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Global existence and exponential decay for hyperbolic
dissipative relativistic fluid theories
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We consider dissipative relativistic fluid theories on a fixed flat, globally hyper-
bolic, Lorentzian manifold (R3T3,gab). We prove that for all initial data in a
small enough neighborhood of the constant equilibrium states~in an appropriate
Sobolev norm!, the solutions evolve smoothly in time forever and decay exponen-
tially to some, in general undetermined, constant equilibrium state. To prove this,
three conditions are imposed on these theories. The first condition requires the
system of equations to be symmetric hyperbolic, a fundamental requisite to have a
well posed and physically consistent initial value formulation. For the flat space-
times considered here the equilibrium states are constant, which is used in the
proof. The second condition is a generic consequence of the entropy law, and is
imposed on the non-principal part of the equations. The third condition is imposed
on the principal part of the equations and it implies that the dissipation affects all
the fields of the theory. With these requirements we prove that all the eigenvalues
of the symbol associated to the system of equations of the fluid theory have strictly
negative real parts, which, in fact, is an alternative characterization for the theory to
be totally dissipative. Once this result has been obtained, a straightforward appli-
cation of a general stability theorem due to Kreiss, Ortiz, and Reula implies the
results mentioned above. ©1997 American Institute of Physics.
@S0022-2488~97!02006-9#

I. INTRODUCTION

In recent years there has been a substantial improvement of our understanding on
proper description of dissipative fluids can be incorporated in the framework of the theo
relativity. Dissipative relativistic fluid theories satisfying an entropy law and having a well p
~symmetric hyperbolic! and causal initial value formulation have been presented.1–3

An important result on the physical meaning of all these hyperbolic theories was obt
recently.4,5 It was shown that certain constitutive relations between the variables in the hype
fluid theories, which have a clear physical meaning, approach in their time evolution the v
predicted by the simplest covariant generalizations of the Navier–Stokes fields. This re
based on a fundamental hypothesis, namely that the solution of the hyperbolic fluid field equ
exists and remains smooth and small during a long enough time interval, such that the rela
to near Navier–Stokes behavior occurs. This is a very important check for these fluid the
since at microscopic scales they are substantially different from the usual Navier–Stokes th
in the following sense: for the last ones, one expects to have smooth global solutions
smooth initial data sets, as has been proved in lower dimensions,6 while for the former ones, one
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expects the developing of discontinuities in the form of shock waves for crispy enough initial
Thus, we can only hope to find a neighborhood of equilibrium data for which global solu
exist and so where the departures from Navier-Stokes are uniformly small.

The purpose of the present work is to look for conditions under which the fundam
hypothesis mentioned above is satisfied. To this end, we apply a theorem7 which is a generaliza-
tion to the case of partial differential equations of the Ljapunov stability theorem for ordi
differential equations. This generalization holds for hyperbolic systems such that the eigen
of their associated symbols have all strictly negative real parts which, as we shall see, is th
for the hyperbolic dissipative fluids.

In order to apply this general stability theorem, three conditions are imposed on the dissi
hyperbolic fluid theories. The first condition requires the symmetric hyperbolicity of the syste
equations, a fundamental requisite to have a well posed and physically consistent initial
formulation. As we shall see, the symmetry is an automatic property of these theories, b
hyperbolicity has to be required. We also include in this condition that the space-time manif
R3T3 with a flat metric; this is the most restrictive assumption, in particular it implies
equilibrium solutions are constant solutions. The other two conditions are of a generic type
sense that all fluid systems, except for very specific and isolated ones, satisfy them. Spec
the second condition requires that the nonprincipal part of the system of equations, wh
responsible for the dissipation, satisfy certain negative-semidefiniteness condition. This con
assures that all perturbations to an equilibrium state, which are not tangent to the equil
submanifold, do dissipate towards equilibrium, and this is manifested by the fact that they m
positive definite contribution to the entropy. The third condition is a requirement on the prin
part of the system of equations, and it means that the presence of dissipation affects all th
of the theory, in the sense of not allowing for a decoupled set of fields with its own evolutio
being driven by dissipation. Both the second and the third conditions have already been re
in the literature with the aim of characterizing the equilibrium states.

