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We consider dissipative relativistic fluid theories on a fixed flat, globally hyper-
bolic, Lorentzian manifold Rx T3,g,,). We prove that for all initial data in a
small enough neighborhood of the constant equilibrium st@tesan appropriate
Sobolev normy, the solutions evolve smoothly in time forever and decay exponen-
tially to some, in general undetermined, constant equilibrium state. To prove this,
three conditions are imposed on these theories. The first condition requires the
system of equations to be symmetric hyperbolic, a fundamental requisite to have a
well posed and physically consistent initial value formulation. For the flat space-
times considered here the equilibrium states are constant, which is used in the
proof. The second condition is a generic consequence of the entropy law, and is
imposed on the non-principal part of the equations. The third condition is imposed
on the principal part of the equations and it implies that the dissipation affects all
the fields of the theory. With these requirements we prove that all the eigenvalues
of the symbol associated to the system of equations of the fluid theory have strictly
negative real parts, which, in fact, is an alternative characterization for the theory to
be totally dissipative. Once this result has been obtained, a straightforward appli-
cation of a general stability theorem due to Kreiss, Ortiz, and Reula implies the
results mentioned above. @997 American Institute of Physics.
[S0022-248807)02006-9

I. INTRODUCTION

In recent years there has been a substantial improvement of our understanding on how a
proper description of dissipative fluids can be incorporated in the framework of the theory of
relativity. Dissipative relativistic fluid theories satisfying an entropy law and having a well posed
(symmetric hyperbolicand causal initial value formulation have been presehtéd.

An important result on the physical meaning of all these hyperbolic theories was obtained
recently*® It was shown that certain constitutive relations between the variables in the hyperbolic
fluid theories, which have a clear physical meaning, approach in their time evolution the values
predicted by the simplest covariant generalizations of the Navier—Stokes fields. This result is
based on a fundamental hypothesis, namely that the solution of the hyperbolic fluid field equations
exists and remains smooth and small during a long enough time interval, such that the relaxation
to near Navier—Stokes behavior occurs. This is a very important check for these fluid theories,
since at microscopic scales they are substantially different from the usual Navier—Stokes theories
in the following sense: for the last ones, one expects to have smooth global solutions for all
smooth initial data sets, as has been proved in lower dimenSiwhge for the former ones, one
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expects the developing of discontinuities in the form of shock waves for crispy enough initial data.
Thus, we can only hope to find a neighborhood of equilibrium data for which global solutions
exist and so where the departures from Navier-Stokes are uniformly small.

The purpose of the present work is to look for conditions under which the fundamental
hypothesis mentioned above is satisfied. To this end, we apply a thewnteioh is a generaliza-
tion to the case of partial differential equations of the Ljapunov stability theorem for ordinary
differential equations. This generalization holds for hyperbolic systems such that the eigenvalues
of their associated symbols have all strictly negative real parts which, as we shall see, is the case
for the hyperbolic dissipative fluids.

In order to apply this general stability theorem, three conditions are imposed on the dissipative
hyperbolic fluid theories. The first condition requires the symmetric hyperbolicity of the system of
equations, a fundamental requisite to have a well posed and physically consistent initial value
formulation. As we shall see, the symmetry is an automatic property of these theories, but the
hyperbolicity has to be required. We also include in this condition that the space-time manifold is
RX T2 with a flat metric; this is the most restrictive assumption, in particular it implies that
equilibrium solutions are constant solutions. The other two conditions are of a generic type in the
sense that all fluid systems, except for very specific and isolated ones, satisfy them. Specifically,
the second condition requires that the nonprincipal part of the system of equations, which is
responsible for the dissipation, satisfy certain negative-semidefiniteness condition. This condition
assures that all perturbations to an equilibrium state, which are not tangent to the equilibrium
submanifold, do dissipate towards equilibrium, and this is manifested by the fact that they make a
positive definite contribution to the entropy. The third condition is a requirement on the principal
part of the system of equations, and it means that the presence of dissipation affects all the fields
of the theory, in the sense of not allowing for a decoupled set of fields with its own evolution not
being driven by dissipation. Both the second and the third conditions have already been required
in the literature with the aim of characterizing the equilibrium states.

These conditions allow us to apply the theorem proved in Ref. 7, which implies not only the
global existence of solutions, but also their exponential decay to constant equilibrium for initial
data near enough, in some appropriate norm, to constant equilibrium data.

The plan of the paper is as follows: In Sec. Il we briefly introduce the fundamental aspects of
the fluid theories, and state in detail the character of the conditions we impose on them. In Sec. Il
we state and prove our main result. Finally, in Sec. IV we present the conclusions.

Il. DISSIPATIVE RELATIVISTIC FLUID THEORIES

In this section, following Ref. 3, we introduce the dissipative relativistic fluid theories. After
introducing them, we describe the properties of these fluids needed to prove stability.

