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Initial data for fluid bodies in general relativity
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We show that there exist asymptotically flat almost-smooth initial data for the Einstein–perfect-fluid equa-
tion that represent an isolated liquid-type body. By liquid-type body we mean that the fluid energy density has
compact support and takes a strictly positive constant value at its boundary. By almost-smooth we mean that all
initial data fields are smooth everywhere on the initial hypersurface except at the body boundary, where
tangential derivatives of any order are continuous at that boundary.

DOI: 10.1103/PhysRevD.65.084020 PACS number~s!: 04.20.Ex, 02.30.Jr, 04.40.Nr
al
a-
id
it
m
y
try
ib
-

r
th
ur
we
lu
n
ou
de
d
id
n
to
tia
rs
a-

ls
wn

la

e
id
te
in

of

ns
n is

uid
ic.
tar,

id
ce
s
m
’s.

st
s
ll-
m-
ons
tic

nd,

is
oth
sure

ibes
les
In

em

ect
e

er
ish
f the
the

call

pri-
e

I. INTRODUCTION

A description by an initial value formulation in gener
relativity of a self-gravitating ideal body in a general situ
tion is still missing. By an ideal body we mean a perfect flu
where the thermodynamical variables and the fluid veloc
have spatially compact support. Examples are, within so
approximation, a star, a neutron star, or a fluid planet. B
general situation we mean first a body without symme
because spherically symmetric bodies are already descr
whether static@1# or in radial motion@2#, and second a situ
ation including nearly static objects.

The lack of this type of description is remarkable. Sta
are common objects in the universe, and a perfect fluid is
simplest matter model for them. General relativity is the c
rently accepted theory of gravitation to describe stars, as
as planets, white dwarfs, and neutron stars. An initial va
formulation will be a useful tool to predict the time evolutio
of such objects as predicted by Einstein’s equation, with
any approximation other than the choice of the matter mo

The main difficulty is to find a solution in a neighborhoo
of the timelike hypersurface corresponding to the flu
vacuum interface, where the Einstein-Euler equation tra
forms into Einstein’s vacuum equation. It is known how
describe regions not including this interface, since an ini
value formulation for Einstein’s vacuum equation was fi
given in @3#, and for the Einstein-Euler equation with nonv
nishing energy density everywhere, in@4#. The problem at
the interface is inherent in the fluid equations and it is a
present in a Newtonian description. A summary of kno
results on free boundary problems is given in Sec. 2.5 in@5#,
in the context of Newton’s theory as well as of general re
tivity.

A first step to set up an initial value formulation for th
Einstein-Euler equation in a neighborhood of the flu
vacuum interface requires finding, from the complete sys
of equations, a symmetric hyperbolic system that rema
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symmetric hyperbolic even at that interface. A first system
this type was found in@6# for a certain class of fluid state
functions. However, spherically symmetric static situatio
cannot be described by these state functions. The reaso
that every solution found in that reference satisfies the fl
particles at the body boundary following a timelike geodes
But this is not the case for a spherically symmetric static s
as the following argument, already given in@6#, shows. Con-
sider a static spherically symmetric stellar model. The flu
4-velocity must be proportional to the timelike, hypersurfa
orthogonal Killing vector. The proportionality factor find
that the 4-velocity is a unitary vector field. In the vacuu
region the space-time must coincide with Schwarzschild
At the star boundary the timelike Killing vector field mu
coincide with the timelike Killing vector in Schwarzschild’
space-time. However, the 4-velocity obtained with this Ki
ing vector field is not geodesic. Therefore, spherically sy
metric stellar models are not included among the soluti
given in @6# and so one does not expect that nearly sta
stellar models can be described with these solutions.

A second system of the type mentioned above was fou
for a general class of state functions, in@7#. However, the
initial value formulation that describes nearly static objects
still missing. Fix some smooth state function such that b
the energy density and the sound velocity vanish at pres
zero, and then consider the system given in@7# for that fluid.
Assume that there exists a smooth solution that descr
such a fluid body. Then, one can check that the fluid partic
at the boundary of the body follow timelike geodesics.
other words, smooth perfect fluid solutions of the syst
given in @7# cannot describe nearly static situations.

Therefore, a first attempt to describe nearly static perf
fluid bodies by an initial value formulation would be that th
fluid state function satisfies the following condition: Neith
the fluid energy density nor the sound velocity must van
when the pressure vanishes. Because at the boundary o
body the pressure vanishes, we are then requiring that
border of the body have nonzero energy density. We
them ‘‘liquid-type’’ bodies, and ‘‘liquid-type’’ state func-
tions. Therefore, it is natural to study what are the appro
ate initial data for a liquid-type body. It turns out that th
©2002 The American Physical Society20-1
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SERGIO DAIN AND GABRIEL NAGY PHYSICAL REVIEW D 65 084020
answer to this question was not known; it is subtle, and is
subject of this work.

Fix once and for all a simple perfect fluid, that is a perfe
fluid with one-dimensional manifold of fluid states; for e
ample, one with a state function of the formp(r), wherep is
the fluid pressure andr the fluid comoving energy density
Assume that this state function is smooth and of liquid-ty
By liquid-type ideal body initial data we mean a thre
dimensional initial hypersurface, its first and second fun
mental forms, and the fluid initial 3-velocity and comovin
energy density. The first two fields must be asymptotica
flat, the last two must have compact support, the suppor
the fluid velocity must be included in the support of t
energy density, and all of them must be a solution of
constraint equations, and satisfy some energy condition
addition, there exists an extra constraint on the initial flu
fields: The fluid comoving energy density must bestrictly
positive and constantat the border of its support. Consta
because the simple perfect fluid state function implies t
there exists only one single value of the fluid comoving e
ergy density such that the pressure vanishes, and this is
value of the energy density at the border of the body. No
that only the energy density as measured by a fluid comov
observer must be constant. This extra condition only ar
for liquid-type fluids, because it is trivially satisfied in th
case where the fluid comoving energy density vanishes a
border of the body.@See Eqs.~5!,~6!.# Also notice that this
data must have aC1 first fundamental form, that is, with a
least one continuous derivative everywhere; if not, Dira
delta appears in the fluid energy density.

Initial data of this type was not known in the literatur
The only result on solutions of the constraint equations w
discontinuous matter sources andC1 first fundamental form
@8# does not guarantee that the fluid comoving energy den
be constant at the border of the body. Here is why. T
solutions with discontinuous matter sources are found by
usual conformal rescaling that also rescales the ma
sources. Then, the initial physical energy density@the energy
density as measured by an observer at rest with the in
surface, functionm̃ in Eq. ~5!# is the product of the initial
unphysical energy density~free data! times the conformal
factor at power minus eight. We do not know any proced
to choose the free initial data such that the solutions give
@8# guarantee both that the fluid comoving energy den
@function r in Eq. ~5!# be constant at the border of the bod
and the conformal factor beC1, simultaneously. We should
mention that there are also found in@8# solutions of the con-
straints without rescaling the energy density, but, in this ca
only continuousenergy densities are considered; that is, th
vanish at the border of the body.

Here, we conformally rescale all the fields except the i
tial physical energy density, which is now free data, giv
positive and constant at the boundary of the body. We imp
that the fluid 3-velocity vanishes at the body boundary. Th
two conditions imply that the fluid comoving energy dens
is positive and constant at the body boundary.@See Eq.~7!.#
The subtle part now is to solve, with the initial physic
energy density as free data, the equation for the confor
factor. This is a semilinear elliptic equation, with the no
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linear term given by a discontinuous function~the initial
physical energy density! times the unknown~the conformal
factor! at the power plus five. In other words, a nondecre
ing function of the unknown, times a discontinuous giv
function ~in contrast with@8# where this function is continu-
ous!. We introduce a compact manifold, and we prove ex
tence of aC1 conformal factor, based on Schauder’s fixe
point theorem. The proof follows the ideas given in
Appendix of @9#, and in @10#. There is only one~technical!
requirement on the initial physical energy density:
L2-norm, computed with the unphysical metric, must not e
ceed some given upper bound. We show in the appendix
although this condition excludes possible initial data, it
mild enough to include interesting physical situations, su
as neutron stars.

We also give a statement on the regularity of these d
They cannot be smooth, because the liquid-type energy d
sity is, by definition, a discontinuous function of the spa
variables. How regular can it be? The smoothest liquid-ty
body is almost-smooth; that is, smooth everywhere excep
the body boundary, where tangential derivatives~appropri-
ately defined! of any order are continuous. In other word
we prove the following: If the unphysical metric is a smoo
field on the initial hypersurface, and the fluid free initial da
are smooth up to the body boundary with every derivat
tangential to the boundary continuous through that bound
then the same holds for all the initial data fields. A cruc
requirement to prove this statement is that the conform
factor beC1 on a neighborhood of the body boundary.~See
Sec. III C.!

Summarizing, we prove thatalmost-smooth initial data
representing liquid-type simple perfect fluid bodies can
obtained as solutions of the constraint equations, in the c
where the fluid 3-velocity vanishes at the body-bounda
through a suitable modification of the usual conformal re
caling techniques.

