Euler formulation, Eqd)—(2), have a well-posed initial-value formulatidn.

But the corresponding equations in the Lagrange formulation—at least, those obtained directly, by
simply “transforming” the Euler equations—do ndHowever, it has been shown by Friedrich, in

Ref. 17, that, at least for a certain fluid system in general relativity, tbanebe introduced a
Lagrange formulation having also an initial-value formulation. It is necessary, in Friedrich’'s
treatment, to introduce a substantial number of additional figfdtuding a frame-fielfitogether

with additional equations on those fields. What is not so transparent, however, is the mechanism
behind this treatment. Precisely what features of these fluid systems are needed for such a deter-
ministic Lagrange formulation?

Our purpose in this paper is to introduce and explore a certain, broad, geometrical setting for
the Lagrange formulation of systems of partial differential equations.

In Sec. Il, we introduce that setting. Our framework is systems of partial differential equations
that are first-order and quasi-line@re., involving only first derivatives of the fields, and those
only linearly—a framework that includes virtually every partial differential equation in physics.
Given any such system—provided only that it has among its fields a distinguished vector
field—we write out a new system, its “Lagrange formulation.” The key idea of this scheme is
what one might expect: Include, among the dynamical variables of the new system, what were the
independent variables of the original system. It turns out that, in order to execute this scheme, it
is normally necessary to introduce additional dynamical variables and equations. We give a gen-
eral scheme for choosing these variables. The key result of this section is the following: Given any
system of partial differential equations having a distinguished vector field as above, and also
having an initial-value formulation, then a certain version of its Lagrange formulation also has an
initial-value formulation.

In Sec. lll, we give some examples of this scheme. We apply the present scheme not only to
ordinary fluids, but also to various other types of material systems, including dissipative fluids and
elastic solids. This scheme is also applicable when such material systems are undergoing interac-
tion, e.g., when they are coupled to an electromagnetic or gravitational field. Finally, we show in
Sec. Il how Friedrich’s original system fits within the present framework.

A number of related mathematical issues are discussed in the appendices. In Appendix A, we
describe a general procedure for modifying any system of partial differential equations by “taking
derivatives” of the fields of that system. This procedure, it turns out, is crucial for casting systems
into a form in which our Lagrange formulation can be applied. In Appendix B, we review a few
facts about the initial-value formulation of systems of partial differential equati@its.a more
detailed treatment, see, for example, Ref. 2.

II. LAGRANGE FORMULATION

Fix a first-order, quasilinear system of partial differential equations. That is, let there be given
a fiber bundle, consisting of some base manifidld some bundle manifold, and some smooth
w

projection mapping8— M. Typically, M will be the 4-dimensional manifold of space—time
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events(but it could be any smooth manifgldBy thefiber over a pointx of M, we mean the set

of all pointsy of B such thatw(y)=x. Think of the fiber overxe M as “the set of possible
field-values atx.” Then B is interpreted as the set of “all possible choices of field-values at all
points ofM,” and 7 as the mapping that assigns, to each such choice, the underlying pMnt of
Thus, pointy of 55 could be written ag = (X, ¢), with xe M and¢ in the fiber oveix. The action

of the projection mapping would then be given Byx, ¢) =x. Typically, the fiber over a point
xe M will be some collection of tensors, with given index struct(pessibly subject to various
algebraic conditions atx, whenceB will be a manifold of all such tensor-collections at all points
of M. In this case]53 is called atensor bundle However,5 could in general be any smooth
manifold, subject only to the local-product condition in the definition of a fiber buhdle.

&

By a cross-sectiorof such a bundle we mean a smooth mappihg- B such thatre ¢ is the
identity map onM. In other words, a cross-section assigns, to each poaftM, a point of the
fiber overx; i.e., it assigns a “field-value” at each point ®. In the case of a tensor bundle, a
cross-section is simply a certain collection of smooth tensor fieldsl oi®©ur partial differential
equation will be an equation on this map, linear in its first derivative. In order to write out this
equation, we introduce two smooth fieldé}?, andj*, on B. Since these are fields df, they
depend on poiny=(x,¢) of B, i.e., they depend on a choice of “poixtof the base manifold, as
well as field-values at that point.” The index ‘&” on k*2, is a tensor index i3 at the point,

y € BB, at which this field is evaluated; the indexa™ is a tensor index inM at the corresponding
point, 7r(y), of the base manifold. The index&:” on both kA2, andj”, lies in some new vector
space(which will turn out, shortly, to be the vector space of equatiof$nally, our partial
differential equation, on a cross-sectignis

KAV $) . =]" )

This equation is to be imposed at each poirtM, with the fieldsk and | evaluated atp(x)

e B, i.e., on the cross-section. Her&, ¢) ,“ denotes the derivative of the mali.e., a map from
tangent vectors i atx to tangent vectors i at ¢(x)]. The index “A” in Eq. (3) is free, i.e.,

Eq. (3) represents a number of scalar equations equal to the dimension of the vector space in
which “A” lies.

Here is an example. Fix a 4-dimensional manifdfd together with a Lorentz-signature
metric g5, on thisM. Let B be the 8-manifold consisting of triplest,u?,p), wherex is a point
of M, u? is a unit timelike vector ak, andp is a number. Letr(x,u?,p)=x. This is a fiber
bundle; in fact, a tensor bundle. The fiber over a paistM consists of (12,p), a vector atx
together with a number. A cross-section of this bundle is represented by smoothufetds] p,
on M. Let the equations, on such a cross-section(Ipe(2), wherep(p) is some given, fixed
function of one variable, an¥l, is the derivative operator defined by the space—time megtsic
This is a first-order, quasilinear system of partial differential equations, i.e., the equations are
linear in the first derivatives of the fields. The vector space of equations, in this example, has
dimension four. This system, of course, describes a simple perfect fluid in general relativity.

We shall now introduce a technique that transforms a given first-order, quasilinear system of
partial differential equations—provided that system lies within a certain class—into a new first-
order, quasilinear system of partial differential equations. This new system will be called the
Lagrange formulatiorof the original. While the new system will differ in many respects from the
original one—e.g., it will have a different base manifold, a different bundle manifold, and a
different number of equations—the two will be intimately related to each other. In particular, it
will turn out that there is a natural correspondence between the solutions of the original system
and those of its Lagrange formulation.

In order to apply this technique to a given system of equations, it is necessary that that system
satisfy the following condition: Among the various fields of the system there must be distin-
guished one consisting of a nowhere-vanishing vector field on the base mavlifoldhis condi-
tion means, then, that the fields of our system take the farfpg), whereu? represents the
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nowhere-vanishing vector field o, and ¢ represents “the rest of the fields.” Thus, given a
system that has, among its various fields, no vector field at all, then we shall be unable to write out
any Lagrange formulation for it; and if it has several vector fields, then we must, at this stage,

distinguish a particular one. We shall denoteBy» M the bundle in which the rest of the fields,
the ¢, lie, and use Greek indices for tensors in the mani®ldNote that these ardifferentfrom
the Greek indices, e.g., in EB), for tensors in the manifol#. The equation for our system may
now be written as

kA% QU KA (V )= A, @

wherek’#3, | k"2 andj” are all functions o, ¢, and point ofM. In Eq. (4), the V, in the
first term can be any derivative operator bh and the form ofj* depends, of course, on what
operator has been chosen. We could, for example, simply fix, once and for all, some derivative
operatorV,, and use it to write Eq(4). Should it happen that the manifod comes equipped
with a kinematical metridi.e., one not included among the physical fields then it is often
convenient to use its derivative operator in E4). This possibility is available, e.g., for systems
representing fluids in special relativity, or in general relativity with a fixed background metric. In
fact, we could even choose the derivative operatgiin Eq. (4) to depend on the fielduf, ¢)
themselves, provided only that its dependence on these fields is algebraic, rather than through their
derivatives. We now obtain the Lagrange formulation of this system.

For the base manifold of the Lagrange formulation, we choose any manifotgving the
same dimension ad. Tensors over thi will be denoted by lower-case Latin indices with hats.

We also fix, once and for all on this manifold, a nowhere-vanishing vector fielt. This0? is
a purely kinematical object, i.e., it is fixed right at the beginning, and will not be subject to any
dynamical equations.

We next specify the bundle manifol#, of the Lagrange formulation. Fix a poirk, of the
base manifoldVl. Let the fiber over this point consist of a triples, {, x3°), where(i) x is a point
of M, the base manifold of the original systefi) ¢ is a point of the fiber ovex in B, the bundle

manifold for the original system, an@i) «3° is an invertible tensor, where the inde&™ refers

to tensors iVl at the pointke M and the index b” refers to tensors irM at the pointxe M. A
more detailed discussion of these three objects follows.

