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Strongly hyperbolic second order Einstein’s evolution equations
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BSSN-type evolution equations are discussed. The name refers to the Baumgarte, Shapiro, Shibata, and
Nakamura version of the Einstein evolution equations, without introducing the conformal-traceless decompo-
sition but keeping the three connection functions and including a densitized lapse. It is proved that a pseudo-
differential first order reduction of these equations is strongly hyperbolic. In the same way, densitized
Arnowitt-Deser-Misner evolution equations are found to be weakly hyperbolic. In both cases, the positive
densitized lapse function and the spacelike shift vector are arbitrary given fields. This first order pseudodiffer-
ential reduction adds no extra equations to the system and so no extra constraints.
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I. INTRODUCTION

Einstein’s equation determines geometries; hence its s
tions are equivalent classes under space-time diffeom
phisms of metric tensors. It is this invariance, howev
which imposes a particular aftermath on every initial va
formulation for Einstein’s equation. The geometrical equ
tion must be first converted into a system having a w
posed Cauchy problem, and so without the diffeomorph
invariance. A preferred foliation of spacelike hypersurfac
on the space-time is usually introduced in order that adap
coordinates break this invariance. Einstein’s equation is t
decomposed into constraint equations on the foliation hyp
surfaces and evolution equations. While the constraints
uniquely determined by this procedure, the evolution eq
tions are not. Some of these evolution equations turn ou
be hyperbolic. This is in accordance with a main aspec
general relativity, that of causal propagation of the grav
tional field.

Hyperbolicity refers to algebraic conditions on the prin
pal part of the equations which imply well posedness for
Cauchy problem, that is, the existence of a unique cont
ous map between solutions and initial data. There are sev
notions of hyperbolicity, which are related to different alg
braic conditions. Some notions imply well posedness for
Cauchy problem in constant coefficient equations but no
more general systems, such as quasilinear equations.
@1,2# for reviews intended for researchers on general rela
ity. Regarding quasilinear systems, strong hyperbolicity
one of the more general notions of hyperbolicity that impl
well posedness for the Cauchy problem. The proof invol
pseudodifferential analysis@3,4#. Symmetric hyperbolic sys
tems are a particular case of strongly hyperbolic syste
where well posedness can be proved without using pse
differential techniques. Several equations from physics
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be cast into this symmetric hyperbolic form@5#. Finally,
weak hyperbolicity is a less rigid notion than strong hyp
bolicity but it does not imply well posedness for quasiline
equations.

A definition of strong hyperbolicity for pseudodifferentia
first order systems is introduced in Sec. II. Differential fir
order strongly hyperbolic systems known in the literature
included. A reason for this definition is that it incorporat
precisely the hypothesis needed for proving well posedn
The proof involves standard pseudodifferential techniques
anm-order differential system has a first order, differential
pseudodifferential, strongly hyperbolic reduction, then it
well posed. See the end of this section for an example o
first order pseudodifferential reduction of the wave equati
Also see the Appendix for a brief and self-contained int
duction to the subject of pseudodifferential operators.

Although strongly hyperbolic systems are at the core
the various proofs of well posedness for the Cauchy prob
in general relativity, they have played, until recently, no sim
lar role in numerical relativity@6#. Finite difference scheme
have been implemented for non-strongly-hyperbolic eq
tions. However, Lax’s equivalence theorem does not hold
these situations@7#. It has been shown that discretizatio
schemes standard in numerical relativity are not converg
when applied to weakly hyperbolic and ill posed syste
@8,9#. As more complicated situations are studied nume
cally, the interest in strongly hyperbolic reductions of Ei
stein’s equation is increasing. There is also much experie
and a vast literature in numerical schemes based on
posed formulations coming from inviscid hydrodynami
@10,11#. This experience can be transferred into numeri
relativity when strongly hyperbolic reductions are used.

Early numerical schemes to solve Einstein’s equat
were based on variants of the Arnowitt-Deser-Misner~ADM !
decomposition@12#. Only recently has it been proven that
first order differential reduction of the ADM evolution equa
tions is weakly hyperbolic@13#. This is the reason for som
of the instabilities observed in ADM-based numeric
schemes@8,9,14#. In the first part of this work the ADM
evolution equations are reviewed. A densitized lapse func
©2004 The American Physical Society12-1
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is introduced, with the density exponent held as a free
rameter. The evolution equations are reduced to first orde
a pseudodifferential way. It is found that the resulting syst
is weakly hyperbolic for every prescription of a positive de
sity lapse and a spacelike shift vector. This is summarize
Theorem 1. Pseudodifferential techniques and mode dec
position are at the core of a proof directed to computing
eigenvalues and eigenvectors of the principal symbol of
evolution equations, and to check that the eigenvectors
not span the whole eigenspace. The mode decompos
also helps to understand why the addition of the Hamilton
constraint into the system does not produce a strongly hy
bolic system.

Baumgarte-Shapiro-Shibata-Nakamura-~BSSN-!type sys-
tems are introduced in the second part of this work. They
essentially the densitized ADM evolution equations wh
some combination of connection coefficients of the thr
metric is introduced as a new variable. The mode decom
sition of the densitized ADM evolution equations and pre
ous work on the linearized ADM equations@15# suggest the
introduction of this variable. It turns out to be related wi
the variableG̃ i of the BSSN system, defined by Eq.~21! in
@14#. ~See also@16#.! Similar variables have been introduce
in @17–21#. Their evolution equation is obtained, as in t
BSSN system, from commuting derivatives and then add
the momentum constraint. It is shown here that the addi
of the momentum constraint transforms a weakly hyperb
system into a strongly hyperbolic one. This is the main res
of this work, and it is presented in Theorem 2. The first p
of the proof follows the previous one for the densitized AD
evolution equations. Once the eigenvectors are compu
and it is verified that they do span the whole eigenspace,
proof continues with the construction of the symmetriz
This construction is carried out with the eigenvectors.
nally, the smooth properties of the symmetrizer are verifi

The hyperbolicity of a family of BSSN-type evolutio
equations has previously been studied with a different te
nique@22#. The equations were reduced to a differential s
tem of first order in time and in space derivatives. The la
was densitized, the eigenvalues and eigenvectors of the
cipal symbol were computed, and it was verified that
latter do span their eigenspace. A smooth symmetrizer
computed for a subfamily of systems, showing strong hyp
bolicity in this case.

All notions of hyperbolicity mentioned here require r
writing the evolution equations as a first order system. T
can be done in a differential or pseudodifferential way. So
pseudodifferential reductions to first order have the adv
tage that no extra equations are added into the system
there are no extra constraints. This reduces the alg
needed to compute the symmetrizer. These techniques
well known in the field of pseudodifferential calculus. The
were first used in general relativity in@15#, where linearized
ADM evolution equations were proved to be weakly hyp
bolic. The example below presents the wave equation a
toy model to understand how the pseudodifferential first
der reduction works. See Appendix A, and also Sec. 5.3
@4#, for other possible first order reductions. Consider
wave equation onR4 for a functionh, written as a first order
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system in time, in appropriate coordinates, that is,

] th5k, ] tk5Dh,

with tP@0,̀ ), xiPR3, and D5d i j ] i] j the flat Laplacian.
Hered i j 5diag(1,1,1). Fourier transform the system inxi ,

] tĥ5 k̂, ] tk̂52uvu2ĥ, ~1!

where ĥ(t,v i) is the Fourier transform ofh(t,xi) in the
space variables, as defined in the Appendix. The functionk̂ is
defined in an analogous way, anduvu25d i j v iv j . The key
step is to rewrite Eqs.~1! as a first order system by introduc
ing the unknown,̂ª i uvuĥ, wherei uvu is the symbol of the
pseudodifferential operator square root of the Laplacian. O
gets

] t,̂5 i uvuk̂, ] tk̂5 i uvu,̂.

The system so obtained is a reduction to first order of
original first order in time wave equation. Notice that there
no increase in the number of unknowns, just a replacem
of ĥ by ,̂, and correspondingly no extra constraints are
troduced. For the wave equation the result is a symme
hyperbolic system. In the case of the ADM equations
resulting system is weakly hyperbolic, with or without de
sitizing the lapse function, while for the BSSN-type equ
tions one gets a strongly hyperbolic system.

In Sec. II a precise definition for well posedness is intr
duced for first order quasilinear pseudodifferential syste
Strongly hyperbolic systems are also defined and the m
theorem asserting well posedness for these systems is
viewed. Section III A is dedicated to reviewing the den
tized ADM equations. The main result here is Theorem
asserting that the resulting evolution equations are wea
hyperbolic. The role of adding the Hamiltonian constraint
briefly discussed. Section III B is dedicated to introduci
the BSSN-type system modifying the densitized ADM equ
tions. The main result of this work, Theorem 2, asserts t
this BSSN-type system is strongly hyperbolic for som
choices of the free parameters. The key point is the introd
tion of the momentum constraint into the evolution equ
tions. Section IV summarizes these results briefly. The A
pendix is an introduction to pseudodifferential calculus.
summarizes the main ideas and highlights the main result
is intended for physicists interested in learning the subjec
provides all the background knowledge to follow the calc
lations presented in this work. A summary of this type
pseudodifferential calculus was not found by the authors
the specialized literature.