Finally, some technical remarks:~i! We rescale the initial
fluid momentum density but not the initial fluid energy de
sity, in order to solve the constraint equations. Therefore,
have to choose the rescaled momentum density sm
enough, in the sense given in Sec. IV A, in order to ha
physical data satisfying the dominant energy condition.~ii !
We impose that the fluid 3-velocity vanish at the bo
boundary. There is no physical justification for this assum
tion, it is made because it is the only way we know, with t
rescaling of the initial data field that we have chosen,
guarantee that the fluid comoving physical energy density
constant at the body boundary.@See Eq.~7!.# We give an
interpretation of this condition in Sec. II B.~iii ! Besides the
conformal rescaling to solve the constraint equations we p
form a conformal compactification in order to solve ellipt
equations on some unphysical compact manifo
Asymptotic decay properties of fields in the physical init
hypersurface are translated into differentiability properties
these fields at a particular point in the unphysical comp
manifold. These differentiability properties at the point
infinity are completely independent of the differentiability
the fields near the body boundary.

In Sec. II we introduce the main definitions we need
0-2
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INITIAL DATA FOR FLUID BODIES IN GENERAL . . . PHYSICAL REVIEW D 65 084020
order to present the principal result, theorems 1 and 2.
also give a proof based on results obtained in Secs. III
IV. In Secs. III A and III B we give the main existence proo
for the semilinear and linear elliptic equation associated w
the Hamiltonian and momentum constraint, respectively
Sec. III C we prove the regularity statements, theorems 7
8. In Sec. IV A we explain why this discussion on an ener
condition appears, and we give a simple condition on the
data such that the physical initial data satisfies the domin
energy condition. The constraint equations are naturally w
ten in terms of the initial fluid energy density and the init
fluid momentum density. Equations~5!,~6! relate them to the
fluid pressure, comoving energy density, and 3-velocity.
Sec. IV B, we prove that these equations are invertible
Sec. V, we comment on the initial value formulation f
liquid-type ideal bodies. In theorem 3 we need to assume
the fluid initial energy density satisfies an inequality@Eq.
~24!# involving both the unphysical manifold and the u
physical rescaled metric. In the Appendix, we study this
equality. In Sec. 1, we show~lemma 4! that a similar~but
weaker! inequality holds for every initial data. By an explic
example, in Sec. 2, we prove that the inequality required
the existence theorems is in fact a restriction on the allow
initial data. This example also suggests that this restrictio
mild, in the sense that interesting physical systems, like n
tron stars, satisfy it.

II. DEFINITIONS AND MAIN RESULT

A. Liquid-type ideal body data

We first introduce what we mean by initial data for
liquid-type ideal body. Afterwards, we split the concept
almost-smooth into two pieces. Given a field and an op
bounded setV on some manifold, we introduce the conce
of an V-piecewise smooth andV-tangentially smooth field.
Finally, in the next subsection, we present our main resu

Consider an initial data set for Einstein’s equation w
matter. That is, consider a 3-dimensional, smooth, conne
manifoldM̃ , a positive definite metric,q̃ab , and a symmetric
tensor field,p̃ab, on M̃ , together with a vector field,j̃ a, and
a positive scalar function,m̃, subject to the conditionj̃ a j̃ a

<m̃2, and solution onM̃ of

D̃ap̃ab2D̃bp̃a
a52k j̃ b, ~1!

R̃1~ p̃a
a!22 p̃abp̃

ab52km̃, ~2!

whereD̃a andR̃ are the Levi-Civita connection and the Ric
scalar associated withq̃ab , and k58p. Indices on tensors
with ‘‘tilde’’ are raised and lowered withq̃ab and q̃ab , re-
spectively, whereq̃acq̃

cb5da
b. Latin lettersa, b, c, rep-

resent abstract indices. The fields solving Eqs.~1!,~2! have a
meaning as part of a 4-dimensional space-time solution
Einstein’s equation with matter sources. The manifoldM̃
represents a three-dimensional spacelike hypersurface
that q̃ab and p̃ab are their first and second fundamen
forms. This hypersurface will be a maximal slice if and on
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a50. The fieldsm̃ and j̃ a represent the normal-norma

and the~negative! normal-parallel components toM̃ of the
stress-energy tensor. The dominant energy condition on
stress-energy tensor in the space-time impliesj̃ a j̃ a<m̃2 on
M̃ . This condition is the reason why one does not, in gene
pick any q̃ab and p̃ab and thendefine j˜a and m̃ by Eqs.
~1!,~2!. Because if one does that, the resulting fields form
initial data set iff the energy condition is satisfied by thesej̃ a

and m̃. It is an open question whether there exists a pro
dure to find appropriateq̃ab and p̃ab besides the conforma
rescaling one.

The initial data set is asymptotically flat if the compl
ment of a compact set inM̃ can be mapped by a coordina
systemx̃ j diffeomorphically onto the complement of a close
ball in R3 such that we have in these coordinates

q̃i j 5~112m/ r̃ !d i j 1O~ r̃ 22!, ~3!

p̃i j 5O~ r̃ 22!, ~4!

asr̃ªAd i j x̃
i x̃ j→`, wherem is a constant that represents th

ADM mass of the data. Latin lettersi , j , k, denote co-
ordinates indices and take values 1, 2, 3, whiled i j
5diag(1,1,1).

Fix as the matter source a simple perfect fluid. That
first, introduce onM̃ a non-negative scalar fieldr, inter-
preted as the fluid comoving energy density, a vector fi

ṽa, interpreted as the fluid initial 3-velocity, and fix a fun
tion p(r), the state function, interpreted as the fluid press
as a function of the comoving energy density. Second, in
duce onM̃ the equations

m̃5
r1pṽ2

12 ṽ2
, ~5!

j̃ b5
~r1p!ṽa

12 ṽ2
, ~6!

with ṽ25 ṽaṽa,1. In the space-time solution of Einstein
equation with matter sources, the normal-normal and
~negative! normal-parallel components toM̃ of the usual per-
fect fluid stress-energy tensor are precisely the left hand
of Eqs. ~5!,~6!, respectively. If ua denotes the unit fluid
4-velocity, andna the unit normal to the initial hypersurface

thenua5(na1 ṽa)/A12 ṽ2. For this matter model the domi
nant energy condition is equivalent tor>p. In addition one
can prove thatr>p implies j̃ a j̃ a,m̃2. The sketch of the
proof is the following: from Eqs.~5!,~6! define f (r,ṽ)

ªA j̃ a j̃ a/m̃. Notice thatf (r,0)50, andf (r,1)51. One can
prove thatr>p implies] f /] ṽ.0, for 0< ṽ,1; then, it fol-
lows that f ,1 for 0< ṽ,1.

Consider a liquid-type ideal body data set. That is,
asymptotically flat initial data with a simple perfect flui
0-3
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SERGIO DAIN AND GABRIEL NAGY PHYSICAL REVIEW D 65 084020
whose state function is of liquid-type, and both the flu
3-velocity and the comoving energy density have the sa

compact support,V̄,M̃ . By a liquid-type state function we
mean a non-negative, nondecreasing, smooth functionp(r)
that vanishes atr0.0. As an example consider a big wat
drop ~in order to neglect surface tension effects!, or a fluid
planet, or a neutron star. The support of the energy den
represents the place occupied by the body. The value of
comoving energy density at the border is determined by
function of state as the value where the pressure vanis
~Otherwise, the acceleration of fluid particles lying on th
border becomes infinite.! Therefore, a liquid-type ideal bod
satisfiesru]V5r0. Equations~5!,~6! translate this condition
for the comoving energy density into a constraint on
fields m̃ and j̃ a at ]V, where they are no longer free but the
must satisfy

@m̃~12 j̃ a j̃ a/m̃2!#u]V5r0 . ~7!

As a summary, we state the following.
Definition 1. A liquid-type ideal body initial data set con

sists of fields q˜
ab , p̃ab, ṽa, andr on M̃, and a state function

p(r), such that (i) q˜ ab is a Riemannian metric, p˜ ab is a
symmetric tensor, and both are asymptotically flat; (ii) p(r)
is liquid-type, and vanishes at r0.0; (iii)

supp(ṽa), supp(r)5V̄ compact; (iv)ru]V5r0; (v) these fields

are solutions of Eqs. (1), (2) and (5), (6) on M˜ .
Given an open setV8,R3, we denote byCs(V8) and

Cs,a(V8) the spaces ofs-times continuously and Ho¨lder
continuously differentiable functions, respectively, withs
>0 integer, and 0,a,1. We use the notationCa(V8)
5C0,a(V8). We also denote byLp(V8), Ws,p(V8), and
by L loc

p (V8), Wloc
s,p(V8) the Lebesgue and Sobolev spac

and the local Lebesgue and local Sobolev spaces, res
tively, where 1,p,`. We follow the definitions given in
@11,12#, and the generalizations for smooth manifolds,M 8,
given in @13#. Finally, we say that a tensor field onV8,M 8
belongs to one of the functional spaces mentioned abov
all its components, in some smooth atlas ofM 8, belong to
such a space.

