List of key points for Final Exam, MTH 309, Last updated April 23, 2019

Chap. 1,2 ~ 20%; Chap. 3,4,6 ~ 30%; Chap. 5 ~ 50%;

- Sec 1.1
 - (Solving) Linear system; Consistent and inconsistent system
 - Coefficient matrix and augmented matrix; Elementary row operations
- Sec 1.2
 - (Reduced) Row echelon form
 - Free and lead variables
- Sec 1.3
 - Matrix equations
 - Matrix arithmetic (addition/multiplication/transpose); Symmetric matrix
- Sec 1.4
 - Matrix algebra (algebraic rules for matrices); Matrix power; Indentity matrix;
 - Matrix inverse (singular and nonsingular matrix);
- Sec 1.5
 - Three types of elementary matrices; their relations to elementary row operations;
 - Use elementary row operation to find the inverse of a 3×3 matrix
- Sec 2.1
 - Definition of the determinant/cofactor
 - Determinant of transpose, triangular, and diagonal matrices
- $\bullet~$ Sec 2.2
 - Determinant of elementary matrices, and matrix product
 - Determinant of singular and nonsingular matrix
- Sec 3.1
 - