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Abstract. We consider the initial free–boundary value problem for the self-gravitating com-
pressible three dimensional Euler equations with positive mass density at the boundary, for which
we prove the linear stability of static background solutions. Our work can be summarised in two
essential steps. First, we transform the free–boundary problem into a fixed-boundary problem in
the usual way by using the Lagrange formulation of Euler’s equations. We then write the resulting
system as a first order system of evolution and constraint equations. Second, we enlarge the system
including every first derivative of the fluid velocity as a new variable. This procedure leads to whole
class of systems with different evolution equations. One of these systems admits a symmetric hy-
perbolic formulation of the evolution equations which might be useful for numerical investigations.
Another of these systems allows to decouple certain evolution equations, which then can be solved
independently. We prove well posedness for the linearization of these equations near a static back-
ground. This is done using known results for the initial fixed-boundary value problem for linear
symmetric hyperbolic systems. The treatment of the constraints at the boundary turns out to be
the most difficult part of our approach.
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1. Introduction. In order to consider the initial free–boundary value problem
for the self-gravitating compressible Euler equations we first introduce the indepen-
dent variables, the unknown fields and the fluid equations in a bounded domain,
before formulating the problem we are interested in. Let the independent variables
be the Cartesian coordinates (t, xi) in R4, representing the time and the position in
space. Latin indices i, j, k, l, take values 1, 2, 3, and summation over repeated indices
is assumed throughout this work. Let the unknown fields be a non-negative scalar
field ρ interpreted as the fluid mass density, a vector field vi interpreted as the fluid
3-velocity, and a scalar field φ interpreted as the gravitational potential. Fix a state
function p(ρ), which relates the pressure p with the mass density ρ. Assume that
the state function is twice continuously differentiable as a function of ρ. Assume,
in addition, that p is a non-negative and an increasing function of ρ in the domain
[ρ̄0,∞), where the constant ρ̄0 > 0 satisfies p(ρ̄0) = 0. Moreover consider a domain
DT = ∪t{t}×Dt, where t ∈ [0, T ] and Dt ⊂ R3 is a connected, open, bounded set for
each t.

The initial free–boundary problem for the self-gravitating compressible Euler
equations is to find a domain DT and a unique solution ρ, va, φ of system

Dtρ+ ρ ∂iv
i = 0 in DT (1.1)

ρDtvi + ∂ip = −ρ ∂iφ, in DT (1.2)

∆φ = 4πGρ, in R3 × [0, T ] (1.3)

with Dt := ∂t + vi∂i the material derivative, for the following given initial condi-
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tions

ρ(0, x) = ρ0(x) vi(0, x) = vi0(x), on D0 (1.4)

on a given initial domain D0, and satisfying on the free boundary BT = ∪t{t}× ∂Dt,
with t ∈ [0, T ], the boundary conditions

ρ = ρ̄0, on BT , (1.5)

Dtf = 0 on BT , ∀f : f |BT = 0, (1.6)

while the gravitational potential φ satisfies the boundary condition

lim
|x|→∞

φ = 0. (1.7)

We have denotes by G the gravitational constant, and by ∆ = δij∂i∂j the Lapla-
cian, where δij = diag(1, 1, 1). Latin indices i, j, k, are equivalent as superscripts or
subindices, in the sense that they are rised with δij and lowered with its inverse δij .

With the boundary condition (1.7) φ is given by the Newton potential

φ(t, x) = −G
∫

Dt

ρ(t, x′)

|x− x′|d
3x′, (1.8)

| | is the Euclidean norm in R3. In the rest of this work we use Eqs. (1.8), in order to
calculate φ.

The boundary condition (1.6) express that the material derivative Dt = ∂t + vi∂i
belongs to the tangent space of BT when evaluated at that border. The constant
ρ̄0 in the boundary condition (1.5) is the particular positive constant such that the
pressure vanishes, so the boundary condition (1.5) implies that the pressure at the
free boundary satisfies the usual condition

p|BT = 0. (1.9)

The name free–boundary emphasises that the domain DT is part of the unknowns.
The domain, and so the part of its boundary given by BT , are not known before
computing the solution functions ρ, vi. The pressure must vanish at this border
because there is vacuum outside the fluid. The state function relates the pressure with
the mass density, so the pressure vanishes at some particular value of the mass density,
called ρ̄0. We consider states functions satisfying ρ̄0 > 0. This condition imposes a
restriction on the possible state functions. An example of state function satisfying all
our assumptions is p = Kργ − p0, where K,γ and p0 are positive constants. Liquid
water can be described by such state functions for appropriate values of the free
constants [4]. We do not study free–boundary problems for state functions satisfying
p(0) = 0, since the mass density and possibly the fluid sound velocity vanish at the
boundary, making the equations singular. Moreover the general version of equation
(1.6), is ρ (Dtf) = 0. Hence in the case of a vanishing boundary density, condition
(1.6) might not be satisfied and it remains open whether the boundary is in fact
generated by the integral curves of the velocity vector field.

The main difficulty in our problem is the presence of a free–boundary. The com-
pressible Euler equations can be solved in the case that the boundary is fixed. By
fixed we mean given in advance as a data of the problem, although not necessarily
constant in time. Euler’s equations can be written as a particular case of a general
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type of equations, called symmetric hyperbolic. The definitions of weakly, strongly,
and symmetric hyperbolic systems are reviewed in the Appendix, A.1. The initial
fixed-boundary value problem for quasilinear symmetric hyperbolic systems is well
understood in some particular cases [8], [13], [12], [16], [17]. These cases include char-
acteristic boundaries of constant multiplicity. This essentially means that the normal
matrix, which is the matrix formed with the coefficients of the principal part of the
equations involving only normal derivatives to the boundary, can have zero eigenval-
ues with constant multiplicity along the boundary. In that case it is known how to
prescribe boundary conditions, called maximal dissipative, such that the initial fixed-
boundary value problem is well posed. There are no similar results in the literature
for the initial free–boundary value problem for symmetric hyperbolic systems.

Therefore, the main strategy to solve a free–boundary problem is to transform it
into a new problem for different unknown functions but involving a fixed-boundary. In
the case of Euler equations this can be achieved transforming the problem from Euler
to Lagrange coordinates. The position in space of the fluid particles is the unknown, as
usual in Lagrange formalism. A label identifying the fluid particle is the independent
variable. Euler equations for the mass density and the fluid velocity translate into
a second order system for the position in space of the fluid particles and the free
boundary is transformed into a fixed-boundary. There is however a disadvantage
with this procedure. The resulting fluid equations in the Lagrange formalism, written
as a first order system, are not symmetric hyperbolic in space dimensions greater
than one. We show in Sec. 2.1 that they are only weakly hyperbolic. The a priori
estimates, which are at the very basis of well posedness for symmetric or strongly
hyperbolic systems, cannot be constructed in weakly hyperbolic systems. There are
examples of Cauchy problem for weakly hyperbolic systems with variable coefficients
which are not well posed [7]. This explains a tendency in the literature; a proof of
well posedness of the Cauchy or the mixed (initial fixed-boundary value) problem for
a weakly hyperbolic system, when possible, involves arguments which are specific to
the particular equation under study.

The linear stability of the initial free–boundary compressible Euler equations has
already been shown in [9] in a slightly different context, where gravitational effects
were neglected. The main idea of the proof is to consider the Euler equations in
Lagrangian coordinates and to develop specific estimates for those equations. Fur-
thermore a condition on the background solution is imposed which prevents the oc-
currence of the Rayleigh-Taylor instability in incompressible fluids. We come back to
this result in the last section where we compare it with our main theorem.