It is convenient to split the concept of an almost-smo
field, presented in the Introduction, into the following tw
definitions. The first one is anV-piecewise smooth field
Consider a smooth manifoldM 8, a tensor fieldu on that
manifold, and a open setV,M 8, with compact closure. We
say that u is V-piecewise smooth, if u
PC`(V̄)ùC`(M 8\V). Note that this definition involves
conditions on the field both inV and its complement. An
example of anV-piecewise smooth but not smooth functio
is any f such that 0, f PC`(V̄) and f 50 on M 8\V̄. The
fluid energy density of a liquid-type body is such a functio

The second concept is anV-tangentially smooth field. Le
qab be a smooth, positive definite, metric onM 8. Assume
that]V is a smooth submanifold of codimension one. Letn̂a

be a normal vector to]V with respect toqab . Consider a
Gaussian normal foliation in a neighborhood of]V, that is, a
foliation orthogonal to the geodesics tangent ton̂a at every
08402
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point of ]V. Define n̂a outside]V to be tangent to these
geodesics. LetV]V

a be any smooth tangent vector field to th

foliation, i.e., any smooth vector field such thatV]V
a n̂a50.

We say that anV-piecewise smooth fieldu is V-tangentially
smooth if for allk>1 the tangential derivativesV]V

(k)(u) are
continuous, where V]V

(1)(u)ªV]V
a Dau, and V]V

(k)(u)
ªV]V

a Da@V]V
(k21)(u)#, for k>1. For example, choose th

field to be the energy density of a liquid-type ideal body, a
V the interior of its support. A necessary condition for th
field to beV-tangentially smooth is to be constant at]V.

B. Main result

The strategy is, first, to find fieldsq̃ab , p̃ab, j̃ a, andm̃, the
solution of Eqs.~1!,~2! with the desired properties. Confo
mal rescaling techniques are used in this part. We also in
duce a compact manifold where equations associated
Eqs. ~1!,~2! are solved with boundary conditions chosen
such a way that the decompactification of these soluti
gives asymptotically flat initial data. Then we prove that u
der specific assumptions on the state function, Eqs.~5!,~6!

can be inverted for allr>r0 and for ṽa with 0< ṽ,1.
Fix a 3-dimensional, orientable, connected, compa

smooth manifold. Fixi PM , andM̃ªM \$ i %. The choiceM

5S3, and soM̃5R3, describes, for example, ordinary star
A restriction of this type in the topology, however, plays n
role in what follows. LethabPC`(M ) be a Riemannian met
ric on M. Let xi be its associated Riemann normal coordin
system ati, andr the geodesic distance. Let\abPC`(M ) be
a symmetric tensor such that

xi\ i j 50. ~8!

Latin indicesi , j ,k denote tensor components on coordina
xi . Let qabPC`(M̃ ) be a Riemannian metric onM with
scalar curvatureR. Let Be be an open ball of geodesic radiu
e centered ati. Assume that there existse.0, such that the
metric qab on Be has the form

qi j 5hi j 1r 3\ i j ~9!

in the coordinatesxi . Since we have assumed Eq.~8!, these
coordinates are also normal coordinates of the metricqab .
The motivation for Eq.~9! is given in the remarks below
theorem 1.

Fix a non-negative scalar fieldm̃ and a vector fieldj a on
M with supp(j a),supp(m̃)5V̄, whereV is some open se
with compact closureV̄,M̃ , such that its boundary]V is a
smooth submanifold of codimension one. Introduce onM̃ the
fields u andpab, with pa

a50, solutions of

Dapab52k j b, ~10!

Lq~u!52
pabp

ab

8u7
2

k

4
m̃u5, ~11!
0-4
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INITIAL DATA FOR FLUID BODIES IN GENERAL . . . PHYSICAL REVIEW D 65 084020
whereLq(u)ªqabDaDbu2Ru/8, andDa is the Levi-Civita
connection associated toqab . Indices of ‘‘non-tilde’’ tensors
are raised and lowered withqab andqab , respectively, where
qacq

cb5da
b. Fix the boundary condition

pi j 5O~r 24!, ~12!

lim
r→0

ru51. ~13!

The main part of this work is to prove the existence o
solution to Eqs.~10!–~13!, and then to show that if the
source functionsm̃ and j a areV-piecewise and tangentiall
smooth, then so are the solutionspab and u. Once these
fieldsu andpab are known the initial data set is given by th
following conformal rescaling:

q̃ab5u4qab , p̃ab5u210pab, j̃ a5u210j a. ~14!

Notice that we do not rescale the energy densitym̃, but we
do rescale the momentum densityj̃ a. In this way we achieve
both thatm̃ be free data, and that the momentum constra
decouples the Hamiltonian constraint, respectively. One
check that ifu and pab are solutions of Eqs.~10!,~11! then
the rescaled fields in Eqs.~14! satisfy Eqs.~1!,~2!. One can
also check that the boundary conditions~12!,~13! on u and
pab imply that the rescaled initial data is asymptotically fla
~See@9,10#.!

Let g be the Green function of the operatorLq given in
Eq. ~11!, which is defined in Eqs.~20!,~21!. Our first main
theorem is concerned with the momentum constraint~10!,
~12!.

Theorem 1. Fix M, M˜ , V, and qab as above. Let sab be a

symmetric trace-free tensor in W1,q(M )ùC`(M̃ ), q.3.

Let p̄ab be given by Eq. (37). Assume that

(i) supp(j a),V̄,M̃ .
(ii) j aPLq(M ) and it is V-piecewise andV-tangentially

smooth.
(iii) Condition (42) is satisfied.
Then there exists a unique tensor pab given by the Eq.

(41) solution of Eqs. (10), (12). Moreover, pab is
V-piecewise andV-tangentially smooth and satisfies

pabp
ab/g7PL2~M !. ~15!

The existence part of this theorem is essentially the s
dard York splitting ~cf. @14#! adapted to our setting. It is
given in theorem 5, under a weaker hypothesis.sab is free
data related to the arbitrary amount of gravitational radiat
that can be added to the system keeping the matter sou
fixed. p̄ab contains the linear and angular momentum of
initial data, it can also be prescribed freely unless there
conformal symmetries. In this case it has to satisfy condit
~iii !, which is the corresponding Fredholm condition~see the
remark after theorem 5 for a physical interpretation!. The
regularity part of the theorem is proved in Sec. III C.

We have chosen the unphysical metric,qab , smooth on
M \$ i %. This is a reasonable physical assumption. Howeve
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also impose smoothness ati it is too restrictive. In this case
initial data for stationary space-times are ruled out~see@15#!.
The differentiability ati of the unphysical metric is relate
with decay at infinity of the associated physical metricq̃ab ,
imposing smoothness ati means a restriction in the fall of
which is, in particular, incompatible with the stationary s
lutions. In order to include these data, we have made
assumption~9!. Although the functionshi j and \ i j are
smooth, the metric belongs toC2,a(Be) but it does not be-
long to C3(Be). The data for stationary space-times ha
precisely this form~see@15#!. In order to prove the theorem
one certainly does not need smoothness ofhi j and\ i j , only
a finite number of derivatives. But the important point is th
in order to prove the last part, Eq.~15!, it is not enough to
require that, for example,qabPC2,a(M ). Equation~15! is
essential in order to prove our second theorem. We prove
~15! in theorem 6.

Proof. The metric given by Eq.~9! satisfies thatqab
PW4,p(M ), p.3/2. By assumptionj a and sab belong to
W1,q(M ). Therefore assumption~iii ! and theorem 5 imply
that there existspabPW1,q8(M ), 1,q8,3/2, given by Eq.
~41! which solves Eqs.~10!, ~12!. The hypothesis on the
metric given in Eq.~9! and theorem 6 imply Eq.~15!. As-
sumptions~i!, ~ii !, and theorems 7 and 8 imply thatpab is
V-piecewise smooth andV-tangentially smooth. m

In order to write the next theorem we need to define so
constants. SetCp5uupabp

ab/(8g7)uuL2(M ) , g15maxV̄g, g2

5minV̄(g), and j 15maxV̄Aj aj a . Let K, k, be the positive
constants defined in Sec. III A. They essentially depend
the metricqab and the manifoldM. Finally, let e0.0 be the
solution of the following equation:

e0 j 1g2
285

K

uVu1/2~g11ke0
2Cp!4

, ~16!

whereuVu is the volume ofV with respect to the metricqab .
There always exists a unique positive solution to Eq.~16!,
since fore0.0 the right-hand side of Eq.~16! is a positive,
decreasing function ofe0 which goes to zero at infinity.

Theorem 2. Assume that the hypothesis of theorem
holds. Let pab be the tensor field given in that theorem. A
sume that R.0. Fix a smooth liquid-type state function
p(r), with zero-pressure energy density,r0.0, compatible

with condition (iii). Assume that0,]p/]r,1. Let m̃ be
such that

(i) supp(m̃)5V̄. m̃u]V5r0, and jau]V50.

(ii) m̃ is V-piecewise andV-tangentially smooth.

(iii) For e,e0 , m̃ satisfies

e j 1g2
28,r0<m̃<

K

uVu1/2~g11ke2Cp!4
. ~17!

Then there exists a positive solutionuPC1,a(M̃ ) of Eqs.

(11), (13) with sources given bym̃ and epab, where0<e
,e0 and 0,a,1.
0-5
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Moreover, the initial data computed with q˜
ab5u4qab ,

p̃ab5u210epab, j̃ a5u210e j a, and m̃ is of liquid-type, as
stated in definition 1. They areV-piecewise smooth, an

V-tangentially smooth, q˜
abPC1,a(M̃ ), p̃abPCa(M̃ ). The

fluid 3-velocity,ṽa, vanishes at]V.
We use a nontypical conformal rescaling given in E

~14!. The positive outcome is that, in this way,m̃ is essen-
tially free data, and so we can choose it constant at]V. A
negative outcome is that thism̃ must satisfy the bound~17!.
The upper bound in Eq.~17! is related with the existence o
the solution, given in theorem 3. In the Appendix we gi
arguments to show that this bound is only technical, tha
there exist solutions which do not satisfy it. However, t
example presented there suggests that this bound will be
isfied for every realistic star. The lower bound in Eq.~17! is
related to the energy condition. It is a sufficient condition
the dominant energy condition to hold, see Sec. IV A.