We assume that a fluid state is characterized by a finite collection of space-time tensor fields.
Let ¢* denote these fields, where upper case indices stand for the entire set of tensor indices
represented in this collection of fields. So we refetpfoas a point in the space of fluid states
Lower case indices will denote space-time indices. Repeated indices indicate contraction as usual
in the abstract index notation. We restrict consideration to the fluid theories in which the field
equations take the form

MasVa@®=—lage®, (1)

whereM3; andl 55 are smooth functions of the fluid fields® and the space-time metric.

We say that systertl) is symmetric hyperbolic iM3g= M?AB) and there exists a timelike
future-directedu? such thatN,g=—u,M34g is positive definite. This is a sufficient condition to
have a well posed initial value formulation.

On physical grounds, to have as maximum speed of propagation the speed of light, the
stronger condition of causality, that is,u,M 3 is positive definite for all future-directed timelike
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vectoru?, is usually required. This means that the characteristic surfaces of sybtame inside
the null cone given by the space-time metric. To prove global existence and decay only the weaker
condition of hyperbolicity is needed.

We analyze now the structure of the equilibrium states. Following Refs. 2 and 3 we say that
a fluid stateg”, solution of the dynamical system of equations, istrict equilibrium stateif its
time reverse is also a solution. We denote a strict equilibrium sta%b)and assign a subindex
zero to any tensor evaluated at a strict equilibrium state. This definition impliesgihats=0.
More generally, we say the” is a momentary equilibrium staté | ,zge®=0. These states are
called equilibrium states because their entropy production vanishes, and momentary because if this
condition holds at a certain time, it will not necessarily hold in subsequent t{gess Ref. 4
Every fluid state can be written ag'= y*+ 7", wherel ,gy®=0, and " is such thal ,g7%=0
implies 7”=0. We cally”* the momentary equilibrium part of the fluid state.

Below we state the three conditions imposed on these fluid theories that will be used to show
global existence and exponential decay.

(1) The fluid system of equatior4) is symmetric hyperbolic and the space-timeRX(T3,g,p),
whereT? denotes a three dimensional torus ang is a flat metric.

(2) The tensotl gag Must be symmetric and positive semidefinite.

(3) The map7y :.v,—.v* defined by 7y (#*)=K,Mgag® is injective for all space-time vec-
tors K2+0, where.”* denotes the dual of the space of fluid states .afjdthe subspace of
momentary equilibrium states.

The first condition is the more restrictive and more work has to be done in order to weaken it. It
would be interesting to treat physically relevant boundary conditions and arrive at similar results.
The other two conditions are not very restrictive and all fluid systems, except for very specific and
isolated ones, satisfy them.

The second requirement ensures that the effedf,gfin equation(1) is to dissipate, in the
sense of tending to move nonequilibrium states towards equilibrium as time grows. This is just a
little stronger than the entropy condition in these fluid theories that requires the entropy source to
be non-negative. This stronger condition was already considered in Ref. 2.

The third requirement is on the principal part of the equations. It implies that dissipation
affects all the fields of the theory, in the sense of not allowing the existence of a decoupled subset
of fields with its own evolution not being affected by dissipation. This requirement turns out to be
equivalent(see Appendix A at least for the case of divergence type fluid theories, to one assumed
in the literaturé to characterize equilibrium states. When condition 1 above holds, equilibrium
states turn out to be constant states.

Ill. GLOBAL EXISTENCE AND EXPONENTIAL DECAY

In the theorem below we present our main result about global existence in time and decay to
strict constant equilibrium.

Theorem 1: Consider the Cauchy problem for systdd), corresponding to a hyperbolic
divergence type fluid theory satisfying conditions 1-3. If the initial data is smooth and close
enough in aHP(T?%) Sobolev norm p>5) to the data corresponding to some constatrict
equilibrium) solution, then the solution is smooth, exists globally in time and decays exponentially
to some constarfstrict equilibrium) solution in theHP norm.

Proof: We defineNag=—u,M3g, Nag=—q2M%; whereq,,=gap+ UaUp is the 3-metric in
each hypersurface orthogonalud (assumingi®u,= —1). Assume that the initial data is close to
some strict equilibrium constant stapé. Then the fluid state ig”= <p§+ S¢™. For the variable
5¢”, the systen(1) becomes

NagU?V 1808 =N3gV 008 — 1 ogdet. 2
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Here the tensorl,g, Nag, andl 55 are thought of as functions @&”. The condition(1) of Sec.
Il on the fluid theories implies that we can choose Cartesian coordiftates on the space-time
manifold RX T® and a constant? such that?/gt=u?V,. Then the systeni2) becomes

B

1% . dop
B_ B
NABat 5(P = NJAB_'_&XJ —1 AB(;)‘(P . (3)