We present a different proof for the linear stability of static solutions of a self-grav-
itating fluid with a free–boundary. Our guiding idea was to use as much as possible
the known techniques on well posedness of the initial fixed-boundary problem for
symmetric hyperbolic systems. We also translate the free–boundary problem in the
Euler coordinates into a fixed-boundary problem in Lagrange coordinates. But we
then enlarge the system including every first derivative of the fluid velocity as a new
variable. We include as new equations the first derivative of the fluid equations in
the Lagrange formalism. The integrability conditions on the new variables are also
incorporated as new equations. The result is a class of enlarged systems, an example
given by (2.18)–(2.30), called here boundary adapted system. It consists of evolution
equations and constraint equations coming from the integrability conditions. The
name constraint means that there is no time derivative in these equations.

Einstein’s equations for the gravitational field, and Maxwell’s equations for the
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electromagnetic field are examples of systems consisting of hyperbolic evolution equa-
tions and constraint equations. The mixed problem for systems of this type can be
solved as follows. First, find a solution of the mixed problem for the evolution equa-
tions. Then, show that there exists a subset of all possible boundary conditions with
the following property: if the constraint equations are satisfied initially, then they are
satisfied for every time during the evolution. This property is called preservation (or
propagation) of the constraints. We carry on this idea on Eqs. (2.18)–(2.30) to show
the linear stability of static solutions. The evolution equations are only weakly hyper-
bolic. However, when linearized near a static solution they decouple into a symmetric
hyperbolic block that can be solved separately from the rest of the system. The solu-
tions of this subset of the unknowns are then source functions to solve the evolution
equations for the rest of the variables. These equations are then ordinary differential
equations. Finally we show that there exists boundary data for the evolution equations
with the following properties: it is maximal dissipative for the evolution equations;
it implies the preservation of the constraints, and the resulting fluid boundary is a
free–boundary for the linear perturbation. This result is summarized in Theorem 3.2.

We have mentioned that the evolution equations of the boundary adapted system
are still weakly hyperbolic. This might be the reason why our argument to show well
posedness to perturbation of static solutions cannot be generalized to perturbations
on an arbitrary background solution. In the Appendix B we show that there exists
further modifications to the evolution equations which are symmetric hyperbolic in the
Lagrange coordinates. Such a formulation has interest in its own and might be useful
for numerical simulations.

The idea to find this system is the following. Given any system of evolution and
constraint equations, the former are not uniquely determined. Adding any constraint
equation to the evolution equations produces new evolution equations. Using this
attempt one can find a system of evolution equations for the compressible fluid equa-
tions in Lagrange coordinates which is symmetric hyperbolic, Eqs. (B.1)–(B.6) in
Appendix B. This evolution equations seem, at the moment, not to be well adapted
to the boundary, though. That is, it is no clear how to prescribe boundary data
satisfying the three properties mentioned above:

1. that it being maximal dissipative for the evolution equations;
2. it implies the preservation of the constraints,
3. and the resulting fluid boundary is a free–boundary.

We present this system here, because further modifications of the evolution equations
could produce a boundary adapted system for the full nonlinear fluid equations.

The main idea needed to construct Eqs. (B.1)–(B.6) was originated in [5], where
a symmetric hyperbolic Lagrange formulation for Einstein-Euler’s equations was pre-
sented. However, it was not clear at that moment whether particular geometrical
features of Einstein’s equations made possible this system, or the same idea could be
carried out in Euler’s equations in the context of Newtonian theory. We show that
the latter possibility is actually true. A different starting point to obtain the same
system (B.1)–(B.6) is given in [6]. This reference reformulated and generalized the
ideas given in [5]. It provides a general procedure to construct relativistic symmetric
hyperbolic Lagrange formulations for any symmetric hyperbolic evolution equation
having a nonvanishing four-vector field as variable.

This work is organized as follows. In Sec. 2.1 we write the Lagrange formulation of
compressible Euler’s equations has a first order system. We show that the evolution
equations are weakly hyperbolic. In Sec. 2.2 we introduce the boundary adapted
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system, Eqs. (2.18)–(2.30). In Sec. 3 we translate the free–boundary problem into
a fixed-boundary problem. We linearize it near a static solution. We prove the
main result, Theorem 3.2, which states that this linearization is well posed. We
discuss the main results in Sec. 4. We have added two appendices. The first one
provides the background material on hyperbolic equations needed in this work. The
main definitions on hyperbolic system are reviewed in Sec. A.1. The main theorem
on well posedness for the initial fixed-boundary value problem for linear symmetric
hyperbolic equations is reviewed in Sec. A.2. Finally, we show in Appendix B that
one can construct a symmetric hyperbolic Lagrange formulation of Euler’s equations.

2. Lagrange formulation. It is known that the Lagrange formulation of Eu-
ler equations in one space dimension is symmetric hyperbolic, but fail to have this
property in space dimensions greater than one.

2.1. Standard Lagrange formulation. Consider the Euler equations (1.1),
(1.2) in the bounded domain DT , neglecting any gravitational effect. Assume that
the state function satisfies every condition given in Sec. 1. Denote ν2 := ∂p

∂ρ , which

then satisfies ν2 > 0 for ρ ≥ ρ0.
The compressible Euler equations (1.1), (1.2) can be written as the following

symmetric hyperbolic system

ν2Dtρ+ ν2ρ ∂iv
i = 0, (2.1)

ρ2Dtv
i + ν2ρ ∂iρ = 0, (2.2)

by multiplying Eq. (1.1) by ν2, and Eq. (1.2) by ρ.
The Lagrange formulation of Eqs. (2.1), (2.2) is the following. Consider the

domain DT = [0, T ]×D, where T > 0 and D ⊂ R3 is a compact set. Fix a coordinate
system (t, ya) in DT . Latin indices a, b, c, d, take values 1, 2, 3. The coordinates ya

label the fluid particles. The coordinate t is added for convenience in the description
of a moving fluid, which is equal the time coordinate of the Euler formalism. These
coordinates are the independent variables. The unknown fields are (x̂i, κa

i, ρ̂, v̂i). The
functions x̂i(t, y) represent the spatial position of the fluid particles with coordinates

ya at the time t, the κa
i = ∂x̂i

∂ya are their y-derivatives, ρ̂(t, y) = ρ(t, x(t, y)) is the fluid

mass density, and v̂i(t, y) = vi(t, x(t, y)) is the fluid velocity. The hats are added to
emphasize that they are functions of ya. The Jacobian of the map x̂i(t, y) at time t,
given by κa

i, is introduced as a variable in order that the resulting system be of first
order. Denote its inverse by κ̄i

a, and the determinant by κ = det(κa
i) and finally

introduce the hatted derivative ∂̂i = κ̄i
a∂a.

The equations in Lagrangian coordinates in our presentation include evolution
and constraint equations. The evolution equations are given by

∂tx̂
i = v̂i, (2.3)

∂tκa
i − ∂av̂i = 0, (2.4)

ν̂2∂tρ̂+ ν̂2ρ̂ ∂̂iv̂
i = 0, (2.5)

ρ̂2∂tv̂i + ν̂2ρ̂ ∂̂iρ̂ = 0, (2.6)

while the constraint equations are given by

∂ax̂
i = κa

i, (2.7)

∂[aκb]
i = 0, (2.8)
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where 2∂[aκb]
i = ∂aκb

i − ∂bκai. We use this notation throughout this work: an index
pair between square-brackets means antisymmetrization.

