PHYSICAL REVIEW D, VOLUME 65, 084020

Initial data for fluid bodies in general relativity
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We show that there exist asymptotically flat almost-smooth initial data for the Einstein—perfect-fluid equa-
tion that represent an isolated liquid-type body. By liquid-type body we mean that the fluid energy density has
compact support and takes a strictly positive constant value at its boundary. By almost-smooth we mean that all
initial data fields are smooth everywhere on the initial hypersurface except at the body boundary, where
tangential derivatives of any order are continuous at that boundary.
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[. INTRODUCTION symmetric hyperbolic even at that interface. A first system of
this type was found irf6] for a certain class of fluid state

A description by an initial value formulation in general functions. However, spherically symmetric static situations
relativity of a self-gravitating ideal body in a general situa- cannot be described by these state functions. The reason is
tion is still missing. By an ideal body we mean a perfect fluidthat every solution found in that reference satisfies the fluid
where the thermodynamical variables and the fluid velocityparticles at the body boundary following a timelike geodesic.
have spatially compact support. Examples are, within som8ut this is not the case for a spherically symmetric static star,
approximation, a star, a neutron star, or a fluid planet. By as the following argument, already given[#)], shows. Con-
general situation we mean first a body without symmetrysider a static spherically symmetric stellar model. The fluid
because spherically symmetric bodies are already describedsvelocity must be proportional to the timelike, hypersurface
whether stati¢1] or in radial motion[2], and second a situ- orthogonal Killing vector. The proportionality factor finds
ation including nearly static objects. that the 4-velocity is a unitary vector field. In the vacuum

The lack of this type of description is remarkable. Starsregion the space-time must coincide with Schwarzschild’s.
are common objects in the universe, and a perfect fluid is that the star boundary the timelike Killing vector field must
simplest matter model for them. General relativity is the cur-coincide with the timelike Killing vector in Schwarzschild’s
rently accepted theory of gravitation to describe stars, as welipace-time. However, the 4-velocity obtained with this Kill-
as planets, white dwarfs, and neutron stars. An initial valuéng vector field is not geodesic. Therefore, spherically sym-
formulation will be a useful tool to predict the time evolution metric stellar models are not included among the solutions
of such objects as predicted by Einstein’s equation, withoutjiven in [6] and so one does not expect that nearly static
any approximation other than the choice of the matter modelstellar models can be described with these solutions.

The main difficulty is to find a solution in a neighborhood A second system of the type mentioned above was found,
of the timelike hypersurface corresponding to the fluid-for a general class of state functions,[if|. However, the
vacuum interface, where the Einstein-Euler equation transinitial value formulation that describes nearly static objects is
forms into Einstein’s vacuum equation. It is known how to still missing. Fix some smooth state function such that both
describe regions not including this interface, since an initiathe energy density and the sound velocity vanish at pressure
value formulation for Einstein’s vacuum equation was firstzero, and then consider the system givef7ihfor that fluid.
given in[3], and for the Einstein-Euler equation with nonva- Assume that there exists a smooth solution that describes
nishing energy density everywhere, [id]. The problem at such a fluid body. Then, one can check that the fluid particles
the interface is inherent in the fluid equations and it is alsaat the boundary of the body follow timelike geodesics. In
present in a Newtonian description. A summary of knownother words, smooth perfect fluid solutions of the system
results on free boundary problems is given in Sec. 2[%5Jn  given in[7] cannot describe nearly static situations.
in the context of Newton’s theory as well as of general rela- Therefore, a first attempt to describe nearly static perfect
tivity. fluid bodies by an initial value formulation would be that the

A first step to set up an initial value formulation for the fluid state function satisfies the following condition: Neither
Einstein-Euler equation in a neighborhood of the fluid-the fluid energy density nor the sound velocity must vanish
vacuum interface requires finding, from the complete systemvhen the pressure vanishes. Because at the boundary of the
of equations, a symmetric hyperbolic system that remaingody the pressure vanishes, we are then requiring that the

border of the body have nonzero energy density. We call

them “liquid-type” bodies, and “liquid-type” state func-
*Email address: dain@aei-potsdam.mpg.de tions. Therefore, it is natural to study what are the appropri-
TEmail address: nagy@aei-potsdam.mpg.de ate initial data for a liquid-type body. It turns out that the
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answer to this question was not known; it is subtle, and is théinear term given by a discontinuous functigthe initial
subject of this work. physical energy densitjtimes the unknowr{the conformal

Fix once and for all a simple perfect fluid, that is a perfectfactor) at the power plus five. In other words, a nondecreas-
fluid with one-dimensional manifold of fluid states; for ex- ing function of the unknown, times a discontinuous given
ample, one with a state function of the fop(ip), wherepis  function (in contrast with[8] where this function is continu-
the fluid pressure ang the fluid comoving energy density. ousg. We introduce a compact manifold, and we prove exis-
Assume that this state function is smooth and of liquid-typetence of aC® conformal factor, based on Schauder’s fixed-
By liquid-type ideal body initial data we mean a three- point theorem. The proof follows the ideas given in an
dimensional initial hypersurface, its first and second fundaappendix of[9], and in[10]. There is only ondtechnica)
mental forms, and the fluid initial 3-velocity and comoving requirement on the initial physical energy density: Its
energy density. The first two fields must be asymptotically| 2_.norm, computed with the unphysical metric, must not ex-
flat, the last two must have compact support, the support Geed some given upper bound. We show in the appendix that,
the fluid velocity must be included in the support of the githough this condition excludes possible initial data, it is
energy density, and all of them must be a solution of thayjid enough to include interesting physical situations, such
constraint equations, and satisfy some energy condition. 185 neutron stars.
addition, there exists an extra constraint on the initial fluid \ve also give a statement on the regularity of these data.
fields: The fluid comoving energy density must 8&ictly  They cannot be smooth, because the liquid-type energy den-
positive and constarit the border of its support. Constant sity is, by definition, a discontinuous function of the space
because the simple perfect fluid state function implies thayariaples. How regular can it be? The smoothest liquid-type
there exists only one single value of the fluid comoving enoqdy is almost-smooth; that is, smooth everywhere except at
ergy density such that the pressure vanishes, and this is thge hody boundary, where tangential derivativeppropri-
value of the energy density at the border of the body. Notictely definedl of any order are continuous. In other words,
that only the energy density as measured by a fluid comovingye prove the following: If the unphysical metric is a smooth
observer must be constant. This extra condition only arisefe|d on the initial hypersurface, and the fluid free initial data
for liquid-type fluids, because it is trivially satisfied in the gre smooth up to the body boundary with every derivative
case where the fluid comoving energy density vanishes at thgngential to the boundary continuous through that boundary,
border of the body{See Eqs(5),(6).] Also notice that this  then the same holds for all the initial data fields. A crucial
data must have & first fundamental form, that is, with at requirement to prove this statement is that the conformal
least one continuous derivative everywhere; if not, DiraC'sfactor beC! on a neighborhood of the body boundaigee
delta appears in the fluid energy density. Sec. 1IIC)

Initial data of this type was not known in the literature. Summarizing, we prove thalmost-smooth initial data
The on!y result on solutions of the (_:onstraint equations Wi”}epresenting liquid-type simple perfect fluid bodies can be
discontinuous matter sources a@d first fundamental form  optained as solutions of the constraint equations, in the case
[8] does not guarantee that the fluid comoving energy densityhere the fluid 3-velocity vanishes at the body-boundary,
be constant at the border of the body. Here is why. Thenrough a suitable modification of the usual conformal res-
solutions with discontinuous matter sources are found by thga"ng techniques.
usual conformal rescaling that also rescales the matter gina|ly, some technical remarké) We rescale the initial
sources. Then, the initial physical energy denfiite energy  fiyid momentum density but not the initial fluid energy den-
density as measured by an observer at rest with the initiadity, in order to solve the constraint equations. Therefore, we
surface, functionu in Eqg. (5)] is the product of the initial have to choose the rescaled momentum density small
unphysical energy densitffree data times the conformal enough, in the sense given in Sec. IVA, in order to have
factor at power minus eight. We do not know any procedurephysical data satisfying the dominant energy conditi@in.
to choose the free initial data such that the solutions given iWe impose that the fluid 3-velocity vanish at the body
[8] guarantee both that the fluid comoving energy densitypoundary. There is no physical justification for this assump-
[functionp in Eq. (5)] be constant at the border of the body tion, it is made because it is the only way we know, with the
and the conformal factor b€, simultaneously. We should rescaling of the initial data field that we have chosen, to
mention that there are also found[®] solutions of the con- guarantee that the fluid comoving physical energy density be
straints without rescaling the energy density, but, in this casegonstant at the body boundafsee Eq.(7).] We give an
only continuousenergy densities are considered; that is, theyinterpretation of this condition in Sec. Il Biii ) Besides the
vanish at the border of the body. conformal rescaling to solve the constraint equations we per-