(i) The points &) of the base manifoldM of the original system become, in its Lagrange
formulation, field-values In the case of a simple perfect fluid, for example, each point of
the original base manifol/ represents an event of space—time; while each point of the
new base manifold/l represents “a particular fluid-element at a particular moment of its
life.” Thus, in the Lagrange formulation of such a fluidwill be a field overX, a field that
specifies “which event in space—time that particular fluid-element occupies at that particu-
lar moment.”

(i)  The field-values, thep, of the original system become field-values also in its Lagrange
formulation. But there is one important change: What were fields den the original

system become, in its Lagrange formulation, fields dvlerThus, were the fields collected

in ¢ all tensor fields onM, then the corresponding fields in the Lagrange formulation
would depend on poirit of M, but would continue to be tensors in the tangent space at the
point x of M.” In the case of a simple perfect fluid, this step amounts, physically, to
“attaching the density to the fluid element, rather than to the point of space—time.”

(i) There is introduced a new objeat;”, an invertible two-point tensor, with one index at
%eM, the other aixe M. Nothing analogous was present in the original system. Denote
the inverse ofx3” by &2, so we havex;"k,°= ;¢ and k,2k3°=6,°. The role of this

tensork;” is, as we shall see, to preserve the first-order character of the final system of
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equations. Note that the dynamical fiel@ in the original system has disappeared entirely:
There is no analog of it as a dynamical field in the Lagrange formulation.

Next note that the paing¢), wherex is a point ofM and ¢ is a point of the fiber irB over
X, is precisely the same thing as a point of the bundle maniBldCall that point(for later
convenience ¢, so we havep=(x,¢) e B. Then we may recover the point of the original
base-manifold from the poink € B using the projectionr: We havex= w(¢). Thus, our con-

struction of the bundle manifold for the Lagrange formulation could have been stated as fol-
lows: The fiber over poinke M consists of a pair, &, «5?), where is a point of the manifold

B, and k3" is an invertible tensor with one index &t M, the other atr($) e M.
We have now completed the specification of the fiber bundle in which the Lagrange formu-

lation of our system will be written. The base manifol, is some new manifold, of the same
dimension asvl, while the bundle manifolds is such that the fiber ovére M consists of a pair,
(&,x5P), whereg e B, andx;® is a certain 2-point tensor. A cross-section of this bundle, then, is
a smooth magfa map we also denote by) that assigns, to each poifte M, a pointy of B
together with a suitable tensars”. On such a cross-section, we now impose the following

equations:
(V(m08))a = k", ©)
Vie(ka®) ="fea", (6)
'A% R0V 4 kP00 + kA%, K (T §)s= A ()

These are the equations of the Lagrange formulation. In(B¢gthe combinationme is a map

from M to M, for $ goes fromM to B, and# from B down toM. Equation(5) asserts that the
derivative of this map is precisely the tensef®. Thus, this equation provides the geometrical
meaning of the fieldc;°. Note that invertibility of«3” in Eq. (5) implies that the mapro & from

M to M is a local diffeomorphism between these two manifolds. It was to achieve this feature that
we originally chooséVl to have the same dimension s Equation(6) is merely the cufi of Eq.

(5). Any derivativé may be used on the left in E¢6), but the exact form of the functiofy;® [of
(&,x3P)] that appears on the right will depend on which derivative was chosen. This situation is
analogous to that of Eq4). Equation(7) is the translation of the equation of the original system
(4) to our new system. Here, everywhere in the fielg®, k'*%,, k"2, andj* there is to be
substituted the combination«”0®” for “ u®;” and “ &” for “ ¢.” In Eq. (7), this “replace-
ment” takes place even inside the derivative. Note that the iBlof the original system has now
disappeared entirely, having been replaced by the image of the kinematicaiffieidder the
mapping e ¢.

Thus, beginning with any first-order, quasilinear system of partial differential equations of the
form (4), we obtain a new system of equations, its Lagrange formulation, of the(®¥(7). The
Lagrange formulation has a completely new base space, but fields and equations that echo those of
the original system.

We now claim the following: Every solution of the Lagrange formulation gives rise, at least
locally, to a solution of the original system. Indeed, l&t £3°) be fields satisfying5)—(7). Then,
as we have seengeo is a local diffeomorphism betweell and M. We now introduce the
following two fields onM: u°=(V(1$));°0°, andg=go(m@) . That is, we let’® and¢ be
the images ofi® and ¢, respectively, under the diffeomorphism . Then these fieldsuf, ¢),
on M satisfy the systend), as is immediate from Eq$5), (7). We next claim that the converse
also holds: Every solution of the original system gives rise, at least locally, to a solution of its
Lagrange formulation. Indeed, lat{, ¢) be fields satisfying4). Choose any manifolth with the
same dimension as that M, and any nowhere-vanishing vector figl#l thereon. Now letp be
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a diffeomorphism betweeM and the cross-sectiogg[M], such that o) sendsil to u; and
then definex;° by Eq.(5). Then these fieldsi, ;°) on M will satisfy Eqgs.(5)—(7) [the first two
by construction, the last by E¢4)].

Thus, the original system and its Lagrange formulation are identical as to solutions. But the
two systems are quite different as to form. Their base maniféidandM, although of the same
dimension, differ in their geometry. The manifoidl must be endowed with a fixed, kinematical

“velocity field,” G2, while M has no such kinematical field. On the other hand, various kinemati-
cal fields that might have been specified olr(such as a Lorentz metjigield no analogous

kinematical field¥” on M. Furthermore, the fields of the two systems differ in several respects.
Beginning with the fields of the original system, we must delete the dynamicalufeldvhile
adding “point of M” as well as the invertible tensok;°, to obtain the fields of the Lagrange
formulation. Finally, the equations for the two systems differ in that, for the Lagrange formulation,
there must be introduced one new equafi®non the derivative of the “point oM,” as well as
is the curl(6) of this new equation.

What we have described above is precisely what is usually done in writing down the Lagrange
formulation for a fluid. For example, consider again the simple perfect fluid, with fiefg) on
M and Eqgs(1)—(2). Its Lagrange formulation consists of fietd$? (x, x;2,p) on M, with equa-
tions consisting of5), (6), and

(5+P(P)EEV (k0™ + g2+ Bke207 k™ Rrn PV () =0, ®
00V 55+ (+ P(p) RV 3 k720™) =0, )

We now return to the general case. It turns out that the procedure given above—starting with
a system and ending with its Lagrange formulation—suffers from a serious difficulty. In general,
the equations of the Lagrange formulatidf)—(7), will fail to have an initial-value formulation,
even if the original system4), did have such a formulation. For example, the system(6),
(8)—(9) has no initial-value formulation, although the systébw(2) of course does. But it turns
out that this difficulty does not arise—i.e., the Lagrange formulation does inherit an initial-value
formulation from the original system—provided the original system satisfies the following condi-
tion: There can be derived from E¢f) an expression for the derivative of the vector fiefy
without contractions, back in terms of the various fields of the system. In other words, it must be
possible to cast Ed4) into the form

vV, ub=wpr (10)
k’/Aaa(V@)aa:j /A' (11)

wherewab, k"A2 andj’” are functions of X,u?,¢), i.e., are functions of the point & and the
vectoru?. In Eq.(10), V, can, again, be any derivative operator on the manifbldand the form
of Wab depends, of course, on what operator has been chosen. Note that, once we have derived
from Eq.(4) an equation of the fornil0), then it is easy to cast the equations that remain into the
form (11): Sirr:)ply use Eq(10) to remove allu-derivatives from Eq(4). Indeed, we havg'”
— J A_ klAabWa

The equations for systems of physical interest typicallyndbtake the form of Eqs(10)—
(11), i.e., they do not express the derivativeusfin terms of the other fields. For example, Egs.
(1)—(2) do not have this form. But it turns out that there is a simple, general procedure by which
any first-order, quasilinear system of partial differential equations having a preferred vector field
u? can be recast so as to take the fofh®—(11). This procedure, called taking ttoerivative
systemis spelled out in Appendix A. It consists of modifying the original system by introducing
additional fields, which represent the derivatives of the original fields, as well as additional equa-
tions on those fields. The result of taking the derivative system is to produce a new system of
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partial differential equations, having, in an appropriate sense, identical solutions to the original.
Applied to a system in which a preferred vector fieltl has been distinguished, it produces a
system in whichV ,u® is expressed back in terms of the fields of the system. Furthermore, applied
to any system having an initial-value formulation, the derivative system also has an initial-value
formulation.