This is the Lagrange formulation of Euler’s equations. The Eq. (2.3) comes from
the definition of the coordinates ya, which label fluid particles. The Eq. (2.4) is the
identity ∂[t∂a]x̂

i = 0. Eqs. (2.5), (2.6) are Euler equations (2.1), (2.2), written in terms
of (t, ya). The constraint equations (2.7) and (2.8) are the definition of κa

i and its
integrability condition, respectively. The fluid equations in the Euler formulation form
a symmetric hyperbolic system. However the evolution equations in the associated
Lagrange formulation is only weakly hyperbolic in space dimensions greater than one.

Theorem 2.1. The evolution equations (2.3)–(2.6) corresponding to the Lagrange
formulation of the Euler equations are only weakly hyperbolic.

Furthermore, the generalization of Eqs. (2.3)–(2.6) to any space dimensions is
weakly hyperbolic for space dimensions greater than 1.

Proof. Write the evolution equations in the form ∂tû = Aa∂aû, with ûT =
(x̂i, κa

i, ρ̂, v̂i), and T meaning transpose. The matrices Aa depend of û. Fix a
solution û, a point (t, ya), and compute the eigenvalues and eigenvectors of the matrix
P (û, ω) = Aa(û)ωa, where ωa ∈ R3. Let gab = κa

iκb
jδij be the metric induced by

the transformation κa
i, and gab = κ̄i

aκ̄j
bδij be its inverse. Assume that ωa is unitary

with respect to gab, that is gabωaωb = 1. Let uT = (xi, κa
i, ρ, vi) be an eigenvector

of P (û, ω) with eigenvalue λ. The equation λu = P (û, ω)u has the form

λxi = 0, (2.9)

λκa
i = ωav

i, (2.10)

λρ = −ρ̂ ωivi, (2.11)

λvi = − ν̂
2

ρ̂
ωiρ, (2.12)

where we denoted ωi := κ̄i
aωa. The space of unknowns has dimension 16. There are

three eigenvalues, λ0 = 0 with multiplicity 12, and λ± = ±ν̂, each with multiplicity
2. The corresponding eigenvectors are

u0 =




xi

κa
i

0
0


 , u± =




0
±ωaωi
∓ρ̂
ν̂ωi


 , (2.13)

with ωi := δijωj . There are 12 linearly independent eigenvectors u0, parametrized by
the components of xi and κa

i. However, there are only 2 linearly independent eigen-
vectors u±, so they do not span their four dimensional eigenspace. The component
of the velocity part, vi, of the eigenvectors u± has only components in the direction
along ωi. Therefore, Eqs. (2.3)–(2.6) are weakly hyperbolic.

This proof can be generalized to any number of space dimensions. In this case
ωa ∈ Rn, with n ≥ 1. Indices i, j, and a b take values 1, · · · , n. The eigenvectors of
P (û, ω) are u0 and u± given above. The eigenvector u± span its eigenspace only in the
case n = 1. That is why the system is strongly hyperbolic in space dimension 1, but
it is not in higher space dimensions. In the later case it is only weakly hyperbolic.

Remark 1 (On the uniqness of presentation). The evolution equations (2.3)–
(2.6) are not uniquely defined, because one can add the constraint equations (2.7),
(2.8) into the evolution equations and the obtain a new set of evolution equations.
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Consider the following evolution equations

∂tx̂
i = v̂i, (2.14)

∂tκa
i − ∂av̂i = α1(∂ax̂

i − κai), (2.15)

ν̂2∂tρ̂+ ν̂2ρ̂ ∂̂iv̂
i = α2κ̄i

a(∂ax̂
i − κai), (2.16)

ρ̂2∂tv̂i + ν̂2ρ̂ ∂̂iρ̂ = −2α3ν̂κ̄i
aκ̄j

b∂[aκb]
j . (2.17)

However, this freedom in the definition of the evolution equations cannot be used to
find strongly hyperbolic evolution equations.

Lemma 2.2. The evolution equations (2.14)–(2.17) are weakly hyperbolic for
every value of the parameters αi, with i = 1, 2, 3.

The proof is similar to the proof of Theorem 2.1, and is not reproduced here.

2.2. Boundary adapted system. We present now, the new formulation of the
Euler equation, which we announced in the introduction. First consider the domain
DT = [0, T ]×D, where T > 0 and D ⊂ R3 is a connected, open, bounded set. Let
(t, ya) be coordinates in DT , with ya labeling the fluid particles.

The boundary adapted system is then the following. The unknown fields are
(x̂i, κa

i, φ̂, ρ̂, v̂i, âi, ŵa
i). The functions x̂i(t, y) are the spatial position of the

fluid particles with coordinates ya at the time t, while κa
i = ∂x̂i

∂ya represent their

y-derivatives. The function φ̂(t, y) = φ(t, x̂(t, y)) is the gravitational potential as a
function of (t, ya). The functions ρ̂(t, y) = ρ(t, x̂(t, y)) and v̂i(t, y) = vi(t, x̂(t, y))
represent the mass density and the 3-velocity, respectively. The unknown âi = ∂tv̂

i

is the material acceleration, and ŵa
i = ∂av̂

i the y-derivative of the fluid velocity. We
use the notation ŵ := κ̄i

aŵa
i, and ŵi

j = κ̄i
aŵa

j , where κ̄i
a is the inverse of κa

i.
Fix a state function p(ρ) as described in Sec. 1, and denote p̂ = p(ρ̂). The evolution
equations are given by

∂tx̂
i = v̂i, (2.18)

∂tκa
i = ŵa

i, (2.19)

∂tρ̂ = −ρ̂ ŵ, (2.20)

∂tv̂
i = âi, (2.21)

∂tâi − ν̂2∂̂iŵ = −α̂ŵ(âi + ∂̂iφ̂)− ŵij âj − ∂̂i(∂tφ̂), (2.22)

∂tŵij − ∂̂iâj = −ŵikŵkj , (2.23)

where ∂̂i = κ̄i
a∂a, and the function α̂ = ρ̂β̂

ν̂2 , with β = ∂2p
∂ρ2 , and β̂ = β(ρ̂). The

gravitational potential is given by

φ̂ = −G
∫

D

ρ̂(t, y′)
|x̂(t, y)− x̂(t, y′)|gd

3y′, (2.24)

with g = [det(gab)]
( 1

2 ), where gab = κa
iκb

jδij is the Euclidean metric δij written in
the Lagrange coordinates. The constraint equations are,

∂ax̂
i = κa

i, (2.25)

∂av̂
j = ŵa

j , (2.26)

∂̂ip̂

ρ̂
+ ∂̂iφ̂ = −âi, (2.27)

∂[aκb]
i = 0, (2.28)

∂[aŵb]
k = 0, (2.29)

∂̂[iâj] = 0. (2.30)
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These equations (2.18)–(2.30) form the boundary adapted system. Let us just
outline how it can can be obtained. Compute the standard Lagrange formulation of
the self gravitating Euler equations (1.1), (1.2). Then, Eq. (2.18) is the definition
of ya, that is, a label for the fluid particles. The constraint Eq. (2.25) is the defini-
tion of κa

i, and Eq. (2.28) its integrability condition. The constraint Eq. (2.26) is
the definition of the new unknown ŵa

i, and Eq. (2.29) is its integrability condition.
The evolution Eq. (2.19) is the evolution equation (2.4) replacing ∂av̂

i by ŵa
i. The

evolution equation (2.21) is the definition of ai as the material acceleration, then the
constraint equation (2.27) is the original Euler equation (2.6) (with nonzero gravita-
tional potential). The constraint equation (2.30) is its integrability condition.