These conditions allow us to apply the theorem proved in Ref. 7, which implies not onl
global existence of solutions, but also their exponential decay to constant equilibrium for
data near enough, in some appropriate norm, to constant equilibrium data.

The plan of the paper is as follows: In Sec. II we briefly introduce the fundamental aspe
the fluid theories, and state in detail the character of the conditions we impose on them. In S
we state and prove our main result. Finally, in Sec. IV we present the conclusions.

II. DISSIPATIVE RELATIVISTIC FLUID THEORIES

In this section, following Ref. 3, we introduce the dissipative relativistic fluid theories. A
introducing them, we describe the properties of these fluids needed to prove stability.

We assume that a fluid state is characterized by a finite collection of space-time tensor
Let wA denote these fields, where upper case indices stand for the entire set of tensor
represented in this collection of fields. So we refer towA as a point in the space of fluid statesS .
Lower case indices will denote space-time indices. Repeated indices indicate contraction a
in the abstract index notation. We restrict consideration to the fluid theories in which the
equations take the form

MAB
a ¹awB52I ABwB, ~1!

whereMAB
a and I AB are smooth functions of the fluid fieldswA and the space-time metric.

We say that system~1! is symmetric hyperbolic ifMAB
a 5M (AB)

a and there exists a timelike
future-directedua such thatNAB[2uaMAB

a is positive definite. This is a sufficient condition t
have a well posed initial value formulation.

On physical grounds, to have as maximum speed of propagation the speed of ligh
stronger condition of causality, that is,2uaMAB

a is positive definite for all future-directed timelik
J. Math. Phys., Vol. 38, No. 10, October 1997
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vectorua, is usually required. This means that the characteristic surfaces of system~1! are inside
the null cone given by the space-time metric. To prove global existence and decay only the w
condition of hyperbolicity is needed.

We analyze now the structure of the equilibrium states. Following Refs. 2 and 3 we sa
a fluid statewA, solution of the dynamical system of equations, is astrict equilibrium stateif its
time reverse is also a solution. We denote a strict equilibrium state byw0

A , and assign a subinde
zero to any tensor evaluated at a strict equilibrium state. This definition implies thatI 0ABw0

B50.
More generally, we say thewA is a momentary equilibrium stateif I ABwB50. These states ar
called equilibrium states because their entropy production vanishes, and momentary becaus
condition holds at a certain time, it will not necessarily hold in subsequent times~see Ref. 4!.
Every fluid state can be written aswA5cA1hA, whereI ABcB50, andhA is such thatI ABhB50
implies hA50. We callcA the momentary equilibrium part of the fluid state.

Below we state the three conditions imposed on these fluid theories that will be used to
global existence and exponential decay.

~1! The fluid system of equations~1! is symmetric hyperbolic and the space-time is (R3T3,gab),
whereT3 denotes a three dimensional torus andgab is a flat metric.

~2! The tensorI 0AB must be symmetric and positive semidefinite.
~3! The mapF K :S c→S * defined byF K(cA)[KaM0

a
ABcB is injective for all space-time vec

tors KaÞ0, whereS * denotes the dual of the space of fluid states andS c the subspace o
momentary equilibrium states.

The first condition is the more restrictive and more work has to be done in order to weaken
would be interesting to treat physically relevant boundary conditions and arrive at similar re
The other two conditions are not very restrictive and all fluid systems, except for very specifi
isolated ones, satisfy them.

The second requirement ensures that the effect ofI AB in equation~1! is to dissipate, in the
sense of tending to move nonequilibrium states towards equilibrium as time grows. This is
little stronger than the entropy condition in these fluid theories that requires the entropy sou
be non-negative. This stronger condition was already considered in Ref. 2.