As an example of this procedure, we return to the systédin,(2), for a simple perfect fluid
in general relativity. For the distinguished nowhere-vanishing vector field in this case, we choose,
of course, the velocity fieldi? of the fluid. The result of taking the derivative system of this
system is the following. The fields consist c»j"‘(p,wab V), Whereu? is a unit timelike vector
field, p a positive scalar fieldgvab a tensor field satisfyingabuawcb=0, andv, a vector field, all
subject to the algebraic conditions

(p+p)u™w, 2+ (g2M+udu™)(dp/dp)v =0, (12
UMt (p+p)w,,"=0. (13

On these fields is imposed the following system of first-order, quasilinear partial differential

equations:
VauP=w,", (14)
V(aWp;“=Rgpm u™, (15)
Vap=va, (16)
Viavp =0. (17

Note what has happened here. We have introduced two new ﬁ/egasand v, The “interpre-
tation” of w,P [via (14)] is as the derivative ai®; and ofv, [via (16)] as the derivative of. The
original fluid equations(1)—(2), have been converted into algebraic conditiofi®)—(13), on

these new fields. That is, the original fluid equations serve merely to define the bundle of fields for
this new system. Finally, the new system contains two other equations/15and(17), that are
merely the curls of Eq914) and (16), respectively.

In short, our “procedure” has done nothing of substance. But note that, starting with a system
(1)—(2), which fails to expres¥ ,u® in terms of the fields of the system, our procedure produces
a new system satisfying, vid4), this condition. Furthermore—and this is perhaps the striking
feature—the systenil4)—(17) inherits from the original fluid systen(l)—(2), its initial-value
formulation.

The key result of this section is the followin@onsider any system (4) of partial differential
equations in which there has been selected a preferred vector flelceti(i) that system have an
initial-value formulation, and(ii) the equations of that system express the derivative?dfu
terms of the fields of the system [as in @@1)]. Then the Lagrange formulation of that system
also admits an initial-value formulation

First note that the Lagrange formulation of the systei)—(11) consists of Eqs(5)—(6),
together with

Ko V(0™ =w,, (18)
k'A%, P(V )= A, (19
As discussed in Appendix B, in order that a general first-order, quasilinear system of partial

differential equations have an initial-value formulation it is necessary that it satisfy three condi-
tions: (i) the system admits a hyperbolizatidii) all the constraints of the system are integrable,
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and (i) the system has the correct number of equations relative to the number of its unknowns.
What these conditions mean is also explained in Appendix B. We check these three conditions in
turn.

Let the original system, Eq$10)—(11), admit a hyperbolization. Then the construction that,
applied to Eqs(10)—(11) to obtain a bilinear expression ifip® yields, when applied to Egs.
(18—(19), a corresponding bilinear expressiond@“. Next, contract Eq(6) with 0° and use Eq.

(18) to obtain an equation expressitg'V s «3° algebraically in terms of the fields. From this
there follows immediately an appropriate bilinear expressiof4g®. Finally, a bilinear expres-
sion in 6x arises from Eq.(5). These three bilinear expressions, taken together, represent a
hyperbolization for the systerfb)—(6), (18)—(19).

Every constraint of the original systef@0)—(11) gives rise to a constraint of its Lagrange
formulation; and, furthermore, if these constraints of the original system are integrable, then so are
the corresponding constraints of the Lagrange formuldfidrnis assertion is immediate from the
fact that Eqs(18) and(19) mimic Egs.(10) and(11), respectively. But, it turns out, there are two
additional classes of constraints for the system of the Lagrange formulation. The first class arises
from taking the curl of each side of Ep). These constraints are certainly integrable, and, indeed,
the corresponding integrability conditions are precisely &{}. The second class of constraints
arises from taking the curl of each side of E@). These constraints are also integrable, and indeed
their integrability conditions are identities, simply from the way E&). was obtained. We con-
clude, thus, that a system of the forfh0)—(11) having all its constraints integrable leads to a
Lagrange formulatiori5)—(6) (18)—(19), also having all its constraints integrable.

Finally, in order to check the third condition, we introduce the following integers. Denote by
n the dimension of the base spalk (the number of independent variables of the sy$tdm u
the dimension of the fibers in the bunde(the number of unknowns representedd)y by e the
dimension of the vector space in which the inde¥X*of Eq. (11) lies, and byc the dimension of
the space of vectors of the form,,c™,, asc™, runs over constraints for Eq11). Then, for the
original system, we have the number of unknowns is giveugpy u+n (the term “n” arising
from the fieldu?®); the number of equations is given y=n?+ e [these terms arising from Egs.

(100 and (11), respectively; and the number of effective constraints is givendyy»=n(n—1)

+c [these terms arising from the constraints of E46) and(11), respectively. For the Lagrange
formulation, on the other hand, we have: the number of unknowns is givenby+n+n? (the

term “n” arising from the field “point ofM,” the term “n?” from the field «3°); the number of
equations is given by, =n?+n?(n—1)/2+n2+ e [these terms arising from Eq&)—(6), (18)—

(19), respectively; and the dimension of the space of effective constraints is giveo,_byn(n
—1)+n(n—1)(n—2)/2+n(n—1)+c [these terms arising from the constraints of E&—(6),
(18)—(19), respectively. It is easy to check from these formulas thet—co=u, implies e_
—c_=u_. In other words, if the original system has the appropriate number of equations relative
to its number of unknowns, then so does its Lagrange formulation.

Thus, we have shown a system of the fo(d®)—(11) having an initial-value formulation
gives rise to a Lagrange formulation also with an initial-value formulation.

lll. EXAMPLES

In this section, we introduce various examples of physical systems, the partial differential
equations that describe them, and the Lagrange formulations of those partial differential equations.
One such example, the simple perfect fluid, has been discussed already in Sec. Il. The fields,
on space—timeM,g,;,, consist of a unit timelike vector field® (interpreted as the fluid velocity
and a positive scalar field (interpreted as the mass dengitgnd the equations afé)—(2), where
p(p) is some fixed functiorithe function of statge which specifies the type of fluid under con-
sideration. This is the Euler formulation. In order to achieve a Lagrange formulation for this
system, the first step is to modify these equations so that the derivatie without contractions,
is expressed in terms of the other fields. This was achieved by taking the derivative system: We
introduced two newtensoy fields,wab andv,, subject to the algebraic conditiofis2)—(13). We
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then imposed on the total set of fieldﬂf‘(p,wab ,Ua), the partial differential equatior(@4)—(17).

This new system{(14)—(17) is, by virtue of Eq.(14), of the required form, and, in addition, it
inherits from the original systen(l)—(2), its initial-value formulation. To this systenil4)—(17),

we may therefore apply the methods of Sec. Il to obtain its Lagrange formulation. There result
fields (x,p,W,2,0,,x3°) on M, subject to the equation&)—(7). This new system, as demon-
strated in Sec. Il, again has an initial-value formulation.

There is a natural generalization of this simple perfect-fluid system to a much broader class of
fluids. Fix some smooth manifol, the points of which will, shortly, be interpreted as represent-
ing “local, internal, states of the fluid.” Also fix any space—timi (g,,). Let the fields, on this
space—time, consist of a unit, timelike vector fialél,(again interpreted as the velocity field of the
fluid), together with a second fielg, which is valued inS (and which is interpreted as giving the

local state of the fluid at each point of space—{inTéhus,¢ is a mappingM iS. As an example,
the simple perfect-fluid system discussed above is the special case in @/léch 1-manifold
(whose points are labeled by a coordinatevhencey reduces to the density fiejg). That is, our
simple perfect fluid is one whose local state is completely characterized by the value of the
density.

We next wish to write equations on these fields. To this end, fix two tangent vector ¥élds,
andT¢, and one covector field;,, , on the manifoldS, where we have introduced Greek indittes
to represent tensors B The physical interpretations of these fields will be given shortly. Let the
equations for this system be

udv,uP+(g2+udu®)(Ve),*F,=0, (20
Ud(V),*+ VeV ud+T=0. (21

The first equation gives the fluid acceleration in terms of the derivative of the fluid state. We may
interpret the fieldF,, which acts by driving the fluid, as an “effective force.” The second
equation gives the time rate of change of the fluid state in terms of that state and the divergence
of u?.*> We may interpret the fieldg* and T, respectively, as giving the rate of change of fluid
state under small volume-changes of a sample of that fluid, and under allowing a sample of that
fluid to evolve in time. The simple perfect fluid, for example, fas=(p+p) 1V, .p, V¢=(p
+p)adldp, andT*=0 [for these choices reproduce E¢E)—(2)]. Another familiar example is the
perfect fluid with 2-dimensional manifol& of internal states, where the additional degree of
freedom is represented by a conserved particle-numbén this casef , is given by the same
expression as abov¥,* by (p+p)d/dp|,+ndlan|,, and againT® by 0. A more exotic example
is that of a fluid consisting of several species of particles, between which chemical reactions can
take place as the fluid evolves. In this case, we would haveS)im@ (the additional degrees of
freedom describing the chemical composition of the fl@dd T* nonzero(representing the rate
and direction of the chemical reactions

When does the system above satisfy the three properties, as discussed in Appendix B, for
having an initial-value formulation? Two of these properties are immediate: Clearly, this system
has no constraints, and the dimension of its space of equations is thd samay, dimg) -+ 3]
as the dimension of its space of fields. As for the third condition, this system, it turns out, admits
a hyperbolization if and only ¥ V¢F >0 everywhere or8. Note that, in the explicit examples
given above, the combinatio*F , is precisely the square of the sound speed.