A second negative outcome is that, in order to satisfy
liquid-type constraint~7!, we imposej au]V50; this implies

ṽau]V50. In order to understand the implications of this co
dition on the motion of the fluid, assume that we have
simple, liquid type, fluid solution of Einstein-Euler’s equ
tion. That is, a 4-dimensional Lorentzian metricgab and a
unit timelike vector fieldua, representing the fluid 4-velocity
solutions of Einstein-Euler’s equation. The boundaryB of
the fluid is the 3-dimensional, timelike, hypersurface wh
p50. Since we have a simple fluid, this implies thatr is
constant onB; hence the vector defined byNa5gab¹br is
normal toB, where¹b is the covariant derivative with re
spect togab . By assumptionNa is not zero onB. Fix an
arbitrary spacelike foliation, with normal vectorna; let M̃ be
a member of this foliation. Defining]V5M̃ùB, we will
assume that bothB and ]V are smooth submanifolds. Th

3-velocity ṽa, defined byua5(na1 ṽa)/A12 ṽ2, will vanish
at ]V if and only if the following equations hold

Nanau]V50, ~18!

Navau]V50, ~19!

whereva5eabcdub¹cud is the twist ofua (eabcd is the vol-
ume element ofgab and the indexes are moved withgab).
Equation~18! is a condition on the foliation: the sliceM̃ has
to be tangent toNa. Equation ~19! is a condition onua,
independent of the foliation: the normal component, w
respect to the fluid boundary, of the twist ofua must vanish
on ]V. Equation~19! is a consequence of Frobenius’s the
rem ~see for example@21#! and the fact that]V is a smooth
submanifold andNa is hypersurface orthogonal. Note th
va itself can be different from zero at]V. Condition~19! is
not time-propagated byua. This condition is imposed only
on the initial slice, not in the subsequent evolution. Althou
it is a restriction, it is not clear if it is a strong restriction o
not.

Another outcome of this particular conformal rescaling
a lack of uniqueness of solutions to Eqs.~1!–~6! in terms of
the free data.
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We do not require thatV be connected. A nonconnecte
domain can describe several compact bodies.

This is not the most general result one can obtain w
these methods. One can also find solutions which are
piecewise smooth, but with some finite differentiability
the interior of the support ofr. One can even obtain solu
tions where the support ofr itself has some finite differen
tiability. The obtainment of such more general data from
techniques used to get our result does not present a sub
tial difficulty but only a greater level of technical complica
tion, which could obscure the main ideas necessary to
these types of data.

Proof. The upper bound onm̃ given by Eq.~17! and theo-
rem 3 implies that there exists a strictly positive solutionu

5g1qPC1,a(M̃ ) of Eqs.~11!, ~13!. Hypothesis~i!, ~ii ! and
theorems 7 and 8 imply thatu is V-piecewise smooth and
V-tangentially smooth.

Let q̃ab , p̃ab, j̃ a be as stated in theorem 2. Thos
fields are alsoV-piecewise smooth andV-tangentially
smooth, and they satisfyq̃abPC1,a(M̃ ), p̃abPCa(M̃ ).
The lower bound in Eq.~17! and lemma 3 implies that the
dominant energy condition is satisfied, that isj̃ a j̃ a,m̃2. As-
sumption ~i! implies that the liquid-type constraint~7! is
trivially satisfied. Finally, theorem 9 implies that Eqs.~5!,~6!
are invertible. The state functionp(r) is a smooth function
of r, so Eqs.~5!,~6! imply that the fieldsṽa and r are
V-piecewise smooth andV-tangentially smooth. Equation
~6! and assumption~i! imply that ṽau]V50. l

III. EXISTENCE AND REGULARITY

A. Hamiltonian constraint

Consider Eqs.~11!, ~13!. To obtain a solutionu we first
transform this problem onM̃ with a singular boundary con
dition at i PM , into a regular problem onM for another
function. The metricqab has strictly positive scalar of curva
ture R and the assumption given in Eq.~9! implies thatqab
PW4,p(M ), p.3/2. Therefore, lemma 3.2 and corollar
3.3 in @10#, imply that there exist a unique, positive solutio
gPC1,a(M̃ ) of the equation

Lq~g!524pd i , ~20!

whered i is Dirac’s delta distribution with support ati. It is
also true thatg21PCa(M ) and

lim
r→0

rg51. ~21!

We introduce the functionq5u2g. Then, Eq.~11! for u on
M̃ becomes the following equation forq on M,

Lq~q!52
pabp

ab

8~g1q!7
2

k

4
m̃~g1q!5. ~22!

Before stating the theorem concerning existence of so
tions to Eq.~22!, we need some notation. Given any functio
0-6
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gPW2,2(M ) and the operatorLq , we introducek to be the
constant such thatuguC0(M )<kiLq(g)iL2(M ) . This constant
can be written ask5cscL , where the Sobolev coefficientcs
is the constant such thatuguC0(M )<csigiW2,2(M ) , while cL is
the constant of the elliptic estimateigiW2,2(M )
<cLiLq(g)iL2(M ) . ~See@11,13#.! We introduce, as well, the
constants Cpªipabp

ab/(8g7)iL2(M ) , and g1ªsupV̄g.
Therefore,

pabp
ab/g7PL2~M ! ~23!

is equivalent to the conditionCp,`.
Theorem 3. (Existence) Let M and M˜ be as in Sec. II B.

Let qab be a Riemannian metric on M, such that qab
PW4,p(M ), p.3/2, andR.0. Assume thatpab satisfies that
Cp,`. Let m̃ be a positive function of compact support
V̄,M̃ , such that

im̃iL2(V)<
K

~g11kCp!4
, ~24!

where K545/(55kk). Then there exists a non-negative so
tion qPW2,2(M ) of Eq. (22). The solution is strictly positiv

unless both pab and m̃ are zero. Moreover, it satisfiesq
<(g115kCp)/4.

Remark. The proof is based on Schauder’s fixed-p
theorem (see for example [16]): Let B,X be a nonempty
closed, convex set in a Banach space X, and F:B→B be a
continuous mapping. If F(B) is precompact, then F has
fixed point. The construction of the functionalF is similar to
the one made in@10# for theorem 3.4. The only difference i
the choice of the setB, and the main work is to prove that fo
this choice we haveF(B),B.

Proof. ConsiderX5C0(M ), which is a Banach space un
der the supremum norm. Given a constantc.0, defineBc
5$uPX:0<u<c%. One can check thatBc is convex and
closed. Define a nonlinear operatorF:Bc→X, by setting

FªLq
21+ f

where thef :Bc→L2(M ) is the continuous map given by

f ~u!ª2
pabp

ab

8~g1u!7
2

k

4
m̃~g1u!5. ~25!

Under the assumptionsqabPW4,p(M ), p.3/2, andR.0 it
has been proved in@10# that the nonlinear mapF is continu-
ous andF(Bc) is precompact. The only difference betwe
the mapF and the analogous mapT defined in@10# is the
second term in the right-hand side of Eq.~25!. This term is
continuous. Note thatg is singular ati but we assume thatm̃
has support inV̄ and the pointi is not included inV̄.

We only have to choose the constant ‘‘c’’ such that
F(Bc),Bc . The rest of the proof shows how to find ‘‘c.’’ In
what follows we will use lemma 3.1 of@10# many times.

Introduce the functionswcPL2(M ) andfcPW2,2(M ) as
follows:
08402
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wcª2
pabp

ab

8g7
2

k

4
m̃~g1c!5

fcªLq
21~wc!.

Then, for all uPBc we have thatf (u)2wc>0. This is
equivalent toLq(F(u)2fc)>0, and thenF(u)<fc . We
now choose the best constant ‘‘c’’ such that fc<c. This is
done as follows. Given the bound

fc<kuuLq~fc!uuL2(M ) ,

<kFCp1
k

4
~g11c!5im̃iL2(V)G ~26!

we impose that the right hand side of Eq.~26! be less or
equal toc. We then obtain

im̃iL2(V)<
4

kk

c2kCp

~g11c!5
. ~27!

This inequality has to be valid for somec, in particular for its
maximum value given byc05(g115kCp)/4. Equation~27!
evaluated atc0 gives Eq.~24!. Therefore, choosingB5Bc0

,

condition ~24! implies F(B),B. Finally, Schauder’s fixed-
point theorem implies thatF has a fixed point inB. This
fixed point is the solutionq. l

We now show that, under slightly stronger assumptions
the source functionsm̃ and pab, the functionu belongs to
C1,a(M̃ ). ~This differentiability is important for theorem 8.!

Theorem 4.@C1,a(M̃ )-regularity# Assume the hypothes
on theorem 3 holds, and letu5g1q, with qPW2,2(M ) the

solution of Eq. (22). In addition, assume thatm̃PLq(V),
with q.3, and that pabp

ab/g7PL loc
q (M̃ ).