The third requirement is on the principal part of the equations. It implies that dissip
affects all the fields of the theory, in the sense of not allowing the existence of a decoupled
of fields with its own evolution not being affected by dissipation. This requirement turns out
equivalent~see Appendix A!, at least for the case of divergence type fluid theories, to one assu
in the literature2 to characterize equilibrium states. When condition 1 above holds, equilib
states turn out to be constant states.8

III. GLOBAL EXISTENCE AND EXPONENTIAL DECAY

In the theorem below we present our main result about global existence in time and de
strict constant equilibrium.

Theorem 1: Consider the Cauchy problem for system~1!, corresponding to a hyperboli
divergence type fluid theory satisfying conditions 1–3. If the initial data is smooth and
enough in aHp(T3) Sobolev norm (p.5) to the data corresponding to some constant~strict
equilibrium! solution, then the solution is smooth, exists globally in time and decays exponen
to some constant~strict equilibrium! solution in theHp norm.

Proof: We defineNAB52uaMAB
a , NAB

a 52qb
aMAB

b whereqab5gab1uaub is the 3-metric in
each hypersurface orthogonal toua ~assuminguaua521). Assume that the initial data is close
some strict equilibrium constant statew0

A . Then the fluid state iswA5w0
A1dwA. For the variable

dwA, the system~1! becomes

NABua¹adwB5NAB
a ¹adwB2I ABdwB. ~2!
J. Math. Phys., Vol. 38, No. 10, October 1997
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Here the tensorsNAB , NAB
a , andI AB are thought of as functions ofdwA. The condition~1! of Sec.

II on the fluid theories implies that we can choose Cartesian coordinates$t,xj% on the space-time
manifold R3T3 and a constantua such that]/]t5ua¹a . Then the system~2! becomes

NAB

]

]t
dwB5NAB

j ]dwB

]xj 2I ABdwB. ~3!

In order to study solutions neardwA50, it is convenient to introduce a parameter« to control the
smallness of initial data. Thus,dwA(t50)5« f A(xj ) and the solution shall be written a
dwA5«vA. As the tensorsNAB

j and I AB are smooth functions of«vA, they can be written as

NAB
j 5N0AB

j 1«N1AB
j , I AB5I 0AB1«I 1AB .

Notice that the tensorsN0AB
j and I 0AB are constant tensors since they are evaluated at con

states. With this decomposition the Cauchy problem for~3! is

NAB

]vB

]t
5~N0AB

j 1«N1AB
j !

]vB

]xj 1~ I 0AB1«I 1AB!vB, vA~ t50!5 f A~xj !. ~4!

As there are periodic boundary conditions on the space coordinates$xj%, vA can be expanded in
Fourier series,

vA5 (
kj PV

v̂A~kj ,t !eixW•kW,

whereV is the discrete set of Fourier frequencies.
We want to apply the stability theorem proved in Ref. 7 that, for completeness, we st

Appendix B. To prove Theorem 1 we consider the eigenvalues problem

lN0ABŵB5~ ik jN0AB
j 2I 0AB!ŵB. ~5!

Then, as explained in Appendix B, we only need to verify the following conditions.

~i! There is a constantd.0 such that the eigenvaluesl(kj ) satisfy Re$l%<2d for all kj

PV, kjÞ0.
~ii ! For kj50, l(0)<2d or l(0)50.
~iii ! As linear maps, the null space ofI 1AB contains the null space ofI 0AB .

Conditions~ii ! and~iii ! are satisfied for these fluid theories, since the kernel ofI AB is of constant
dimension~see Refs. 2 and 3!, and because condition~2! of Sec. II holds.

To prove~i!, let kj be different from zero. Thenk5Akjkj>const..0. The eigenvalue prob
lem ~5! can be written as

S 2
l

k
N0AB1 i

kj

k
N0AB

j D ĉB5S l

k
N0AB1

1

k
I 0AB2 i

kj

k
N0AB

j D ĥB.

Defining Ka52(l/k)ua1 i (kj /k)qa
j , this can be written as

KaM0AB
a ĉB5S l

k
N0AB1

1

k
I 0AB2 i

kj

k
N0AB

j D ĥB. ~6!