Here, we conformally rescale all the fields except the ini-form a conformal compactification in order to solve elliptic
tial physical energy density, which is now free data, givenequations on some unphysical compact manifold.
positive and constant at the boundary of the body. We impos@symptotic decay properties of fields in the physical initial
that the fluid 3-velocity vanishes at the body boundary. Thes@ypersurface are translated into differentiability properties of
two conditions imply that the fluid comoving energy density these fields at a particular point in the unphysical compact
is positive and constant at the body boundf8ee Eq(7).] manifold. These differentiability properties at the point at
The subtle part now is to solve, with the initial physical infinity are completely independent of the differentiability of
energy density as free data, the equation for the conformahe fields near the body boundary.
factor. This is a semilinear elliptic equation, with the non- In Sec. Il we introduce the main definitions we need in
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order to present the principal result, theorems 1 and 2. Wg 'p_2=0. The fieldsu and]? represent the normal-normal

also give a proof based on results obtained in Secs. I angnd the(negative normal-parallel components @ of the

IV.1n Secs..I'IIAand Il B we give Fhe main existence proof; stress-energy tensor. The dominant energy condition on the
for the semilinear and linear elliptic equation associated with

the Hamiltonian and momentum constraint, respectively. mitress-energy tensor in the space-time impjigé'<.* on
Sec. Il C we prove the regularity statements, theorems 7 anlil- This condition is the reason why one does not, in general,
8. In Sec. IV A we explain why this discussion on an energypick any @, and p2° and thendefine f and z by Egs.
condition appears, and we give a simple condition on the fre€l),(2). Because if one does that, the resulting fields form an

data such that the physical initial data satisfies the dominankjtial data set iff the energy condition is satisfied by thgse
energy condition. The constraint equations are naturally W”t'andﬁ. It is an open question whether there exists a proce-

ten in terms of the initial fluid energy density and the initial ) o~ ~ab )
fluid momentum density. Equatiors),(6) relate them to the dure to find appropriatel,, and p** besides the conformal

fluid pressure, comoving energy density, and 3-velocity. I€Scaling one. , _ _

Sec. IVB, we prove that these equations are invertible. In 1€ initial data set is asymptotically flat if the comple-
Sec. V, we comment on the initial value formulation for ment of a compact set iM can be mapped by a coordinate
liquid-type ideal bodies. In theorem 3 we need to assume thatystemx! diffeomorphically onto the complement of a closed
the fluid initial energy density satisfies an inequalifyg.  ball in R® such that we have in these coordinates

(24)] involving both the unphysical manifold and the un-

physical rescaled metric. In the Appendix, we study this in- aij =(1+ 2m/7)5”- +o(?*2), 3
equality. In Sec. 1, we sholemma 4 that a similar(but
weakej inequality holds for every initial data. By an explicit Pi=0(T2) (4)

example, in Sec. 2, we prove that the inequality required for
the existence theorems is in fact a restriction on the allowed ~'—W o wh . tant that s th
initial data. This example also suggests that this restriction i@Sh =V o5 X X =00, Wherem s a constant that represents the

mild, in the sense that interesting physical systems, like neLﬁ‘DM mass of_the data. Latin letteis j, k, denote co-
tron stars, satisfy it. ordinates indices and take values 1, 2, 3, whig

=diag(1,1,1).

Fix as the matter source a simple perfect fluid. That is,
first, introduce onM a non-negative scalar field, inter-
A. Liquid-type ideal body data preted as the fluid comoving energy density, a vector field

We first introduce what we mean by initial data for av?, interpreted as the fluid initial 3-velocity, and fix a func-
liquid-type ideal body. Afterwards, we split the concept of tion p(p), the state function, interpreted as the fluid pressure
almost-smooth into two pieces. Given a field and an oper@s a function of the comoving energy density. Second, intro-
bounded sef) on some manifold, we introduce the conceptduce onM the equations
of an ()-piecewise smooth an@-tangentially smooth field.

Finally, in the next subsection, we present our main result. -~  p+pv?

Consider an initial data set for Einstein’s equation with m=—= ()
matter. That is, consider a 3-dimensional, smooth, connected
manifold M, a positive definite metria,;,, and a symmetric
tensor field,p®", on M, together with a vector field,?, and o= LT 6)
a positive scalar functiony, subject to the conditio,j? 1-v?
<u?, and solution orM of

II. DEFINITIONS AND MAIN RESULT

with v2=0,02<1. In the space-time solution of Einstein's

D.p2*—Dp2= —«]°, (1)  equation with matter sources, the normal-normal and the
(negativé normal-parallel components # of the usual per-
R+ (Pa®)2—Papp?P=2x1, 2) fect fluid stress-energy tensor are precisely the left hand side

of Egs. (5),(6), respectively. Ifu? denotes the unit fluid
whereD, andR are the Levi-Civita connection and the Ricci 4-Velocity, andn® the unit normal to the initial hypersurface,

~ _ - ~2 H H
scalar associated wiff,,, and k=8 Indices on tensors thenu®=(n?+v®)/y1-v< For this matter model the domi-
nant energy condition is equivalent pe=p. In addition one

with “tilde” are raised and lowered witfg?® andq,y,, re- N
can prove thatp=p implies j,j®<u°. The sketch of the

spectively, wherej,.q°°= 6,°. Latin lettersa, b, c, rep- _ . : ~
resent abstract indices. The fields solving H4%(2) have a proof~|s ~the following: from Eqgs.(5),(6) define f(p,v)

meaning as part of a 4-dimensional space-time solution of=Vj.j? u. Notice thatf(p,0)=0, andf(p,1)=1. One can
Einstein’s equation with matter sources. The maniftdd  prove thatp=p implies 9f/dv >0, for 0<v<1; then, it fol-
represents a three-dimensional spacelike hypersurface sughiys thatf<1 for 0O<p<1.

that aab and p?° are their first and second fundamental Consider a liquid-type ideal body data set. That is, an
forms. This hypersurface will be a maximal slice if and only asymptotically flat initial data with a simple perfect fluid
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whose state function is of liquid-type, and both the fluidpgint of 7). Define n® outside () to be tangent to these
3-velocity and the comoving energy density have the samgeodesics. Lev3, be any smooth tangent vector field to this

compact SUDDOHQ_CM By a liquid-type state function we foliation, i.e., any smooth vector field such thé},n,=0.

mean a non-negative, nondecreasing, smooth fungi{@) e say that af)-piecewise smooth field is Q-tangentially

that vanishes apo>0. As an example consider a big water smooth if for allk=1 the tangential derivativeg{(u) are

drop (in order to neglect surface tension effectsr a fluid continuous.  where Vf;h’(u)::V"’;QD 4. and V(B(u)
] Ie a+ [

planet, or a neutron star. The support of the energy den3|ty=V30Da[Vgh_1)(u)], for k=1. For example, choose the

represents the place occupied by the body. The value of thf'e ; L ;
; ) . ; feld to be the energy density of a liquid-type ideal body, and
comoving energy density at the border is determined by th the interior of its support. A necessary condition for this

functlon.of state as the yalue Whe_re the. pressure Vamsheﬁ'eld to be()-tangentially smooth is to be constantsd.
(Otherwise, the acceleration of fluid particles lying on this

border becomes infiniteTherefore, a liquid-type ideal body

satisfiesp|,0=po. Equations(5),(6) translate this condition B. Main result

for thg conlzvmg energy density into a constraint on the The strategy is, first, to find fieldi,, p*°, T2, andjz, the

fields . andj® at €}, where they are no longer free but they o) tion of Egs.(1),(2) with the desired properties. Confor-

must satisfy mal rescaling techniques are used in this part. We also intro-
~ - o duce a compact manifold where equations associated with
[(1=]ai® u*)]s0=po- (7) " Egs.(1),(2) are solved with boundary conditions chosen in

such a way that the decompactification of these solutions

o T . 2 ives asymptotically flat initial data. Then we prove that un-

Definition 1 A liquid-type ideal body initial data set con- ger spegificpassum);)tions on the state functign EBS(6)

; : = Tab Ta Y ; - -

sists of fields g,, p?°, v?, andp on M, and a state function can be inverted for alp= p, and forp? with 0<p<1.

