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We establish new existence results for the Einstein constraint equations for mean extrinsic curvature
arbitrarily far from constant. The results hold for rescaled background metric in the positive Yamabe class,
with freely specifiable parts of the data sufficiently small, and with matter energy density not identically
zero. Two technical advances make these results possible: A new topological fixed-point argument
without smallness conditions on spatial derivatives of the mean extrinsic curvature, and a new global
supersolution construction for the Hamiltonian constraint that is similarly free of such conditions. The
results are presented for strong solutions on closed manifolds, but also hold for weak solutions and for
compact manifolds with boundary. These results are apparently the first that do not require smallness
conditions on spatial derivatives of the mean extrinsic curvature.
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Introduction.—The question of the existence of solu-
tions to the Lichnerowicz-York conformally rescaled
Einstein’s constraint equations, for an arbitrarily pre-
scribed mean extrinsic curvature, has remained an open
problem for more than 30 years [1]. The rescaled equa-
tions, which are a coupled nonlinear elliptic system con-
sisting of the scalar Hamiltonian constraint coupled to the
vector momentum constraint, have been studied almost
exclusively in the setting of a constant mean extrinsic
curvature, known as the CMC case. In the CMC case the
equations decouple, and it has long been known how to
establish existence of solutions. The case of CMC data on
closed (compact without boundary) manifolds was com-
pletely resolved by several authors over the past 20 years,
with the last remaining subcases resolved and summarized
by Isenberg in [2]. Over the past ten years, other CMC
cases were studied and resolved; see the survey [3].

Conversely, the question of the existence of solutions to
the Einstein constraint equations for nonconstant mean
extrinsic curvature (the ‘‘non-CMC case’’) has remained
largely unanswered, with progress made only in the case
that the mean extrinsic curvature is nearly constant (the
‘‘near-CMC case’’), in the sense that the size of its spatial
derivatives is sufficiently small. The near-CMC condition
leaves the constraint equations coupled, but ensures the
coupling is weak. In [4], Isenberg and Moncrief established
the first existence (and uniqueness) result in the near-CMC
case, for background metric having negative Ricci scalar.
Their result was based on a fixed-point argument, together
with the use of iteration barriers (sub- and supersolutions),
which were shown to be bounded above and below by fixed
positive constants, independent of the iteration. We note
that both the fixed-point argument and the global barrier
construction in [4] rely critically on the near-CMC assump-
tion. All subsequent non-CMC existence results are based
on the analysis framework in [4] and are thus limited to the
near-CMC case (see the survey [3], the nonexistence re-

sults in [5], and also the newer existence results in [6] for
non-negative Yamabe classes).

This Letter presents the first non-CMC existence results
for the Einstein constraints that do not require the near-
CMC assumption. Two recent advances make this pos-
sible: A new topological fixed-point argument (established
in [7,8]) and a new global supersolution construction for
the Hamiltonian constraint (presented here and in [8]) that
are both free of near-CMC conditions. These two results
allow us to establish the existence of non-CMC solutions
for conformal background metrics in the positive Yamabe
class, with the freely specifiable part of the data given by
the traceless-transverse part of the rescaled extrinsic cur-
vature and the matter fields sufficiently small, and with the
matter energy density not identically zero. We only state
the main results and give the ideas of the proofs; detailed
proofs may be found in [8] for closed manifolds and in [7]
for compact manifolds with boundary. Our results here and
in [7,8] reduce the remaining open questions of existence
of non-CMC solutions without near-CMC conditions to
two basic open questions: (1) Existence of global super-
solutions for background metrics in the nonpositive
Yamabe classes and for large data; and (2) existence of
global subsolutions for background metrics in the positive
Yamabe class in vacuum.

The conformal method.—The manifold and fields (M,
ĥab, k̂ab, ĵa, �̂) form an initial data set for Einstein’s
equations iff M is a three-dimensional smooth manifold,
ĥab is a Riemannian metric on M, k̂ab is a symmetric
tensor field on M, ĵa and �̂ are a vector field and a non-
negative scalar field on M, respectively, satisfying an
energy condition (described below), and the following
hold on M:

 R̂� k̂2 � k̂abk̂
ab � 2��̂ � 0; (1)
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 � r̂ak̂
ab � r̂bk̂� �ĵb � 0: (2)

Here r̂a is the Levi-Civita connection of ĥab, so it satisfies
r̂aĥbc � 0, R̂ is the Ricci scalar of the connection r̂a, k̂ �
ĥabk̂

ab is the trace of k̂ab, and � � 8� in units where both
the gravitational constant and speed of light have value
one. We denote by ĥab the tensor inverse of ĥab. Tensor
indices of hatted quantities are raised and lowered with ĥab

and ĥab, respectively. When (1) and (2) hold, the manifold
M can be embedded as a hypersurface in a four-
dimensional manifold corresponding to a solution of the
space-time Einstein field equations, and the push-forward
of ĥab and k̂ab represent the first and second fundamental
forms of the embedded hypersurface. This leads to the
terminology extrinsic curvature for k̂ab, and mean extrinsic
curvature for its trace k̂. The dominant energy condition on
the matter fields implies the energy condition ��̂2 �

ĥabĵ
aĵb � 0, with strict inequality at points on M where

� � 0; see [9]. This condition is why the trivial procedure
of fixing an arbitrary Riemannian metric ĥab and a sym-
metric tensor k̂ab and then defining ĵa and �̂ by (1) and (2)
does not generally give a physically meaningful initial data
set for Einstein’s equations.

The conformal method consists of finding solutions ĥab,
k̂ab, ĵa, and �̂ of (1) and (2) using a particular decompo-
sition. To proceed, fix on M a Riemannian metric hab with
Levi-Civita connection ra, so it satisfies rahbc � 0, and
has Ricci scalar R. Fix on M a symmetric tensor �ab,
trace-free and divergence-free with respect to hab, that is,
hab�ab � 0 and ra�ab � 0. Also fix on M scalar fields �
and �, and a vector field ja, subject to the condition��2 �
habj

ajb � 0, with strict inequality at points on M where
� � 0. We have denoted by hab the tensor inverse of hab,
and we use the convention that tensor indices of unhatted
quantities are raised and lowered with the tensors hab and
hab, respectively. Finally, given a smooth vector fieldwa on
M, introduce the conformal Killing operator L as follows,
�Lw�ab � rawb �rbwa � �2=3��rcwc�hab. The confor-
mal method then involves first solving the following equa-
tions for a scalar field � and vector field wa

 � ��� aR�� a��5 � aw��7 � a���3 � 0; (3)

 �ra�Lw�
ab � bb��

6 � bbj � 0; (4)

where we have introduced the Laplace-Beltrami operator
�� � habrarb�, and the functions aR � R=8, a� �
�2=12, a� � ��=4, bb� � �2=3�rb�, bbj � �jb, and aw �
��ab � �Lw�ab���ab � �Lw�ab�=8. One then recovers the
tensors ĥab, k̂ab, ĵa, and �̂ through the expressions

 ĥ ab � �4hab; ĵa � ��10ja; �̂ � ��8�; (5)

 k̂ ab � ��10��ab � �Lw�ab� � 1
3�
�4� hab: (6)

A straightforward computation shows that if ĥab, k̂ab, ĵa,
and �̂ have the form given in (5) and (6), then Eqs. (1) and
(2) are equivalent to (3) and (4). Hatted fields represent
quantities with physical meaning, except the trace � of the
physical extrinsic curvature k̂ab, that is, � � k̂.

We employ standard Lp and Sobolev spaces Wk;p, fol-
lowing [10] for scalar-valued functions on bounded sets in
Rn, and following [11,12] for generalizations to manifolds
and to tensor fields. The space L1 is the set of almost
everywhere bounded functions on M, which is a Banach
space with norm kuk1 :� ess supMjuj. The Banach space
Lp, with 1 � p <1, is the set of tensor fields on M
having norm kukp :� �

R
M�ua1			anu

a1			an�p=2dx�1=p finite.
The Banach space Wk;p is the set of tensor fields on M
having k 
 0 weak covariant derivatives in Lp, with norm
denoted k kk;p.

The momentum constraint.—The momentum constraint
(4) is well understood in the case that hab has no conformal
Killing vectors [a vector field va is conformal Killing iff
�Lv�ab � 0]. A standard result is the following. Let
�M; hab� be a three-dimensional, closed, C2, Riemannian
manifold, with hab having no conformal Killing vectors,
and let ba�, baj 2 Lp with p 
 2 and � 2 L1; then, Eq. (4)
has a unique solution wa 2 W2;p with

 ckwk2;p � k�k6
1kb�kp � kbjkp; (7)

where c > 0 is a constant. We have generalized this result
in [7,8], allowing weaker coefficient differentiability, giv-
ing existence of solutions down to wa 2 W1;p, with real
number p 
 2. The proof in [8] is based on the Riesz-
Schauder theory for compact operators [13]. The case of
compact manifold M with boundary is analyzed in [7].

From inequality (7) it is not difficult to show that for
p > 3 the following pointwise estimate holds:

 aw � K1k�k
12
1 � K2; (8)

with K1 �
1
2 �
cscL
c �

2kb�k2
p, K2 �

1
4 k�k

2
1 �

1
2 �
cscL
c �

2kbjk2
p,

where cs is the constant in the embedding W1;p ,! L1,
and cL is a bound on the norm of L : W2;p ! W1;p. There
is no smallness assumption on kb�kp, so the near-CMC
condition is not required for these results.

Global Hamiltonian constraint barriers.—Let M be
closed. The scalar functions �� and �� are called barriers
(sub- and supersolutions, respectively) iff

 ���� � aR�� � a��5
� � aw��7

� � a���3
� � 0; (9)

 �����aR���a��
5
��aw�

�7
� �a��

�3
� 
0: (10)

The barriers are compatible iff 0<�� � �� and are
global iff (9) and (10) holds for all wa solving Eq. (4),
with source � 2 ���; ���. The closed interval

 ���; ��� � f� 2 Lp: �� � � � �� in Mg; (11)

is a topologically closed subset of Lp, 1 � p � 1 (see
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[8]). Global supersolutions are difficult to find as a con-
sequence of the non-negativity of aw and its estimate (8),
together with the limit (11). All previous global super-
solution constructions, such as those in [4,6], rely in a
critical way on the near-CMC assumption, which appears
as the condition that a suitable norm of r� be sufficiently
small or, equivalently, that K1 in (8) be sufficiently small.
The main result in this Letter is to establish the existence of
global supersolutions of the Hamiltonian constraint with-
out the near-CMC assumption. We need the following
notation: Given any scalar function v 2 L1, denote by
v^ � ess supMv, and v_ � ess infMv.

Theorem 1.—Let (M, hab be a three-dimensional,
smooth, closed Riemannian manifold with metric hab in
the positive Yamabe class with no conformal Killing vec-
tors. Let u be a smooth positive solution of the Yamabe
problem

 ��u� aRu� u5 � 0; (12)

and define the constant k � u^=u_. If the function � is
nonconstant and the rescaled matter fields ja, �, and
traceless-transverse tensor �ab are sufficiently small, then

 �� � �u; � �
�

1

2K1k12

�
1=4
� (13)

is a global supersolution of Eq. (3).
Proof. (Theorem 1)—Existence of a smooth positive

solution u to (12) is summarized in [14]. Using the notation

 E��� � ���� aR�� a��
5 � aw�

�7 � a��
�3;

(14)

we have to show E���� 
 0. Taking �� � �u, � > 0
gives the identity ���� � aR�� � �u5. We have

 E���� 
 ���� � aR�� �
K1��

^
��

12 � K2

�7
�

�
a^�
�3
�


 �u5 � K1

�
�^�
�_�

�
12
�5
� �

K2

�7
�

�
a^�
�3
�


 �u5

�
1� K1k

12�4 �
K2

�8u12 �
a^�
�4u8

�
;

where we have used �^�=�
_
� � u^=u_ � k. The choice of

� made in (13) is equivalent to 1=2 � 1� K1k
12�4. For

this �, impose on the free data �ab, �, and ja the condition

 

1

2
�

K2

�8�u_�12 �
a^�

�4�u_�8

 0:

Thus for any K1 > 0, we can guarantee E���� 
 0 for
sufficiently small �ab, �, and ja. �

Theorem 1 shows that global supersolutions �� can be
built without using near-CMC conditions by rescaling
solutions to the Yamabe problem (12); the larger kr�kp,
the smaller the factor �. Existence of the finite positive
constant k appearing in Theorem 1 is related to establishing

a Harnack inequality for solutions to the Yamabe problem
(see [15]). It remains to construct (again, without near-
CMC conditions) a compatible global subsolution satisfy-
ing 0<�� � ��. We now give a variant of some known
constructions [16–18], so also [7,8].

Theorem 2.—Let the assumptions for Theorem 1 hold. If
also the rescaled matter energy density � is not identically
zero, then there exists a positive global subsolution �� of
Eq. (3), compatible with the global supersolution in
Theorem 1, so that it satisfies 0<�� � ��.

Proof. (Theorem 2).—Let a� 
 	 > 0 in some open set
B �M. We know from [2] that there exists u satisfying

 ��u� aRu� Ruu5 � 0; (15)

such that Ru � �
 < 0 in M n B. Taking �� � �u, � >
0 gives the identity���� � aR�� � �Ruu

5. UsingE���
from (14), we must show E���� � 0. We have

 E���� � ���� � aR�� � a��5
� � aw��7

� � a���3
�

� �Ru�u
_�5 � a^� �

5�u^�5 � a��
�3�u_��3:

Now find � � �1 > 0 sufficiently small so on B �M,

 �1Ru�u_�5 � a^� �
5
1�u
^�5 � 	��3

1 �u
_��3 � 0:

Next find � � �2 > 0 sufficiently small so on M n B,

 � 
�2�u_�5 � a^� �
5
2�u
^�5 � 0:

Taking now �0 � minf�1; �2g> 0 produces a global sub-
solution�� � �u, for any � 2 �0; �0�. We now finally take
� 2 �0; �0� sufficiently small so that 0<�� � ��. �

The Hamiltonian constraint.—We now state some sup-
porting results we need from [7,8] for solutions of (3). We
state only the results for strong solutions, recovering pre-
vious results in [2,4]. Generalizations allowing weaker
differentiability conditions on the coefficients appear in
[7,8].