II. WELL POSEDNESS

Hadamard first introduced the concept of well posedn
for a Cauchy problem. It essentially says that a well pos
problem should have a solution, that this solution should
unique, and that it should depend continuously on the dat
the problem. The first two requirements are clear, but the
one needs additional specifications. First, there is no uni
way to prescribe this notion of continuity. Although a top
logical space is all that is needed to introduce it, Bana
2-2
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spaces are present in most definitions of well posedness.
refinement simplifies the analysis while still including a lar
class of problems. Second, as nonlinear systems lack, in
eral, global in time solutions, one can at most expect a lo
in time notion of well posedness. Discussions on well p
edness can be found in@10,11# and@3,4#. See@1# for a sum-
mary. This section is dedicated to reviewing the minimum
of definitions and results on well posedness for quasilin
pseudodifferential strongly hyperbolic systems which
needed to describe the equations coming from general
tivity. It assumes that the reader is acquainted with the
tions from functional analysis and pseudodifferential cal
lus given in the Appendix.

Consider the Cauchy problem for a quasilinear first or
pseudodifferential system

] tu5p~ t,x,u,]x!u, uu t505 f , ~2!

where u, f are m-dimensional vector valued functions,m
>1, and x represents Cartesian coordinates inRn, n>1.
Here p(t,x,v,]x) is a smooth family of pseudodifferentia
operators inccl

1 , parametrized bytPR1 and vPRm. Let
p(t,x,v,v) andp1(t,x,v,v) be their symbols and principa
symbols, respectively.

If p is a differential operator with analytic coefficient
then the Cauchy-Kowalewski theorem asserts that there
ists a unique solution for every analytic dataf. However,
solutions corresponding to smooth data behave very dif
ently depending on the type of operatorp. For example,
write the flat Laplace equation inRn11 and the flat wave
equation inRn11 as first order systems in the form] tu
5Ai] iu. The matricesAi are skew symmetric for the Laplac
ian, and symmetric for the wave operator. Therefore, so
tions of the formu(t,x)5û(t)eiv•x for the corresponding
Cauchy problems behave very differently at the high f
quency limit. The solutions of the Cauchy problem for t
Laplace equation diverge in the limituvu→`, while the so-
lutions of the wave equation do not diverge in that limit.1

1An explicit example inR2, presented by Hadamard in@28#, may
clarify this. Consider the functions

v~t,x!5sin~nt!sin~nx!/np11,

w~t,x!5sinh~nt!sin~nx!/np11,

with p>1,n, constants, defined ont>0, xP@0,1#. They are solu-
tions of the Cauchy problem for wave equation and the Lapl
equation, respectively, with precisely the same Cauchy datat
50, that is,

vtt2vxx50, vu t5050, v tu t505sin~nx!/np,

wtt1wxx50, wu t5050, wtu t505sin~nx!/np.

As n→`, the Cauchy data converge to zero inCp21(@0,1#). In this
limit, the solution of the wave equation converges to zero, while
solution of the Laplace equation diverges. The concept of well p
edness is introduced in order to capture this behavior of the w
equation’s solution under high frequency perturbations on
Cauchy data.
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Let B(Rn) be a Banach space with normi i , whose ele-
ments are vector valued functions fromRn to Rm. The
Cauchy problem~2! is well posed inB(Rn) if given initial
data f (x)PB(Rn) there exists a solutionu(t,x) which is
unique in B(Rn) for each tP@0,T), for someT.0; and
given any numbere.0 there existsd.0 such that, for every

data f̃ (x)PB(Rn) satisfyingi f̃ 2 f i,d there exists a unique
solution ũ(t,x)PB(Rn) for tP@0,T̃)3Rn for some T̃.0,
with uT̃2Tu,e, and satisfyingi ũ(t)2u(t)i,e, for all t

P@0,min(T̃,T)). This means that the solution depends co
tinuously on the data in the normi i .

Well posedness is essentially a statement about the be
ior of the solutions of a Cauchy problem under high fr
quency perturbations of the initial data. Here is whe
pseudodifferential calculus is most useful to study solutio
of the Cauchy problem. The high frequency part of the so
tion can be determined by studying the higher order term
the asymptotic expansion of symbols.

A wide class of operators with well posed Cauchy pro
lem is called strongly hyperbolic. A first order pseudodiffe
ential system~2! is strongly hyperbolic ifpPccl

1 and the
principal symbol is symmetrizable. This means that th
exists a positive definite, Hermitian operatorH(t,x,v) ho-
mogeneous of degree zero inv, smooth in all its arguments
for vÞ0, such that

~Hp11p1* H !PS0,

wherep1* is the adjoint of the principal symbolp1.
The definition summarizes all the hypotheses on quas

ear systems needed to prove well posedness. It is the de
tion given in Sec. 3.3.1 in@10# for linear variable coefficient
systems, and the so-called symmetrizable quasilinear
tems given in Sec. 5.2 in@4#.

Consider first order differential systems of the form] tu
5Ai(t,x)] iu1B(t,x)u. The symbol is p(t,x,v)
5 iA j (t,x)v j1B(t,x), and the principal symbol is
p1(t,x,v)5 iA jv j . If the matricesAi are all symmetric, then
the system is called symmetric hyperbolic. The symmetri
H is the identity, andp11p1* 50. The wave equation on a
fixed background, written as a first order system is an
ample of a symmetric hyperbolic system. Well posedness
symmetric hyperbolic systems can be shown witho
pseudodifferential calculus. The basic energy estimate ca
obtained by integration by parts in space-time.

If the matricesAi are symmetrizable, then the differenti
system is called strongly hyperbolic. The symmetrizerH
5H(t,x,v) is assumed to depend smoothly onv. Every
symmetric hyperbolic system is strongly hyperbol
Pseudodifferential calculus must be used to show well p
edness for variable coefficient strongly hyperbolic syste
that are not symmetric hyperbolic@3#. The definition given
two paragraphs above is more general because the sy
does not need to be a polynomial inv. The definition given
above includes first order pseudodifferential reductions
second order differential systems. These type of reducti
are performed with operators likeL, l, or ,, defined in the
Appendix.
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In the particular case of constant coefficient systems th
exists in the literature a more general definition of stro
hyperbolicity @10,11#. The principal symbolp1 must have
only imaginary eigenvalues, and a complete set of linea
independent eigenvectors. The latter must be uniformly
ear independent invÞ0 over the whole integration region
Kreiss’s matrix theorem~see Sec. 2.3 in@10#! says that this
definition is equivalent to the existence of a symmetrizerH.
Nothing is known about the smoothness ofH with respect to
t, x, andv. The existence of this symmetrizer is equivale
to well posedness for constant coefficient systems. Howe
the proof of well posedness for variable coefficient and q
silinear systems does require the smoothness of the sym
trizer. There are examples showing that this smoothness
not follow from the previous hypothesis on eigenvalues a
eigenvectors ofp1. Because it is not known what addition
hypothesis on the latter could imply this smoothness, one
to include it into the definition of strong hyperbolicity fo
nonconstant coefficient systems.

A more fragile notion of hyperbolicity is called weak hy
perbolicity, where the operatorp1 has imaginary eigenval
ues, but nothing is required of its eigenvectors. Quasilin
weakly hyperbolic systems are not well posed. The follow
example gives an idea of the problem. The 232 system
] tu5A]xu with t,xPR and

A5S 1 1

0 1D ,

is weakly hyperbolic. Plane wave solutions of the for
u(t,x)5û(t)eiv•x satisfy uû(t)u<uû(0)u(11uvut). There-
fore, plane wave solutions to a weakly hyperbolic system
not diverge exponentially in the high frequency limit~as in
the case of Cauchy problem for the Laplace equation! but
only polynomically. This divergence causes solutions to va
able coefficient weak hyperbolic systems to be unstable
der perturbations in the lower order terms of the operator
well as in the initial data.

The main theorem about well posedness for strongly
perbolic systems is the following. The Cauchy problem~2!
for a strongly hyperbolic system is well posed with respec
the Sobolev normi is with s.n/211. The solution belongs
to C„@0,T),Hs

…, andT.0 depends only oni f is .
In the case of strongly hyperbolic differential system

this is Theorem 5.2.D in@4#. The proof for pseudodifferentia
strongly hyperbolic systems is essentially the same. O
builds an estimate for the solution in a norm, defined us
the symmetrizer, equivalent to the Sobolev normHs. Then
the argument follows the standard proof for differential s
tems. The construction of the symmetrizer is basically
one carried out in@23#.

III. ADM DECOMPOSITION OF EINSTEIN’S EQUATION

The ADM decomposition of Einstein’s equation is r
viewed. The densitized lapse function is introduced
Sec.III A. Theorem 1 says that the resulting evolution eq
tions are weakly hyperbolic, for every choice of a positi
densitized lapse function and spacelike shift vector as gi
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fields. The BSSN-type system is introduced in Sec. III B.
is essentially the system given in@14,16# without conformal-
traceless decomposition, keeping the three connection fu
tions and densitizing the lapse function. It is reduced to
first order pseudodifferential system like the ADM evolutio
equations. The main result, Theorem 2, asserts that BS
type equations are strongly hyperbolic, for every posit
densitized lapse function and spacelike shift vector.