Then,uPWloc
2,q(M̃ ),C1,a(M̃ ) is a solution of Eqs. (11),

(13).

Proof. From the hypothesis onm̃ and pab, we have
f (q)PL loc

q (M̃ ). Elliptic regularity implies qPW2,q(M̃ ).
~See @12#.! Sobolev embedding andq.3 imply q

PC1,a(M̃ ). Therefore, gPC1,a(M̃ ) implies that u

PC1,a(M̃ ). Equation~21! implies thatu satisfies the bound
ary condition~13!. l

B. Momentum constraint

Consider Eqs.~10!, ~12!. The main idea is, as in Sec
III A, to transform these equations onM̃ with a singular
boundary condition into an equation onM for a regular vari-
able. Solutions of this regular equation can be found by
transverse, traceless decomposition of symmetric tens
See@17# for a transverse decomposition, and@14# for a trans-
verse, traceless decomposition. See also@18#, and references
therein.

All of this procedure is performed, however, not in E
~10! itself, but in a properly conformal rescaled version
that equation. The new rescaled metric is chosen such tha
0-7
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Ricci tensor vanishes ati. ~The restriction that the unphysica
metric, qab , have strictly positive Ricci scalar onM is not
needed in this subsection.! The positive outcome of this new
rescaling is that it is not hard to prove that solutionspab with
nonvanishing total linear momentum are included.

The plan of this subsection is, first, to introduce so
notation; second, to set up the procedure to prove existe
of solutionspab in a weak sense~theorem 5!; and third, to
prove that, under a slightly stronger assumption on the m
ter source, the solution satisfies Eq.~23! ~theorem 6!.

We start with the new conformal rescaling. LetM, M̃ ,
qab , xi , r, andBe as in Sec. II B. Letx be a cut function, that
is a smooth function with support inB2e and such thatx
51 in Be . Fix on M the metricq̂ab given by

q̂ab5v0
4qab , ~28!

where the conformal factorv0 has the form

v05ex f 0, f 05
1

2
xjxkL jk~ i !, ~29!

and we have evaluated ati the tensor field

LabªRab2
1

4
Rqab , ~30!

with Rab the Ricci tensor ofqab . Therefore,q̂ab5qab on
M \B2e , and they differ only onB2e . One can check tha
R̂abc

d( i )50, that is the Riemann tensor ofq̂ab evaluated ati
vanishes.@An explicit computation showsR̂ab( i )50. Since
q̂ab is a 3-dimensional metric,R̂abc

d( i )50.# This property
implies that in its associated Riemann normal coordinate
tem ati , x̂ j , the metricq̂ab has the form

q̂i j 5d i j 1O~ r̂ 3!, Ĝ i
j k5O~ r̂ 2!, ~31!

where r̂ is the geodesic distance fromi measured byq̂ab .
This is the reason for doing the new conformal rescaling

We complete the rescaling introducing the fieldsp̂ab and
ĵ a as

p̂ab5v0
210pab, ĵ a5v0

210j a.

Therefore, Eqs.~10!,~12! transform into

D̂ap̂ab52k ĵ b, p̂i j 5O~ r̂ 24!, ~32!

whereD̂a is the metric connection associated toq̂ab . Latin
indices on ‘‘hatted’’ quantities represent components in
coordinate systemx̂i .

We now start the procedure to transform Eq.~32! on M̃
with a singular boundary condition into an equation onM for
a regular variable. The singular behavior ati of a solutionu
of Eqs.~11!, ~13! was captured by the Green functiong. In
the case of Eq.~32!, the role analogous tog is played by a
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tensorp̄ab. The construction of this tensor field that follow
is detailed in@10#, Secs. 4.1–4.2, but we briefly sketch
here.

Consider the manifold (M ,q̂ab). Let B2ê,U be a ball of
q̂ab-geodesic radius 2ê centered ati, andx̂ the associated cu
function, that is, a smooth function that vanishes onM \B2ê

and x̂51 in Bê . Let n̂a5D̂ar̂ . Introduce onB2ê\$ i % the
tensor fields@35#

f (1)
ab 5

3

2r̂ 2
@2Q(an̂b)2~dab2n̂an̂b!n̂cQ

c#, ~33!

f (2)
ab 5

A

r̂ 3
~dab23n̂an̂b!, ~34!

f (3)
ab 5

6

r̂ 3
n̂(aeb)cdJcn̂d , ~35!

f (4)
ab 52

3

2r̂ 4
@2P(an̂b)1~dab25n̂an̂b!n̂cP

c#,

~36!

whereA is constant, andPa, Ja, andQa are constants in the
coordinate systemx̂i . Heren̂b5n̂adab, and in Riemann nor-
mal coordinates,n̂ j5 x̂ j / r̂ . These tensors are transverse a
traceless with respect to the flat metric. Letp̄(k)

ab
ªx̂(f (k)

ab

2q̂abq̂cdf (k)
cd /3). Finally, introducep̄ab as follows:

p̄ab
ª(

k51

4

p̄(k)
ab . ~37!

By construction, the tensorp̄ab depends on 10 parameters,
smooth on M̃ , vanishes onM \B2ê , is symmetric and
q̂ab-traceless, and satisfiesp̄i j 5O( r̂ 24), asr̂→0. It also sat-
isfies

D̂ap̄ab5O~ r̂ 22! as r̂→0. ~38!

The last equation is obtained as follows: writeD̂ap̄ab explic-
itly, and then note that first, the tensor fieldsf (k)

ab are diver-
gent and trace free with respect to the flat metric, and sec
that in the coordinatesx̂k the metric connection coefficient
satisfy Eq.~31!.

We finally recall some needed properties of conform
Killing vector fields. Consequently, this paragraph is app
cable to bothqab and q̂ab . We point out the differentiability
of the various fields, for later purposes. Fix a manifo
(M ,qab), with qabPW4,p(M ), with p.3/2. A conformal
Killing vector field, ja, is defined by (Lqj)ab

ª2@D (ajb)

2qabDcj
c/3#50, whereLq is the conformal Killing opera-

tor associated to the metricqab . There are at most ten con
formal Killing vector fields for a 3-dimensional metric
Given a vector fieldvaPLp8(M ), with p8.1, we say that it
is orthogonal toja if
0-8
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E
M

javadV50, ~39!

where the volume element is computed with the unphys
metric qab . Notice that the differentiability assumption o
the metric implies thatjaPC2,a(M ). This, in turn, with the
Hölder inequality, implies that the integral above is well d
fined. We also introduce the conformal Killing data ati, that
is,

ka5
1

6
DaDbjb~ i !, Sa5eabcDbjc~ i !, qa5ja~ i !,

a5
1

3
Daja~ i !. ~40!

SinceM is connected, the integrability conditions for confo
mal Killing fields ~cf. @19#! entail that these ten ‘‘conforma
Killing data at i ’’ determine the fieldja uniquely onM.

We have the following existence theorem, which is a g
eralization of theorem 16 proved in@10#.

Theorem 5. (Existence) Let M, and M˜ be as in Sec. II B.

Assume qabPW4,p(M ), p.3/2. Let p̄ab be defined by Eq

(37), and q̂ab as in Eq. (28). Let sabPW1,p8(M ) be a sym-

metric traceless tensor, and jaPLp8(M ), with p8.1.
(i) If the metric qab admits no conformal Killing vectors

on M, then there exists a unique vector field waPW2,q(M ),
with q5p8 if p8,3/2 and 1,q,3/2 if p8>3/2 such that
the tensor field

pab5v0
10@ p̄ab1sab1~Lq̂w!ab# ~41!

satisfies Eqs. (10), (12).
(ii) If the metric qab admits a conformal Killing vectorja

on M, corresponding to the conformal Killing data given
Eq. (40), then a vector field wa as specified above exists
and only if the following condition holds,

Paka1JaSa1Aa1@PbLb
a~ i !1Qa#qa5kE

M
j ajadV,

~42!

where the constants Pa, Ja , A, and Qa characterize the ten-

sor p̄ab as in Eqs. (33)–(37).

Proof. Because of Eq.~38! we can considerD̂a( p̄ab

1sab) as a function inLq(M ), 1,q,3/2. The equation
Dapab52k j b is equivalent to

D̂a@ p̄ab1sab1~Lq̂w!ab#52kv0
210j b, ~43!

which can be written as

~L q̂w!b52kv0
210j b2D̂a~ p̄ab1sab!, ~44!

where (L q̂w)a
ªD̂b(Lq̂w)ab is an elliptic operator. Its kerne

consists of all conformal Killing vectors,ja, of q̂ab , and so,
of qab . Following @10#, one can prove that the right han
side of Eq.~44! is orthogonal@in the sense given in Eq.~39!#
08402
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to every conformal Killing vector field,ja, if and only if Eq.
~42! holds. Therefore, the assumptions on the metric,qab ,
and the Fredholm alternative for this operator imply the
exists a unique solutionwaPW2,q(M ). @For the smooth met-
ric this is a standard result, for metric in the Sobolev spa
W4,p(M ) see@20#.# l

The quantitiesPa andJa in tensorp̄ab represent the tota
linear and angular momentum of the data. These quant
can be prescribed freely in case~i!, so they are not related
with the matter sourcesj a. The interpretation is that gravita
tional waves can carry an arbitrary amount of linear a
angular momentum. In the case that the unphysical me
has conformal symmetries these quantities are restricted
condition ~42!. In order to understand this condition, co
sider the case where only one Killing vectorja exists, and it
is a rotation. That is, onlySa is different from zero. We can
always chooseSa to be a unit vector.~This vector is parallel
to the axis of the rotational symmetry.! Construct the follow-
ing initial data: first, choose anyJa pointing in the same
direction asSa, and second, choose the other part of the f
data preserving the symmetry. Then, all the fields in the
tial data set have this symmetry, and therefore the wh
space-time obtained from this initial data set will also hav
Killing vector ja, suitably extended outside the initial hype
surface. Condition~42! reduces to

J5kE
M

j ajadV, ~45!

whereJ5AJaJa. Equation~45! is just the standard Koma
integral. ~See for example@21#.! This is consistent with the
interpretation that axially symmetric gravitational waves
not carry angular momentum.