P(p), such that () g, is a Riemannian metric, ¥ is a Fix a 3-dimensional, orientable, connected, compact,
symmetric tensor, and both are asymptotically flat; (i(pop smooth manifold. Fix e M, and M .=M\{i}. The choiceM

‘s liquid-type,  and var.ns_hes at. Po=0: Qu) =S, and soM =R?, describes, for example, ordinary stars.

Squ(\?)C. suppp) =} compact; ('V)p|ﬁﬂ:p0’~(v) these fields A restriction of this type in the topology, however, plays no

are solutions of Egs. (1), (2) and (5), (6) on.M role in what follows. Let,,e C*(M) be a Riemannian met-
Given an open se)’' CR® we denote byC%(Q’) and  ric onM. Letx be its associated Riemann normal coordinate

Co(€Q)') the spaces oftimes continuously and Hder  system at, andr the geodesic distance. Lit,e C*(M) be
continuously differentiable functions, respectively, wish 3 symmetric tensor such that

=0 integer, and &a<1l. We use the notatiolfc*({") A

=C%(Q)’). We also denote by.P(Q2"), WSP(Q'), and x'hj;=0. (8)

by LRL(Q"), WgP(Q') the Lebesgue and Sobolev spaces,

and the local Lebesgue and local Sobolev spaces, respegatin indicesi,j,k denote tensor components on coordinates
tively, where K p<o. We fpllow the definitions given in yi Let Jape C*(M) be a Riemannian metric oM with
[11,12, and the generalizations for smooth manifoltds;,  scalar curvatur® Let B, be an open ball of geodesic radius

given in[13]. Finally, we say that a tensor field &'CM’ ¢ centered at. Assume that there exists>0, such that the
belongs to one of the functional spaces mentioned above, etric Uap ON B, has the form

all its components, in some smooth atlashdf, belong to
such a space.
It is convenient to split the concept of an almost-smooth

field, presented in the Introduction, into the following two | ) e
definitions. The first one is af)-piecewise smooth field. [N the coordinates’. Since we have assumed H§), these

Consider a smooth manifol¥’, a tensor fieldu on that ~Ccoordinates are also normal coordinates of the mefgic
manifold, and a open s€CM’, with compact closure. We The motivation for Eq.(9) is given in the remarks below
say that u is Q-piecewise smooth, if u theorem L. B

e C*(Q)NC*(M\Q). Note that this definition involves  Fix @ non-negative scalar field and a vector field® on
conditions on the field both if) and its complement. An M with supp(?®) Csupp(u) =, where() is some open set
example of ar()-piecewise smooth but not smooth function with compact closuré)C M, such that its boundamg( is a
is any f such that 6<f e C*(2) and f=0 on M"\Q). The  smooth submanifold of codimension one. Introducdvbthe

fluid energy density of a liquid-type body is such a function.fields ¢ and p2®, with p,2=0, solutions of
The second concept is &h-tangentially smooth field. Let

Jap be a smooth, positive definite, metric &A’. Assume
thata() is a smooth submanifold of codimension one. hét
be a normal vector t@Q) with respect toq,,. Consider a
Gaussian normal foliation in a neighborhoodi, that is, a

foliation orthogonal to the geodesics tangennfoat every

As a summary, we state the following.

qij = hy; + 134, 9

D p®°=—«;j®, (10

ab
pabp K~ 5

Lol )= =2 == 7R

(11)
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whereL 4(6) :=q*"D,Dy,6—R6/8, andD, is the Levi-Civita
connection associated tpy. Indices of “non-tilde” tensors
are raised and lowered witit® andq,,, respectively, where

0aca°P= 8,°. Fix the boundary condition
pl=0(r=9, (12)
limro=1. (13)
r—0
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also impose smoothnessiait is too restrictive. In this case
initial data for stationary space-times are ruled e[ 15)).
The differentiability ati of the unphysical metric is related

with decay at infinity of the associated physical metjig,
imposing smoothness atmeans a restriction in the fall off
which is, in particular, incompatible with the stationary so-
lutions. In order to include these data, we have made the
assumption(9). Although the functionsh;; and 7%;; are
smooth, the metric belongs ©%%(B,) but it does not be-

The main part of this work is to prove the existence of al®Nd t0 C*(B,). The data for stationary space-times have
solution to Eqgs.(10)—(13), and then to show that if the precisely this form(see[15]). In order to prove the theorem

source functions] andj? are()-piecewise and tangentially
smooth, then so are the solutiop&” and 6. Once these
fields # andp?” are known the initial data set is given by the
following conformal rescaling:

Qap=0"0ap,  PP=071P, =671 (14)

Notice that we do not rescale the energy dengifybut we

one certainly does not need smoothneshk;pind7;; , only
a finite number of derivatives. But the important point is that
in order to prove the last part, E¢L5), it is not enough to
require that, for exampleg,,e C>*(M). Equation(15) is
essential in order to prove our second theorem. We prove Eq.
(15) in theorem 6.

Proof. The metric given by Eq(9) satisfies thatq,y
e W*P(M), p>3/2. By assumptiorj? and s* belong to
W4(M). Therefore assumptiofiii) and theorem 5 imply

do rescale the momentum densjfy In this way we achieve that there exist$abEW1,q’(M), 1<q'<3/2, given by Eq.

both thatu be free data, and that the momentum constraint41) which solves Eqs(10), (12). The hypothesis on the
decouples the Hamiltonian constraint, respectively. One caetric given in Eq.(9) and theorem 6 imply Eq(15). As-

check that if¢ and p?° are solutions of Eqs10),(11) then
the rescaled fields in Eq$l4) satisfy Egs.(1),(2). One can
also check that the boundary conditiofi®),(13) on 6 and
p2® imply that the rescaled initial data is asymptotically flat.
(See[9,10].)

Let y be the Green function of the operatiog given in
Eqg. (11), which is defined in Eqs(20),(21). Our first main
theorem is concerned with the momentum constralif),
(12.

Theorem 1. Fix M, M Q, and o, as above. Let¥® be a
symmetric trace-free tensor in W(M)NC*(M), ¢>3.
Let p** be given by Eq. (37). Assume that

(i) supp(dCQCM.

(i) j2eL9Y(M) and it is Q-piecewise and)-tangentially
smooth.

(iii) Condition (42) is satisfied.

Then there exists a unique tensot®pgiven by the Eq.
(41) solution of Egs. (10), (12). Moreover, 2 is
) -piecewise and)-tangentially smooth and satisfies

PapP®® y e LA(M). (15

sumptions(i), (ii), and theorems 7 and 8 imply thpt® is
) -piecewise smooth anf)-tangentially smooth. ]

In order to write the next theorem we need to define some
constants. Se€,=|[pasp™/(8Y)lLzqw) . 7+ =makyy, 7-
=ming(y), andj . =maxp/jaj? . LetK, k, be the positive
constants defined in Sec. Ill A. They essentially depend on
the metricq,, and the manifoldM. Finally, let e,>0 be the
solution of the following equation:

- K
|QY2(y, +kegCp)*

€0l + v ® (16)

where|(}| is the volume of) with respect to the metrig,, .
There always exists a unique positive solution to Edf),
since forey>0 the right-hand side of Eq16) is a positive,
decreasing function ofy; which goes to zero at infinity.
Theorem 2. Assume that the hypothesis of theorem 1
holds. Let 3° be the tensor field given in that theorem. As-
sume that R-0. Fix a smooth liquid-type state function,
p(p), with zero-pressure energy densipy>0, compatible

with condition (iii). Assume tha®<dp/dp<1. Let u be

The existence part of this theorem is essentially the stansuch that

dard York splitting (cf. [14]) adapted to our setting. It is
given in theorem 5, under a weaker hypothes¥. is free

data related to the arbitrary amount of gravitational radiation * ’
that can be added to the system keeping the matter sources (i) FOr e<eo,

() SNUDD(TLFQ- #ls0=po, and f|;0=0.
(i) w is Q-piecewise and)-tangentially smooth.
1 satisfies

fixed.E1b contains the linear and angular momentum of the

initial data, it can also be prescribed freely unless there are
conformal symmetries. In this case it has to satisfy condition

(iii ), which is the corresponding Fredholm conditi@ee the

remark after theorem 5 for a physical interpretatiohhe

regularity part of the theorem is proved in Sec. Il C.
We have chosen the unphysical metigg,, smooth on

|Q|l/2( v+t kfch)4

i -8
€]+ Y_"<poSHu

17

Then there exists a positive solutighe C*(M) of Egs.
(11), (13) with sources given by and ep?®, whereO<e

M\{i}. This is a reasonable physical assumption. However te< e, and 0< a<1.
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Moreover, the initial data computed with,ge 6%qap. We do not require thaf) be connected. A nonconnected
domain can describe several compact bodies.

stated in definition 1. They ar€-piecewise smooth, and This is not the most general _result one can qbtam with
these methods. One can also find solutions which are not

QO-tangentially smooth, ge C(M), p*"c C*(M). The piecewise smooth, but with some finite differentiability in
fluid 3-velocity,v?, vanishes ap(}. the interior of the support 0p. One can even obtain solu-
We use a nontypical conformal rescaling given in Eq.tions where the support of itself has some finite differen-
(14). The positive outcome is that, in this way, is essen- tiability. The obtainment of such more general data from the
tially free data, and so we can choose it constant(at A techniques used to get our result does not present a substan-

negative outcome is that this must satisfy the boun¢l7).  tial difficulty but only a greater level of technical complica-
The upper bound in Eq17) is related with the existence of tion, which could obscure the main ideas necessary to find
the solution, given in theorem 3. In the Appendix we givethese types of data. _

arguments to show that this bound is only technical, that is, Proof. The upper bound op given by Eq.(17) and theo-
there exist solutions which do not satisfy it. However, therem 3 implies that there exists a strictly positive soluti®n
example presented there suggests that this bound will be sat-, + 9 < C1%(M) of Egs.(11), (13). Hypothesigi), (i) and

isfied for every realistic star. The lower bound in Em?) is theorems 7 and 8 |mp|y that is Q_piecewise smooth and
related to the energy condition. It is a sufficient condition for () .tangentially smooth.

the dominant energy condition to hold, see Sec. IV A.
A second negative outcome is that, in order to satisfy th(?iel

liquid-type constraint{7), we imposej?|.,=0; this implies 2 ~ - ~
quic-typ Nl pOSe} o P smooth, and they satisfy,,e Ct4(M), p3Pe C¥(M).

Za|m=0. In order to understand the implications of this con- - P
dition on the motion of the fluid, assume that we have aThe lower bound in Eq(17) and lemma 3 implies that the

. g . . . ~ S ~2
simple, liquid type, fluid solution of Einstein-Euler's equa- dominant energy condition is satisfied, thaj i$"<u°. As-
tion. That is, a 4-dimensional Lorentzian metgg, and a sgmptlon ('.) !mplle_s that the I|qU|thypg constrair(@) is
unit timelike vector fields?, representing the fluid 4-velocity, trivially satisfied. Finally, theorem 9 implies that ES),(6)
solutions of Einstein-Euler's equation. The boundatyof are invertible. The state functign(p) is a sr~nooth function
the fluid is the 3-dimensional, timelike, hypersurface wheredf p, so Egs.(5),(6) imply that the fieldsv® and p are
p=0. Since we have a simple fluid, this implies thais  (}-piecewise smooth an€d-tangentially smooth. Equation

PP= 9~ 0pa® Ta=§"1%j2 and u is of liquid-type, as

Let q.,, P2° ]2 be as stated in theorem 2. Those
ds are also()-piecewise smooth and)-tangentially

constant onB; hence the vector defined bly*=g?"V,p is  (6) and assumptiofi) imply thatv?|,,=0. O
normal to 3, whereV,, is the covariant derivative with re-
spect tog,,. By assumptionN? is not zero onB. Fix an . EXISTENCE AND REGULARITY

arbitrary spacelike foliation, with normal vecto?; let M be

a member of this foliation. DefiningQ=MnNB, we will ) _ ) ]
assume that botl§ and 9Q are smooth submanifolds. The  Consider Eqs(11), (13). To obtain a solutiory we first

3-velocity 22, defined byud=(n2+22)/ /1-72, will vanish  transform this problem o with a singular boundary con-

A. Hamiltonian constraint

at 9Q if and only if the following equations hold dition_ atieM, intp a regular_ probler_n_ oM for another
function. The metri@,, has strictly positive scalar of curva-

Nan?;0=0, (18)  tureR and the assumption given in E@) implies thatq,y,
e W*(M), p>3/2. Therefore, lemma 3.2 and corollary
Na»®;0=0, (199  3.3in[10Q], imply that there exist a unique, positive solution

a_ _abc , : a _ ye C1%(M) of the equation
wherew?= €224, V.uy is the twist ofu? (eypcq i the vol-

ume element ofy,, and the indexes are moved with). Lo(y)=—4ms, (20
Equation(18) is a condition on the foliation: the slidd has o o . o
to be tangent tN®. Equation(19) is a condition onu?, where §; is DII’?ES delta distribution with support at It is
independent of the foliation: the normal component, with@SO true thay”“e C%(M) and

respect to the fluid boundary, of the twist @t must vanish im rv=1 21)
on Q). Equation(19) is a consequence of Frobenius’s theo- o Y=<

rem (see for exampl¢21]) and the fact tha#() is a smooth

smib_manifold and\® is hypersurface orthogonal. Note that e introduce the functiom= 6— y. Then, Eq.(11) for 6 on
1) |t§elf can be dlﬁerentafrom Zero a?lQ C_on;huon(lQ) is 1 becomes the following equation fdr on M,

not time-propagated bwy®. This condition is imposed only
on the initial slice, not in the subsequent evolution. Although

it is a restriction, it is not clear if it is a strong restriction or Ly(9)=— PabP = Syt 9)5. (22)
not. 8(y+) 4
Another outcome of this particular conformal rescaling is
a lack of uniqueness of solutions to E¢$)—(6) in terms of Before stating the theorem concerning existence of solu-
the free data. tions to Eq.(22), we need some notation. Given any function
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ge W24 M) and the operatoL, we introducek to be the Parp?® K~
constant such thalig|coy=<K|Lq4(9)llL2qwy. This constant Pei=T oS —gprt c)®
can be written ak=cc, , where the Sobolev coefficient Y
is the constant such thtg|co(M)§(?S||g||W2,2gM), while ¢ is bo=L =Y o0)
the constant of the elliptic estimatelg|wzzm) ¢*=htq Pc)
<c|Lq(9)llL2(m) - (See[11,13.) We introduce, as well, the
constants Cp:=|papp®®/(87")| 2y, and 1y, :=supy.

Then, for allue B, we have thatf(u)—¢.=0. This is
equivalent toL 4(F(u) — ¢¢)=0, and thenF(u)<d¢.. We

Therefore, now choose the best constant™such that ¢.<c. This is
Pasp®y7 € LA(M) (23) done as follows. Given the bound
is equivalent to the conditio€,<<oc. ¢C$k|“‘q(¢°)| |L2(M) '
Theorem 3. (Existence) Let M and Me as in Sec. II B. K 5~
Let g,, be a Riemannian metric on Msuch thatqs, <k Cpt g (7++0) [ llL2(0) (26)

e W*P(M), p>3/2, andR>0. Assume thap?” satisfies that

Cp<ee. Let  be a positive function of compact support in we impose that the right hand side of Eg6) be less or
QCM, such that equal toc. We then obtain

~ 4 c—kC,
(24 HM”LZ(Q)S -

Kk (y +e)® 2

||7"||L2(Q)$—a
(y++ ka)4

where K=45/(5°xk). Then there exists a non-negative solu- This inequality has to be valid for sonegin particular for its
tion & e W24 M) of Eq. (22). The solution is strictly positive Maximum value given bgo= (v, +5kCp)/4. Equation(27)
unless both B° and u are zero. Moreover, it satisfie® evaluated at, gives Eq.(24). Therefore, ch005|n§%=Bco,

<(7y.+5kC,)/4. condition (24) implies F(B)CB. Finally, Schauder’s fixed-
Remark. The proof is based on Schauder’s fixed-poinPoint theorem implies thaF has a fixed point inB. This

theorem (see for example [16]): Letd®X be a nonempty, fixed point is the solutiony. o

closed, convex set in a Banach space X, anB-FB be a We now show that, under slightly stronger assumptions on

continuous mapping. If @) is precompact, then F has a the source functiong. and p2°, the functioné belongs to

fixed point The construction of the function&lis similarto  ce(M). (This differentiability is important for theorem 8.

the one made 10| for theorem 34 The_ only difference is  thaorem 4[C(M)-regularity] Assume the hypothesis
the choice of the sd8, and the main work is to prove that for | \haorem 3 holds, and lét=y+ 9, with ¥ € W2{M) the

this choice we havé&(B)CB. . L ~
Proof. ConsiderX:(C%(M), which is a Banach space un- solution of Eq. (22). In addition, assume thate L%(Q2),

der the supremum norm. Given a constant0, defineB, ~ With g>3, and that ,p®” " € Lii(M).
={ue X:0=<u=c}. One can check thaB, is convex and Then, §e W29(M)C C1*(M) is a solution of Egs. (11),
closed. Define a nonlinear operaterB.— X, by setting (13).