We now have a system of equatiof®0)—(21), having a preferred vector field)®, and,
subject only to the inequality“F ,>0, having an initial-value formulation. So, we may apply to
this system the results of Appendix A and Sec. Il. The first step is to take the derivative system
(Appendix A). The result of this step is to include, in addition to the fialdsp above, two new
fields, w,” (with u,w,°=0) and ¢, subject to the algebraic conditions®w,"+ (g3°
+uduP),%F,=0 and u?Z,*+Vw,2+T%=0. [These algebraic conditions reflect Eqg0)—
(21).] The equations on these fields for the derivative system are given by
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VauP=w,’, (22)
V[aWh)°= Rapd U, (23
(Ve)a"=1a" (24)
Vialp“=0. (25)

This system indeed has a preferred vector fiagR},has among its equations ofigq. (22)] that
expresses the derivative of thig' algebraically in terms of the fields; and has an initial-value
formulation[by virtue of that for Eqs(20)—(21)]. So, we may, as described in Sec. Il, take the
Lagrange formulation of this system. There results a new system of partial differential equations,
(5)—(7), again having an initial-value formulation.

Even the broad class of generalized fluids above does not include all possible types. For
example, there exist fluids manifesting dissipative effects, such as heat-flow and viscosity. One
description of such a fluid in relativitfRefs. 18—2] proceeds as follows. The fields consist of a
unit timelike vector fieldu? (interpreted as the fluid 4-velocjtytwo scalar fieldsp andn (inter-
preted, respectively, as the fluid mass density and particle-number demsitaector fieldq,
satisfyingu?q,=0 (interpreted as the heat-flow vectoand a symmetric tensor fiete},, satisfy-
ing u?r,,=0 (interpreted as the stress tensdrhus, the space of field-values at each poiniof
is 14-dimensional. The equations on these fields consi§) sfinishing of the divergence ofu?
(conservation of particle number(ii) vanishing of the divergence ofp( p)udu®+ pg?®
+2u®g® + 73° (conservation of stress-enejgwnd(iii) a certain system of nine additional equa-
tions that, effectively, governs the dynamical evolutiomd&and 72°. It turns out that the resulting
system, consisting dfi)—(iii ), has an initial-value formulation: Specifically, it has a hyperboliza-
tion and no constraints. Furthermore—and this is perhaps surprising—this system of equations can
be so chosen that it reduces, in an appropriate limit, to the familiar Navier—Stokes system for a
dissipative fluid.[The Navier—Stokes dissipation coefficients—the thermal conductivity and
viscosity—arise from within the nine equatio(is).] Here, in any case, is a system of equations
with a preferred vector field*—a system, therefore, to which the present methods can be applied.
Thus, we take the derivative system, as described in Appendix A, and then the Lagrange formu-
lation, as described in Sec. Il. There results a Lagrange formulation for a dissipative, relativistic
fluid.

There exist still other types of material systems, e.g., some that are not fluids at all. Consider,
for example, the elastic solid. In one treatnf@wf such a system in relativity, the fields consist of
a unit timelike vector fieldi? (the material 4-velocity a positive functiorp (the mass density of
the material, and a symmetric tensor fielt,, satisfying h,,u®=0. This h,, represents the
geometry of the material as it was “frozen in” at the time the material originally solidified: It
describes the shape to which the material would “like to return.” Thus, the combinatjgn
—(gaptUaly), the difference between this natural geometry and the actual spatial geometry in
which the material currently finds itself, is interpreted as the strain of the solid material. The
equations on these fields afgh,,= 0 (the vanishing of the Lie derivative df,,, interpreted as
asserting that the material remembers, over time, its frozen-in geomatg V,(puu®+ 72
=0, (interpreted as the conservation of stress-energy, whetfde interpreted as the stress of the
materia). Here, 72° is to be given as some fixed function bf,, g,,, andu?. This is the
stress—strain relation. Provided this stress—strain relation is chosen appropriately, the final system,
it turns out, has an initial-value formulation: Specifically, it has a hyperbolization and no con-
straints. Again, we have a system to which the present methods can be applied. There results a
Lagrange formulation for an elastic solid.

There are, presumably, a variety of other systems of equations, representing “materials” of
various sorts, having, among their fields, a preferred 4-velocity. Examples might include the
systems for a plasma, for a superconductor, or for a gelidh as icethat is able to flow. These
systems, too, will have Lagrange formulations.

Downloaded 16 Oct 2003 to 132.239.145.22. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp



J. Math. Phys., Vol. 42, No. 8, August 2001 Relativistic Lagrange formulation 3799

These various material systems may, of course, interact with their environment in a variety of
ways, e.g., electromagnetically, gravitationally, or through contact forces. What impact do such
interactions have on their Lagrange formulations?

Consider, as an example, the fluid of E§80)—(21) interacting electromagnetically. This
charged-fluid system is described by fields consisting of the original fluid varialftesnd ¢,
together with an antisymmetrielectromagnetictensor fieldF,,. The equations on these fields
consist of Eq(20), modified by the inclusion of a term on the right of the fouf®,u?, Eq.(21)?3
and Maxwell’'s equations,

VPF, ,=0ou,, (26)
V[anC]:O. (27)

Here, theu in the first equation and the in Eq. (26) must be given as fixed fields on the manifold
S of fluid states. The fieldr describes how the fluid drives the electromagnetic field, and so is
interpreted as the charge density. We require that it satisfy charge conserytiSno=o,
TV _,o=0. The fieldu, which describes how the electromagnetic field drives the fluid, might be
called the specific charge densiffzor a normal fluido and u are in ratio p+p).] Here, in any
case, is a list of fields, together with a system of equations on those fields. This system has an
initial-value formulation, which it inherits from the separate initial-value formulations for the
original fluid system[(20)—(21)] and for Maxwell's equations. We wish to take the Lagrange
formulation for this system. Since the system does not express the derivati%énoferms of the
other fields, the first step is to take the derivative system. But note that, in taking the derivative
system, it is necessary to introduce, not only the new fialgsand 7, that represenfvia Egs.
(22) and(24), respectively the derivatives ofi® and ¢, but also the field, ;. that representfria
Eg. (A5)] the derivative ofF,,. One might have hoped that it would be possible, exploiting
somehow the fact that our system of equations splits naturally into “fluid equations” and
“Maxwell-field equations,” to avoid introducing the additional fielt},.. Unfortunately, this
seems not to be the case. This issue is discussed briefly in Appendix A. In any case, this derivative
system has the appropriate forta preferred vector fieldi®, whose derivative is expressed in
terms of the fields of the systgmand an initial-value formulatiofwhich it inherits from that of
the original coupled systemSo, we may apply the methods of Sec. Il. Thus, there is a Lagrange
formulation for a charged fluid, but it requires the introduction of a further figld, representing
the derivative of the Maxwell field.

In a similar way, we may write down the Lagrange formulation for a charged dissipative fluid,
a charged elastic solid, etc. In each of these cases, it is necessary to introduce the auxiliary field
Lanc-

The situation for gravitational interactions is similar. Consider, again, the flui@®#(21),
now interacting gravitationally. The interacting system is described by fields consisting of the
original fluid variablesu?® and ¢, together with the variables for gravitation: a Lorentz-signature
metric g,,, and a derivative operatoy,. The equations of this system consist of Egs.
(20)—(21),%* the equatiorV ,g,.=0, and Einstein’s equation,

Gab=Tab, (28)

whereG,, is the Einstein tensor. Her&,, is some fixed symmetric tensor functiongf, and the

fluid variables(which we interpret as the stress-energy tensor of the)flitigplays a role analo-

gous to that of the functiong and o for electromagnetic interactions. We demand of this tensor
function that, as a consequence of E@§)—(21), it be conserved® This system of equations does

not have an initial-value formulation, in the sense we are using this term. But this is merely a
consequence of the fact that our sense of this term is overly restrictive, in that it does not tolerate
the diffeomorphism freedom characteristic of all systems in general relativity. In a physical sense,
i.e., once the diffeomorphism freedom has been treated properly, the fluid-Einstein system does, of
course, have an initial-value formulation. Now take the derivative system of this system. Note that
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in doing so we must, as in the electromagnetic case, include also fields to represent the derivatives
of the gravitational field€® Take the Lagrange formulation of the result. The resulting system,
again, will not have an initial-value formulation in our restrictive sense, but it will have such a
formulation when the diffeomorphism-freedom is properly taken into account. We conclude, then,
that there does exist a Lagrange formulation for a gravitating fluid, but that it requires that we
introduce further fields to represent the derivatives of the gravitational fields.