Notice that, with the assumptions we have made, we
not even know ifwa is a continuous vector field. We sta
with the final part of this subsection, namely, to show th
under a slightly stronger assumption on the differentiabi
of j a on M, and on the metricqab at i, the tensorpab given
by Eq. ~41! satisfies Eq.~23!. We have assumed thatqab
PW4,p(M ). We now impose on the metric an extra conditio
given in Eq.~9!. Then, we have the following result:

Theorem 6. (Regularity on M˜ ) Assume that the hypothes
in theorem 5 holds. Assume that the metric satisfies Eq.
If j aPLq(M ), sabPW1,q(M ), where q.3, then, wa

PC1,a(M̃ ) and the tensor pab satisfies pabp
ab/g7PL2(M ).

That waPC1,a(M̃ ) is deduced from standard ellipti
regularity theorems. The second part is more difficult. T
problem is that (Lq̂w)a is not continuous ati, and so condi-
tions that involve products of tensors are difficult to prov
Since the origin of the discontinuity in (Lq̂w)a is the singular
behavior of p̄ab, which we know explicitly, we proceed a
follows. We splitwa into a regular part ati ~calledva in the
proof! plus some divergent terms. These divergent terms
explicitly computed in terms ofp̄ab by an integration proce-
dure based on Meyers’ result@22#. Finally we show that this
va satisfies a linear elliptic equation with a source inLq(Be)
0-9
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with q.3. Therefore it isC1,a at i. Once this splitting neari
on wa is established, condition~23! is proved by explicit
computation.

Proof. The sourcej aPLq(M ), while p̄ab, being smooth
on M̃ , belongs toL loc

q (M̃ ). Therefore, standard elliptic regu
larity theorems given in @12# imply waPWloc

2,q(M )

,C1,a(M̃ ).
We now begin the proof of the second part of the theore

We work always with the rescaled metricq̂ab and its corre-
sponding covariant derivativeD̂a . We explicitly compute the
divergent terms ofwa at i. These terms are appropriate Me
ers’ potentials of the divergent terms present onD̂ i p̄(k)

i j . ~See
lemma 1 below.!

Let Bê,M be an open ball centered ati of geodesic ra-
dius ê.0. Let us chooseê small enough such that the metr
has the form~31! in Riemann normal coordinates ati, and
the cut functionx̂ is identically equal to 1 inBê . An explicit
computation shows

D̂ i p̄
i j 5 (

k52

3 p° (k)
j

r̂ k21
1w j ,

with w i5O(1) and smooth onBê\$ i %, and continuous ati.

Thep° (k)
i are functions ofn̂a . We adopt the convention that

small circle over a quantity means that this quantity depe
smoothly onn̂a , and does not depend onr̂ .

Let V(k)
i denote the Meyers potentials ofp° (k)

j / r̂ (k21), for
each k52,3, that is, vector fields V(k)

i

5„( l 50
2 @ ln(r̂)#lv°(kl)

i
…/ r̂ (k23) defined onBê , with v° (kl)

i appro-

priate functions ofn̂a that can be explicitly computed in

terms ofp° (k)
i , and satisfying

~L dV(k)!
i5

p° (k)
i

r̂ (k21)
.

So, here is our decomposition of the vector fieldwi , on Bê ,

wi5 (
k52

3

V(k)
i 1v i .

The rest of the proof shows thatv i is indeed differentiable a
i.

Thusv i satisfies

~L q̂v! i52kv0
210j i2 (

k52

3

~ L̃ q̂V(k)!
i2w i2D̂ js

i j ,

where (L̃ q̂V(k))
i
ª(L q̂V(k))

i2(L dV(k))
i . One can check tha

(L̃ q̂V(k))
i5O( r̂ 2(k23)). Therefore the terms (L̃ q̂V(k))

i with
k52,3, belong toLq(M ) with q.3. Standard elliptic regu-
larity implies thatv iPW2,q(M ),C1,a(M ).

We have proved that the solutionwiPC1,a(M̃ ) has the
following expression inBê :
08402
.

s

wi5 (
k52

3
1

r̂ k23 S (l 50

2

@ ln~ r̂ !# lv° (kl)
i D 1v i .

Notice that the conformal factorv0 is smooth onM, then an
explicit computation implies thatpab given by Eq.~41! sat-
isfies Eq.~23!. l

We present here the generalization of Meyers’ result, u
in the proof of theorem 6.

Lemma 1.~Meyers’ potential forL d) Consider the mani-
fold (R3,dab), with dab the flat metric,]a the metric connec-
tion, and let (L dV)a5]b]bVa1]a]bVb/3. Consider the
equation

~L dV!a5r k22(
l 50

l

@ ln~r !# l p° ( l )
a ~n! ~46!

wherel >0 is a fixed integer, r is the geodesic distance fro

an arbitrary point pPR3, and p° ( l )
a (n) is a CK,a(R3) function

of na5]ar, with K>0.

Then, there exists CK12,a(R3) functions V° ( l )
a (n), with l

50, . . . ,l 12, such that

Va5r k (
l 50

l 12

@ ln~r !# lV° ( l )
a ~n! ~47!

is a solution of Eq. (46).
Proof. We look for solutions of Eq.~46! of the form

Va5va2
1

4
]al

with

]b]bva5r k22(
l 50

l

@ ln~r !# l p° ( l )
a ~n!

]a]al5]ava.

Lemma 4 in@22# implies that there existsCK12,a(R3) func-

tions v° ( l )
a , with l 50, . . . ,l 11, such that

va5r k (
l 50

l 11

@ ln~r !# lv° ( l )
a ~n!

satisfies the first equation above. Then, one can explic
compute]ava, and again lemma 4 in@22# implies that there

existsCK13,a(R3) functionsl° ( l ) , with l 50, . . . ,l 12, such
that

l5r k11 (
l 50

l 12

@ ln~r !# ll° ( l )~n!

is a solution of the second equation above. Therefore,
explicit computation gives Eq.~47!. l
0-10
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C. Local regularity

Consider a solutionu, pab of Eqs. ~10!–~13!. Assume

now that the free datasab, m̃ and j a are V-piecewise and
tangentially smooth. In the first part of this subsection
then prove that the fieldsu andpab areV-piecewise smooth
~theorem 7!. This proof is based on standard elliptic regula
ity theorems. In the second part of this subsection we pr
that these fields are alsoV-tangentially smooth. This result i
split into two parts; first for linear elliptic systems~lemma 2!,
and then for Eqs.~10!–~13! ~theorem 8!.

Theorem 7.(V-piecewise smooth! Let both qab and sab be

in C`(M̃ ). Let u and pab be solutions of Eqs. (10)–(13)

given by theorem 4 and theorem 5. If the source functionm̃
and ja are V-piecewise smooth then so areu and pab.

Proof. By the assumptionqabPC`(M̃ ) we have that the
two elliptic operatorsLq andLq have smooth coefficients in

M̃ . Applying the standard interior elliptic regularity to th

domainsV̄ and M̃ \V we obtain that if j a is V-piecewise

smooth thenwa is also V-piecewise smooth. Becausep̄ab

PC`(M̃ ), and by assumptionsabPC`(M̃ ), then pab is
V-piecewise smooth.

In the case ofu we note first that by the elliptic regularit
g is smooth inM̃ . Consider now Eq.~22! for q. Denote by
f (x,q) the right-hand side of this equation. By the assum
tion on m̃ and the previous argument regardingwa, we have
that the functionf (x,q) satisfies the following property: ifq
belongs toCs,a(V̄) @or to Cs,a(M̃ \V)#, then the composition
f „x,q(x)… defines a function that belongs toCs,a(V̄) @or to
Cs,a(M̃ \V), respectively#. By theorem 4 we know that the
solution qPC1,a(M̃ ). @The argument works also withq
PCa(M̃ ).# Then we make an iteration, applying the ellipt
regularity for the domainsV̄ and M̃ \V in each step, to ob-
tain thatq is V-piecewise smooth. Therefore, so isu. l

Let V,V8, andVa be a smooth vector field onV8. Let u
be any tensor field onM. Denote V(0)(u)ªu, V(1)(u)
ªVaDau, andV(k)(u)ªVaDa@V(k21)(u)#, for k>1. In or-
der to prove tangential regularity we prove first the followi
lemma.