The equations (2.22), (2.23) are obtained following the main idea in [5]. The
first equation comes from the remaining integrability condition of the original Euler
equations (2.5), (2.6) (and including the gravitational potential), that is,

∂t

(
∂̂ip̂

ρ̂

)
− ∂̂i

(
∂tp̂

ρ̂

)
= −1

ρ̂
ŵi
j ∂̂j p̂, (2.31)

where we used the commutator [∂t, ∂̂i] = −ŵij ∂̂j . This commutator can be obtained

noticing that the evolution equation (2.19) implies (∂tκ̄i
a)∂a = −ŵij ∂̂j . The expres-

sion on the left hand side can also be written as follows,

∂t

(
∂̂ip̂

ρ̂

)
− ∂̂i

(
∂tp̂

ρ̂

)
= −∂tâi − ∂t(∂̂iφ̂) + ∂̂i(ν̂

2ŵ) (2.32)

where the last term on the right hand side comes from Euler’s equation (2.5). There-
fore, one obtains

∂tâi − ν̂2∂̂iŵ = (∂̂iν̂
2)ŵ + ŵi

j ∂̂j p̂

ρ̂
− ∂t(∂̂iφ̂). (2.33)

Note that ∂̂i(ν̂
2) = α̂∂̂ip̂

ρ̂ . Introducing the constraint ∂̂ip̂
ρ̂ + ∂̂iφ̂ = −âi one obtains

∂tâi − ν̂2∂̂iŵ = −α̂ŵ(âi + ∂̂iφ̂)− ŵij(âj + ∂̂j φ̂)− ∂t(∂̂iφ̂). (2.34)

This is Eq. (2.22) if one recalls the commutator [∂t, ∂̂i] = −ŵij ∂̂j . The Eq. (2.23)
is just the identity ∂[t∂a]v̂

j = 0, written in terms of ŵij and âi. This finishes the
procedure to obtain the boundary-adapted system.

3. Initial free–boundary problem. Consider the initial free–boundary value
problem introduced in Sec. 1 for the self-gravitating compressible Euler equations. In
this section we prove the linear stability of static background solutions of the boundary
adapted Lagrange formulation of this problem for which we neglect perturbations in
the gravitational potential. We first convert the original free–boundary problem given
in Sec. 1 into a fixed-boundary problem for the boundary adapted Eqs. (2.18)–(2.30),
with particular boundary conditions. These particular boundary conditions have the
information that the fixed-boundary in the Lagrange formalism corresponds to a fluid
free–boundary. Because of this reason, we keep the expression free–boundary to name
our problem in Lagrange coordinates, although one solves an initial fixed-boundary
value problem. We then compute the linearization of Eqs. (2.18)–(2.30) around a
static background solution. We show well posedness of the initial fixed-boundary
problem for the linear system.
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The initial free–boundary problem for the boundary adapted Lagrange equations
(2.18)–(2.30), is the following. Find a vector valued function û = (x̂i, κa

i, ρ̂, v̂i ,

âi, ŵij), solution in DT of both the evolution Eqs. (2.18)–(2.23), where φ̂ is given by
(2.24), and of the constraint equations (2.25)–(2.30). This solution must be uniquely
specified in terms of some initial and boundary data of the form

û(0, y) = û0(y) on D (3.1)

ρ̂ = ρ̄0, with ρ̄0 > 0 p(ρ̄0) = 0 on ∂D (3.2)

ŵ = 0 on BT (3.3)

Remark 2. The solution to this problem in DT defines a solution to the ini-
tial free–boundary problem for the self-gravitating compressible Euler equations (1.1)–
(1.2), presented in Sec. 1, in the domain DT = ∪t{t}×Dt. One has to choose D = D0.
The information about the time evolution of Dt is encoded into the functions xi(t, y),
for ya ∈ ∂D. Note that the condition that the density is constant must only hold
on the boundary of the initial hyersurface. The 3-surface BT in space-time is a free
boundary because w|BT = 0, which implies that ρ is constant in that boundary. The
initial condition ρ̂|∂D = ρ̄0 implies that this constant is ρ = ρ̄0. Therefore, p|BT = 0,
and the boundary is a fluid free–boundary.

3.1. The linearized problem. Consider a smooth static solution to the initial
free–boundary value problem above. That is, fields x̂i0 = δa

iya, v̂k0 = 0, âi0 = 0, and
ŵ0ij = 0, where we have chosen that the x and y coordinates coincide. The fields ρ̂0

and φ̂0 satisfies the equation

∂̂ip̂0

ρ̂0
= −∂̂iφ̂0 (3.4)

and φ̂0 is given by (1.8). Note that ∂tφ̂0 = 0. Denote by ν0 = ν(ρ̂0). Introduce the
unknowns

x̌i = x̂i − δaiya, κ̌a
i = κa

i − δai, (3.5)

ρ̌ = ρ̂− ρ̂0, v̌i = v̂i, ǎi = âi, w̌ij = ŵij . (3.6)

Neglect the gravitational effects of the perturbation, that is, set φ̌ = 0.
The linearization of the boundary adapted system (2.18)–(2.30) is the following:

∂tx̌
i = v̌i, (3.7)

∂tκ̌a
i = w̌a

i, (3.8)

∂tρ̌ = −ρ̂0 w̌, (3.9)

∂tv̌
i = ǎi, (3.10)

∂tǎi − ν2
0 ∂̂iw̌ = −α̂(∂̂iφ̂0)w̌, (3.11)

ν2
0∂tw̌ − ν2

0 ∂̂iǎ
i = 0, (3.12)

∂tw̌[ij] = 0, (3.13)

∂tw̌〈ij〉 − ∂̂〈iǎj〉 = 0, (3.14)

where ∂̂i = δi
a∂a, and w̌〈ij〉 = w̌(ij) − δij w̌3 , that is the symmetric trace-free part of

w̌ij . The linearized constraint equations take the form
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∂ax̌
i = κ̌a

i, (3.15)

∂av̌
j = w̌a

j , (3.16)(
∂̂ip

ρ

)
ˇ= −ǎi, (3.17)

∂[aκ̌b]
i = 0, (3.18)

∂[aw̌b]
k = 0, (3.19)

∂̂[iǎj] = 0. (3.20)

The initial free–boundary value formulation for the linearized Lagrange equations
is the following.

Definition 3.1. Find a vector valued function ǔ = (x̌i, κ̌a
i, ρ̌, v̌i, ǎi, w̌ij),

solution in DT of both the evolution Eqs. (3.7)–(3.14), and of the constraint equations
(3.15)–(3.20). This solution must be uniquely specified in terms of the initial and
boundary data

ǔ(0, y) = ǔ0(y) on D (3.21)

ρ̌ = ρ̄0, with ρ̄0 > 0, p(ρ̄0) = 0 on ∂D (3.22)

w̌ = 0 on BT . (3.23)

The main result is the following.
Theorem 3.2 (Linear stability of the initial free–boundary problem). Consider

the initial free–boundary value problem for the linear evolution equations (3.7)–(3.14),
on the domain DT = [0, T ] ×D. Let ni denote the components of the outward unit
normal form to ∂D, and qij = δij − ninj the orthogonal projector.

1. Fix as initial data on D the functions x̌i = 0, ρ̌, v̌i in Hs(D) for s ≥ 1. The
initial data for κ̌a

i, w̌ij , and ǎi are given by Eqs. (3.15), (3.16), and (3.17),
respectively. Impose ρ̌ = ρ̄0 at ∂D.

2. Prescribe as boundary data on BT the value of the function w̌ = 0.
3. Assume that the boundary data and the initial data satisfy the compatibility

condition of order s.
Then there exists a vector valued function ǔ ∈ CT (Hs) solution of the initial free–
boundary value problem 3.1.