SinceKaM0AB
a is injective, by condition~3!, and a smooth function ofkj /k, there is a constan

c.0 such that
J. Math. Phys., Vol. 38, No. 10, October 1997
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cN0BCĉ̄BĉC<KaM0
aA

BKbM0AC
b c̄̂BĉC.

Then, contracting~6! with itself,

N0BCĉ̄BĉC<
1

c S l̄

k
N0

A
B1

1

k
I 0

A
B1 i

kj

k
N0

j A
BD S l

k
N0AC1

1

k
I 0AC2 i

kj

k
N0AC

j D ĥ̄BĥC.

Perturbation theory of linear operators tells us thatl(kj )/k is uniformly bounded~see Ref. 9!.
Then we get for some positivec8

N0BCĉ̄BĉC<c8N0BCh̄̂BĥC.

This inequality, together with the positive definiteness ofN0AB , implies

N0ABŵ̄AŵB< c̃N0ABĥ̄AĥB, c̃ .0. ~7!

Now, contracting~5! with ŵ̄A and taking the real part,

Re$l%N0ABŵ̄AŵB52I 0ABŵ̄AŵB52I 0ABĥ̄AĥB

<2 d̃N0ABĥ̄AĥB

<2
d̃

c̃
N0ABw̄̂AŵB.

Here,d̃.0 exists because of the negative definiteness ofI 0AB in the direction ofĥA ~by condition
~2!!, and we have used~7! in the last line. We have thus shown that

Re$l~kj !%<2d,0, with d5
d̃

c̃
.0 andkjÞ0,

and Theorem 1 is proved.

IV. CONCLUSIONS

In this work we have proved global existence and exponential decay to constant strict
librium states, for solutions of a generic dissipative relativistic fluid theory. These decaying
tions correspond to initial data in a small enough neighborhood of constant strict equilibriu

This result, in particular, verifies a fundamental hypothesis of previous works,4,5 namely, the
existence of solutions during a long enough time interval. The closeness of initial data to
equilibrium is a natural limitation in the sense that, for large data, shock waves develop, whi
a widely observed phenomena in nature. This occurs because these fluid systems are ge
non-linear.

There are three questions related to the techniques used in this work and the possib
improving on them. One is whether it is possible to extend the present result, or rather the g
theorem used, to the case of non-constant equilibrium states. This is of vital importance if we
to consider non-flat backgrounds or even self-gravitating fluids. We think this is probably the
if we further assume that the theory has, at equilibrium, a conserved energy—which is a p
definite bilinear form in the tangent space of equilibrium states—as is usually the case for th
coming from a Hamiltonian formalism. The second possible extension is towards allowing
J. Math. Phys., Vol. 38, No. 10, October 1997
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compact Cauchy slices. There is another technique, introduced by Matsumura,10 which allows us
to study global existence and stability for some particular cases that range from hyperboli
conduction to relativistic superfluids.11 This technique allows us to treat the case of non-comp
Cauchy slices, but can not be applied to the general systems considered in this work. T
would be important to extend the theorem given in Appendix B to the case of non-com
Cauchy slices. The third extension is in the direction of boundary values problems. It is clea
one would like to use this theory to describe situations where the fluid is in a finite region of s
in which case the equations cease to be hyperbolic outside the region occupied by the fluid,
a boundary value formulation is needed. Since Navier–Stokes fluids behave in a much
amenable way with regards to boundary conditions than perfect fluids, one would expect tha
dissipative fluids will have that property too, making this an interesting, and perhaps trac
problem.
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APPENDIX A: EQUIVALENCE OF ASSUMPTIONS

In this Appendix we prove the equivalence between the requirement~3! of Sec. II and a
condition imposed in Refs. 2 and 3. We do this, for simplicity, in the case of divergence type
theories, and we assume that the reader is familiar with Ref. 2. The condition under consid
allows us to characterize the strict equilibrium states in such a way that they are precisely th
set of equilibrium states found for the standard Eckart theory.