Let (M ,gab) be a space-time solution of Einstein’s equ
tion. That is a four-dimensional, smooth, orientable manifo
M, and a smooth, Lorentzian metricgab solution of

Gab5kTab ,

with Gab5Rab2Rgab/2 the Einstein tensor,Tab the stress-
energy tensor, andk58p. Ricci’s tensor isRab and R de-
notes Ricci’s scalar. Latin indicesa,b,c,d denote abstrac
indices, and they are raised and lowered withgab andgab ,
respectively, withgacg

cb5da
b. The unique torsion-free met

ric connection is denoted by¹a . The conventions throughou
this work are 2¹[a¹b]vc5Rabc

dvd for Riemann’s tensor and
(2,1,1,1) for the metric signature.

Prescribe onM a foliation of spacelike hypersurfaces b
introducing a time functiont, which is a scalar function sat
isfying the condition that¹at is everywhere timelike. Denote
the foliation bySt , and byna the unit normal toSt such that
na5gabnb is future directed. Therefore,na52N¹at for
some positive functionN. Fixing the foliation determines its
first and second fundamental formshab5gab1nanb and
kab52ha

c¹cnb , respectively. Decompose Einstein’s equ
tion into evolution equations~3!, ~4! and constraint equation
~5!, ~6!, as follows:

Lnhab522kab , ~3!

Lnkab5 (3)Rab22ka
ckbc1kkab2~DaDbN!/N2kSab ,

~4!

Dbka
b2Dak5k j a , ~5!

(3)R1k22kabk
ab52kr, ~6!

whereLn denotes the Lie derivative alongna, andk5ka
a.

Here (3)Rab , (3)R, andDa are, respectively, the Ricci tenso
the Ricci scalar, and the Levi-Civita` connection ofhab ,
while hab denotes its inverse. The stress-energy tenso
decomposed as Sab5(ha

chb
dTcd2Thab/2), with T

5Tabg
ab, j a52ha

cndTcd , andr5Tabn
anb.

Introduce onM a future-directed timelike vector fieldta.
Impose the additional conditionta¹at51, that is, the integral
lines of ta are parametrized precisely byt. This condition
implies that the orthogonal decomposition ofta with respect
to St has the formta5Nna1ba, with naba50. N is called
the lapse function andba the shift vector. The integral lines
of ta determine a diffeomorphism among the hypersurfa
St . This, in turn, determines a coordinate system onM from
a coordinate system onS0. Lie derivatives with respect tona

can be rewritten in terms ofta andba. The resulting equa-
tions are called the ADM decomposition of Einstein’s equ
tion.
2-4
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A. Densitized ADM equations

Consider the ADM decomposition of Einstein’s equatio
Let xm be a coordinate system adapted to the foliationSt ,
wherex05t andxi are intrinsic coordinates on eachSt that
remain constant along the integral lines ofta. Greek indices
take values 0, 1, 2, 3, and latin indicesi , j ,k,l , take values 1,
2, 3. In these coordinates,tm5d0

m, nm52Ndm
0; then bm

5d i
mb i and nm5(d0

m2bm)/N. The components of the
space-time metric have the form

gmn52N2dm
0dn

01hi j ~b idm
01dm

i !~b jdn
01dn

j !.

In these coordinates

(3)Ri j 5
1

2
hkl@2]k] lhi j 2] i] jhkl12]k] ( ihj ) l #

1g iklg j
kl2g i j

kgkl
l ,

where gmn
s5hm

m8hn
n8hs8

sGm8n
s8 are the spatial compo

nents of the Christoffel symbols ofgmn , andg i
jk
ªg i l

khjl .
Densitize the lapse function, that is, write it asN

5(h)bQ, wherehªAdet(hi j ), b is a constant, andQ is a
given, positive function. This modifies the principal part
Eq. ~4!. New terms containing second spatial derivatives
hi j come from (DiD jN)/N.

Summarizing, the unknowns for the densitized AD
equations arehi j andki j . The evolution equations, Eqs.~3!,
~4!, have the form

L(t2b)hi j 522Nki j , ~7!

L(t2b)ki j 5~N/2!hkl@2]k] lhi j

2~11b!] i] jhkl12]k] ( ihj ) l #1Bi j , ~8!

where L(t2b)hi j 5] thi j 2(bk]khi j 12hk( i] j )b
k), and the

same holds forki j . The nonprincipal part terms are groupe
in

Bi j 5N@g iklg j
kl2g i j

kgkl
l22ki

lkjl 1ki j kl
l2Ai j 2kSi j #,

Ai j 5aiaj2g i j
kak1] i] j~ ln Q!12bg iklg j

(kl),

with am5nn¹nnm5Dm(ln N). The relations lnN5bln h
1 ln Q and (DiD jN)/N5(b/2)hkl] i] jhkl1Ai j were used.

The following result asserts that densitized ADM evo
tion equations are weakly hyperbolic.

Theorem 1. Fix any positive functionQ, a vector fieldb i ,
and first and second fundamental formshi j ,ki j on S0. If b
>0, then Eqs.~7!, ~8! are weakly hyperbolic. Ifb,0, these
equations are not hyperbolic.

The proof has two steps: first, to write down Eqs.~7!, ~8!
as an appropriate first order pseudodifferential system, E
~9!, ~10!; second, to split the corresponding principal symb
into orthogonal parts with respect to the Fourier variablev i ,
and then to explicitly compute the associated eigenva
and eigenvectors.

Proof.
04401
.

f

s.
l

s

First order reduction.Compute the symbol associate
with the second order operator given by Eqs.~7!, ~8!, that is,

] thi j 5E
St

$22Nk̂i j 1 ivkb
kĥi j 12ĥl ( i] j )b

l%eivxd̄v,

] tki j 5E
St

$~N/2!@ uvuh
2ĥi j 1~11b!v iv jh

klĥkl22vkv ( i ĥ j )k#

1 ivkb
kk̂i j 1B̃i j %e

ivxd̄v,

whereĥi j and k̂i j denote the Fourier transforms inxi of hi j
andki j , and

B̃i j 5B̂i j 12k̂l ( i] j )b
l

denotes the terms not in the principal symbol. Hered̄v
5dv/(2p)3/2, uvuh

25v iv jh
i j , and we will use the conven

tion v i5v jh
i j . Transform this second order symbol into

first order one via,̂ i j 5 i uvudĥi j , whereuvud
25v iv jd

i j , with
d i j 5diag(1,1,1). The associated first order system is the

] t, i j 5E
St

$ i uvuh@2~2N/a!k̂i j 1b̃ ,̂ i j #12,̂k( i] j )b
k%eivxd̄v,

~9!

] tki j 5E
St

$ i uvuh@2~Na/2!~ ,̂ i j 1~11b!ṽ iṽ jh
kl,̂kl

22ṽkṽ ( i ,̂ j )k!1b̃ k̂i j #1B̃i j %e
ivxd̄v, ~10!

with a5uvuh /uvud , ṽ i5v i /uvuh , b̃ªṽkb
k, and , i j

5*St
i uvudĥi j e

ivxd̄v. Then the symbol of equations abov
can be written as

p~ t,x,u,iv!5 i uvuhp1~ t,x,u,v!1B~ t,x,u,v!, ~11!

where (Bû)T
ª(2,̂k( i] j )b

k,B̃i j ), ûT
ª( ,̂ i j ,k̂i j ), with the up-

per indexT meaning transpose. The principal part opera
p1 can be read out from the terms inside the square brac
in Eqs. ~9!, ~10!. Notice that the definition of the principa
symbol here differs from the one given in Sec. II by a fac
of i uvuh . ~In particular, the eigenvalues ofp1 as defined here
must be real to be hyperbolic.!

Eigenvalues and eigenvectors ofp1. Once the principal
symbol is known, it only remains to compute its eigenvalu
and eigenvectors. The assumptiona51 facilitates the com-
putations. It is not a restriction since the normsu ud and u uh
are equivalent and smoothly related, and therefore the p
erties of the eigenvalues and eigenvectors of the princ
symbol are the same with either norm. Furthermore, one
check that if ûT5( ,̂ i j ,k̂i j ) is an eigenvector ofp1(a51)

with eigenvaluel, then ûT(a)5(a21/2,̂ i j ,a1/2k̂i j ) is an ei-
genvector ofp1(a) with the same eigenvaluel. Therefore,
from now ona51 is assumed. A second suggestion for d
2-5
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ing these calculations is to decompose the eigenvalue e
tion p1û5lû into orthogonal components with respect

ṽ i . Introduce the splitting

,̂ i j 5ṽ iṽ j ,̂1 ,̂8qi j /212ṽ ( i ,̂ j )8 1 ,̂ ^ i j &8 , ~12!

k̂i j 5ṽ iṽ j k̂1 k̂8qi j /212ṽ ( i k̂ j )8 1 k̂^ i j &8 , ~13!

whereqi jªhi j 2ṽ iṽ j is the orthogonal projector toṽ i , and

,̂5ṽ iṽ j ,̂ i j , ,̂85qi j ,̂ i j , ,̂ i85qi
kṽ l ,̂kl ,

,̂ ^ i j &8 5qi
kqj

l~ ,̂kl2 ,̂8qkl/2!.

The same definitions hold for thek̂i j components. This de
composition implies thatû5û(1)1û(2)1û(3) where

û(1)5F ṽ iṽ j ,̂1~qi j /2!,̂8

ṽ iṽ j k̂1~qi j /2!k̂8
G ,

û~2!5F 2ṽ ( i ,̂8 j )

2ṽ ( i k̂8 j )
G , û~3!5F ,̂ ^ i j &8

k̂^ i j &8
G . ~14!