The idea of the proof is, first, to find a solution of the mixed problem for the evo-
lution equations (3.7)–(3.14). This is done in Lemma 3.3. These equations decouple
into a symmetric hyperbolic block for the unknowns ǎi, and w̌. The equations are
(3.11), (3.12). This subsystem can be solved separately from the rest of the system.
The main theorem to show well posedness of the mixed problem for this subsystem
is given in [16], and it is reviewed in the Appendix A.2, Theorem A.5. The boundary
data w̌ = 0 at BT is maximal dissipative for this subsystem. The solution fields, ǎi,
w̌ are then the source functions to solve the evolution equations for the rest of the
variables, Eqs. (3.7)–(3.10), (3.13), (3.14). These equations are ordinary differential
equations.

Second, show that constraint equations (3.15)–(3.20) are preserved along the evo-
lution. This is done in Lemma 3.4. Given the solution found in Lemma 3.3, we
introduce the constraint quantities (3.30)–(3.35). The evolution Eqs. (3.7)–(3.14)
imply that these constraint quantities satisfy the equations (3.36)–(3.41). We check
that these equations have a unique solution given by the zero solution.

Finally, Lemma 3.5 shows that the differentiability of the solution in the directions
normal to the boundary is the same as the differentiability in the tangential directions
to that boundary. The solution found in Lemma 3.3 belongs to the function space
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Hs
∗(D) for s ≥ 1. These spaces are defined in [16] and reviewed in the Appendix.

For every element in that space the differentiability at the boundary in the directions
normal to the boundary is only half the differentiability in directions tangential to the
boundary. This is the differentiability of solutions to general symmetric hyperbolic
systems with characteristic (but not totally characteristic) normal matrix. In our case,
the constraint equations give the missing differentiability in the normal directions
to the boundary. This agrees with previous results in mixed problems with fixed-
boundary in Euler coordinates, given in [14] and [15]. In these works the solution has
the same differentiability in the directions tangential and normal to the boundary.

Proof. of theorem 3.2 We divide the proof in the following three Lemmas.
Lemma 3.3. Assume the hypothesis in Theorem 3.2. Then, there exists a unique

function ǔ ∈ CT (Hs
∗), solution of the evolution equations (3.7)–(3.14). Moreover,

there exist positive constants C1 and C2 such that

|||ǔ(t)|||2s,∗ ≤ C1e
C2t|||ǔ0|||2s,∗ (3.24)

for each t ∈ [0, T ], and s ≥ 1.
Lemma 3.4. Assume the hypothesis in Theorem 3.2, and let ǔ be the solution

of the evolution equations (3.7)–(3.14) given in Lemma 3.3. Then, this vector valued
function ǔ satisfies the constraint equations (3.15)–(3.20).

Lemma 3.5. Assume the hypothesis in Theorem 3.2, and let ǔ be the solution
of the evolution equations and constraint equations (3.7)–(3.20) given in Lemma 3.4.
Then, the solution ǔ belongs to CT (Hs).

As indicated above these three lemmas imply theorem 3.2.
Proof. (of Lemma 3.3) Consider the evolution equations (3.11)–(3.12) for the

unknowns ǎi, w̌. Once these two fields ǎi, w̌ are known, one can use them as source
functions in the ordinary differential equations Eqs. (3.7)–(3.10), (3.13), (3.14). So,
the rest of the proof is focused only in (3.11), (3.12).

The boundary data w̌ = 0 given in assumption 2 of Theorem 3.2 is maximally dis-
sipative for equations (3.11), (3.12). This can be seen solving the eigenvalue problem
for the associated normal matrix. Let žT = (ǎi, w̌), and write the volution equations
for these unknowns as A0∂tž = Ai∂iž + Bž. Let An := Aini be the normal matrix
of Eqs. (3.11), (3.12). Note that this normal matrix is negative the one introduced in
Sec. A.2. Then, the eigenvalue equations, λz = Anz, are the following,

λai = ν2
0njw, (3.25)

λw = an, (3.26)

where an = ain
i. Also introduce a′i = qi

jaj , so one has ai = anni + a′i. The
eigenvalues are λ0 = 0 with multiplicity 2, and λ± = ±ν0, each with multiplicity 1.
The corresponding eigenvectors are

z(0) =

[
a′i
0

]
, z(±) =

[
ν0ni
±1

]
(3.27)

Maximally dissipative boundary conditions have the form

z(+) = Hz(−) + F with H2 ≤ 1, (3.28)

where z(±) = (α(±),±α(±))T , with 2ν0α
(±) = (an ± ν0w). We have also introduced

| | as the operator norm. Choose F = 0 and H with H = 1 such that
(
α(+) − α(−)

)
= w, (3.29)
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therefore, the prescription of w = 0 is maximally dissipative for equations (3.11),
(3.12). In addition, the initial data belongs to Hs(D), so it belongs to Hs

∗(D). There-
fore, Theorem A.5 implies that there exists a solution ǎi, w̌ ∈ CT (Hs

∗) to Eqs. (3.11),
(3.12), which satisfies the estimate (3.24). Integrating the ordinary differential equa-
tions (3.7)–(3.10), (3.13), (3.14) with ǎi w̌ as source functions one obtains a solution
x̌i, κ̌a

i, v̌i, w̌[ij], w̌〈i〉 in CT (Hs
∗).

Proof. (of Lemma 3.4) Preservation of the constraints. Given a solution ǔ of Eqs.
(3.7)–(3.14), introduce the constraint quantities,

Qai := ∂ax̌
i − κ̌ai, (3.30)

Qij := ∂̂iv̌j − w̌ij , (3.31)

Qi :=
ν2

0

ρ0
∂̂iρ̌+ ǎi, (3.32)

Cai := εa
bc∂bκ̌c

i, (3.33)

Cij := εi
kl∂̂kw̌lj , (3.34)

Ci := εi
jk ∂̂j ǎk. (3.35)

Take a time derivative of every constraint quantity. Because ǔ satisfy the evolu-
tion equations (3.7)–(3.14), the associated constraint quantities satisfy the following
system,

∂tQai = δa
jQji, (3.36)

∂tQij =
1

2
εij

kCk, (3.37)

∂tQi = 0, (3.38)

∂tCai = δa
jCji, (3.39)

∂tCij =
1

2
∂̂jCi. (3.40)

∂tCi = 0, (3.41)

The initial data used to find ǔ implies that all the constraint quantities vanish
initially. Then Eq. (3.41) implies that Ci vanishes in DT . Then Eq. (3.40) implies
that Cij vanishes in DT . Therefore, all remaining constraint quantities vanish in that
domain.

Proof. (of Lemma 3.5) The proof is based in the following result.

Proposition 3.6. Assume the hypotheses in Lemma 3.4. Extend the normal vec-
tor na to a neighborhood of ∂D in D, as the unique solution of the geodesic equation.
Then, in that neighborhood the solution ǔ satisfies

na∂aǔ = A0∂tǔ+ Aiqi
j∂j ǔ+ F, (3.42)

where the matrices A0, Ai depend on ǔ and ǔ0, while the vector F depends on ǔ, ǔ0,
and ∂iǔ0, with ǔ0 the initial data.

We assume that the Proposition 3.6 is true, and we complete the proof of Lemma
3.5. The equation (3.42) holds at the boundary ∂D and also in a neighborhood of
∂D, for all t ∈ [0, T ]. This means that normal derivatives of ǔ at the boundary can
be computed from ǔ, from tangential and time derivatives of ǔ and from the initial
data ǔ0. The term F in the right hand side of (3.42) contains normal derivatives of
the initial data, but not of the solution.