In a similar way, we may write down the Lagrange formulation for a gravitating dissipative
fluid, a gravitating elastic solid, etc. In each case, it is necessary to introduce fields representing
the derivatives of the gravitational fields; and in each case the Lagrange formulation retains the
initial-value formulation of the original system.

A similar treatment is available for systems consisting of two or more different materials in
interaction. In these cases, there will be two or more 4-velocity fields present, and we shall have
to select one to be that with respect to which the Lagrange formulation is taken.

The treatment of systems in which several interactions are turned on simultaneously, e.g., the
charged gravitating fluid, is similar.

Finally, we briefly characterize, within the present framework, Friedrtétusiginal example
of a relativistic Lagrange formulation. Begin with the system for a gravitating fluid, as described
above, for the case in which the fluid has a 2-dimensional man8aiéi local states, i.e., that in
which T*=0 andV*=(p+p)d/dp|,+nalan|,. For this system, first take the derivative system,
and then the Lagrange formulation. The result of this process—after three, essentially cosmetic,
further modifications—is precisely Friedrich’s original example. The three further modifications
are the following.

(1) Introduce, already in the original Einstein-fluid system, before taking the derivative system, a
3-dimensional space of additional variables, consisting of three unit vector fé|dg?, and
z2, that are required to be orthogonal to each other and to the 4-velgtitn these fields,
impose the equations that they be Fermi-transported®yThe introduction of these fields
with these equations does not interfere with the initial-value formulation. These fields, which
have no direct physical significance, are introduced to facilitate the writing of various equa-
tions.

(2) After taking the derivative system, but before passing to the Lagrange formulation, suppress
half of the fieldZ,*, which represents the derivative of the fluid st&t&Vhile such suppres-
sion of variables will in general destroy the initial-value formulation for a system, it turns out
that, in this particular instance, it does not. Thus, the essential effect of this modification is to
reduce by four the number of independent variables.

(3) Write the final equations, after passing to the Lagrange formulation, not in terms of the
specific fields listed above, but rather in terms of others that are algebraic functions of these.
This choice of variables—choice of “coordinates” on the bundle space—is, of course, a
matter of convenience.

IV. CONCLUSION

We have introduced a scheme that takes a first-order, quasilinear system of partial differential
equations and produces from it a new first-order, quasilinear system, its “Lagrange formulation.”
The key requirement, on a given system of equations, in order that this scheme be applicable to it
is that that system have, among its fields, some nowhere-vanishing vector field. Why this special
role of a vector field? Could, for example, a similar scheme be developed based on some other
geometrical obje¢$)? It turns out that there are two special features of vector fields that we used
in the construction of the Lagrange formulation.

First, nowhere-vanishing vector fields on manifolds are locally homogeneous. This means the
following. Let there be given any manifold, any nowhere-vanishing vector field thereon, and
any pointxe M; and, similarly, some other manifold (of the same dimensionvector field(?

and pointke M. Then there always exists a diffeomorphism between neighborhoaxdsuod X
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that sends? to (2. In other words, nowhere-vanishing vector fields are “locally all the same:”
They carry no local structure. We used this fact in Sec. Il in order to replagm M by some
kinematical fieldd® on M. )

Second, by virtue of the appearance of the vector fiéldn the left in Eq.(18), the system
(6), (18) for the two-point tensok;® admits a hyperbolization. We used this fact in Sec. Il in order
to achieve a hyperbolization, and consequently an initial-value formulation, for the entire system
(5)-(6), (18—(19).

It appears that, given any other geometrical structure manifesting these two features, then
there could be developed a “Lagrange formulation” based on it. It is only necessary to make three
key modifications in Sec. Il(all involving replacing the vector field by the totality of fields in the
new geometrical structuye(i) Replace Eq(10) by equations for the derivatives of all the fields of
the geometrical structurdiji) endow the base manifol¥l of the Lagrange formulation with
kinematical fields consisting of all the fields of the geometrical structure(iandeplace Eq(18)
by the corresponding equation involving all the fields of the geometrical structure. Unfortunately,
it is not so easy to find geometrical structures having the two features described above, in part
because they are somewhat in opposition to each other: The first feature, local homogeneity,
prefers fewer fields, relatively devoid of structure; while the second feature, hyperbolididy, of
(18), prefers many fields, of rich structure.

There are a variety of geometrical structures that are locally homogeneous. Examples include:
two commuting, pointwise independent vector fields; a nowhere-vanishing, curl-free 1-form; a
symplectic structure; a flat, Lorentz-signature metric. Examples of geometrical structures that
yield a hyperbolization fo(6), (18) are somewhat less plentiful. One simple class consists of those
in which the geometrical structure is comprised of a nowhere-vanishing vectoufigtdgether
with any additional fields of whatever type. For structures in this class, a hyperbolizati@®),for
(18 (suitably generalizedis guaranteed already by the presence of the vector (iglth the
structure.

Here is an application of these ideas. Consider the geometrical structure consisting of a
nowhere-vanishing vector fiele?, together with a nowhere-vanishing 3-form,,., that has zero
curl and is annihilated by?®. This structure satisfies both of the features above—it is locally
homogeneous, and it gives rise to a hyperbolization(&y (18). So, this geometrical structure
could serve as the basis for a Lagrange formulation. In fact, this formulation is appropriate for a
physical system, namely that of a fluid with a 2-dimensional manifold of internal states, as
discussed in Sec. lIl. Identify® with the velocity field of the fluid, and ., with the particle-
number density, Via 5pc=N€qpequ’-

It is curious that the original system and its Lagrange formulation, while so similar with
regard to their solutions, are completely different with regard to their initial-value formulations.
Indeed, as we have seen in Sec. Il it is frequently the case that the original system of eddations
has an initial-value formulation, while its Lagrange formulati®)—(7), does not. Perhaps there
is some more natural or more general notion of “initial-value formulation” that would resolve this
disparity.

APPENDIX A: DERIVATIVE SYSTEMS

Fix, once and for all, a first-order, quasilinear system of partial differential equations, as
described in Sec. Il. That is, fix a fiber bundle, with bundle manif8)dbase manifoldvi, and

projection mapping%‘lM, together with smooth fieldg*?,,j* on the bundle manifold. Our
4
system of equations, on a cross-sectiwhs;- 3, of this fiber bundle, is given by

KAV ), =" (A1)
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We shall now construct from this system a new first-order, quasilinear system of partial
differential equations. The idea is to “take one derivative/ith respect to the point dfl) of Eq.
(A).

The first step is to introduce the appropriate bundle of fields for the new system. Let the base
manifold again beM. But now let the fiber, over a pointe M, consist of all pairs, ¢,{,%),
where ¢ is point of B satisfying7(#) =x and {," is a tensor atp satisfying

kA% =" (A2)

Thus, ¢ is merely a point of the fiber ovete M, in the original bundles. It represents a set of
“values for the original fields” aix. The tensoi,* represents a set of “values for the derivatives
of the original fields.” In order that a givefy,” be a viable candidate for these derivatives, it must
satisfy Eq.(A2), the algebraic equation that results from replaciNgb,“ in Eq. (A1) by £,*.

We impose this algebraic condition drin the very construction of the new bundigs opposed,
e.g., to introducing it later as an “algebraic constrajnth short, thedynamicqEq. (A1)] of the
original system goes into thenematicq Eq. (A2)] of the new system. Call the bundle space of
this new fiber bundleB’. Thus, the dimension of the fibers Bf is given by:(dim fibers of3)
(1+dim(M))-(dim vector space of equations B).

Consider, as an example, Maxwell's equations. Theris a 4-dimensional manifold, with
fixed smooth metrig,, of Lorentz signature. For the bundi the fiber ovex e M consists of all
antisymmetric tensorss,,., atx. Equation(Al) is Maxwell’'s equationsg®” V ,F,.=0, ViaFbg
=0. For this example, the new bundl®’,, has, as its fiber ovete M, the collection of all pairs,
(FoberLabd), with symmetries .= Fyq , {anc= {appe » @nd with{ satisfying the algebraic condi-
tions [Eq. (A2)] g%°%apc= 0.{[abg=0. Thus, the fibers of3 have dimension six, those @’
dimension twenty-two.

Returning to the general case, the second step is to introduce appropriate equations on this
bundle. A cross-section of the bund® consists of fieldsp,{,“ on M. On such a cross-section,
we impose the following system of partial differential equations:

(V)a"=05", (A3)
V[agb]a:faba. (A4)

Equation(A3) provides the “interpretation” of, as the derivative of. The f,,* on the right of
(A4) is some field onB’ [i.e., some function ofX,¢,{)], whose exact form depends on what
derivative operator is used on the left side of that equation. The general rule is tHa4ktp be
the result of taking the curl of EqA3). For example, if is represented by tensor fields oWr,
if is represented by the tensor fields obtained by taking the covariant derivatitiesespect to
some fixed derivative operator ) of those fields, and if that same derivative operator is used
on the left in Eq(A4), thenf will consist of certain terms involving and the curvature tensor of
that derivative operator. If, on the other hand, all bundles are taken as simple products, and all
derivatives are taken using the correspondiftef) connection, therf_,“=0. Note that we have
notincluded in our system the derivative of H&2). The reason is that E¢A2) has already been
included at the algebraic level in the construction of the buriile Its derivative is thus an
identity in B’. On the other hand, weo include in our system EqA4), even though it merely
results from taking a derivative of EGA3). In short, all algebraic conditions on fields are included
in the construction of the bundfé while all differential conditions on fields are included in the
equations on a cross-section of that bundle. We note that the system dABgs(A4) is indeed
first-order and quasilinear.

Consider again the example, above, of Maxwell's equations. Then a cross-section of bundle
B’ consists of smooth field$;,.,{ape, Satisfying everywhere the symmetries and algebraic con-
ditions given above. The equation$3)—(A4), on such a cross-section become, respectively,

VaFue= {abes (A5)

Downloaded 16 Oct 2003 to 132.239.145.22. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp



J. Math. Phys., Vol. 42, No. 8, August 2001 Relativistic Lagrange formulation 3803
Vid¢ajbe=2Rdain Fejm- (A6)

Given a system, consisting of bundi®and partial differential equation@1), then by its
derivative systermve mean the system, consisting of bunffleand partial differential equations
(A3)—(A4), constructed above. Note that every solution of the original system gives rise to a
solution of its derivative systefby merely setting/,“=(V ¢),“]. Conversely, every solution of
the derivative system gives rise to a solution of the original systgnmmerely ignoring?). The
two systems of partial differential equations are, in this sense, “equivalent as to solutions.” But
they are not “equivalent as to form,” a feature we exploit in Sec. Il.

We next turn to the issue of the existence of an initial-value formulation for these systems. As
discussed in Appendix B, we say that a general first-order quasilinear systenof partial
differential equations admits anitial-value formulationprovided it satisfies the following three
conditions:(i) the system admits a hyperbolizatidii) all constraints of the system are integrable;
and (i) the system has the correct number of equations relative to the number of its unknowns.
See Appendix B for the details of what these conditions mean. A key property of the derivative
system is the followinglf the original system, (A1) admits an initial-value formulation, then so
does its derivative system, (AZA4). We check the three conditions in turn.

Let the original systentAl) admit a hyperbolizatioitsay,hza , with w,). Then, we claim, so
does its derivative system. Indeed, the corresponding bilinear exprdssiom pair of tangent
vectors, represented ag¢“,5¢,") and (8" ¢%, 8’ {,*)] is given by

.
Wih aKA™G[ g7P87, %87 £, P + 8¢ 5" ¢, (A7)

4
where g2° is any positive-definite metric field oM. It is apparently not known whether the
converse is true, i.e., whether the existence of a hyperbolization for the derivative s¢/s8m,

(A4), implies the existence of a hyperbolization for the original systém). Simple examples
suggest that this is a reasonable conjecture.

Integrable constraints of the systef@l) do not lead to constraints of the corresponding
derivative system. Rather, they lead to a reduction in the number of effective equations. Indeed, let
cP, be any constraint. Then the result of contracting @at) with c2,k”?,, is an identity: It holds
automatically, by virtue of EQA2). Thus, each constraint for the systéfll) reduces by one the
number of effective equations represented by E48)—(A4).

What, then,are the constraints of the derivative systei3)—(A4)? These fall into two
classes. The first class consists of those constraints that correspond to taking the cutiA®) Eq.
These constraints are of course integrable: Their integrability conditions are pre@idglyThe
second class of constraints consists of those that correspond to taking the curlA#Eq.hese
constraints, too, are integrable, by virtue of the fact that(Bd) is itself a curl. Not all of these
constraints, it turns out, are in general algebraically independent.

Let us return to our original partial differential equatiohl). Denote byn the dimension of
the base manifolt (the “number of independent variables’by u the dimension of the fibers in
the bundleB (the “number of unknown functions; and bye the dimension of the vector space
of equations{Al). Further, denote bg the dimension of the vector space of constraints, and, for
fixed nonzero covectow,, by ¢ the dimension of the space of vectors of the fome?,, asc?,
runs over the constraints. Then, as discussed in Appendix B, the condition that the original system
(A1) have the “correct number of equations” beconesc=u. We turn now to the derivative
system(A3)—(A4). The number of its unknowns is given hy =u+(nu—e) (the two terms
representing the numbers of unknowns contained in the figldsd £, respectively. The number
of its equations is given bg’ =nu+[un(n—1)/2—¢] [the two terms representing the number of
effective equations iiA3) and(A4)], respectively. Finally, the number of effective constraints of
the derivative system is given o/ =u(n—1)+[(n—1)(n—2)u/2+c—¢], (the two terms rep-
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resenting the number of effective constraints(A8) and (A4), respectivel§®). From these for-
mulas, it is easy to check: —c=u, thene’ —c’=u’. In other words, if the original system has
the correct number of equations, then so does the derivative system.

We conclude, then, that, beginning with a systgi) having an initial-value formulation, its
derivative system(A3)—(A4), also has an initial-value formulation.

The construction above of the derivative system is useful because it permits a large class of
systems of partial differential equations to be cast into a form to which the Lagrange formulation
of Sec. Il can be applied. But, unfortunately, passing to the derivative system and then to the
Lagrange formulation is often a cumbersome procedure. The reason is that the derivative system
requires the introduction of additional fields to represent the derivativedl dhe fields of the
original system—even of those fields only remotely related to the one real interest: the velocity
field. The result is a large number of extraneous fields. More useful would be a construction that
goes only part way to the full derivative system—one that introduces additional fields to represent
the derivatives of onlysomeof the original fields, leaving the remaining ones intact. It turns out
that, while there are one or two systefesg., that for dugtfor which a smaller derivative system
along these lines is available, for the vast majority of systems of partial differential equations of
physical interest there is none. Here, briefly, is why.

First, we must designate which of the dependent varialthesfields represented hy) are to
be derived and which not. This is done by writing the original bun#fleas a product of two
bundles,B’ and B”, with the same base spdteM. The bundleB’ carries the fields whose
derivatives will be represented by new variables, wififecarries the remaining fields. A cross-
section¢ of 3 consists precisely of a pairg(,¢"), whereg' is a cross-section of the bundi,
and ¢" is a cross-section of the bundi. In terms of these variables, EGA1l) becomes

k'A%, (V') o +KA2 (V") =, (A8)

where primed Greek indices denote tensor8'inand double-primed i8”. Here, the field&’, k”
andj are all functions or3, i.e., are functions ofX,¢’,¢"). We now proceed just as with the
derivative system. Introduce a new fiber bundle, with base manifold &daibut with fiber over
Xe M consisting of certain triples,¢(’,§a“',¢”). There must now be imposed on such triples all
those algebraic conditions that flow frofA8). This is done as follows. At each point, denote by
V the vector space qi , satisfyinguk"*2,,=0. That is,V captures “those equations {A8) that
contain no derivative of”.” We now demand, in order that a tripleﬁ(,ga“',qS”) give rise to a

point of the fiber, the following: For evemygaeV, uak A2, £,* = uaj?. This is the fiber bundle
for our new system. Let the equations of the new system be

(V) =2, (A9)
V[agb]a’ =fa, (A10)
vk A2, £ + vaK AR (V@) o = waj ™ (A11)

In (All), v, is any vector in some fixed subspace complementary to the subSpdoeother
words, Eq.(A1l1) reflects those equations ¢A8) that do involve the derivative of”.