The principal symbolp1 and the eigenvalue equationp1û

5lû can also be decomposed into the same three parts.
first part is four dimensional, corresponding to the varia
û(1), that is, the scalar fields,,̂, k̂, ,̂8, and k̂8. The eigen-
values are

l̃1
(1)561, l̃2

(1)56Ab,

where l̃ª(l2b̃)/N, so the role of the shift vector is to
displace the value of the eigenvalue by an amountb̃

5ṽkb
k, and the lapse rescales it. But a change of la

~which here is the functionQ) and shift cannot change a re
eigenvalue into an imaginary one. It cannot affect the hyp
bolicity of the system. The associated eigenvectors for
first part are

ûl1

(1)5F 2@~11b!ṽ iṽ j1~12b!qi j /2#

7@~11b!ṽ iṽ j1~12b!qi j /2#
G ,

ûl2

(1)5F 2ṽ iṽ j

7Abṽ iṽ j
G .

Notice that forb51 the two eigenvectorsûl1

(1) collapse to the

two eigenvectorsûl2

(1) . The conclusion for this part is that th

eigenvalues are real forb>0, and the four eigenvectors ar
linearly independent forbÞ0, bÞ1.

The second part is also four dimensional and correspo
to the variableû(2), that is, the vector fields,̂ i8 andk̂i8 . ~The

vector ,̂ i8 has only two independent components becaus

the condition,̂ i8ṽ
i50. The same holds fork̂i8 .! The result is
04401
a-

he
e

e

r-
is

ds

of

l̃1
(2)50, ûl1

(2)5Fv j
A

0 G .
The eigenvalue has multiplicity 4, but there are only tw
linearly independent eigenvectors. Here,v j

A represent two
linearly independent vectors, each one orthogonal toṽ i , and
labeled with the indexA, which takes values 1,2. This part
the main reason why the ADM equations are weakly hyp
bolic.

The last part is again four dimensional and correspond
the variableû(3), that is, the two-tensor fields,̂ ^ i j &8 andk̂^ i j &8 .

~The tensor,̂ ^ i j &8 has only two independent components b

cause of the symmetry, the orthogonality toṽ i , and the
trace-free condition. The same holds fork̂^ i j &8 .! The result is

l̃1
~3!561, ûl1

~3!5F 2v ^ i j &
A

7v ^ i j &
AG .

The eigenvalues each have multiplicity 2, and there are f
linearly independent eigenvectors. Herev ^kl&

A represent two
linearly independent symmetric, traceless tensors, orthog
to ṽ i .

At the end one gets the following picture. All eigenvalu
are real forb>0. Notice thatl̃2

(1) becomes imaginary for
b,0, so the equations are not hyperbolic in this case. W
respect to the eigenvectors, there are two main cases. F
b.0 andbÞ1. Then, the eigenvectors of the first and thi
parts of p1 do span their associated eigenspaces; but

eigenvectorsûl
(2) corresponding to the second part ofp1 do

not span their eigenspace. In the second case,b50 or b
51. In this case there are linearly dependent eigenvec
even among the scalar variables. Therefore, the conclusio
that the system~7!, ~8! is weakly hyperbolic forb>0. j

It is interesting here to comment on the role of the Ham
tonian constraint. Suppose that a term of the formahi j times
Eq. ~6! is added to Eq.~4!. Herea is some real constant. Ca
this modification alter the hyperbolicity of the ADM equa
tions? Herea is some real constant. One might think th
adding the Hamiltonian constraint to the ADM evolutio
equation could have a similar role as densitizing the la
function i.e., it could keep both eigenvectorsûl2

(1) linearly

independent. The fact is, it does not. Such an addition of
Hamiltonian constraint modifies onlyl̃1

(1) andûl1

(1) , and does

not modify ûl2

(1) and l̃2
(1) . The result is

l̃1
(1)56A112a,

ûl1

(1)5F2@~11b12a!ṽ iṽ j1~12b12a!qi j /2#

7A112a@~11b!ṽ iṽ j1~12b!qi j /2#
G .

Therefore, adding the Hamiltonian constraint only helps
keep the eigenvectorsûl1

(1) independent of theûl2

(1) , so it

helps only in the caseb51, where the former collapse ont
the latter~for a50). For bÞ1 the addition of the Hamil-
2-6
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tonian constraint does not contribute to make the vectorsûl2

(1)

linearly independent, whereas densitizing the lapse does

B. BSSN-type equations

Consider the densitized ADM evolution equations~7!, ~8!.
Introduce into these equations the new variable

f m
ªhnsgns

m.

By definition nm f m50, that is,f 050, so the new variables
are the componentsf i5hi j @hkl]khl j 2] j (ln h)#, where h
5Adet(hi j ) as above. They are related to the three conn
tion variablesG̃ i of the BSSN system defined in Eq.~21! in
@14#. More precisely,g̃ i j G̃

j5 f i1(1/3)] i(ln h), whereg̃ i j is
defined in Eq.~10! of that reference. The evolution equatio
for f i is obtained by taking the trace in indicesn,s of the
identity

hmdLngns
d522D (nks)m1Dmkns22a(nks)m1knsam

1
1

N
hmdhn

n8hs
s8]n8]s8b

d,

where Lngns
d5nm]mgns

d12gm(n
d]s)n

m2gns
m]mnd, and

adding to the resultc times the momentum constraint~5!.
Herec is any real constant. One then gets

Lnf m5~c22!Dnkm
n1~12c!Dmk1Cm ,

where the nonprincipal terms are grouped in

Cm52ck j m22kmnan1kam22gnsmkns22kmn f n

1~1/N!hmnhsd]s]dbn.

Summarizing, the unknowns for BSSN-type systems
hi j , ki j , and f i . The evolution equations are

L(t2b)hi j 522Nki j , ~15!

L(t2b)ki j 5
N

2
hkl@2]k] lhi j 2b] i] jhkl#1N] ( i f j )1Bi j ,

~16!

L(t2b) f i5N@~c22!hk j]kki j 1~12c!hk j] ikk j#1Ci ,
~17!

where L(t2b) f i5] t f i2(b j] j f i1 f j] ib
j ), while L(t2b)hi j

andL(t2b)ki j are defined below Eqs.~7!, ~8!, and

Bi j 5N@2gkl( ig j )
kl1g iklg j

kl2g i j l gk
kl

22ki
lkjl 1ki j kl

l2Ai j 2kSi j #,

Ci5N@Ci1~c22!~gk j
kki

j2gki
jkj

k!#.

The constraint equations are Eqs.~5!, ~6! and

f m2hnsgns
m50.
04401
c-

e

The main result of this work asserts that BSSN-type e
lution equations are strongly hyperbolic for some choices
the free parameters.

Theorem 2.Fix any positive functionQ, vector fieldb i ,
first and second fundamental formshi j , ki j on S0. If b.0,
bÞ1, and c.0, then Eqs.~15!–~17! are strongly hyper-
bolic. Assume thatb51. If c52, then Eqs.~15!–~17! are
strongly hyperbolic; ifcÞ2, c.0, then they are weakly
hyperbolic.

One can check that the system~15!–~17! remains strongly
hyperbolic under a transformation of the formFi5 f i
1d] i(ln h) for any real constantd, in particular d51/3,
which gives the BSSN variableG̃ i . ~See the comment at th
end of this section.!

The first part of the proof follows the argument that e
tablishes Theorem 1. That is, from Eqs.~15!–~17! obtain the
first order pseudodifferential system Eqs.~18!–~20! below.
Then compute the eigenvector and eigenvalues, by split
the principal symbol into orthogonal parts with respect to
Fourier variablev i . Finally, the second part of the proof i
the construction of the symmetrizer.

Proof.
First order reduction.Compute the symbol associate

with the second order operator given by Eqs.~15!–~17!:

] thi j 5E
St

$22Nk̂i j 1 ivkb
kĥi j 12ĥk( i] j )b

k%eivxd̄v,

] tki j 5E
St

$~N/2!@ uvuh
2ĥi j 1bv iv jh

klĥkl#1 iNv ( i f̂ j )

1 ivkb
kk̂i j 1B̃i j %e

ivxd̄v,

] t f i5E
St

$ iN@~c22!k̂ikvk1~12c!v ih
k jk̂k j#1 ivkb

k f̂ i

1 C̃i%e
ivxd̄v,

where the terms not in the principal symbol have the form

B̃i j 5B̂i j 12k̂k( i] j )b
k,

C̃i5 Ĉi1 f̂ k] ib
k.

Here d̄v5dv/(2p)3/2, uvuh
25v iv jh

i j , and v i5v jh
i j . In-

troduce the unknown,̂ i j 5 i uvudĥi j , with uvud
25v iv jd

i j ,
whered i j 5diag(1,1,1). The resulting pseudodifferential sy
tem is a first order one, given by

] t, i j 5E
St

$ i uvuh@2~2N/a!k̂i j 1b̃ ,̂ i j #12,̂k( i] j )b
k%eivxd̄v,

~18!

] tki j 5E
St

$ i uvuh@~Na/2!~2 ,̂ i j 2bṽ iṽ jh
kl,̂kl12ṽ ( i f̂ j )!