Theorem 3.—Let �M; hab) be a three-dimensional, C2,
closed Riemannian manifold. Let the free data �2, �2, and
� be in Lp, with p 
 2. Let �� and �� be barriers to (3)
for a particular value of the vector wa 2 W1;2p. Then, there
exists a solution � 2 ���; ��� \W2;p of the Hamiltonian
constraint (3). Furthermore, if the metric hab is in the non-
negative Yamabe classes, then � is unique.

Proof. (Theorem 3).—The proofs in [7,8] make use of
barriers, a priori estimates, and variational methods. �

The coupled constraint system.—Our main result con-
cerning the coupled constraint system is the following.

Theorem 4.—Let �M; hab� be a three-dimensional,
smooth, closed Riemannian manifold with metric hab in
the positive Yamabe class with no conformal Killing vec-
tors. Let p > 3 and let � be in W1;p. Let �2, ja, and � be in
Lp and satisfy the assumptions for Theorems 1 and 2 to
yield a compatible pair of global barriers 0<�� � �� to
the Hamiltonian constraint (3). Then, there exists a scalar
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field � 2 ���; ��� \W2;p and a vector field wa 2 W2;p

solving the constraint Eqs. (3) and (4).
Theorem 4 can be proven using the following topologi-

cal fixed-point result established in [7,8]. For a review of
reflexive and ordered Banach spaces, see [7,8,19]. Note
that such compactness arguments do not give uniqueness.

Lemma 1.—Let X and Y be Banach spaces, and let Z be a
Banach space with compact embedding X ,! Z. Let U �
Z be a nonempty convex, bounded subset that is closed in
the topology of Z, and let the maps

 S: U !R�S� � Y; T: U�R�S� ! X \U

be continuous. Then there existw 2R�S� and� 2 U \ X
such that

 � � T��;w� and w � S���: (16)

Proof. (Lemma 1).—The proofs of this result and several
useful variations appear in [7,8]. �

Proof. (Theorem 4).—The proof is through Lemma 1.
First, for arbitrary real number s > 0, express (3) and (4) as

 Ls�� fs��;w� � 0; �Lw�a � f���a � 0; (17)

where Ls: W2;p ! Lp and L: W2;p ! Lp are defined as
Ls� :� ���� s��, and �Lw�a :� �rb�Lw�

ab, and
where fs: ���; ��� �W2;p ! Lp and f : ���; ��� !
Lp are

 fs��;w� :� �aR � s��� a��
5 � aw�

�7 � a��
�3;

f���a :� ba��6 � baj :

Introduce now the operators S: ���; ��� ! W2;p and T:
���; ��� �W

2;p ! W2;p, which are given by

 S���a :� ��L�1f����a; T��;w� :� �L�1
s fs��;w�:

The mapping S is well defined due to the absence of
conformal Killing vectors, ensuring L is invertible. The
mapping T is also well defined by the introduction of the
positive shift s > 0 in Ls, ensuring that Ls is also invertible
(see [7,8]). The Eqs. (17) have the form (16) for the use of
Lemma 1. We have the Banach spaces X � W2;p and Y �
W2;p, and the (ordered) Banach space Z � L1 with com-
pact embedding W2;p ,! L1. The compatible barriers
form the nonempty convex, bounded L1 interval U �
���; ���, which we noted earlier is closed in Lp for 1 �
p � 1 (see [8]). It remains to show that S and T are
continuous maps. These properties follow from Eq. (7)
and from Theorem 3 with global barriers from

Theorem 1 and Theorem 2, using standard inequalities.
Theorem 4 now follows from Lemma 1. �

See [8] for generalizations of Theorem 4 to arbitrary
space dimensions and allowing weaker differentiability
conditions on the coefficients, establishing the existence
of nonvacuum, non-CMC weak solutions down to � 2
Ws;p, for �s� 1�p > 3. Generalizations of the results here
and in [8] to compact manifolds with boundary appear in
[7].
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[16] N. Ó. Murchadha and J. York, Phys. Rev. D 10, 428

(1974).
[17] D. Maxwell, J. Hyp. Diff. Eqs. 2, 521 (2005).
[18] Y. Choquet-Bruhat, Classical Quantum Gravity 21, S127

(2004).
[19] E. Zeidler, Nonlinear Functional Analysis and its

Applications I, Fixed-Point Theorems (Springer, New
York, 1986).

PRL 100, 161101 (2008) P H Y S I C A L R E V I E W L E T T E R S week ending
25 APRIL 2008

161101-4