Proof. From the hypothesis on. and p2°, we have
f(9) eLI(M). Elliptic regularity implies ¥eW?9(M).
(See [12].) Sobolev embedding andy>3 imply o
eCY(M). Therefore, yeC**(M) implies that 6

=1 L
F:=L4 f

where thef:B.—L?(M) is the continuous map given by

fu) PapPp?® K,..( e 25 e C1*(M). Equation(21) implies thaté satisfies the bound-
Uu)y=———— — +u)°. S

8(y+u)’ 4™\ ary condition(13). O
Under the assumptiorg,,e W*P(M), p>3/2, andR>0 it B. Momentum constraint
has been proved ifiL0] that the nonlinear map is continu- Consider Eqs(10), (12). The main idea is, as in Sec.

ous andr(B,) is precompact. The only difference between
the mapF anq the apalogous m.aT’ defined m[lp] IS thg: boundary condition into an equation &hfor a regular vari-
second term in the right-hand side of E5). This term~|s able. Solutions of this regular equation can be found by the
continuous. Note thaf is singular ai but we assume that  transverse, traceless decomposition of symmetric tensors.
has support i) and the poini is notincluded in(}. See[17] for a transverse decomposition, grdl for a trans-

We only have to choose the constant”“such that verse, traceless decomposition. See 1), and references
F(B¢)CB.. The rest of the proof shows how to fina."” In therein.

A, to transform these equations oM with a singular

what follows we will use lemma 3.1 ¢fL0] many times. All of this procedure is performed, however, not in Eq.
Introduce the functiong.e L?(M) and ¢, W*AM) as  (10) itself, but in a properly conformal rescaled version of
follows: that equation. The new rescaled metric is chosen such that its
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Ricci tensor vanishes at(The restriction that the unphysical tensorp2®. The construction of this tensor field that follows
metric, dqp, have strictly positive Ricci scalar oMl is not s detailed in[10], Secs. 4.1-4.2, but we briefly sketch it
needed in this subsectigrmhe positive outcome of this new here.

rescaling is that it is not hard to prove that soluti@i8 with Consider the manifoldNl, a ). Let B,2C U be a ball of
a €

nonvanishing total linear momentum are included.
eqab geodesic radius @centered at, andy the associated cut

The plan of this subsection is, first, to introduce som tion. that th function that hes\KB
notation; second to set up the procedure to prove existencﬂénc ion, that is, a smooth function that vanishes 2¢

of solutionsp?” in a weak senséheorem 5; and third, to

and y=1 in B;. Let n,=D,r. Introduce onB,\{i} the

prove that, under a slightly stronger assumption on the matensor fieldg 35|

ter source, the solution satisfies E3) (theorem 6.

We start with the new conformal rescaling. Lt M,
Jap, X', I, andB_ as in Sec. Il B. Leyy be a cut function, that
is a smooth function with support iB,, and such thafy

=1 inB,. Fix onM the metricaab given by

aab: ngab: (28
where the conformal factan, has the form
—eXfo f.= 1 ik ;
wo=eX'o, o—zxx Lk(i), (29
and we have evaluated iathe tensor field
1
Lap=Rap— ZRQabv (30

with R,p, the Ricci tensor oft,,. Therefore,gap=0ap ON
M\B,., and they differ only orB,,.

R.pJ(1) =0, that is the Riemann tensor f,, evaluated at
vanishes[An explicit computation show&,,(i)=0. Since
Oab is @ 3-dimensional metridR,,J(i)=0.] This property

implies that in its associated Riemann normal coordinate sys-

tem ati, x/, the metricq,, has the form

Gij=5,;+0(13), Tlk=0(r?), (31)

wherer is the geodesic distance frommeasured byg,y,.

This is the reason for doing the new conformal rescaling.

We complete the rescaling introducing the fiefif$ and
j2 as

~ab_ —10
=w,

p

ab *a 710 a

p 8= 1™

Therefore, Eqs(10),(12) transform into

Dap

p*= pl=0(r™), (32

_K]‘b'

whereD, is the metric connection associateddg,. Latin

One can check that

¢?1")=—[2Q<a n?—(5°-n%°)n.Q°1, (33
ab A b ~anb
¢(2):F_3(5a —3n%n®), (34)
6. R
¢(3)— —=n@ededg ny | (35)
¢(4) i;4[ZF)(al'f]b)_'_((()*ab_ Sﬁaﬁb)ﬁcpc]y
(36)

whereA is constant, and?, J?, andQ? are constants in the

coordinate system'. Heren®=n,5%®, and in Riemann nor-

mal coordinatesp! =x//r. These tensors are transverse and

traceless with respect to the flat metric. I.pﬁ() —X(¢(k)
-q? chq')(k)/S) Finally, mtroducep as follows:

(37

By construction, the tenscp?ab depends on 10 parameters, is
smooth on M, vanishes onM\B,;, is symmetric and

Oap-traceless, and satisfipd = O(r ~*), asr —0. It also sat-
isfies

D.p*=0(r"?) as r—0. (38)
The last equation is obtained as follows: wiidgp?® explic-
itly, and then note that first, the tensor fiel¢$3 are diver-
gent and trace free with respect to the flat metric, and second,
that in the coordinates® the metric connection coefficients
satisfy Eq.(31).

We finally recall some needed properties of conformal
Killing vector fields. Consequently, this paragraph is appli-
cable to bothg,, andfqab. We point out the differentiability
of the various fields, for later purposes. Fix a manifold

indices on “hatted” quantities represent components in theqm,q,,), with gape W*P(M), with p>3/2. A conformal

coordinate syster'.

We now start the procedure to transform E82) on M
with a singular boundary condition into an equation\drfior
a regular variable. The singular behaviori @if a solutioné
of Egs.(11), (13) was captured by the Green functign In
the case of Eq(32), the role analogous tg is played by a

Killing vector field, &, is defined by (,£)2*:=2[D@&"
—g*°D£/3]=0, whereL, is the conformal Killing opera-
tor associated to the metrq;jlb There are at most ten con-
formal Killing vector fields for a 3-dimensional metric.
Given a vector fields®e LP' (M), with p’>1, we say that it
is orthogonal ta£? if
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f £,0%dV=0, (39
M
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to every conformal Killing vector fieldé?, if and only if Eq.
(42) holds. Therefore, the assumptions on the metijg,,
and the Fredholm alternative for this operator imply there

where the volume element is computed with the unphysica@Xists & unique solutiow® e W>9(M). [For the smooth met-

metric q,,. Notice that the differentiability assumption on
the metric implies that?e C>*(M). This, in turn, with the
Holder inequality, implies that the integral above is well de-
fined. We also introduce the conformal Killing datai athat

is,

1Dan§b(i),

6 Sa: eabCDbgc(i)’

Ka= q%=&%(i),

1 .
a=§Da§a(|)- (40
SinceM is connected, the integrability conditions for confor-
mal Killing fields (cf. [19]) entail that these ten “conformal
Killing data ati” determine the fieldé? uniquely onM.

ric this is a standard result, for metric in the Sobolev space
W4P(M) see[20].] O

The quantitiesP? andJ? in tensorp?® represent the total
linear and angular momentum of the data. These quantities
can be prescribed freely in cage, so they are not related
with the matter sourcef. The interpretation is that gravita-
tional waves can carry an arbitrary amount of linear and
angular momentum. In the case that the unphysical metric
has conformal symmetries these quantities are restricted by
condition (42). In order to understand this condition, con-
sider the case where only one Killing vect#t exists, and it
is a rotation. That is, only® is different from zero. We can
always choos&? to be a unit vector(This vector is parallel
to the axis of the rotational symmetrgonstruct the follow-
ing initial data: first, choose any? pointing in the same

We have the following existence theorem, which is a gendirection asS?, and second, choose the other part of the free

eralization of theorem 16 proved JA0].

Theorem 5. (Existence) Let M, and be as in Sec. 11 B.
Assume g, W*P(M), p>3/2 LetFab be defined by Eq.
(37), and gy, as in Eq. (28). Let ¥e WP (M) be a sym-
metric traceless tensor, and'¢ LP' (M), with p’>1.

(i) If the metric g, admits no conformal Killing vectors
on M, then there exists a unique vector fieldetW?9(M),
with g=p’ if p’<3/2 and 1<q<3/2 if p’=3/2 such that
the tensor field

P*= wg [P+ s+ (Lw)*"] (41)

satisfies Egs. (10), (12).