Because the equation holds in a neighborhood of ∂D we can take derivatives in the
na direction. Commuting derivatives and Eq. (3.42) implies that second derivatives of
ǔ in the normal direction can be computed in terms of tangential and time derivatives
of ǔ and on second derivatives of the initial data ǔ0.

This procedure gives an expression for the s-normal derivative of ǔ in terms of
s1-tangential and s2-time derivatives of ǔ with s = s1 + s2, and s-derivatives of the
initial data. These equations holds also at the boundary ∂D. Then, if the solution
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belongs to CT (Hs
∗) and the initial data belongs to Hs(D), then the solution ǔ belongs

to CT (Hs).
Proof. (of Proposition 3.6) We assume that ǔ satisfies both the evolution and the

constraint equations. The proof is to compute the normal derivative of ǔ and to verify
that the resulting expression is of the form given by Eq. (3.42). Introduce first the
notation ∂n = na∂a, and the same holds for any solution field, that is, the subindex n
in any field means contraction with na. For example κ̌n

i := naκ̌a
i. We also introduce

the space derivatives of the normal vector, ka
b = qa

c∂cn
b. We use the notation ǔ(t)

or ǔ for the value of the field at time t, and ǔ(0) for its value at time t = 0. Then,
∂nǔ has the form,

∂nx̌
i = κ̌n

i, (3.43)

∂nv̌i = w̌ni, (3.44)

∂nρ̌ = −ρ0

ν2
0

ǎn, (3.45)

∂n(qa
bκ̌b

i) = qa
b∂b(κ̌n

i)− kabκ̌bi, (3.46)

∂n(qij κ̌n
j) = ∂n[qij κ̌n

j(0)] + t∂n[2qi
jnkw̌[kj](0)]

+[qi
j∂j κ̌n

n(t)− kij κ̌jn(t)]

−[qi
j∂j κ̌n

n(0)− kij κ̌jn(0)], (3.47)

∂n(κ̌n
n) = −qia∂aκ̌ni + ki

aκ̌a
i +

1

ν2
0

ǎn

+∂n

[
δi
aκ̌a

i(0) +
ρ̌(0)

ρ0

]
, (3.48)

∂n(qi
j ǎj) = qi

a∂aǎn − kij ǎj , (3.49)

∂nǎn = −qaj∂a(qjk ǎ
k)− kiiǎn + ∂tw̌, (3.50)

∂nw̌ =
1

ν2
0

∂tǎn +
α0

ν2
0

w̌∂nφ0, (3.51)

∂nw̌[ij] = ∂nw̌[ij](0), (3.52)

∂n(qi
jw̌jk) = qi

a∂aw̌nk − kijw̌jk , (3.53)

∂n(w̌njqi
j) = qi

a∂aw̌ − qia∂a(qklw̌kl)− kijw̌jn − kijw̌nj
+∂n[2qi

jnkw̌[jk](0)]. (3.54)

The rest of the proof is to explain how we have obtained Eqs. (3.43)–(3.54). The
equations (3.43)–(3.45) are the contraction of the constraint equations (3.15)–(3.17)
with the normal vector ni, respectively.

Eq. (3.46) is obtained in the same way, that is, contract Eq. (3.18) with the
normal vector na. The other two equations, (3.47), (3.48) require more work. We
start with Eq. (3.47). Contract evolution Eq. (3.8) with qijn

a and then take a normal
derivative. One obtains

∂t[∂n(qij κ̌n
j)] = ∂n(qi

jw̌nj), (3.55)

= ∂n
[
qi
jw̌jn + 2qi

jnkw̌[kj]

]
, (3.56)

= qi
j∂jw̌nn − kijw̌jn + ∂n(2qi

jnkw̌[kj]), (3.57)
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where in the second line we used the definition of the vorticity 2w̌[ij] = w̌ij − w̌ji,
and the first two terms in the third line comes from the first one in the second line,
because of the constraint equation (3.19) contracted with the normal vector ni. Now,
the evolution equation (3.13) implies that w̌[ij](t) = w̌[ij](0). Also use evolution
Eq. (3.8) to replace the first two terms involving w̌a

i in the third line back by ∂tκ̌a
i.

One then obtains,

∂t[∂n(qij κ̌n
j)] = ∂t[qi

j∂j κ̌n
n − kij κ̌jn] + ∂n[2qi

jnkw̌[kj](0)], (3.58)

therefore, integrating in time one finally obtains

∂n[qij κ̌n
j(t)] − ∂n[qij κ̌n

j(0)] = [qi
j∂j κ̌n

n(t)− kij κ̌jn(t)]

−[qi
j∂j κ̌n

n(0)− kij κ̌jn(0)]

+t∂n[2qi
jnkw̌[kj](0)], (3.59)

which is Eq. (3.47). The Eq. (3.48) is obtained from the equation

ρ̌(t) + ρ0κ̌T (t) = ρ̌(0) + ρ0κ̌T (0), (3.60)

with κ̌T the trace of κ̌a
i, that is, κ̌T = δi

aκ̌a
i. The Eq. (3.60) is a time integration of

the trace of the evolution Eq. (3.8) after replacing w̌ with the evolution Eq. (3.9). It
is the linearization of the equation ρ(t)κ(t) = ρ(0)κ(0), which can be obtained from
the nonlinear Eqs. (2.19), (2.20), where κ = det(κa

i). Take the normal derivative of
Eq. (3.60),

∂nκ̌n
n = −∂n

[
qi
aκ̌a

i +
ρ̌(t)

ρ0

]
+ ∂n

[
κ̌T (0) +

ρ̌(0)

ρ0

]
, (3.61)

and in the right hand side replace the first two terms using Eq. (3.46) and (3.45),
respectively. The result is Eq. (3.48).

The normal derivatives of the acceleration are obtained as follows. The Eq. (3.49)
is the contraction of the constraint Eq. (3.20) with the normal vector na. The
Eq. (3.50) is just the evolution Eq. (3.12).

The normal derivatives of w̌ij are found as follows. The Eq. (3.51) is the con-
traction of the evolution Eq. (3.11) with the normal vector ni. The Eq. (3.52) is the
normal derivative of the time integral of the evolution Eq. (3.13). The Eq. (3.53)
is the contraction of the constraint Eq. (3.19) with the normal vector na. The last
Eq. (3.54) is obtained using, once more, that the vorticity w̌[ij] is conserved in time.
Start form the identity

w̌jk = w̌kj + 2w̌[jk], (3.62)

compute the component njqi
k and the take a normal derivative. The result is

∂n(w̌nkqi
k) = ∂n(qi

jw̌jn) + ∂n[2qi
jnkw̌[jk](t)], (3.63)

= qi
j∂jw̌nn − kijw̌jn − kijw̌nj + ∂n[2qi

jnkw̌[jk](0)], (3.64)

where in the second line we used Eq. (3.53) contracted with nk. Replace w̌nn using
w̌nn = w̌ − qijw̌ij , and the result is Eq. (3.54).

Finally note that Eqs.(3.51)–(3.54) imply that ∂nw̌nn can be expressed in terms
of normal derivatives of w̌ and qijw̌ij , and these, in turn, by tangential derivatives of
the rest of the fields using Eqs. (3.51), (3.53).
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4. Discussion. We have presented a new method for treating initial free–bound-
ary value problems. That method consists in transforming the fluid equations to
Lagrangian coordinates and then enlarging the system by adding every first derivative
of the velocity field as new unknowns. Such a system, which we call boundary adapted,
consists of evolution and constraint equation.