Lemma 2. Let L be a linear elliptic operator of secon

order on some open, bounded setV8,M̃ with smooth coef-
ficients. Let Va be a smooth vector field on anV8s, with
V̄,V8. Let uPW2,p(V8), with p.1, be a tensor field on
V8 solution of the elliptic equation L(u)5 f . Let k>0, be an
integer.

(i) If V (k)( f )PLp(V8), then V(k)(u)PW2,p(V8).
(ii) If V (k)( f )PCa(V8), then V(k)(u)PC2,a(V8).
Proof. The proof is by induction onk. Consider part~i! of

the lemma. The casek50 is the standard interior elliptic
regularity. See@12# for second order elliptic equations an
@23–25# for systems. Assume now that~i! is true for k21.
Consider now the following identity

V(k)
„L~u!…5(

l 50

k S k

l D ( l )@V,L#„V(k2 l )~u!…, ~48!
08402
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where (kl)5k!/ @ l !(k2 l )! # and we have introduced the no
tation

(0)@V,L#~u!:5L~u!

(1)@V,L#~u!ª@V,L#~u!

5V„L~u!…2L„V~u!…

( l 11)@V,L#~u!ª†V, ( l )@V,L#‡~u!.

Notice that, for alll>0, the operator( l )@V,L# is a second
order operator with smooth coefficients onM̃ . Assume now
that V(k)( f )PLp(V8), andV( l )(u)PW2,p(V8), for all 0< l
<k21. If we write the identity~48! as

L„V(k)~u!…5V(k)~ f !2(
l 51

k S k

l D ( l )@V,L#„V(k2 l )~u!…

~49!

then all the terms in the right-hand side belong toLp(V8).
Then the elliptic regularity theorems imply thatV(k)(u)
PW2,p(V8), p.1. The case~ii ! is similar. h

Theorem 8.(V-tangentially smooth! Assume the hypoth

esis on theorem 7. Ifm̃ and ja are V-tangentially smooth
then so are the fieldsu and pab which solve Eqs. (10)–(13).

Proof. Fix V8, to be any open set inM̃ such thatV̄,V8.
Let Va be the tangent vector fieldV]V

a defined in Sec. II A.
Since Eq. ~44! is linear, lemma 2 implies thatwa is
V-tangentially smooth.

Equation~22! is semilinear. However, there exists a sol
tion qPW2,q(V8) for q.3. Therefore,qPC1,a(V8). This
is the subtle step. BecauseqPC1,a(V8), it implies that
V„f @x,q(x)#…PLq(V8), for q.3. The reason is that whe
we computeV( f ), terms appear of the form ‘‘function in
Lp(V8)’’ times ‘‘ V(q).’’ If q was only continuous, then
these terms would not be, in general, inLp(V8). Then
lemma 2 implies thatV(q)PW2,q(V8),C1,a(V8). Thus
V(2)(q)PCa(V8). ThenV(2)

„f @x,q(x)#…/PLq(V8) and we
obtainV(2)(q)PC1,a(V8). Iterating this argument, the con
clusion follows. l

IV. FURTHER REQUIREMENTS

A. Energy condition

In order to understand the origin of this discussion
energy conditions it is useful to compare the usual proced
to find solutions of the constraint equations with mat
sources. In that procedure, one rescales both the energy
sity m̃ as well the momentum current densityj̃ a. The res-
caled j̃ a5u210j a is fixed from the requirement that the mo
mentum constraint be independent ofu, while the rescaled
m̃5u28m is chosen such thatj̃ /m̃5 j /m, where we have in-

troduced j̃ªAq̃abj̃ a j̃ b, and jªAqabj aj b. Therefore, if the
energy condition is satisfied by the rescaled fieldsj a andm,
with respect to the unphysical metric, then the physical fie
j̃ a and m̃ do satisfy the energy condition. That is the usu
procedure. Here we cannot rescale the energy density,
0-11
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cause we need the extra condition that the physical en
densitym̃ be constant at the border of its support.

We show here that the lower bound form̃ given in ~iii ! in
theorem 2 is sufficient to guarantee that the physical ma
fields satisfy the dominant energy condition. The idea is th
Initial data with j a50 andm̃ satisfy trivially the energy con-
dition. Therefore the same applies for arbitrary smallj. Con-
dition ~iii ! is just a rough bound on the smallness onj that
also guarantees the energy condition. Letg25minV̄(g), with
g the Green function solution of Eqs.~20!,~21!. Then we
have the following:

Lemma 3. Let M, M˜ , qab , m̃, and pab be as in theorem 4

Let u be the corresponding solution of Eqs. (11), (13). Letm̃
and ja have support inV and in C0(V̄). If j ,r0(g2)8 then

the fields q˜ ab5u4qab , j̃ a5u210j a, and m̃ satisfy j˜,m̃.

Proof. Sinceq is positive ~see theorem 3!, u>g on M̃ .
Then we have

j̃ 5u28 j <~g2!28 j ,r0<m̃.

l

B. Inversion of Eqs. „5…,„6…

We show here that Eqs.~5!,~6! are invertible; that is,
given the functionsm̃, j̃ a there exists unique functionsr, ṽa

satisfying these equations. In other words, the fl
4-momentum density as seen by an arbitrary observer d
mines the fluid comoving 4-momentum density. It turns o
that the proof is not obvious and we did not find it in th
literature.

The main difficulty is that the map defined by Eqs.~5!,~6!
is nonlinear. Furthermore, it contains an unknown functi
the state function, subject to minimally restrictive properti
Sinceṽa and j̃ a are parallel, these equations reduce to

m̃5
r1pṽ2

12 ṽ2
~50!

j̃ 5
~r1p!ṽ

12 ṽ2
, ~51!

with j̃ 5A j̃ a j̃ a and ṽ5Aṽaṽa. We define the mapF be-
tween subsets ofR2 as

F~r,ṽ !5S r1pṽ2

12 ṽ2
,
~r1p!ṽ

12 ṽ2 D . ~52!

Equations ~50!,~51! can be rewritten as (m̃, j̃ )5F(r,ṽ).
Given a positive constantr0 we define the following two
subsets ofR2

D:5$~r,ṽ !PR2:r0<r, 0< ṽ,1% ~53!

I :5$~m̃, j̃ !PR2:m̃0~ j̃ !<m̃, 0< j̃ %, ~54!
08402
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wherem̃0( j̃ )ªr0/21Ar0
2/41 j̃ 2. Our result is:

Theorem 9. Let p(r) be a C1 state function such that (i)
p(r)>0 for r>r0.0; (ii) p (r0)50; (iii) 0,]p/]r,1.
Then, the mapF:D→I is a diffeomorphism.

Proof. First we prove thatF is bijective.
Surjectivity: The essential tool is Brouwer’s fixed-poin

theorem. ~See for example@16#.! Equations~50!,~51! are
equivalent to

r5m̃2 j̃ ṽ ~55!

ṽ5
j̃

m̃

r1pṽ2

r1p
. ~56!

Fix a point (m̃, j̃ )PI . Consider the mapF given by

F~x,y!ªF ~m̃2 j̃ y!,S j̃

m̃

x1p~x!y2

x1p~x! D G .

Introduce the compact convex setCª@r0 ,m̃#3@0,1#,R2.
We claim that F:C→C. We write F(x,y)

5@F1(x,y),F2(x,y)#. Then, by definition ofI , j̃ /m̃,1 and
so, for all (x,y)PD, we have 0<F2(x,y),1. We now show
that, for all (x,y)PD, r0<F1(x,y)<m̃. The assumption 0
<y<1 implies m̃2 j̃ <m̃2 j̃ y<m̃. But r0<m̃0( j̃ )2 j̃ <m̃

2 j̃ . Thereforer0<m̃2 j̃ y<m̃.
The mapF is also continuous. Therefore, by Brouwer

fixed-point theorem, there exists a fixed pointF(x,y)
5(x,y).

Notice thatj̃ ,m̃0( j̃ )<m̃ implies that there exists no fixe
point of the form (x,1). Therefore, we conclude that, given
point (m̃, j̃ )PI , there exists a point (r,ṽ)PD which solves
Eqs.~50!,~51!.

Injectivity: Consider Eqs.~50!,~51!, written as

m̃5r1 j̃ ṽ

j̃ 5
~r1p!ṽ

12 ṽ2
.

Assume that there exist two points (r1 ,ṽ1) and (r2 ,ṽ2)
which are solutions of these above equations for the sa
value of (m̃, j̃ ). If ṽ150 then the second equation abo
implies j̃ 50, and soṽ250, which in turn impliesr15r2. If

ṽ15 ṽ2 then the first equation below impliesr15r2.
Assume now thatṽ15” 0, ṽ25” 0, andṽ15” ṽ2. Then

~r22r1!1 j̃ ~ ṽ22 ṽ1!50

~r22r1!~12n2!5 j̃ F12~ ṽ2!2

ṽ2

2
12~ ṽ1!2

ṽ1
G ,
0-12



s

n.

t

e
r

ste
es
rd

to
u
u
id
da
e

d

o
riv

ffi-
n
3
o
h
t

un

c
xi
s

i
te

lu
to

ugh
ta

two
of

an

s

is
ns,
rey
eral
om
pi-
,

as

sity
e
ti-
is
an-
-

n-
we
ron

f

INITIAL DATA FOR FLUID BODIES IN GENERAL . . . PHYSICAL REVIEW D 65 084020
wheren25(]p/]r)ur8 , with r8P@r1 ,r2# and we have used
the mean value theorem forp(r). Then the above equation
and the assumptions onṽ1 and ṽ2 imply

n2ṽ1ṽ251.