1b̃ k̂i j #1B̃i j %e
ivxd̄v, ~19!
2-7
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] t f i5E
St

$ i uvuh@N~~c22!k̂ikṽk

1~12c!ṽ ih
k jk̂k j!1b̃ f̂ i #1 C̃i%e

ivxd̄v, ~20!

with a5uvuh /uvud , v̄ i5v i /uvuh , b̃5ṽkb
k, and , i j

5*St
i uvudĥi j e

ivxd̄v. The symbol of Eqs.~18!–~20! has the
form,

p~ t,x,u,iv!5 i uvuhp1~ t,x,u,v!1B~ t,x,u,v!, ~21!

where (Bû)T
ª(2,̂k( i] j )b

k,B̃i j ,C̃i), ûT
ª( ,̂ i j ,k̂i j , f̂ i), the in-

dexT denotes the transpose, and the principal symbolp1 can
be read out from the terms inside the square brackets in
~18!–~20!. As in the proof of Theorem 1, the definition of th
principal symbol here differs from the one given in Sec. II
a factor ofi uvuh .

Eigenvalues and eigenvectors ofp1. Following the proof
of Theorem 1,a51 is assumed. One can check in this ca
that, if ûT5( ,̂ i j ,k̂i j , f̂ i) is an eigenvector ofp1(a51) with

eigenvaluel, then ûT(a)5(a22/3,̂ i j ,a1/3k̂i j ,a1/3f̂ i) is an
eigenvector ofp1(a) with the same eigenvaluel.

The orthogonal decomposition~12!, ~13! simplifies the
calculation. In addition, decompose

f̂ i5ṽ i f̂ 1 f̂ i8 ,

where f̂ 5ṽ i f̂
i and f̂ i85qi

j f̂ j . This decomposition implies

that û5û(1)1û(2)1û(3) where

û(1)5F ṽ iṽ j ,̂1~qi j /2!,̂8

ṽ iṽ j k̂1~qi j /2!k̂8

ṽ i f̂
G ,

û(2)5F 2ṽ ( i ,̂8 j )

2ṽ ( i k̂8 j )

f̂ i8
G , û(3)5F ,̂ ^ i j &8

k̂^ i j &8

0
G . ~22!

Split the principal symbolp1 and the eigenvalue equatio

p1û5lû into the same three parts. The first part is five

mensional, corresponding to the variableû(1), that is, the
scalar fieldsf̂ , ,̂, k̂, ,̂8, and k̂8. The eigenvalues are

l̃1
(1)561, l̃2

(1)56Ab, l̃3
(1)50,

each having multiplicity 1, where againl̃ª(l2b̃)/N.
Hence, the eigenvalues are real ifb>0. The corresponding
eigenvectors are

ûl1

(1)5F 2@~b2c11!ṽ iṽ j1~12b!~qi j /2!#

7@~b2c11!ṽ iṽ j1~12b!~qi j /2!#

~22c!bṽ i

G ,
04401
s.

e

-

ûl2

(1)5F 2ṽ iṽ j

7Abṽ iṽ j

ṽ i

G , ûl3

(1)5F 2ṽ iṽ j

0

~11b!ṽ i

G .

Notice that both eigenvectorsûl2

(1) collapse ifb50. Also see

that the eigenvectorsûl1

(1) collapse toûl2

(1) in the caseb51

and cÞ2. Thus, in these cases Eqs.~18!–~20! are weakly
hyperbolic. In the caseb51 andc52 the eigenvalues6Ab

collapse to61. Therefore, one hasl̃1
(1)561, each with

multiplicity 2, and l̃2
(1)50, with multiplicity 1. There are

five linearly independent eigenvectors in this case,

ûl1

(1)5F 2ṽ iṽ j

7ṽ iṽ j

ṽ i

G , ûl1

(1)5F qi j

7qi j /2

ṽ i

G ,

ûl2

(1)5F ṽ iṽ j

0

ṽ i

G .

The second part is six dimensional and corresponds to
variablesû(2), that is, the vector fieldsf̂ i8 , ,̂ i8 , and k̂i8 , or-

thogonal toṽ i . The eigenvalues are

l̃1
(2)50, l̃2

(2)56Ac/2,

where each one has multiplicity 2. They are real ifc>0.
There are six linearly independent eigenvectors in the c
c.0, given by

ûl1

(2)5F 2ṽ ( iv j )
A

0

v i
A

G , ûl2

(2)5F 4ṽ ( iv j )
A

7A2cṽ ( iv j )
A

~22c!v i
A
G ,

wherev j
A represent two linearly independent vectors, ea

one orthogonal toṽ i , labeled by the indexA which takes
values 1, 2. Here is the key role of the momentum constra
If c50, that is, the momentum constraint is not added to
system, then the two eigenvectorsûl2

(2) become linearly de-

pendent, as occurs in the densitized ADM evolution eq
tions.

The last part is four dimensional and is the same as
Theorem 1. It corresponds to the variablesû(3), that is, the
tensor fields,̂ ^ i j &8 and k̂^ i j &8 . The result is

l̃1
~3!561, ûl1

(3)5F 2v ^ i j &
A

7v ^ i j &
A

0
G .
2-8
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The eigenvalues each have multiplicity 2, and there are f
linearly independent eigenvectors. The tensorsv ^kl&

A repre-
sent two linearly independent symmetric, traceless tens
orthogonals toṽ i .

The symmetrizer.The operatorH5(T21)* (T21) is a
symmetrizer of system~21!, whereT is an operator whose
columns correspond to the eigenvectors ofp1 , T21 is its
inverse, and * denotes the adjoint. Then it only remains to
a lengthy, although straightforward, calculation.

There are two hints that help to simplify the constructi
of the symmetrizer. They are based on the observation
the principal symbol has the particular formp15Np̃11b̃I,

where I is the identity matrixI5diag(h( i
khj )

l ,h( i
khj )

l ,hi
k),

and

p̃15F 0 p̃1(,) i j
(k)kl 0

p̃1(k) i j
(,)kl 0 p̃1(k) i j

( f )k

0 p̃1( f ) i
(k)kl 0

G ,

where the indices (,), (k), and ~f! indicate rows and col-
umns, that is, equations and variables, respectively, and
matrix components are given by

p̃1(,) i j
(k)kl522h( i

khj )
l ,

p̃1(k) i j
(,)kl5~21/2!@h( i

khj )
l1bṽ iṽ jh

kl#,

p̃1(k) i j
( f )k5ṽ ( ihj )

k,

p̃1( f ) i
(k)kl5~c22!ṽ (khl )

i1~12c!ṽ ih
kl.

Then, the first hint is that a symmetrizer forp1 is indeed a

symmetrizer for the nondiagonal elementsp̃1. A second hint
is that the orthogonal decomposition in Eq.~22! induces the
same splitting inp̃15 p̃1

(1)1 p̃1
(2)1 p̃1

(3) and therefore in

H5H (1)1H (2)1H (3).
The result is

H5FH (,) i j
(,)kl 0 H (,) i j

( f )k

0 H (k) i j
(k)kl 0

H ( f ) i
(,)kl 0 H ( f ) i

( f )k
G ,

where

H (,) i j
(,)kl5H ~, !i j

~1! (,)kl1H ~, !i j
~2! (,)kl1H ~, !i j

~3! (,)kl,

H (,) i j
( f )k5H ~, !i j

~1! ( f )k1H ~, !i j
~2! ( f )k,

H (k) i j
(k)kl5H (k) i j

(1) (k)kl1H (k) i j
(2) (k)kl1H (k) i j

(3) (k)kl,

H ( f ) i
(,)kl5H ( f ) i

(1) (,)kl1H ( f ) i
(2) (,)kl,

H ( f ) i
( f )k5H ( f ) i

(1) ( f )k1H ( f ) i
(2) ( f )k.
04401
ur
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The matrix coefficients of each part depend onṽ i . The sca-
lar variable part of the symmetrizer has the form

H ~, !i j
~1! (,)kl5H,,ṽ iṽ j ṽ

kṽ l1H,8,8

qi j

2
qkl

1H,,8S ṽ iṽ jq
kl1

qi j

2
ṽkṽ l D ,

H ~, !i j
~1! ( f )k5H f ,ṽ iṽ j ṽ

k1H f ,8

qi j

2
ṽk,

H (k) i j
(1) (k)kl5Hkkṽ iṽ j ṽ

kṽ l1Hk8k8

qi j

2
qkl

1Hkk8S ṽ iṽ jq
kl1

qi j

2
ṽkṽ l D ,

H ( f ) i
(1) (,)kl5H f ,ṽ iṽ

kṽ l1H f ,8ṽ iq
kl,

H ( f ) i
(1) ( f )k5H f fṽ iṽ

k,

where the scalar functions that appear above are the foll
ing:

H,,5
1

8b2
@21~11b!2#, Hkk5

1

2b
,

H f f5
3

2b2
, Hk8k85

~b112c!21b

2b~12b!2
,

H,8,85
1

4b2 F ~c21!21
~b2112c!21b2

2~12b!2 G ,

H,,85
1

4b2 Fc212
~b2112c!~11b!

2~12b! G ,
H f ,852

1

4b2 F2~c21!2
~b2112c!

~12b! G ,
Hkk85

~c212b!

2b~12b!
, H f ,52

1

4b2
~b13!.