In the case treated here we used the fact that the linearization of this system near
a static solution has a particular form. The system decouples in two subsystems: the
first one consists of the unknowns ǎi, w̌ and of the Eqs. (3.11), (3.12); the second
one consists of the rest of the evolution equations. The first subsystem is symmetric
hyperbolic and can be solved independently of the second. This second subsystem
is formed by ordinary differential equations in time with the solution of the first
subsystem as source functions. This decomposition of the linearised equations holds
for static background solutions, but not for more general background solutions.

The linear stability of the initial free–boundary compressible Euler equations has
already been shown in [9]. Gravitational effects were neglected. The proof is not
based on the method of symmetric hyperbolic systems with maximally dissipative
boundary condition. It is based, instead, on techniques specific to the equations
under investigation. The proof start by transforming Euler equations to Lagrange
coordinates. The problem to solve is then an initial fixed-boundary value problem
for the space position vector field. Linear stability for this problem is proved by
linearising the equations for this unknown vector field. One can show that the linear
equation is weakly hyperbolic, with the speed of sound being the nonzero characteristic
speed. The crucial step is to check that a pseudodifferential first order reduction is
weakly hyperbolic. (See [11] and references therein for a definition of first order
pseudodifferential reductions.) Therefore, special techniques have been developed in
[9], [10] [3] to solve this linear problem. These are based in a decomposition of the
unknown vector field into a divergence part and a divergence-free part. The equation
decouples to highest order in the linearization parameter, and different techniques are
used to estimate each part of the equation. The well posedness for the linear problem
then follows from these estimates.

A condition for the background solution is assumed in [9], that prevents the
Rayleigh-Taylor instabilities in incompressible fluids, namely ∂np ≤ −c0 < 0, in
∂D (Eq. (1.9) in that reference). This instability appears in incompressible fluids,
essentially when a heavier fluid is on top of a lighter one in a constant gravitational
field [18],[1]. One can check, however, that the argument to show this instability does
not hold for compressible fluids. (For example, reproduce for a compressible fluid the
proof given in [2].) So it is not clear whether this instability appears in a compressible
fluid. The only previous proof of well posedness for the linearization of the initial-
free boundary value problem in compressible fluids is the one given in [9]. And
that proof makes central use of a condition in the background solution that prevents
this instability. In our case, the static self-gravitating fluid satisfies this condition.
However Theorem 3.2 can be generalised to the case where self-gravitational effects are
discarded, that is, φ = 0. We still need the condition that the background solution
be static. This means that the mass density must be constant everywhere in the
background solution. And that this constant must be the one that makes the pressure
vanish. Therefore, Theorem 3.2 can be generalised to a background solution that
represents dust, and which does not satisfy the condition to prevent Rayleigh-Taylor
instability in incompressible fluids.
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Appendix A. Background concepts on hyperbolic equations.
We present the notation, the definitions, and the main results from the literature

needed for our problem. We start in Sec. A.1 defining symmetric, weakly and strongly
hyperbolic systems [7]. We then briefly review that the Cauchy problem for linear,
variable coefficients, weakly hyperbolic systems is not well posed. In Sec. A.2 we
summarized the initial fixed-boundary problem for symmetric hyperbolic systems. It
is known that under certain assumptions this problem is well posed. We review a well
posedness theorem for linear systems given in [16], which is the main result from the
literature needed for this work.

A.1. Symmetric, weakly, and strongly hyperbolic systems. Let D ⊂ Rn,
with n ≥ 1, be a compact set, lying on one side of its C∞ boundary ∂D. Let
DT = [0, T ]×D, BT = [0, T ]× ∂D. Consider the quasilinear first order operator

L = A0∂t +

n∑

j=1

Aj∂j +B, (A.1)

where A0, A1, . . . , An, B are given real N × N matrix valued functions of (t, x, u),
with (t, x) ∈ DT , and u ∈ RN . The operator is called linear if none of the matrices
depend on u.

Definition A.1. The operator (A.1) is called symmetric hyperbolic if the ma-
trices A0, . . . , An are real symmetric in DT × RN and there exists a constant 0 < a0

such that Ia0 ≤ A0(t, x) ≤ I
(
a−1

0

)
for all (t, x) ∈ DT and u ∈ RN , where I is the

identity N ×N matrix.
Definition A.2. The quasilinear operator (A.1) is called weakly hyperbolic if

the matrix P (ω) := (A0)(−1)Ajωj has real eigenvalues, for every ω ∈ Rn, (t, x) ∈ DT ,
and u ∈ RN .

This is the definition given in [7] Page 57, for the case of linear system with
constant coefficients. No definition is given in that reference for variable coefficient
systems, because the Cauchy problem is not well posed in this case. This is shown
by examples in Sec. 2.2.3 and 2.2.4 in that reference. Well posedness requires extra
assumptions on the system.

For example, assume that system (A.1) is symmetric hyperbolic. Therefore, ma-
trices A1, . . . , An are all symmetric, and then P (iω) is symmetric for every ω ∈ Rn,
which implies that it is diagonalizable. The matrix P (ω) not only has real eigenvalues,
but also has a complete set of eigenvectors. It turns out that this second property is
critical to prove well posedness of the Cauchy problem.

This is the reason for the definition of a class of systems wider than symmetric
hyperbolic, but narrower than weakly hyperbolic, which have a well posed Cauchy
problem.

Definition A.3. The operator (A.1) is called strongly hyperbolic if the matrix
P (ω) := (A0)(−1)Ajωj has real eigenvalues at every (t, x) ∈ DT , and a complete set
of linearly independent eigenvectors for every ω ∈ Rn, which depend smoothly on t,
x, u, and ω.

For linear operators this is essentially the definition given in [7] page 186, if one
recalls Lemma 2.4.2 in that reference. The Cauchy problem for strongly hyperbolic
systems is well posed. See Theorem 6.2.2 in [7] for linear operators, and Theorem
5.2.D in [19] for quasilinear operators.
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A.2. Results on fixed-boundary. Consider the initial fixed-boundary value
problem for a linear symmetric hyperbolic operator L, given by

Lu = F in DT , (A.2)

Mu = 0 on BT , (A.3)

u|t=0 = f in D. (A.4)

The function u, and the given functions F and f are vector valued functions with N
components. Functions u and F are defined on DT , while f is defined on D. M is
a given real d ×N matrix defined on ∂D, and it has constant rank d everywhere on
∂D.

Well posedness for a Cauchy problem or an initial boundary value problem essen-
tially means that there exists a unique solution for some given initial and boundary
data, and this solution depends continuously on the data.

Definition A.4. Let B(D) be a Banach space with norm | |, whose elements are
vector valued functions u : D → RN . The initial boundary value problem (A.2)–(A.4)
is well posed in a Banach space B(D) if given initial data f ∈ B(D) and appropriate
boundary data M , there exists a solution u(t, x), which is unique in B(D) for each
t ∈ [0, T ); and satisfies the estimate

|u(t)|2 ≤ C1e
C2t

(
|f |2 + C3

∫ t

0

|F (t′)|2dt′
)
, (A.5)

for some positive constants C1, C2, C3.
Let n = (n1, . . . , nn) be the unit outward normal to ∂D. Define the normal matrix

An as

An =
n∑

j=1

Ajnj . (A.6)

The boundary is called non-characteristic if An is invertible everywhere on ∂D. On
the other hand, if the matrix An is not invertible but has constant rank on ∂D then the
boundary is said to be characteristic of constant multiplicity. The boundary condition
(A.3) is called maximal dissipative (or positive) if M = M(t, x) ∈ C∞(∂D) is a real
d×N matrix valued function of constant rank d on ∂D and kerM is maximal positive
for An. The condition that kerM is maximal positive for An means that An is positive
definite for every vector in kerM , and kerM is the biggest space with this property,
that is if 〈v,Anv〉 > 0 then v ∈ kerM . Here 〈 , 〉 is the product in Cn.