(ii) If the metric @, admits a conformal Killing vectog?
on M, corresponding to the conformal Killing data given in
Eqg. (40), then a vector field as specified above exists if
and only if the following condition holds,

Paka+Jasa+Aa+[PbLg(i)+Qa]qa=Kf ja£2dV,
M

(42)
where the constants®J,, A, and @' characterize the ten-
sor p*® as in Egs. (33}(37).

Proof Because of Eq(38) we can conside ,(p2°
+5%) as a function inLYM), 1<q<3/2. The equation

D,p3P=—«jP is equivalent to

Da[ P+ 5+ (Lgw) ™ =~k 1%9°, (43)
which can be written as

(Lgw)°=— kwg 1P D4(p3P+52P), (44)

where q_aw)azzf)b(ﬁaw)ab is an elliptic operator. Its kernel
consists of all conformal Killing vectorg?, of fqab, and so,
of q,p. Following [10], one can prove that the right hand
side of Eq.(44) is orthogonalin the sense given in EG39)]

data preserving the symmetry. Then, all the fields in the ini-
tial data set have this symmetry, and therefore the whole
space-time obtained from this initial data set will also have a
Killing vector &2, suitably extended outside the initial hyper-
surface. Conditior{42) reduces to

J= Kf jagldv, (45)
M

where J=+/J,J%. Equation(45) is just the standard Komar
integral. (See for exampl¢21].) This is consistent with the
interpretation that axially symmetric gravitational waves do
not carry angular momentum.

Notice that, with the assumptions we have made, we do
not even know ifw? is a continuous vector field. We start
with the final part of this subsection, namely, to show that
under a slightly stronger assumption on the differentiability
of j2 on' M, and on the metrig,, ati, the tensop?® given
by Eq. (41) satisfies Eq.(23). We have assumed thaf,,

e WHP(M). We now impose on the metric an extra condition
given in Eq.(9). Then, we have the following result:

Theorem 6. (Regularity on MAssume that the hypothesis
in theorem 5 holds. Assume that the metric satisfies Eq. (9).
If j2eL9(M), s?PeW9(M), where >3, then, v
e C%(M) and the tensor  satisfies gyp®”/y” e LA(M).

That w2e C*(M) is deduced from standard elliptic
regularity theorems. The second part is more difficult. The
problem is that £5w)? is not continuous ai, and so condi-
tions that involve products of tensors are difficult to prove.
Since the origin of the discontinuity indgw)? is the singular
behavior ofp2®, which we know explicitly, we proceed as
follows. We splitw? into a regular part ait (called w?® in the
proof) plus some divergent terms. These divergent terms are
explicitly computed in terms gp2° by an integration proce-
dure based on Meyers’ res(i2]. Finally we show that this
»? satisfies a linear elliptic equation with a source.f{B,)
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with q>3. Therefore it iSC*“ ati. Once this splitting near s
on w? is established, conditiofi23) is proved by explicit IZ 2 [In(r)]’ U(kl)
computation.

b
Proof. The sourcej®eL(M), while p*”, being smooth  Notice that the conformal factas, is smooth orM, then an
on M, belongs td_,(M). Therefore, standard e”'DUC regu- explicit computation implies thagp®® given by Eq.(41) sat-
larity theorems given in[12] imply w eroc(M) isfies EQ.(23). O
Cla(M) We present here the generalization of Meyers’ result, used
We now begin the proof of the second part of the theoremin the proof of theorem 6.
We work always with the rescaled metdg, and its corre- Lem3ma 1(Meyers’ potential forl ;) Consider the mani-

. . LA g fold (R*, 8,p), wWith 84y, the flat metric g, the metric connec-
sponding covariant derivativie, . We explicitly compute the tion, and let (L,V)3=a,d°Va+23,VP/3. Consider the
divergent terms ofv* ati. These terms are appropriate Mey- oo tion ° b ¥ =
ers’ potentials of the divergent terms presenlflqp'(‘k) . (See
lemma 1 below. .

Let B.CM be an open ball centered iabf geodesic ra- (L5V)a=rk‘22 [In(r)]'p?l)(n) (46)
diuse>0. Let us choose small enough such that the metric =0
has the form(31) in Riemann normal coordinates atand

the cut functiony is identically equal to 1 iB;. An explicit
computation shows

where/=0 is a fixed integer, r is the geodesic distance from

an arbitrary point pe R3, and ogﬂ)(n) is a C**(IR®) function
of ny=d,r, with K=0.

8 ) Then, there exists € 2%(R3) functions o\f(ﬁ)(n), with |
D;p Z F_ =0,...l+2, such that
- /42
. P o . . .
with ¢'=0(1) and smooth oB;\{i}, and continuous ait Va:rkgo [In(r)]'V?l)(n) (47)

The ;O)i(k) are functions ofi,. We adopt the convention that a
small circle over a quantity means that this quantity depends

Is a solution of Eq. (46).
smoothly onna, and does not depend on Proof. We look for solutions of Eq(46) of the form
Let V,, denote the Meyers potentials pf Ir®=b), for

each k=23, that is, vector f|elds V 1
(k) Vva=pa— = ga
=37 O[In(r)]'v(k,))/r(k %) defined onB_, with v(k|) appro- 4
priate functions ofna that can be explicitly computed in with
terms ofﬁi(k), and satisfying
/
Pl Iy =r*? 3, [In(r)]'pf(n)
(LsVi) =m. =0
: 003N = a8,
So, here is our decomposition of the vector fielg on B, a 2t
3 Lemma 4 in[22] implies that there exist€®*2*(R3) func-
=> Vig+o' tions v, with 1=0, ... /+1, such that
o _ _ /+1
iThe rest of the proof shows that is indeed differentiable at pe= rk;o [In(r)]'v‘a)(n)

Thuse' satisfies
satisfies the first equation above. Then, one can explicitly
computedv?, and again lemma 4 if22] implies that there

existsCK3<(R3) functlons)\(,), with | = ./ +2,such
that

3
(Lgo)'=—rag ' = 2, ([3Ve)'—¢'~Djs',

where €5Vg)'=(L5V()' — (L sV()'. One can check that
(LaV) =0(r & 2)). Therefore the termsL(;V(,)" with ke o
k= 2 3 belong ta_%M) with g>3. Standard elllptlc regu- = ,26 [In()I'Ay(n)
larity implies thatw' e W29(M)C CY*(M).

We have proved that the solutiom' e C1*(M) has the is a solution of the second equation above. Therefore, an
following expression irB;: explicit computation gives Eq47). O

/+2
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C. Local regularity where ) =k!/[I!(k—1)!] and we have introduced the no-
Consider a solutiord, p2° of Egs. (10)—(13). Assume  ation
now that the free data®®, 1 and j? are Q-piecewise and ©rv,L](u):=L(u)
tangentially smooth. In the first part of this subsection we
then prove that the fieldg and p2® are()-piecewise smooth WLV, L](u)=[V,L](u)

(theorem 7. This proof is based on standard elliptic regular-

ity theorems. In the second part of this subsection we prove =V(L(W)=LV(u)

that these fields are al$d-tangentially smooth. This result is 4+Dpy, L(u) =[V, O[V,LT)(u).
split into two parts; first for linear elliptic systenfiemma 3, ' ’ '
and then for Eqs(10)—(13) (theorem 8. Notice that, for alll=0, the operatof’)[V,L] is a second

Theorem 7(()-piecewise smooff.et both ¢, and $°be  order operator with smooth coefficients Bh Assume now
in C*(M). Let 9 and p*® be solutions of Egs. (16Y13)  that VX (f) e LP(Q'), and V) (u) e W2P(Q'), for all O<I
given by theorem 4 and theorem 5. If the source funcfions <k—1. If we write the identity(48) as
and j? are () -piecewise smooth then so afieand [°. Kk

Proof. By the assumptiom,,e C*(M) we have that the L(V(k)(u))zv(k)(f)—z ( ) Orv, L1vED(u))
two elliptic operatord., andL 4 have smooth coefficients in =1l
M. Applying the standard interior elliptic regularity to the
domainsQ and M\Q) we obtain that ifj? is Q-piecewise then all the terms in the right-hand side belong Q).
smooth thenw? is also Q-piecewise smooth. Becaugd®  Then the elliptic regularity theorems imply that® (u)

e Cab ey ab eW?P(Q'), p>1. The caséii) is similar. O
SE)—C[:)ie(cli/(lai\,/isaengm?))(/)tr?ssumpuors € C*(M), then p™ is Theorem 8(()-tangentially smoothAssume the hypoth-

: P ; i heorem 7. if. and j* are Q-tangentially smooth
In the case of we note first that by the elliptic regularity €S'S ON _ | ar€
y is smooth inM. Consider now Eq(22) for 9. Denote by then so are the fieldg and " which solve Eqgs. (16(13).

f(x,9) the right-hand side of this equation. By the assump- Froof Fix ', to be any open set il such thah C Q.

u a A : .
tion on7% and the previous argument regarding, we have Let V® be the tangent vector fieM$,, defined in Sec. Il A.