The system(A9)—(A1l) is, certainly, a first-order, quasilinear system of partial differential
equations; and it has as its variables precisely the ones we intended, natmgjy“(,qb”). But,
unfortunately, this system is subject to a variety of maladies—and these can arise even if the
original system was quite well-behaved. For example—and this happens frequently—there can be
constraints for the systefh9)—(A11) that are hidden in EA11), and thus do not arise from any
constraints for the original systerfh8). Furthermore, these new constraints are not in general
integrable. One could attempt to include the integrability conditions of these new constraints as
new equations for the system. But two further problems can arise. First, some integrability con-
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ditions can turn out to be mere algebraic equations on the fie&sgé“',#). The only way to
“include” such equations is to start over, introducing a new bundle right from the beginning.
Second, some integrability conditions can turn out to be quadratic, rather than linear, in the
field-derivatives. These cannot simply be “included”—at least, not if we wish to retain a quasi-
linear system. The systef®9)—(Al1l) can also manifest a number of other types of difficulties,
e.g., the absence of a hyperbolization or the wrong number of equations. There appears to be no
simple, general condition that guarantees that E48)—(A11) lead to a system with an initial-
value formulation.

As an example of this construction consider again the simple fldie;(2). Let B’ be the
bundle whose fiber consists only of the variabfe andB” the bundle whose fiber consists only
of the variablep. In this example, the vector spadg capturing those equations i1)—(2)
involving no derivative ofp, is zero-dimensional. The corresponding new bundle space, then, is
that whose fiber, ovexe M, consists of ¢2,w,?,p), with u? unit timelike andw,* satisfying
gacuw,?=0 (unit-ness ofu?). The equations for the new system, in this example, are

Vpud=w,?, (A12)

V[aWp) °=Rgp U, (A13)

(@M +utu™Vp+(p+p)uTwy,2=0, (A14)
umvVop+(p+p)w,"=0. (A15)

This system has a new constrafobtained by combining EqgA14) and (A15) to obtain an
expression forV,,p, and then taking its cufl which turns out not to be integrable. But its
integrability condition turns out to be quasilinear in field-derivatives, and so may be included as a
further equation of the system. The resulting system in this @asenot for the case of an even
slightly more complicated fluidactually admits a hyperbolization.

APPENDIX B: INITIAL-VALUE FORMULATION

Consider a first-order, quasilinear system of partial differential equations, as described in Sec.
Il. That is, we have a fiber bundle, with base manifddld bundle manifoldB, and projection

mapping5— M. The system of partial differential equations, on a cross-seot'/bii,B, of this
bundle, is given by Eq(3). We are concerned here with the issue of under what circumstances
such a system admits an initial-value formulation, i.e., a formulation in which the fields are first
specified on some “initial surface” iM, and are then determined elsewhereMnby Eqg. (3)
itself.

The key to achieving such a formulation is an object calldd/perbolizationof the system
(3), a fieldhga on the bundle manifold3 having the properties described below. Consider, for
(x,¢) any point of the bundle manifolé, w,, any covector ake M, and §¢,5’ ¢“ any two
vectors at X, ¢) € B tangent to the fibe¢‘vertical” ), the expression

Wiah gak™, 868" BP. (B1)

We demand, in order that thig;, be a hyperbolization, that, everywherenthis expression be
symmetric ind¢%, 8" ¢ for all w,,, and positive-definitdi.e., positive for any nonzerd’ ¢*

= 8¢P) for somew,,. The most direct way to specify a hyperbolization for a system of partial
differential equations is simply to give the bilinear expressiBfh). Such an expression indeed
defines a hyperbolization provided it is symmetric and positive-definite, as described above, and
furthermore, that it is some multiple of the result of replacing, in the left side of (Byg.
“(V)" by w89 As an example, consider the systed)—(2), for a simple perfect

fluid. Consider the bilinear expression
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8'U*[(p+ P)(U™Wi)GapU + (3P dp)Wadp]
+(aplap)(p+p) 18 pl(p+p) SU™ Wi+ U™Wp, Sp]. (B2)

We note that this expression is symmetric under interchange of the two vedersuf) and
(8'p,8'u?), and thatfprovided (p+p)>0 and 1=(dp/dp)>0] it is positive-definite whenever
wy, is future-directed timelike. Furthermore, this expression arises, as described above, from Egs.
(1)—(2). This bilinear expression, then, specifies a hyperbolization for this system.

Let there be given a hyperbolizatidm,, , for the systent{3). Then this object gives rise to an
initial-value formulation for a portion of that system, in the following manner. Fix initial data,
consisting of a submanifold of M of codimension ondan “initial surface”) together with a
cross-sectionpg over this submanifold“data” on that surfacg such that at each point af, the
normal toT is one of the vectora/,,, for which the bilinear expressiaiB1l) is positive-definitdthe
surface is “noncharacteristig” Then, in some neighborhood of the submaniféldthere exists
one and only one solutioth of the system

hﬂAkAaa(V¢)aa: hﬁAjAl (B3)

such thatp= ¢, on T. Note that we do not guarantee a solution of the entire sy&3erbut rather
only of those components that are involved in the hyperbolization. While the proof of this theorem
is technically difficult, the key idea is to construct, using the hyperbolization, an energy integral,
which is positive-definite, and, effectively, conserved.

Denote byu the number of unknowns of the systéB) (i.e., the dimension of the fibers i#),
and bye the number of equationge., the dimension of the vector space in which the indéX
lies). Then the mere existence of a hyperbolization for this system already inestas(i.e., that
there are at least as many equations as unknpv8i®uld it happen that this inequality is an
equality, i.e., thae=u, then it follows that the hyperbolization tensog, is invertible, and so
that the systeniB3) exhausts the original system of equati@8s Thus, in this case we are done:
We have achieved our full initial-value formulation. In the example of the simple perfect fluid
above, for instance, we haee=u=4, and so the hyperbolizatidB2) gives rise to an initial-value
formulation for the fluid systentil)—(2). Unfortunately, in many cases of interest we have the
strict inequalitye>u, i.e., there are additional equations(8) that are not accounted for {iB3).
Such “additional equations” are dealt with in the following manner.

By a constraintof the system(3), of partial differential equations, at a point Bf we mean
a tensorc?, at that point such that the tensgt, kP, is antisymmetric in the indicesd'b.” This
definition has two facets. First, each constraint gives rise to an integrability condition. Fix a
constraint fieldc?®,, and a solutiong of Eq. (3). Contract both sides of E43) with c®,, and
apply to both sides some derivative operatdg, on M. Then, by the constraint-condition, terms
involving second derivatives ap vanish, leaving an algebraic equatibndeed, a polynomial of
degree at most twoin the first derivative, ¥ ¢),*, of ¢. The constraint field is said to be
integrableif this equation is an algebraic consequence of By.i.e., if the difference of its two
sides is the product of some expressiahmost linear in field-derivativgésand the difference of
the two sides of3). The lack of integrability of a constraint generally indicates that “not all the
equations have been included in the original syst8n’ As to the second facet, each constraint
gives rise to a compatibility condition on initial data. Fix constraint fieR},, solution ¢ of Eq.
(3), and submanifold™ of M of codimension one. Then, at each pointlgfwe have

nmCmAkAaa(V¢)aa: nmCmAjAa (B4)

wheren,, is the normal toT at that point. But, by virtue of the constraint-condition, the index
““a” in the tensorn,c™ k"2, is tangent toT. Thus, Eq.(B4) takes the derivative o only in
directions tangent t@, and so it refers only to the value gfon T, i.e., only to the initial data on

T. In short, Eq.(B4) represents a compatibility condition on initial data. If these compatibility
conditions were not satisfied, then we would have have no hope of finding a corresponding
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solution of Eq.(3). As an example, consider the Maxwell equatipF,q=0. This equation has

a constraint. The corresponding integrability condition, obtained by taking the curl of this equa-
tion, is an identity, and so this constraint is integrable. The compatibility condiiddhon initial

data becomes, in this examphké; B=0.

In the case in whicle>u, i.e., in which the systenB) has more equations than unknowns,
two further conditions must be imposed on the system. The first is that all the constraints be
integrable. The second is that-c=u, wherec denotes the dimension of the vector space of
vectors of the formw,,c™,, for fixed w,,, asc™, runs through all the constraints. This last
condition means that any additional equationg3i that are not included already iB3) are
accounted for, effectively, by constraints. It states {Bathas the “correct number of equations”
for its unknowns. In the case of Maxwell's equations, for example, all the constraints are inte-
grable, as we have already remarked; and we leav8, c=2, andu=6, so there is indeed the
correct number of equations. That is, the two further conditions above are satisfied in this example.