The symmetrizer for the vector variable part is

H ~, !i j
~2! (,)kl5

2~c22!211

4c2
2ṽ ( iqj )

(kṽ l ),

H ~, !i j
~2! ( f )k5

4~c22!21

2c2
ṽ ( iqj )

k,

H (k) i j
(2) (k)kl5

1

2c
2ṽ ( iqj )

(kṽ l ),
2-9
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H ( f ) i
(2) (,)kl5

4~c22!21

2c2
ṽ (kql )

i ,

H ( f ) i
(2) ( f )k5

9

2c2
qi

k.

Finally, the two-tensor part of the symmetrizer is

H ~, !i j
~3! (,)kl5

1

8
q^ i

kqj &
l ,

H (k) i j
(3) (k)kl5

1

2
q^ i

kqj &
l .

One can check that the symmetrizer so defined satis
H( i uvuhp1)1( i uvuhp1)* H50 and so trivially belongs to

S1,0
0 . This symmetrizerH(t,x,u,ṽ) is bounded forbÞ1, c

.0, and smooth in all its arguments. The caseb51 andc
52 can be computed in the same way described above,
the same conclusion holds. Then, for these two cases
system~18!–~20! is strongly hyperbolic. j

Two further generalizations are immediate. The first o
involves the Hamiltonian constraint. Suppose the termahi j
times the Hamiltonian constraint~6! is added to Eq.~16!.
Here a is any real constant. What are the eigenvalues
eigenvectors of the resulting principal symbol? The result
as one expects, that the only change is in the scalar vari
part p1

(1). The eigenvalues are

l̃1
(1)56A112a~22c!, l̃2

(1)56Ab, l̃3
(1)50,

each one having multiplicity 1, andl1
(1) is real provided

a(22c)>2(1/2). The corresponding eigenvectors are

ûl1

(1)5F 2@~b2c11!ṽ iṽ j1~12b!qi j /2#

7l@~b2c11!ṽ iṽ j1~12b!qi j /2#

~22c!bṽ i

G
1a~22c!F 2~ṽ iṽ j1qi j !

7l~ṽ iṽ j1qi j !

~2c21!ṽ i

G ,

ûl3

(1)5F 2ṽ iṽ j

0

~11b!ṽ i

G1aF 2@~322b!ṽ iṽ j1bqi j #

0

3ṽ i

G ,

where l5A112a(22c). The eigenvectorûl2

(2) does not

change. The conclusion is summarized below.
Corollary 1. Consider Eqs.~15!–~17! and assume the hy

pothesis of Theorem 2. Assumeb.0 andc.0. Assume that
a termahi j times the Hamiltonian constraint~6! is added to
Eq. ~16!, where a is a real constant satisfyinga(22c)
.21/2. Then the resulting principal symbol, as defined
04401
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this section, has real eigenvalues and a complete set of
early independent eigenvectors.

The second generalization involves the transformat
Fi5 f i1d] i(ln h), whered is any real constant. That is, in
stead of defining the BSSN-type system with the variablef i ,
define it with Fi . The new evolution equations have a d
ferent principal symbol from Eqs.~15!–~17! of the BSSN-
type equations. However, one can check that it does
change the hyperbolicity of the system. Indeed, it modifi
only the p1

(1) part of the principal symbol. Its eigenvalue

remain the same, namely,l̃1
(1)561, l̃2

(1)56Ab, and l̃3
(1)

50. The associated eigenvectors are now given by

ûl1

(1)5F 2@~b2c11!ṽ iṽ j1~12b!~qi j /2!#

7@~b2c11!ṽ iṽ j1~12b!~qi j /2!#

~22c!~b1d!ṽ i

G ,

ûl2

(1)5F 2ṽ iṽ j

7Abṽ iṽ j

~11d!ṽ i

G , ûl3

(1)5F 2ṽ iṽ j

0

~11b1d!ṽ i

G .

Therefore, the hyperbolicity of the BSSN-type equations
not changed by this transformation.

IV. DISCUSSION

The first order pseudodifferential reduction performed
the space derivatives is here the main tool used to study
hyperbolicity of the BSSN-type systems. This technique
widely used in pseudodifferential analysis. It does not
crease the number of equations, so there are no new
straints added to the system. It emphasizes that well po
ness essentially captures the absence of divergent behav
the high frequency limit of the solutions of a given syste
This tool is applied to Eqs.~15!–~17!, which have deriva-
tives of first order in time and second order in space. Th
are obtained from the ADM equations by densitizing t
lapse function and introducing the three connection variab
f i . Its evolution equation is obtained by adding the mome
tum constraint to an identity from commuting derivative
The positive-density lapse function and the spacelike s
vector are arbitrary given functions. There are free para
eters given by the exponent in the densitized lapse and
factor in the addition of the momentum constraint. The
sulting first order pseudodifferential system is strongly h
perbolic for some values of the free parameters.~See Theo-
rem 2.!

The introduction off i as a new variable is inspired by th
variableG̃ i of the BSSN system, defined by Eq.~21! in @14#,
and in the study of the linearized ADM evolution equatio
given in @15#. This variable is the crucial step that allows u
to introduce the momentum constraint into the system. Th
two things, in turn, produce the result that the vector varia
eigenvectorsûl

(2) do span their eigenspace. This is the k
feature that converts the weakly hyperbolic densitized AD
system into a strongly hyperbolic one. This property does
change when a term of the formd] i(ln h) is added to the
2-10
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system. Then, both results suggest why the BSSN syste
preferred to the ADM equations for numerical analysis. T
conclusion agrees with a previous result in@22#, where the
hyperbolicity of the BSSN system was also studied. It
shown there that a differential reduction to first order in tim
and space derivatives, together with a densitization of
lapse, produce a strongly hyperbolic system. The result
the present work are also consistent with numerical stu
on the evolution equations presented in@17–19#. For further
developments on these systems, see@20,21#.

Finally, the role of the Hamiltonian constraint, whe
added to the ADM and BSSN-type evolution equations
studied. In the case where the density lapse exponentbÞ1 it
does not affect the hyperbolicity properties of the two s
tems. That is, densitized ADM evolution equations rem
weakly hyperbolic, and the BSSN-type system rem
strongly hyperbolic. In the caseb51 the addition of the
Hamiltonian constraint in both systems prevents the t
eigenvectors of the scalar variable block from collaps
onto each other. This keeps the BSSN-type equation stro
hyperbolic even in the caseb51, but is not enough to
change the weakly hyperbolic character of the densiti
ADM evolution equations.

ACKNOWLEDGMENTS

We thank Olivier Sarbach for reading the manuscript a
suggesting improvements. G.N. also thanks Bruce Driver
discussions on pseudodifferential calculus. This work w
partially supported by CONICET and SeCyT, UNC.

APPENDIX: ESSENTIALS OF PSEUDODIFFERENTIAL
OPERATORS

1. Introduction

Pseudodifferential operators are a generalization of dif
ential operators that make use of Fourier theory. The ide
to think of a differential operator acting upon a function
the inverse Fourier transform of a polynomial in the Four
variable times the Fourier transform of the function. Th
integral representation leads to a generalization of differ
tial operators, which correspond to functions other than po
nomials in the Fourier variable, as long as the integral c
verges.

In other words, given a smooth complex valued functi
p(x,v) from Rn3Rn with some asymptotic behavior at in
finity, associate with it an operatorp(x,]x):S→S. HereS is
the Schwartz space, that is, the set of complex valued sm
functions inRn, such that the function and every derivativ
decay faster than any polynomial at infinity. The associat
p→p, that is, functions into differential operators, is n
unique. This is known to anyone acquainted with quant
mechanics. Different maps from functionsp(x,v) into op-
eratorsp(x,]x) give rise to different theories of pseudodi
ferential calculus. Every generalization must coincide in
following: The polynomial p(x,v)5( uau<maa(x)( iv)a

wherea is a multi-index inRn must be associated with th
operatorp(x,]x)5( uau<maa(x)]x

a , that is, with a differen-
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tial operator of orderm. The mapp→p used in these notes i
introduced in subsection 3 of the Appendix. It is the mo
used definition of pseudodifferential operators in the lite
ture, and the one most studied.

The Fourier transform is used to rewrite the different
operator because it maps derivatives into multiplication, t
is, @]xu(x)#ˆ5 ivû(v). This property is used to solve con
stant coefficient partial differential equations~PDEs! by
transforming the whole equation into an algebraic equati
This technique is not useful on variable coefficient PDE
because of the inverse property, that is,@xu(x)#ˆ

5 i ]vû(v). For example, one has@]xu1xu#ˆ5 i @]vû
1vû#, and nothing has been simplified by the Fourier tra
form. That is why one looks for other ways of rewritin
differential operators. The generalization to pseudodiffer
tial operators is an additional consequence. Other transfo
can be used to define different generalizations of differen
operators. For example, Mellin transforms are used in@24#.

The functionsp(x,v) are called symbols. Differential op
erators correspond to polynomial symbols inv. They con-
tain the main equations from physics. Even strongly hyp
bolic PDEs have polynomial symbols. Why should o
consider more general symbols? Because the generaliz
is evident, and it has proved worth doing it. The Atiyah a
Singer index theorem is proved using pseudodifferential
erators with smooth symbols, which are more suitable
studying homotopy invariants than polynomial symbols@25#.
Techniques to prove the well posedness of the Cauchy p
lem for a strongly hyperbolic system require one to moll
polynomial symbols into smooth nonpolynomial ones@3#.
The main application in these notes is simple: to reduc
second order partial differential equation to a first order s
tem without adding new characteristics into the system. T
is done by introducing the operator, a square root of
Laplacian, which is a first order pseudodifferential, but n
differential, operator. The main idea for this type of reducti
was introduced in@26#.