In order to study solutions neak”=0, it is convenient to introduce a parameteto control the
smallness of initial data. Thus§e?(t=0)=efA(x)) and the solution shall be written as
Se”=ev”. As the tensord}; andl ,g are smooth functions afv”, they can be written as

Nag=NbagTeNiag, lag=loagt€l1as-

Notice that the tensorill,; and | s are constant tensors since they are evaluated at constant
states. With this decomposition the Cauchy problem(&ris

B ) ) &UB .
NABW =(Nbapt SNllAB)W +(loagteliap)v® vA(t=0)=fA(x)). (4)

As there are periodic boundary conditions on the space coordifrdies” can be expanded in
Fourier series,

A= E {)A(k] ,t)ei)z-lz,
Keq

where() is the discrete set of Fourier frequencies.
We want to apply the stability theorem proved in Ref. 7 that, for completeness, we state in
Appendix B. To prove Theorem 1 we consider the eigenvalues problem

7\N0AB<APB=(iijj0AB_|0AB)€ADB- )
Then, as explained in Appendix B, we only need to verify the following conditions.

(i) There is a constanf>0 such that the eigenvaluagk’) satisfy Rég\}<— 6 for all k!
e, ki+0.

(i)  Forkl=0,\(0)<-6 or \(0)=0.

(iii)  As linear maps, the null space bf,g contains the null space ofg.

Conditions(ii) and (iii) are satisfied for these fluid theories, since the kernéjpfis of constant
dimension(see Refs. 2 and)3and because conditiof2) of Sec. Il holds.

To prove(i), letk! be different from zero. Thek= \/kJ—|<j>const>O. The eigenvalue prob-
lem (5) can be written as

A kK; i es (A 1 K i lee
_ENOAB_H?NOAB yo= FNOAB+ EIOAB_IFNOAB 7.
Defining K= — (M K)ua+i(K; /k)qja, this can be written as
N N 1 ki oo
KaMgagt®= (ENOAB_" EIOAB_I FJN]OAB) 7°. (6)
SinceK,M{,g is injective, by condition(3), and a smooth function df;/k, there is a constant
¢>0 such that
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cNoact/PYC<K MG sKpMoact/® Y.
Then, contractind6) with itself,

~.  1[\ 1 Kk K =
Noacl/fBl/fC<E ENOABJr EloAB—H?]N%)AB)(ENOAC—FEIOAC_lF]N]OAC 7°n°.

Perturbation theory of linear operators tells us thék!)/k is uniformly boundedsee Ref. &
Then we get for some positive

Nosc/®¥°<c'Nogcn®7°.

This inequality, together with the positive definiteness\ghg, implies
NOAB?&’Bgré'NOAB?%By c >0. (7)

Now, contracting(5) with ? and taking the real part,

Re{A}NOAB?PApr: —I OAB(APA(PB: -1 OAB;7A77B

<— 6Noap?™1®

=- % Noas@”¢".

Here,5>0 exists because of the negative definiteneds qf in the direction of” (by condition
(2)), and we have used) in the last line. We have thus shown that

. 6 :
Re(A(kK)}=<—6<0, with§==>0 andk!'#0,
c

and Theorem 1 is proved.

IV. CONCLUSIONS

In this work we have proved global existence and exponential decay to constant strict equi-
librium states, for solutions of a generic dissipative relativistic fluid theory. These decaying solu-
tions correspond to initial data in a small enough neighborhood of constant strict equilibrium.

This result, in particular, verifies a fundamental hypothesis of previous Widrkamely, the
existence of solutions during a long enough time interval. The closeness of initial data to strict
equilibrium is a natural limitation in the sense that, for large data, shock waves develop, which are
a widely observed phenomena in nature. This occurs because these fluid systems are genuinely
non-linear.

There are three questions related to the techniques used in this work and the possibility of
improving on them. One is whether it is possible to extend the present result, or rather the general
theorem used, to the case of hon-constant equilibrium states. This is of vital importance if we want
to consider non-flat backgrounds or even self-gravitating fluids. We think this is probably the case
if we further assume that the theory has, at equilibrium, a conserved energy—which is a positive
definite bilinear form in the tangent space of equilibrium states—as is usually the case for theories
coming from a Hamiltonian formalism. The second possible extension is towards allowing non-
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compact Cauchy slices. There is another technique, introduced by Matstftmirah allows us

to study global existence and stability for some particular cases that range from hyperbolic heat
conduction to relativistic superfluid$.This technique allows us to treat the case of non-compact
Cauchy slices, but can not be applied to the general systems considered in this work. Thus, it
would be important to extend the theorem given in Appendix B to the case of non-compact
Cauchy slices. The third extension is in the direction of boundary values problems. It is clear that
one would like to use this theory to describe situations where the fluid is in a finite region of space,
in which case the equations cease to be hyperbolic outside the region occupied by the fluid, and so
a boundary value formulation is needed. Since Navier—Stokes fluids behave in a much more
amenable way with regards to boundary conditions than perfect fluids, one would expect that these
dissipative fluids will have that property too, making this an interesting, and perhaps tractable,
problem.
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APPENDIX A: EQUIVALENCE OF ASSUMPTIONS