. D . e Since Eq. (44) is linear, lemma 2 implies thatv? is
that the functiorf (x, ¢) satisfies the following property: ift Q-tangentially smooth.

belongs taC**(Q2) [or to C>“(M\()], then the composition Equation(22) is semilinear. However, there exists a solu-
f(x,9(x)) defines a function that belongs @*(2) [orto  tion e W29(Q") for q>3. Therefore,§ e C1*(Q'). This
CS*(M\Q), respectively. By theorem 4 we know that the is the subtle step. Becausg¢e C1*(Q'), it implies that
solution & € CH*(M). [The argument works also witlt  V(f[x,9(x)]) e LYQ"), for g>3. The reason is that when
e C%(M).] Then we make an iteration, applying the elliptic we computeV(f), terms appear of the form “function in

— p I\” 4 “ ” H
regularity for the domain§) and M\Q) in each step, to ob- LE(Q)" times *V(#)." It & was only continuous, then

; ) . . these terms would not be, in general, if(Q’). Then
tain thatd is )-piecewise smooth. Therefore, sods O lemma 2 implies thatv( ) « W29(Q')C CL%(Q"). Thus

! a 5 !
LetQCQ’, andV*® be a smooth vector field ai}’. Letu V(9) e CH(Q'). ThenVA(f[x, §(x)])/ € LYQ") and we

be any tensor field orM. Denote V(O(u):=u, VI)(u) - U02) Legy! : - i
:=V2D,u, andV®(u):=VaD, [V D(u)], for k=1. In or- glilt:ilganO”(Oﬁv\)ISe C%(Q"). Iterating this argument, the Eon
der to prove tangential regularity we prove first the following '

(49

lemma.
Lemma 2. Let L be a linear elliptic operator of second IV. FURTHER REQUIREMENTS
order on some open, bounded §BtC M with smooth coef- A. Energy condition

ficients. Let \# be a smooth vector field on af1's, with In order to understand the origin of this discussion on

Q2CQ’. Let ue W2P(Q'), with p>1, be a tensor field on  energy conditions it is useful to compare the usual procedure
Q' solution of the elliptic equation()=f. Letk=0,be an o find solutions of the constraint equations with matter
Integer. sources. In that procedure, one rescales both the energy den-

f (k) ’ 9] 2, ’ ~ ~
gi))lrf\\//(k)((ff))e ng?ﬂ),) tTﬁgn\;\;k()l(Ja)E V‘éz"g(%?) sity u as well the momentum current density. The res-
° ; ° : caledj?=6"1%2 s fixed from the requirement that the mo-

Proof. The proof is by induction ok. Consider parfi) of . . :
the lemma. The cask=0 is the standard interior elliptic mentum constraint be independent @fwhile the rescaled

regularity. Seg12] for second order elliptic equations and #=0~°u is chosen such thgt u=j/u, where we have in-
[23—29 for systems. Assume now thé is true fork—1.  troduced] =00 %) °, and j:=\/0apj3j°. Therefore, if the
Consider now the following identity energy condition is satisfied by the rescaled figftlsind .,

with respect to the unphysical metric, then the physical fields
72 and u do satisfy the energy condition. That is the usual
procedure. Here we cannot rescale the energy density, be-

K[k
VOLW)=2, ( | ) Ov.LIvE D), 9
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cause we need the extra condition that the physical enerdihere uo(j) :=pol2+ \ p2la+72.

density be constant at the border of its support.
We show here that the lower bound fargiven in(iii) in

PHYSICAL REVIEW D 65 084020

Our result is:
Theorem 9. Let (p) be a Cl state function such that (i)
p(p)=0 for p=py>0; (i) p(pg)=0; (iii)) 0<adp/dp<l.

theorem 2 is sufficient to guarantee that the physical matteFhen, the maghb:D—1 is a diffeomorphism.

fields satisfy the dominant energy condition. The idea is this:

Initial data withj2=0 andy satisfy trivially the energy con-
dition. Therefore the same applies for arbitrary smalon-
dition (iii) is just a rough bound on the smallness jaat
also guarantees the energy condition. {et=ming(vy), with
v the Green function solution of Eq$20),(21). Then we
have the following:

Lemma 3. Let M, M@y, &, and ° be as in theorem 4.
Let ¢ be the corresponding solution of Egs. (11), (13). Let
and j2 have support if2 and in C(Q). If j<pg(y_)® then
the fields qp= 6%qap, ] =692, and u satisfy j< .

Proof. Sinced is positive (see theorem)3 #=y on M.
Then we have

T=07%<(y-) 8j<po=n.

B. Inversion of Egs. (5),(6)

We show here that Eq95),(6) are invertible; that is,

given the functionge, ]2 there exists unique functions v?
satisfying these equations. In other words,

literature.
The main difficulty is that the map defined by E¢5),(6)

is nonlinear. Furthermore, it contains an unknown function,

the fluid
4-momentum density as seen by an arbitrary observer deter-=
mines the fluid comoving 4-momentum density. It turns out
that the proof is not obvious and we did not find it in the _

Proof. First we prove thatb is bijective.

Surjectivity The essential tool is Brouwer’s fixed-point
theorem. (See for exampld16].) Equations(50),(51) are
equivalent to

p=n—]ov (55

~ T p+pv?

b= Jppfs. (56)
M

Fix a point (x,]) e |. Consider the mafp given by

J x+p(x)y?

(n=Ty), =~ X p(x)

F(x,y):=

Introduce the compact convex $@t=[ po,]x[0,1]CR2.

We claim that F:C—C. We write F(X,y)
=[F1(x,y),F2(x,y)]. Then, by definition ofl, T/ﬁ<1 and
so, for all (x,y) e D, we have B=F,(x,y)<<1.We now show
that, for all x,y) €D, po<F(X,y)<u. The assumptlon 0
<y<1lmmw5u—JSu—Jy<u But po=<uo(])—j<mu

j. Thereforepo<u—jy<u
The mapF is also contmuous. Therefore, by Brouwer’s
fixed-point theorem, there exists a fixed poiRt(x,y)
=xy).

Notice thatj < uq(j)=<pu implies that there exists no fixed

the state function, subject to minimally restrictive properties point of the form &,1). Therefore, we conclude that, given a

Sincev? and]? are parallel, these equations reduce to

~ ptpv

ST %0
~ (ptp

== (51)

with T=V].j® andv= Vv 02 We define the maph be-

tween subsets dk? as

~_ [p+pv? (p+p)v
d(po)=| " E P
(pv) ( 1-v?2 1-v?

(52

Equations (50),(51) can be rewritten as(,])=®(p,v).
Given a positive constaniy we define the following two
subsets of}?

0<v<1}

D:={(p,v) e R%po=p, (53)

li={(n,]) e R%uo()=<p, O<]}, (54

point (u,]) e, there exists a pointp(v) € D which solves
Egs.(50),(51).
Injectivity: Consider Eqs(50),(51), written as

R=p+T0

T:(p+p)5
1-7p?2

Assume that there exist two pointp,(v;) and (p,,05)
which are solutions of these above equations for the same

value of (u,]). If v;=0 then the second equation above
implieST=O, and sa)~2=0, which in turn impliesp;=p,. If

v1=0, then the first equation below impligg = p,.

Assume now thab;#0, v,#0, andv;#v,. Then

(p2—p1)+](v2—01)=0

2 N2
(p2—p1)(1— v2>—1{1 “(2 1 (”1)1,

U2 U1
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wherevzz(ap/ap)|p, , with p’ €[ p1,p»] and we have used study in detail the Einstein-Euler system given[if], with
the mean value theorem f@i(p). Then the above equations the hope that particular features of this system allow enough

and the assumptions an andv, imply decrease in the differentiability threshold on the initial data
to include the data given here. A second way is to set up two
%0 ,0,=1. initial boundary value formulations, one for the interior of

the body and one for the exterior, and then match both, in an
But by assumption?<1, so that we have a contradiction. appropriate way, at the boundary of the bagge[30] and
Therefore, injectivity follows. [31])). It is far from being clear if either of these alternatives
It remains to be proven thdt and® ~! are differentiable.  works.
By direct computation and the assumptionspgp) one can

check that the deriva}tive map af i§ invertible at eaph point ACKNOWLEDGMENTS
of D. Then, by the inverse function theored, ! is also
differentiable. O We wish to thank Helmut Friedrich for suggesting this

Notice that the proof fails ifo=0 because the derivative problem, Robert Beig and Marc Mars for nice discussions,
of ® is not invertible at this point. This will be the case for and Alan Rendall, Oscar Reula, Bernd Schmidt and Jeffrey
an equation of state of the forp=ap?, wherea andy are ~ Winicour for reading the manuscript and suggesting several
constants. On the other hand, in this work we are interestetinprovements. G.N. was supported in part by a grant from
in equations of state of liquid-type, i.e., such that the presRegion Center, France. G.N. also thanks the friendly hospi-
sure vanishes for a positive value of the density at the borddality of the Relativity Group at The Enrico Fermi Institute,
of the fluid. For examplep=a[(p/p,)?—1]. For suitable at The University of Chicago, where part of this work was
constantsa and p, this equation describes watéBee[26].)  done.