Consider now a first-order, quasilinear system of partial differential equations that satisfies the
three conditions given above. That is, let the systenadmit a hyperbolization(ii) have all its
constraints integrable, ar{di ) have the correct number of equations, as described above. It seems
likely that such a system—possibly with some mild further conditions—must always manifest an
initial-value formulation in some suitable sense. That is, we would expect that, given initial data
for the system on a suitable surfae satisfying onT the compatibility conditiongB4), then
there exists a unique corresponding solution of &).in a neighborhood oT. A key piece of
evidence prompting this expectation is the following. There certainly exists a solution 88)q.
manifesting the initial data, as we have already seen. Consider next the left sides(BAE@S
c™, varies over all constraintsThese expressions of course vanishTorand, by virtue of the
conditions(ii) and (iii) above, satisfy a system of equations that express the “time-derivatives”
(off T) of these expressions in terms of their “space-derivativegthin T). Naively, we might
expect that, as a consequence, these expressions must vanish in a neighborfio@lithe
vanishing of these expressions implies, again by conditionabove, that Eq(3) itself is satisfied
everywhere in a neighborhood @t Indeed, in all physical examples of which we are aware—
including all those discussed in this paper—this naive expectation is in fact borne out. Unfortu-
nately, there is, apparently, no general theorem to this effect. Nevertheless, we shall, for conve-
nience, use the expression “having an initial-value formulation” to describe systems of partial
differential equations that satisfy the three conditiains;(iii ), above.

1See, for example, R. Courant and K. O. FriedricBspersonic Flow and Shock Wauésterscience, New York, 1948
for the Euler and Lagrange formulations of non-relativistic perfect fluids, and Appendix A of Ref. 2 for the Euler
formulation of a relativistic perfect fluid.

2R. Geroch, “Partial differential equations of physics,” @eneral Relativity Proceedings of the 46th Scottish Univer-
sities Summer School in Physics, edited by G. S. Hall and J. R. PulB&t{8SP Publications, Edinburgh; IOP, London,
1996. Available as gr-qc/9602055.

3For the case of the Einstein-Euler system, for example, see Sec. 4.2 of Ref. 4, and references therein.

4H. Friedrich and A. Rendall, “The Cauchy problem for the Einstein equationsEiitstein’s Field Equations and their
Physical Interpretationedited by B. G. Schmid{Springer-Verlag, Berlin, 2000 available as gr-qc/0002074.

5In fact, some care must be taken, in the Lagrange formulation, even to say what “initial-value formulation” means, in
light of the fact that the independent variables are not the usual space-time events, through which evolution normally
proceeds.

Recall that this condition requires, essentially, that, locallivin3 can be written as a produd¥ X F, of M with some
other fixed manifoldF, in such a way that the projection mappimgbecomes the projection to thd-factor in this
product. This condition guarantees, e.g., that, locally, all the fibres of the bundle are diffeomorphic with this fixed
manifold F, and so with each other.

"Note that we can, in this case, convert these to ordinary tensors on the manhitoydusing«;° and its universe. This,
a mere “coordinate transformation” on the fibres, changes nothing, in particular, not the final partial differential equa-
tions of the Lagrange formulation.

8For convenience, we shall always include within our systhtfirst-order equations on the fields of the system, even
those that arise from differentiating other equations of the system.

9These derivatives may be characterized in the following manner. Consider the bundle with badd spatébre over
xeM consisting of a pair,, x3°), wherexe M and«;" is a tensor with indices atandx. Then a choice of connection
in this bundle gives rise to an operaf@g, for use in the left side of E(q6).
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10A Lorentz metric onM, for example, becomes, oM, an algebraic function of the fieldmamely, just ofx) of the
Lagrange formulation.

| the notation of(5)—(7), we havep=(X,p), and = (X,p).

2There is an unfortunate complication here, involving the normalization condiifu?g,,= — 1, onu?. It is awkward
simply to carry this condition through the Lagrange formulation. But there are several other ways—none very
elegant—to deal with it. Perhaps the simplest is to rewrite the fluid equations from the[bytgeterting, strategically,
factors of (1®ug,y,)] in such a way that, while retaining their initial-value formulation, they no longer require this
normalization condition. Then take the Lagrange formulation of these new equations.

3Note in particular that the original systefi,0—(11), always possesses the constraints arising from the curl of1By.
Thus, if the constraints of this system are to be integrable, this curl-equation must have been included in the system
(10—(12).

These are not to be confused with the indices for tensors on the bundle space, used extensively in Sec. Il.

5Note that the last two terms on the left in E81) constitute the most general expressimvolving u? and¢) quasilinear
in the derivative ofu®.

8For “if,” suppose thatV®F >0 everywhere or%. It follows that there exists a positive-definite metric fiedd, on the
manifold S such thatv“g,;=F; everywhere. Choose onfe.g., the sum of ,F4/(F,V?) and a suitable positive
semi-definite tensoh,; that annihilates/*) and consider the bilinear expression

— (W™ GapBU®S' U+ Qs 007 ' @]~ Wi o[ UM ¢+ 5 UM,

This bilinear expression indeed arises, as described in Appendix B, from{Z)s(21), and is indeed positive-definite
(for wy, sufficiently close tau,,). So, this bilinear expression gives rise to a hyperbolization. The converse is easy.

1H. Friedrich, “Evolution equations for gravitating ideal fluid bodies in general relativity,” Phys Re57,[2317—-2322
(1998.

8|, Mliller, “Zum Paradox der Wianeleitungstheorie,” Z. Physl98 329-335(1967).

%R, Geroch and L. Lindblom, “Causal theories of dissipative relativistic fluids,” Ann. PHy¥.) 207, 394—-416(1997).

20R. Geroch, “Relativistic theories of dissipative fluids,” J. Math. Ph§8, 4226—4241(1995.

21|, Miller and T. RuggeriExtended Thermodynamjds Springer Tracts in Natural Philosophy, 2nd é8pringer, New
York, 1998, Vol. 7.

22See, e.g., Ref. 2. For other treatments, as well as the local existence theory for solutions, see Y. Choquet-Bruhat and L.
Lamoureux-Brousse, “Sur legjaations de [tsticiterelativiste,” C. R. Acad. Sci. Pari®76, 1317—-13201973; and
also G. Pichon, “Theremes d’existence pour legjaations des milieuxlastiques,” J. Math. Pures App#5, 395—409
(1966. For a brief summary of this subject, see Ref. 4.

2There could also be included on the right side of this equation terms algebraic in the electromagnetic and other fields.
Such terms would represent, e.g., an effect of the electromagnetic field on the rates of chemical reactions.

2*Note that there are no expressions, algebraic in the gravitational fields, that could be introduced on the right in these
equations. This is a reflection of “the equivalence principle.”

2The most general candidate for such a stress-en@ggy the most general algebraic function of our fields, having the
correct index-structupes given byT.,=(p+ p)UaUp+ PJap, Wherep,p are some functions on the manifdiiof fluid
states. When does there exist suci® that, in addition, is conserved, T2*=0, by virtue of the field equations
(20—(21)? It is not difficult to check thatassumingvV“F,>0; and demanding+p>0) a necessary and sufficient
condition is that the field&,, V¢, andT® on S satisfy the following three equationt;,V zF,;=0, T°K,=0, and
V(K +Fg=0, where we have sét,=(2VAV4F , +F,)/(V'F,).

28In the resulting system, there will initially be two versions of “the derivative of the mejgjs” one being the original
derivative operatoV ,, and the other arisinfvia g, through passage to the derivative system. These two versions are
then to be set equal to each other, via E). A similar phenomenon occurs, e.g., on taking the derivative system of
the Klein-Gordon system.

2TThis “suppression” proceeds, in more detail, as follows. Choose on the 2-maifaldunctions (which is interpreted
in Ref. 17 as the entropy per partiglsatisfyingV*V ,s=0. Now delete the field ,* everywhere, by replacing the
component/,*V s of {,* by some new field,, and the remaining components &f* by (V¢),“. To the resulting
system add those further equations that are required for integrability of the constraints.

28|n fact, there is, at this level of generality, a possible anomaly with the sy&&n-(A4). In some cases, further
algebraicconditions on the fields can follow from E@A4). In fact, this anomaly will never arise in systems of interest,
because it is precluded by the requirement, which we shall impose shortly, that all constraints of the originalsystem
be integrable.

2The number of effective constraints of E@4) is the dimension of the vector space of tensaf®,, satisfyingA3®,
=A% andw,A?",=0 (namely, —1)(n—2)u/2), minus the dimension of the vector space of such tensors of the
form c2,k”?,, for ¢, a constrain{namely,c—c).

30Recall that the product of two bundles, with the same base ddaéthe bundle, again with the base spatewhose
fibre, over pointxe M, is given by the product of the fibres, overin the separate bundles.
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