Finite Groups of Local Characteristic p


Barbara Baumeister

David Bundy

Andy Chermak

Niels Hebbinghaus

Ulrich Meierfrankenfeld

Mario Mainardis

Chris Parker

Gemma Parmeggiani

Peter Rowley

Bernd Stellmacher

Gernot Stroth


Abstract:

Let G be a finite group and p a prime. G is of characteristic p if  CG(Op(G)) <  Op(G). G is of local characteristic p if all p-local subgroups of G are of characteristic p. Below are links to various talks, preprints and drafts on the classification of the finite groups of local characteristic p. 

 
Title Authors Status
The Structure Theorem Bernd/Gernot/Ulrich submitted
The FF-module Theorems and Applications Bernd/Ulrich submitted
A characterization of G_2(3) Gernot/Ulrich J. Group Theory
Isolated Subgroups in Finite Groups Chris/Peter/Ulrich J. London Math. Soc.
F-Stability Bernd/Ulrich Trans. Amer. Math. Soc.
Nearly Quadratic Modules Bernd/Ulrich J. Algebra
The Fitting Submodule Bernd/Ulrich Arch.Math.
The Other P(G,V)-Theorem Bernd/Ulrich Rend. Padova
The P! Theorem Bernd/Chris/Gemma Journal of Algebra
The local CGT Theorem Bernd/Dave/Niels J. Algebra
The P~! Theorem Bernd/Gemma/Mario/Ulrich J. Algebra
An Overview Bernd,Gernot/Ulrich Proceed. Durham Conf.
Talks Ulrich  
Generic Groups of p-type Bernd/Ulrich Random Results/Draft
The Pushing Up Theorem
Andy/Gemma/Ulrich
Beginning of a Draft
The Rank 2 Case Andy Draft
The Big Book of Small Modules Andy/Barbara/Ulrich Beginning of a Draft
The Non E-uniqueness Case Bernd/Gernot/Ulrich Beginning of a Draft
The Small World Theorem Bernd//Ulrich Beginning of a Draft
The b=2 Case Chris/Peter//Ulrich Beginning of a Draft