The requirement 3 of Sec. II is the following: The mapF K :S c→S * , defined by
F K(cA)[KaM0

a
ABcB, is injective for all space-time vectorsKaÞ0, whereS * denotes the dua

of the space of fluid states andS c the subspace of momentary equilibrium fluid states.
The equivalence between this condition and the one assumed in Ref. 2 follows fro

following argument. The mapF K is injective, soKaM0
a

ABcB50⇒cA50 wherecA5(c,ca,0).
Due to the definition of indicesA and B, the system of equations above represents a sc
equation, a vector equation, and a symmetric two-index tensor equation.

First, consider the scalar equation, the contraction of the vector equation withza, and the
contraction of the two-index tensor equation withzazb. All this constitutes a linear algebrai
system of three scalar equations for variablesKaca, Kazac, and 2Kazazbcb . The injectivity
implies that the only solution for these three variables is zero and so the determinant
coefficient matrix is different from zero. Conversely, if the determinant of the coefficient matr
different from zero, then we conclude thatc50 andca50 and then the mapF K is injective. By
direct inspection it can be checked that these coefficients are the same found in equation~41!–
~43! in Ref. 2.

Second, consider the vector equation and the contraction of the two-index tensor eq
with za. This constitutes a linear algebraic system of two vector equations for the vari
mentioned in paragraph above, and 2zaK (acb) andKbc. Because of injectivity, the only solution
for all these variables is zero and so the determinant of the coefficient matrix is different
zero. It can be checked, by direct inspection, that these coefficients are the same found in
tions ~45!–~46! in Ref. 2.

Finally, consider the two-index tensor equation. It constitutes a linear algebraic two-
equation for the variables mentioned in the previous paragraph andK (acb) . Because of the
injectivity, the only solution for all these variables is zero and so the determinant of the coeffi
matrix is different from zero. By direct inspection it can be checked that these coefficients a
same found in equations~48! in Ref. 2.
J. Math. Phys., Vol. 38, No. 10, October 1997
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APPENDIX B: GENERAL STABILITY THEOREM

Consider the Cauchy problem for a first order system of partial differential equations,

]v
]t

5~A0
j 1«A1

j ~v,«!!
]v
]xj 1~B01«B1~v,«!!v,

~B1!

v~ t50!5 f ~xj !,

wherev:R3Ts→Rn, A1
j (v,«) andB1(v,«) are smooth (C`) functions of their arguments, an

f (x):Ts→Rn is also smooth. LetP denote the projector in the kernel ofB0. For the solutionv of
~B1! we definev (0)5Pv̂(0,t) andw5v2v (0). The stability theorem proved in Ref. 7 states:12

Theorem 2: Suppose that the matrices A0
j , B0, and A1

j are Hermitian, and the system (B1
satisfy the ‘‘relaxed stability eigenvalue condition,’’ i.e., the following conditions hold.

~i! There is a constantd.0 such that the eigenvaluesl(k) of the symbol iA0
j kj1B0

satisfyRe$l%<2d for all kPV, kÞ0.
~ii ! The eigenvalues of B0 satisfy eitherRe$l(0)%<2d or l(0)50.
~iii ! kerB0,kerB1.

Then, for0<«<«0 with «0 small enough, the system (B1) is a contraction for w in a suita
norm, equivalent to a Sobolev norm Hp (p.s12), andv (0)→const.when t→`.

The statement in the above theorem that the system is contraction means that there e
H-norm, equivalent to the normHp, such that

d

dt
iwiH

2 <2~d1O ~«!!iwiH
2 .

This implies that, for« small enough, there exists a global~in time! smooth solution of the Cauch
problem~B1! such that there is an exponentially decaying bound for the SobolevHp norm of the
w-part of its solution, and thev (0) part goes to a constant when the time goes to infinity.

The only difference between the fluid equations~4! and~B1! is the presence ofN in front of
the time derivative. This causes no difficulties, and the theorem above is applicable by a
redefinition of the scalar product used. With this new scalar product, the eigenvalues probl
the fluid equations becomes

det~ iN0
21N0

j kj1N0
21I 02lE!50,

whereE is the identity matrix. Then, the conditions~i!, ~ii !, and~iii ! of Theorem 2 can be verified
as is done in the proof of Theorem 1.
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