How far should this generalization be carried? In oth
words, how is the set of symbols that define the pseudo
ferential operators determined? The answer depends
which properties of differential operators one wants to
preserved by the general operators, and which additio
properties one wants the latter to have. There are diffe
spaces of symbols defined in the literature. Essentially al
them agree that the associated space of pseudodiffere
operators is closed under taking the inverse. The inverse
pseudodifferential operator is another pseudodifferential
erator. This statement is not true for differential operato
The algebra developed in studying pseudodifferential ope
tors is useful to compute their inverses. This is importa
from a physical point of view, because the behavior of so
tions of PDEs can be inferred from the inverse operator. O
could even say that pseudodifferential operators were cre
in the middle 1950s from the procedure to compute para
trices to elliptic equations.@A parametrix is a function tha
differs from a solution of the equationp(u)5d by a smooth
function, wherep is a differential operator, andd is Dirac’s
delta distribution.# To know the parametrix is essentially th
same as to have the inverse operator.
2-11
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Spaces of pseudodifferential operators are usually defi
to be closed under composition and transpose, and to ac
distribution spaces and on Sobolev spaces. They can b
variant under diffeomorphisms, so they can be defined o
manifold. This definition for pseudodifferential operators
not so simple as for differential operators, because the la
are local operators and the former are not. Pseudodiffere
operators are pseudolocal. An operatorp acting on a distri-
butionu is local if p(u) is smooth in the same set whereu is
smooth. Pseudolocal means that the set wherep(u) is
smooth includes the set whereu is smooth. This means thatp
could smooth out a nonsmoothness ofu. Mollifiers are an
example of this kind of smoothing operator. They are integ
operators, which justifies the name of pseudolocal. Differ
tial operators with smooth coefficients are an example
local operators. The proofs of all these properties
pseudodifferential operators are essentially algebraic calc
tions on the symbols. One could say that the main pract
advantage of pseudodifferential calculus is, precisely, turn
differential problems into algebraic ones.

2. Function spaces

The study of the existence and uniqueness of solution
PDEs, as well as the qualitative behavior of these solutio
is at the core of mathematical physics. Function spaces
the basic ground for carrying on this study. The mathemat
structure needed is that of the Hilbert space, or Ban
space, or Fre´chet space, which are complete vector spa
having, respectively, an inner product, a norm, and a part
lar metric constructed with a family of seminorms. Eve
Hilbert space is a Banach space, and every Banach spac
Fréchet space. The main examples of Hilbert spaces are
space of square integrable functionsL2, and the Sobolev
spacesHk, with k a positive integer, which consist of func
tions whosek derivatives belong toL2. The Fourier trans-
form makes it possible to extend Sobolev spaces to rea
dices. This generalization in the idea of the derivative
essentially the same as one uses to construct pseudodiff
tial operators. Examples of Banach spaces areLp, spaces of
p-power integrable functions, whereL2 is the particular case
p52. The main examples of Fre´chet spaces areC`(V), the
set of smooth functions in any open setV,Rn, with a par-
ticular metric on it ~the caseV5Rn is denotedC`), the
Schwartz space of smooth functions of rapid decrease,
its dual as a Fre´chet space, which is a space of distribution

This section presents only Sobolev spaces, first with n
negative integer index, and the generalization to a real ind
The Fourier transform is needed to generalize the Sob
spaces. Therefore, Schwarz spaces are introduced to f
tate the definition of the Fourier transform, and to extend
to L2. The next section is dedicated to introducing pseud
ifferential operators.

Let L2 be the vector space of complex valued, squ
integrable functions onRn, that is, functions such thatiui
,`, whereiuiªA(u,u) and

~u,v !ªE
Rn

ū~x!v~x!dx,
04401
ed
on
in-
a

er
ial

l
-
f
f
la-
al
g

to
s,
re

al
h
s

u-

is a
he

n-
s
en-

nd
.
n-
x.
v
ili-
it
-

e

with ū the complex conjugate ofu. This set is a Hilbert
space, that is, a complete vector space with inner prod
where the inner product is given by ( , ) and is complete w
respect to the associated normi i .

The Sobolev spacesHk, for k a non-negative integer, ar
the elements ofL2 such that

iuik
2
ª (

uau<k
i]aui2,`,

wherea5(a1 ,a2 , . . . ,an) is a multi-index, and for every
such multi-index ]a denotes ]1

a1]2
a2
•••]n

an and uau
5( i 51

n a i . The inner product inL2 defines an inner produc
in Hk given by

~u,v !kª (
uau<k

~]au,]av !.

Let S be the space of functions of rapid decrease, a
called the Schwartz space, that is, the set of complex valu
smooth functions onRn, satisfying

uuuk,aªsupxPRnu~11uxu2!k/2]auu,`

for every multi-indexa, and allkPN natural, withuxu the
Euclidean length inRn. The Schwartz space is useful in se
eral contexts. It is the appropriate space to introduce
Fourier transform. It is simple to check that the Fourier tra
form is well defined on elements in that space, in oth
words, the integral converges. It is also simple to check
main properties of the transformed function. More importa
is that the Fourier transform is an isomorphism betwe
Schwartz spaces. As mentioned earlier, the Schwartz s
provided with an appropriate metric is an example of a F´-
chet space. Its dual space is the set of distributions, wh
generalizes the usual concept of functions.

The Fourier transform of any functionuPS is given by

F@u#~x!5û~x!ªE
Rn

e2 ix•vu~v!d̄v,

where d̄v5dv/(2p)n/2, while dv and x•v5d i j x
iv j are

the Euclidean volume element and scalar product inRn, re-
spectively. The mapF:S→S is an isomorphism. The invers
map is given by

F 21@u#~x!5ǔ~x!ªE
Rn

eix•vu~v!d̄v.

An important property of the Fourier transform useful
PDE theory is the following:@]x

au(x)#ˆ5 i uauvaû(v), and

@xau(x)#ˆ5 i uau]v
a û(v), that is, it converts smoothness o

the function into decay properties of the transformed fu
tion, and vice versa. The Fourier transform is extended to
isomorphismF:L2→L2, first proving Parseval’s theorem
that is, (u,v)5(û,v̂) for all u, vPS ~which gives Plancher-
el’s formula for norms,iui5i ûi , in the case that the norm
comes from an inner product, withu5v) and second recall-
ing thatS is dense inL2.
2-12
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The definition of Sobolev spacesHs for s real is based on
Parseval’s theorem. First recall that everyuPHk with non-
negative integerk satisfies]auPL2 for uau<k, so Parseval’s
theorem impliesuvukû(v)PL2. Second, notice that there ex
ists a positive constantc such that (1/c)^v&<(11uvu)
<c^v&, where^v&5(11uvu2)1/2. Therefore, one arrives a
the following definition. The Sobolev spaceHs for any s
PR consists of locally square integrable functions inRn such
that ^v&sûPL2. This space is a Hilbert space with the inn
product

~u,v !sªE
Rn

^v&2sū̂~v!v̂~v!dv,

and the associated norm is denoted by

iuis
2
ªE

Rn
^v&2suû~v!u2dv.

One can check thatHs,Hs8 whenevers8<s. Notice that
negative indices are allowed. The elements of those sp
are distributions. Furthermore, the Hilbert spaceH2s is the
dual of Hs. Finally, two more spaces are needed later
H2`

ªøsPRHs and H`
ªùsPRHs. These spaces are, wit

appropriate metrics on them, Fre´chet spaces. A closer pictur
of the kind of element these spaces may contain is given
the following observations. The Sobolev embedding lem
implies that H`,C`, while the opposite inclusion is no
true. Also notice thatS,H`, and thereforeH2`,S8, so the
elements ofH2` are tempered distributions.

3. Pseudodifferential operators

Let Sm, with mPR, be the set of complex valued smoo
functionsp(x,v) from Rn3Rn, such that

u]x
b]v

ap~x,v!u<Ca^v&m2uau, ~A1!

with Ca a constant depending on the multi-indexa, and
^v&5(11uvu2)1/2. This is the space of functions whose e
ements are associated with operators. It is called the spa
symbols, and its elementsp(x,v) symbols. There is no
asymptotic behavior needed in thex variable, because Fou
rier integrals are thought to be carried out in thev variable.
The asymptotic behavior of this variable is related to
order of the associated differential operator, as one
shortly see in the definition of the map that associates fu
tions p(x,v) with operatorsp(x,]x). One can check tha

Sm8,Sm wheneverm8<m. Two more spaces are neede
later on,S`

ªømPRSm andS2`
ªùmPRSm.

Given any p(x,v)PSm, the associated operato
p(x,]x):S→S is said to belong tocm and is determined by

p~x,]x!~u!5E
Rn

eix•vp~x,v!û~v!d̄v, ~A2!

for all uPS. The constantm is called the order of the opera
tor. It is clear thatuPS implies p(x,]x)(u)PC`; however,
the proof thatp(u)PS is more involved. One has to sho
04401
es
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y
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of
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that p(u) and its derivatives decay faster than any polyn
mial in x. The idea is to multiply Eq.~A2! by xa and recall
the relationi uauxaeiv•x5]v

aeiv•x. Integration by parts and the
inequality ~A1! imply that the resulting integral converge
and is bounded inx. This gives the decay.