But by assumptionn2,1, so that we have a contradictio
Therefore, injectivity follows.

It remains to be proven thatF andF21 are differentiable.
By direct computation and the assumptions onp(r) one can
check that the derivative map ofF is invertible at each poin
of D. Then, by the inverse function theorem,F21 is also
differentiable. l

Notice that the proof fails ifr050 because the derivativ
of F is not invertible at this point. This will be the case fo
an equation of state of the formp5arg, wherea andg are
constants. On the other hand, in this work we are intere
in equations of state of liquid-type, i.e., such that the pr
sure vanishes for a positive value of the density at the bo
of the fluid. For examplep5a@(r/r0)g21#. For suitable
constantsa andr0 this equation describes water.~See@26#.!

V. DISCUSSION

The principal interest in the initial data given here is
use them to set up an initial value formulation. This form
lation should be able to describe isolated, nearly static fl
bodies. That is why we have concentrated on finding liqu
type data and, inside this class, the smoothest possible
i.e., the simplest to evolve. We have shown here that th
data are not simple to obtain.

The discontinuity of the fluid energy density at the boun
ary of its support and extra constraints at that boundary@see
Eq. ~7!# were the main difficulties. One main idea was to n
rescale the fluid energy density and so, being free data, t
ally solve the extra constraint Eq.~7! ~while also requiring
that the fluid 3-velocity vanish at the body boundary!. This
unconventional rescaling of the fluid fields introduces di
culties in the task of finding solutions to the Hamiltonia
constraint. These difficulties were solved in theorem
Smoothest liquid-type data are almost-smooth, i.e., smo
except in the normal direction to the body boundary. T
main step in establishing this result is lemma 2. The res
standard elliptic regularity.

We have shown that at the body boundary, the first f
damental form is only inWloc

2,q(M̃ ), q.3. This differentiabil-
ity is below the threshold required by the known existen
theorems on symmetric hyperbolic equations to prove e
tence of solutions associated with such data. Theorem
Sec. 5.1 in@27# require initial data inWs,2(V8), with s
.5/2, whereV8,R3 is open and bounded.~See@28# for a
related improvement of this result and also@29# for a discus-
sion on the possible future development of the subject.! Im-
bedding theorems imply thatWs,2(V8),W2,p(V8), with p
.3, but not the other way around. Therefore, data
W2,p(V8) is not enough for the known theorems to guaran
existence of solutions.

We guess two possible ways to set up an initial va
formulation for these liquid-type bodies. The first one is
08402
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study in detail the Einstein-Euler system given in@7#, with
the hope that particular features of this system allow eno
decrease in the differentiability threshold on the initial da
to include the data given here. A second way is to set up
initial boundary value formulations, one for the interior
the body and one for the exterior, and then match both, in
appropriate way, at the boundary of the body~see@30# and
@31#!. It is far from being clear if either of these alternative
works.
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APPENDIX

We discuss here the bound on the physical energy den
given by Eq.~24! in theorem 3. In the first subsection, w
show an inequality that is true for all maximal, asympto
cally flat initial data with matter sources. This inequality
similar to Eq.~24! in the sense that it relates the same qu
tities, but only theL1(V) norm of the energy density ap
pears. In the second subsection we show that Eq.~24! is in
fact a restriction, that is, there exist solutions of the co
straint equations which do not satisfy it. Nevertheless
give arguments to show that physical systems like neut
stars do satisfy the bound~24!.

1. An inequality

Consider the following result.
Lemma 4. Let M, M˜ , and qab be as in Sec. II B. Let pab

and u be any solution of Eqs. (10)–(13) with pa
a50. Fix a

point pPM̃ , and denote by Br an open ball centered at p, o
geodesic radius r. Then, for sufficiently smallr, we have

im̃iL1(Br )
<

46

55

2pr

k~g2!4
~A1!

whereg2ª in f ]Br
g, whereg is defined in Eq. (20).

Proof. Consider any solutionu of Eq. ~11! on M̃ . Then,

k

4
m̃<2

Lq~u!

u5
. ~A2!

Introduceq as in Sec. III A, that is,u5g1q. We param-
etrize all possible solutions, instead of byq, by a function
sªLq(q). Denoting byLq

21(s)(x)52(1/4p)*Ms(y)g(x
2y)dV(y), then the inequality above translates into
0-13
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k

4
m̃<2

s

@g1Lq
21~s!#5

.

The Green function has the formg(x2y)51/ux2yu1g,
whereg>0 on Br . ~See@32,33#.! The inequalityg(x2y)
>1/(2r ), that is true for allx,yPBr , implies thatLq

21(s)
>isiL1(Br )

/(8pr ), and this, in turn, implies

k

4
im̃iL1(Br )

<
isiL1(Br )

@g21isiL1(Br )
/~8pr !#5

.

The last step of the proof is to maximize the right-hand s
of the inequality above with respect to all possible functio
s. The maximum value is taken forisiL1(Br )

52prg2 , and
the inequality above gives Eq.~A1!. l

2. Static spherical body

In this subsection we explicitly construct an initial da
set for a static, spherically symmetric, liquid-type body. W
match, in appropriate coordinates and in aC1 way, a
3-sphere endowed with its standard metric, with
3-dimensional Schwarzschild slice. The reason for redo
this known construction~see@34#! is twofold. First, this ex-
ample, for suitable choices of the parameters, violates
bound~24!. Second, we want to answer the following que
tion: What kind of physical systems satisfy the bound~24!?
We show that the answer turns out to be~at least for this
example! stars with radiusR>1.08Rs , whereRs52m is the
Schwarzschild radius andm is the total mass. Note that thi
bound is below toR> 9

8 Rs , which is the necessary conditio
for hydrostatic equilibrium in general relativity~see for ex-
ample @21#!; then this bound is expected to be satisfied
every star near equilibrium.

Let M5S3, the conformal metricqab
0 be the standard met

ric, unit radius, ofS3, the pointi be the North Pole ofS3, and
the domainV be a ball centered at the South Pole ofS3.

Let dab be the flat metric, andr be the corresponding
spherical radius. Consider the following initial data set:

q̃ab5 û4dab , p̃ab50. ~A3!

The conformal factorû is given by

û55 11
m

2r
if r>r 0 ,

a1/4S 2r 1

r 1
21r 2D 1/2

if r<r 0 ,

~A4!

where the positive constantsa, r 0 , r 1, and m, satisfy the
following relations:

r 1
25

2r 0
3

m
, a5

~r 01m/2!6

2mr0
3

. ~A5!
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Using Eq.~A5! one can check thatû, and henceq̃ab , is aC1

function in R3. There are two free parameters; for examp
we can takem andr 0 , m being the total mass of the data
The metricq̃ab for r>r 0 is the Schwarzschild metric in iso
tropic coordinates and forr<r 0 is the standard metric onS3

of radiusa1/2. The Ricci scalar of the metricq̃ab is given by

R̃5H 0 if r .r 0 ,

6

a
if r<r 0 ,

~A6!

and the physical energy density is

m̃5H 0 if r .r 0 ,

6mr0
3

k~r 01m/2!6
if r<r 0 .

~A7!

We see that the energy densitym̃ has support in a closed ba
of radiusr 0. In order to make contact with the assumptio
in theorem 3 we write this initial data as follows. Using th
well known relation

g4qab
0 5dab , g5S r 1

21r 2

2r 1
D 1/2

, ~A8!

we obtain

q̃ab5u4qab
0 , u5 ûg.

For convenience, we have chosen a different normaliza
for the Green functiong than Eqs.~20! and~21!, in order to
fix qab

0 to be exactly the unit radius standard metric ofS3.
This difference in the normalization will, of course, play n
role in what follows.

We want to prove that for some choices of the free p
rametersr 0 andm, these initial data violate the bound 24.
order to do that we calculate explicitly the right- and le
hand side of Eq.~24!. Sincem̃ is constant we have

uum̃uuL2(V)5m̃@Volq0~V!#1/2, ~A9!

where Volq0(V) denotes the volume with respect to the m
ric qab

0 . From Eq.~A8! we have

g15S r 1
21r 0

2

2r 1
D 1/2

. ~A10!

SinceCp50 in this example, using Eqs.~A9! and~A10! we
obtain that inequality 24 is equivalent to

@Volq0~V!#1/2<bS 11
m

2r 0
D 4

, ~A11!

where b545/(3355k)'0.77 ~the constantk, which de-
pends only onS3 and qab

0 , can be calculated explicitly for
this casek5A2). Note that Volq0(V) depends only on the
dimensionless parameterm0 /(2r 0). For m0 /(2r 0)50 we
have that Volq0(V)5Volq0(S3)52p2.b2, then there exist
0-14
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values ofm0 /(2r 0) such that the bound 24 is not satisfie
We use that Volq0(V)<Volq0(S3) for arbitrarym0 /(2r 0), to
obtain a sufficient condition in order to satisfy Eq.~A11!

m/~2r 0!>1.75. ~A12!
e

,

s

s

08402
. Since the exterior metric is the Schwarzschild metric w
massm we can write this condition in terms of the physic
radial area coordinateR to obtain

R>2.16m. ~A13!
re

k
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