V. DISCUSSION APPENDIX

The principal interest in the initial data given here is to We discuss here the bound on the physical energy density
use them to set up an initial value formulation. This formu-given by Eq.(24) in theorem 3. In the first subsection, we
lation should be able to describe isolated, nearly static fluidhow an inequality that is true for all maximal, asymptoti-
bodies. That is why we have concentrated on finding liquid-cally flat initial data with matter sources. This inequality is
type data and, inside this class, the smoothest possible datimilar to Eq.(24) in the sense that it relates the same quan-
i.e., the simplest to evolve. We have shown here that thestities, but only theL'(2) norm of the energy density ap-
data are not simple to obtain. pears. In the second subsection we show that(&4). is in

The discontinuity of the fluid energy density at the bound-fact a restriction, that is, there exist solutions of the con-
ary of its support and extra constraints at that bounfiseg  straint equations which do not satisfy it. Nevertheless we
Eq. (7)] were the main difficulties. One main idea was to notgive arguments to show that physical systems like neutron
rescale the fluid energy density and so, being free data, trivistars do satisfy the bour(@4).
ally solve the extra constraint E¢7) (while also requiring
that the fluid 3-velocity vanish at the body boundarihis
unconventional rescaling of the fluid fields introduces diffi-
culties in the task of finding solutions to the Hamiltonian ~ Consider the following result.
constraint. These difficulties were solved in theorem 3. Lemma 4. Let M, Mand q,, be as in Sec. IIB. Let}}
Smoothest liquid-type data are almost-smooth, i.e., smoothnd 6 be any solution of Egs. (18§13) with p,2=0. Fix a

except in the normal direction to the body boundary. Thepoim pe M, and denote by Ban open ball centered at p, of

main Step in estab”shing th|S reSUIt iS Iemma 2. The rest i%eodesic radius_rThen, for Sufﬁcient'y Sma"', we have
standard elliptic regularity.

We have shown that at the body boundary, the first fun- _ 45 24r
damental form is only itW33(M), g>3. This differentiabil- leslliae,y= 55 (y ) (A1)
ity is below the threshold required by the known existence v-
theorems on symmetric hyperbolic equations to prove exis-

tence of solutions associated with such data. Theorems i§1€re-:=infgs v, wherey is defined in Eq. (20).

1. An inequality

Sec. 5.1 in[27] require initial data inWS%(Q'), with s Proof. Consider any solutio® of Eq. (11) on M. Then,
>5/2, whereQ’' CR® is open and boundedSee[28] for a

related improvement of this result and al&9] for a discus- o L(6)

sion on the possible future development of the subjéwt: U< — d (A2)

bedding theorems imply thats>%(Q’)CW?P(Q'), with p 4 6°

>3, but not the other way around. Therefore, data in

W?2P(Q') is not enough for the known theorems to guarantedntroduced as in Sec. lll A, that isf=y+ &. We param-

existence of solutions. etrize all possible solutions, instead of By by a function
We guess two possible ways to set up an initial valuesr:=L4(%). Denoting bngl(o)(x)z—(1/447)chr(y)y(x

formulation for these liquid-type bodies. The first one is to—y)dV(y), then the inequality above translates into
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Ko o Using Eq.(A5) one can check that, and hence,y,, is aC*
Z,u$ - ﬁ function in R3. There are two free parameters; for example
[y+Lq (o] we can takenandry, m being the total mass of the data.

The metricq,y, for r=r, is the Schwarzschild metric in iso-

The Green function has the form(x—y)=1/x—y|+g, tropic coordinates and far<r, is the standard metric o®®

whereg=0 on B, . (See[32,33.) The inequality y(x—y)

=1/(2r), that is true for alix,y < B, , implies thatl; (o) of radiusa®2 The Ricci scalar of the metrig,y, is given by
2||0'|||_1(Br)/(877r), and this, in turn, implies 0 it r>r,
R={6 (AB)
K~ ||0'||L1(Br) — if r=<ry,
Z||,U-|||_1(B,)S 5 a
[y—+lloll s,y /(87r)] . L
r and the physical energy density is

The last step of the proof is to maximize the right-hand side 0 if  r>rg,
of the inequality above with respect to all possible functions ~ 3
o. The maximum value is taken f4or] 1g =271y, and m= 6mry it r<r,. (A7)
the inequality above gives E¢AL). | k(ro+m/2)8

We see that the energy densityhas support in a closed balll
of radiusrg. In order to make contact with the assumptions

In this subsection we explicitly construct an initial data jy theorem 3 we write this initial data as follows. Using the
set for a static, spherically symmetric, liquid-type body. Weyyell known relation

match, in appropriate coordinates and inCt way, a

3-sphere endowed with its standard metric, with a 40

3-dimensional Schwarzschild slice. The reason for redoing Y Oab=ab, VY=

this known constructiorisee[34]) is twofold. First, this ex-

ample, for suitable choices of the parameters, violates thge obtain

bound(24). Second, we want to answer the following ques- N A

tion: What kind of physical systems satisfy the boug2d)? Qap=0"ad,, 6=07.

We show that the answer turns out to @& least for this

example stars with radiufR=1.08R,, whereR;=2m is the ~ For convenience, we have chosen a different normalization

Schwarzschild radius anu is the total mass. Note that this for the Green functiory than Egs(20) and(21), in order to

bound is below tiR=ZRg, which is the necessary condition fix g3, to be exactly the unit radius standard metricS3f

for hydrostatic equilibrium in general relativitygee for ex-  This difference in the normalization will, of course, play no

ample[21]); then this bound is expected to be satisfied forrole in what follows.

every star near equilibrium. We want to prove that for some choices of the free pa-
Let M =S®, the conformal metrig?, be the standard met- rameters , andm, these initial data violate the bound 24. In

ric, unit radius, ofS%, the pointi be the North Pole 08°, and ~ order to do that we calculate explicitly the right- and left-

2. Static spherical body

1/2

ra4r2
- (A8)

2rq

the domainQ) be a ball centered at the South PoleS3f hand side of Eq(24). Sincex is constant we have
Let &,, be the flat metric, and be the corresponding ~ ~
spherical radius. Consider the following initial data set: 12| L2y = m[ Vol qo( Q) ]2, (A9)
Qap=0"8.,, PP=0. (A3)  where Volo(1) denotes the volume with respect to the met-
ric q2,. From Eq.(A8) we have
The conformal facto® is given by ri+ rg 12
(e (A10)
m 1
1+ — if r=rg, . s .
R 2r SinceC,=0 in this example, using Eq§A9) and(A10) we
0= 2 12 (A4)  obtain that inequality 24 is equivalent to
Va4 if r<ry, 4
ra+r 112 m
[Volqo(Q) 7 <pB| 1+ o) (A11)
0
where the positive constant ry, ry, and m, satisfy the 5 5 .
following relations: where B=4°/(3X5 k)?0.77 (the constantk, Whl(_:h_ de-
pends only onS® and Oap. Can be calculated explicitly for
2r3 (Fo+m/2)8 this casek=/2). Note that Volo((2) depends only on the
ri=—, a=————. A5 imensionless parameteny/(2ry). For my/(2rg)=0 we
2 5 di ionl /(2ry). F 1(2ry)=0
m 2mry have that Valo(Q2) = Volqo(S®) = 272> 82, then there exist

084020-14



INITIAL DATA FOR FLUID BODIES IN GENERAL . .. PHYSICAL REVIEW D 65 084020

values ofmg/(2ry) such that the bound 24 is not satisfied. Since the exterior metric is the Schwarzschild metric with
We use that qu((l)sVolqo(S3) for arbitrarymg/(2ry), to  massm we can write this condition in terms of the physical
obtain a sufficient condition in order to satisfy Hé11) radial area coordinat® to obtain

m/(2r)=1.75. (A12) R=2.16m. (A13)
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