The polynomial symbolsp(x,v)5( uau50
m aa(x)( iv)a

with non-negative integerm correspond to differential opera
tors of orderm, p(x,]x)5( uau50

m aa(x)]x
a . An example of a

pseudodifferential operator that is not differential is given
the symbolp(v)5x(v)uvuksin@ln(uvu)#, where k is a real
constant andx(v) is a cut function atuvu51/2. That is a
smooth function that vanishes foruvu<1/2 and is identically
1 for uvu>1. The cut function is needed to have a smoo
function atv50. This symbol belongs toSk. The function
p(v)5x(v)ln(uvu) is not a symbol, becauseup(v)u
<c0^v&e, for everye.0, but u]vp(v)u<c1^v&21, and the
change in the decay is bigger than 1, which is the value
uau in this case. Another useful example to understand
symbol spaces isp(v)5x(v)uvukln(uvu), with k a real con-
stant. This function is not a symbol fork natural or zero, for
the same reason as in the previous example. However, it
symbol for the remaining cases, belonging toSk1e, for every
e.0.

A very useful operator isLs:S→S given by

Ls~u!ªE
Rn

eiv•x^v&sû~v!d̄v,

where s is any real constant. This is a pseudodifferent
operator that is not differential. Its symbol isLs5^v&s,

which belongs toSs, and then one saysLsPcs. It is usually
denoted asLs5(12D)s/2. It can be extended to Sobole
spaces, that is, to an operatorLs:Hs→L2. This is done by
noticing the boundiLs(u)i5iuis for all uPS, and recalling
that S is a dense subset ofL2. This operator gives a picture
of what is meant by ans derivative, fors real. One can also
rewrite the definition ofHs, saying thatuPHs if and only if
Ls(u)PL2.

Pseudodifferential operators can be extended to opera
acting on Sobolev spaces. GivenpPcm, it defines an opera-
tor p(x,]x):H

s1m→Hs. This is the reason to callm the order
of the operator. The main idea of the proof is again to tra
late the basic estimate~A1! into the symbol to anL2-type
estimate for the operator, and then use the density ofS in L2.
The translation is more complicated for a general pseudo
ferential operator than forLs, because symbols can depen
on x. Intermediate steps are needed, involving estimates
an integral representation of the symbol, called the kerne
the pseudodifferential operator. Pseudodifferential opera
can also be extended to act on distribution spacesS8, the
dual of Schwartz spacesS.

An operatorp:H2`→H2` is called a smoothing operato
if p(H2`),C`. That meansp(u) is smooth regardless ofu
being smooth. One can check that a pseudodifferential
erator whose symbol belongs toS2` is a smoothing operator
For example, p(v)5e2uvu2PS2`. However, not every
smoothing operator is pseudodifferential. For examp
2-13
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p(v)5r(v), with rPHs for somes and having compac

support, is a smoothing operator which is not pseudodif
ential unlessr is smooth. Friedrichs’ mollifiers,Je for e
P(0,1#, are a useful family of smoothing operators, whi
satisfyJe(u)→u in theL2 sense, in the limite→0, for each
uPL2.

Consider one more example, the operatorl:S→S given
by

l~u!ªE
Rn

eiv•xi uvux~v!û~v!d̄v,

wherex(v) is again a cut function atuvu51/2. The symbol
is l(v)5 i uvux(v). The cut functionx makesl smooth at

v50. The operator without the cut function is,:S→L2

given by

,~u!ªE
Rn

eiv•xi uvuû~v!d̄v.

Its symbol,(v)5 i uvu does not belong to anySm because it

is not smooth atv50. Both operatorsl,, can be extended
to mapsH1→L2. What is more important, their extension
are essentially the same, because they differ in a smooth
although not pseudodifferential, operator.

The asymptotic expansion of symbols is maybe the m
useful notion related to pseudodifferential calculus. Consi
a decreasing sequence$mj% j 51

` , with lim j→`mj52`. Let
$pj% j 51

` be a sequence of symbolspj (x,v)PSmj . Assume
that these symbols are asymptotically homogeneous inv of
degreemj , that is, they satisfypj (x,tv)5tmjpj (x,v) for
uvu>1. Then, a symbolpPSm1 has the asymptotic expan
sion ( j pj if and only if

S p2(
j 51

k

pj D PSm(k11), ; k>1, ~A3!

and it is denoted byp;( j pj . The first order term in the

expansion,p1, is called the principal symbol. Notice thatmj

are real constants, not necessarily integers. Every asymp
expansion defines a symbol, that is, every function of
form ( j pj belongs to some symbol spaceSm1. However, not

every symbolpPSm has an asymptotic expansion. Consid

the examplep(v)5x(v)uvu1/2ln(uvu). The set of symbols
that admit an asymptotic expansion of the form~A3! is
called classical, it is denoted byScl

m , and the corresponding
operators are said to belong toccl

m . One then hasScl
m,Sm.

Notice that if two symbolsp andq have the same asymptot

expansion( j pj , then they differ in a pseudodifferentia

smoothing operator, because

p2q5S p2(
j 51

k

pj D 2S q2(
j 51

k

pj D PSm(k11)
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for all k, and limk→`mj52`, so (p2q)PS2`. This is the

precise meaning for the rough sentence, ‘‘what really mat
is the asymptotic expansion.’’

There is in the literature a more general concept
asymptotic expansion. It does not require that thepj to be
asymptotically homogeneous. We do not consider this ge
alization in these notes.

Most of the calculus of pseudodifferential operators co
sists of performing calculations with the highest order te
in the asymptotic expansion and keeping careful track of
lower order terms. The symbol of a product of pseudodiff
ential operators is not the product of the individual symbo
Moreover, the former is difficult to compute. However, a
asymptotic expansion can be explicitly written for classic
symbols, and one can check that the principal symbol of
product is equal to the product of the individual princip
symbols. More precisely, givenpPccl

r andqPccl
s , then the

product is a well defined operatorpqPccl
r 1s and the

asymptotic expansion of its symbol is

pq; (
uau>0

1

i uaua!
@]v

ap~x,v!#@]x
aq~x,v!#.

Notice that the first term in the asymptotic expansion o
commutator@p,q#5pq2qp, that is, its principal symbol, is
precisely 1/i times the Poisson bracket of their respecti
symbols,$p,q%5( j (]v j p]xjq2]xjp]v jq).

Similarly, the symbol of the adjoint pseudodifferential o
erator is not the adjoint of the original symbol. However, th
is true for the principal symbols. The proof is based in
asymptotic expansion of the following equation:

~p* !~x,v!5E E
Rn

e2 i (x2x8)•(v2v8)~p!* ~x8,v8!d̄xd̄v.

There are three main generalizations of the theory
pseudodifferential operators present in the literature. F
the operators act on vector valued functions instead of
scalar functions. While this is straightforward, the other ge
eralizations are more involved. Second, the space of sym
is enlarged, first done in@27#. It is denoted asSrd

m , and its
elements satisfyu]x

b]v
ap(x,v)u<Ca,b^v&m2ruau1dubu, with

Ca,b a constant depending on the multi-indicesa andb. The
extra indices have been tuned to balance two opposite
dencies; on the one hand, to preserve some propertie
differential operators; on the other hand, to maximize
amount of new objects in the generalization. These sym
spaces contain functions likep(x,v)5^v&a(x), which be-
longs toS1,d

m , whered.0 andm5maxxPRna(x). Third, the
domain of the functionsp(x,v) is changed fromRn3Rn to
V3Rn, with V,Rn any open set. A consequence in th
change of the domain is thatp:C0

`(V)→C`(V), so the do-
main and range ofp are not the same, which makes it mo
difficult to define the product of pseudodifferential operato
These notes are intended to be applied to hyperbolic P
2-14
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on Rn, which are going to be converted to pseudodifferen
operators inS1, so there is no need to consider the last t
generalizations.

4. Further reading

There is no main reference followed in these notes; ho
ever, a good place to start is@3#. Notice that the notation is
not precisely the one in that reference. The introduction
good, and the definitions are clear. The proofs are difficul
follow. More extended proofs can be found in@29#, together
with some historical remarks. The whole subject is clea
written in @30#. It is not the most general theory of pseud
differential operators, but it is close to these notes. A sligh
different approach can be found in@31#, and detailed calcu-
lations to find parametrices are given in@32#. The introduc-
e

e

-

D

f

.

04401
l

-

is
o

y

y

tion of @33# is very instructive. The first order reduction u
ing L is due to Caldero´n in @26#, and a clear summary of thi
reduction is given in@30#.

The field of pseudodifferential operators grew out of
special class of integral operators called singular integral
erators. Mikhlin in 1936 and Caldero´n and Zygmund in the
beginning of 1950s carried out the first investigations. T
field started to develop really fast after a suggestion by P
Lax in 1963 @34#, who introduced the Fourier transform t
represent singular integral operators in a different way.
nally, the work of Kohn and Nirenberg@35# presented the
pseudodifferential operators as they are known today,
they proved their main properties. They showed that singu
integral operators are the particular case of pseudodiffe
tial operators of order zero. Further enlargements of
theory were due to Ho¨rmander@27,36#.
ev.
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@36# L. Hörmander, Commun. Pure Appl. Math.18, 501 ~1965!.
2-15