In this Appendix we prove the equivalence between the requiref®nif Sec. Il and a
condition imposed in Refs. 2 and 3. We do this, for simplicity, in the case of divergence type fluid
theories, and we assume that the reader is familiar with Ref. 2. The condition under consideration
allows us to characterize the strict equilibrium states in such a way that they are precisely the same
set of equilibrium states found for the standard Eckart theory.

The requirement 3 of Sec. Il is the following: The mapy:~,—.”*, defined by
TN =K M5.5¢/®, is injective for all space-time vectok?+ 0, where* denotes the dual
of the space of fluid states and,, the subspace of momentary equilibrium fluid states.

The equivalence between this condition and the one assumed in Ref. 2 follows from the
following argument. The mag is injective, SOK ,M3ag1®=0=y*=0 wherey"= (4, ?,0).

Due to the definition of indice®\ and B, the system of equations above represents a scalar
equation, a vector equation, and a symmetric two-index tensor equation.

First, consider the scalar equation, the contraction of the vector equation¥idnd the
contraction of the two-index tensor equation wifhZ°. All this constitutes a linear algebraic
system of three scalar equations for variabteg)?, K,z2, and XK,.2"y,,. The injectivity
implies that the only solution for these three variables is zero and so the determinant of the
coefficient matrix is different from zero. Conversely, if the determinant of the coefficient matrix is
different from zero, then we conclude that 0 andy?*=0 and then the mag’ is injective. By
direct inspection it can be checked that these coefficients are the same found in eqdddiens
(43) in Ref. 2.

Second, consider the vector equation and the contraction of the two-index tensor equation
with 2. This constitutes a linear algebraic system of two vector equations for the variables
mentioned in paragraph above, andfR ., andK. Because of injectivity, the only solution
for all these variables is zero and so the determinant of the coefficient matrix is different from
zero. It can be checked, by direct inspection, that these coefficients are the same found in equa-
tions (45)—(46) in Ref. 2.

Finally, consider the two-index tensor equation. It constitutes a linear algebraic two-index
equation for the variables mentioned in the previous paragraphKapd,, . Because of the
injectivity, the only solution for all these variables is zero and so the determinant of the coefficient
matrix is different from zero. By direct inspection it can be checked that these coefficients are the
same found in equation@8) in Ref. 2.
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APPENDIX B: GENERAL STABILITY THEOREM

Consider the Cauchy problem for a first order system of partial differential equations,

dv j j Jv
E=(A0+ sAl(v,s))a—X;+(Bo+8Bl(U:8))Uv
(B1)
v(t=0)=f(x)),

wherev:RXT*—R", Ajl(v,s) andB;(v,&) are smooth €C*) functions of their arguments, and
f(x): T*—=R" is also smooth. LeP denote the projector in the kernel Bf,. For the solutiony of
(B1) we definev®=Pv(01t) andw=v—v(®). The stability theorem proved in Ref. 7 stat8s:
Theorem 2: Suppose that the matriceg) AB,, and A are Hermitian, and the system (B1)
satisfy the “relaxed stability eigenvalue condition,” i.e., the following conditions hold.

() There is a constans>0 such that the eigenvalues(k) of the symbol i[ﬁkﬁBo
satisfyReg{A\}=<— ¢ for all ke O, k#0.

(i)  The eigenvalues of Bsatisfy eitherRg[A(0)}<— & or A (0)=0.

(i) keByCkerB,;.

Then, forO=e=<g( with e small enough, the system (B1) is a contraction for w in a suitable
norm, equivalent to a Sobolev nornPKp>s+2), andv(®— const.when t-o.

The statement in the above theorem that the system is contraction means that there exists an
H-norm, equivalent to the normiP, such that

d
gelwli=—(a+(e)lwl.

This implies that, foe small enough, there exists a gloljal time) smooth solution of the Cauchy
problem(B1) such that there is an exponentially decaying bound for the Solhbtevorm of the
w-part of its solution, and the(®) part goes to a constant when the time goes to infinity.

The only difference between the fluid equatigdsand (B1) is the presence dfl in front of
the time derivative. This causes no difficulties, and the theorem above is applicable by a simple
redefinition of the scalar product used. With this new scalar product, the eigenvalues problem for
the fluid equations becomes

det(iNg 'Nbk;+Ng t1o—NE)=0,

wherekE is the identity matrix. Then, the conditiofig, (ii), and(iii) of Theorem 2 can be verified
as is done in the proof of Theorem 1.
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