The initial and boundary data overlap at ∂D. The compatibility condition of
order p ≥ 0 is given by Mf (k) = 0 on ∂D, for k = 0, . . . , p. Here the f (k) are defined
recursively starting from the initial data. First, f (0) = f , and the f (k), k ≥ 1 are
computed by formally taking the k − 1 time derivative of Lu = F , then solving for
∂kt u, and evaluating it at t = 0.

It is proved in [16] that the initial fixed-boundary value problem (A.2)–(A.4) is
well posed in the Hilbert spaces, Hm

∗ (D). These spaces are a generalization of the
usual Sobolev spaces Hm(D). Functions in Hm

∗ (D) satisfy that at the boundary ∂D
they are twice more differentiable in directions tangential to ∂D than in the normal
direction.

The definition of spaces Hm
∗ (D) requires the concept of vector fields tangential

and normal to ∂D. The vector field τ ∈ C∞(D;Rn) is called tangential if and only
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if 〈τ, ν〉 = 0 at every point in ∂D. A vector field π ∈ C∞(D;Cn) is called normal if
π = ν at every point ∂D. Let {π, τ2, . . . , τn} be a set of smooth vector fields on D,
linearly independent at each point in D, such that π is a normal vector and τ2, . . . , τn
are tangential vectors. Let L2(D) be the space of square integrable functions in D,
and denote by ‖ ‖ its norm. Given m ≥ 1 the function space Hm

∗ (D) is defined as the
set of functions u ∈ L2(D) such that

‖u‖2m,∗ =
∑

|α|+2k≤m
‖πkτα(u)‖2. (A.7)

Here α = (α2, . . . , αn) is a multi-index, |α| = α2 + . . .+ αn and τα = τα2
2 . . . ταn .

Let X be a Banach space and T > 0, then Ck ([0, T ];X) denote the space of
k-times continuously differentiable functions defined on [0, T ] taking values in X . We
define

CT (Hm
∗ ) =

m⋂

k=0

Ck([0, T ];Hm−k
∗ (D)), (A.8)

with the norm |||u|||m,∗,T = sup[0,T ] |||u(t)|||m,∗, where

|||u(t)|||m,∗ =

m∑

k=0

‖∂kt u(t)‖2m−k,∗. (A.9)

Finally define the norm |||f |||m,∗ for the initial data function f as follows,

|||f |||2m,∗ =

m∑

k=0

‖f (k)‖2m−k,∗, (A.10)

where f (k) are the functions that enter into the compatibility conditions at ∂D.
The result needed in this work is the well posedness of the initial fixed-boundary

value problem for symmetric hyperbolic equations. We reproduce here a weaker ver-
sion of the theorem proved in [16]. The most general result can be found in that
reference.

Theorem A.5. Consider the initial fixed-boundary value problem (A.2)–(A.4)
for the symmetric hyperbolic operator L. Let s, p be integers such that s ≥ 2[ 3

2 ] + 6
and 1 ≤ p ≤ s. Assume the following:

1. The matrices A0, . . . , An, B and the source function F belong to CT (Hp
∗ ) for

p ≤ s.
2. d = rank(An) is constant for every point in BT , and 0 < d < N .
3. The boundary condition (A.3) is maximal dissipative.
4. The initial data f satisfies the compatibility condition of order s − 1 at ∂D.

It also satisfies that f (p) ∈ Hs−p
∗ (D) for p = 0, . . . , s.

Then there exists a unique solution u ∈ CT (Hs
∗) of the initial fixed-boundary problem

(A.2)–(A.4). Moreover, there exist positive constants C1, C2, C3, such that

|||u(t)|||2p,∗ ≤ C1e
C2t

(
|||f |||2p,∗ + C3

∫ t

0

|||F (t′)|||2p,∗dt′
)

(A.11)

for each t ∈ [0, T ].

Appendix B. Symmetric hyperbolic Lagrange formulation.
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We present an alternative form of the Lagrange formulation of Euler equations.
This system has symmetric hyperbolic evolution equations in space dimension greater
or equal 1. The idea is to add appropriate combinations of the constraint equations
(2.25)–(2.30) to the evolution equations (2.18)–(2.23).

The symmetric hyperbolic Lagrange formulation of Euler equations is the fol-
lowing. Consider the domain DT , and coordinates (t, ya), where the coordinates ya

represent the fluid particles. The unknown fields are (x̂i, κa
i, φ̂, ρ̂, v̂i, âi, ŵij),

representing the same fields as in Sec. 2.2. The evolution equations are

∂tx̂
i = v̂i, (B.1)

∂tκa
i = κa

jŵj
i, (B.2)

∂tρ̂ = −ρ̂ ŵii, (B.3)

∂tv̂
i = âi, (B.4)

∂tâi − ν̂2∂̂jŵi
j = −α̂ŵ(âi + ∂̂iφ̂)− ŵij âj − ∂̂i(∂tφ̂), (B.5)

ν̂2∂tŵij − ν̂2∂̂j âi = −ν̂2ŵi
kŵkj . (B.6)

The gravitational potential is given by Eq. (2.24). The constraint equations are given
by (2.25)–(2.30).

This is the symmetric hyperbolic Lagrange formulation. The only difference with
respect to the boundary adapted system are Eqs. (B.5), (B.6). The first one comes

from adding the constraint ν̂2(∂̂j ŵi
j − ∂̂iŵj j) = 0 to Eq. (2.22). The second one is

obtained as follows. Add the constraint ∂̂[iâj] = 0 to Eq. (2.23), and multiply the
result by ν̂2. This finishes the procedure to obtain Eqs. (B.1)–(B.6).

Lemma B.1. The evolution equations (B.1)–(B.6) are symmetric hyperbolic.
The proof is a straightforward computation from the principal part of equations

(B.1)–(B.6), and is not reproduced here.
The symmetric hyperbolic Lagrange formulation (B.1)–(B.6), (2.25)–(2.30) can

be translated back to the Euler formulation. The result is the following system. Let
(t, xi) be coordinates in R4. The dynamical variables are (ρ, vi, ai, wij), that is
the fluid mass density, the fluid velocity, the material acceleration, and the space
derivatives of the fluid velocity, respectively. The equations consist of evolution and
constraint equations. The evolution equations are given by

Dtρ = −ρw, (B.7)

Dtv
i = ai, (B.8)

Dtai − ν2∂jwi
j = −αw(ai + ∂iφ)− wijaj − ∂i(Dtφ), (B.9)

ν2Dtwij − ν2∂jai = −ν2wi
kwkj , (B.10)

where Dt = ∂t + vi∂i is the material derivative, the gravitational potential φ is given

by Eq. (1.8), ν2 = (∂p)
(∂ρ)q is the square of the sound velocity, α = ρβ

(ν2) and β = ∂2p
∂ρ2 .

We use the notation w = wi
i, and Latin indices i, j, k, l are rised and lowered with

δij , and δij , respectively. The constraint equations are the following,

∂iv
j = wi

j , (B.11)

∂ip

ρ
+ ∂iφ = −ai, (B.12)

∂[iwj]
k = 0, (B.13)

∂[iaj] = 0. (B.14)

Both systems, however, are not well adapted to study well posedness of initial
free–boundary problems. This means that it is not clear how to prescribe boundary
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data satisfying the three conditions given in Theorem 3.2. That is, the boundary
data being maximal dissipative for the evolution equations, it implies the constraint
preservation, and the resulting solution has a free–boundary.
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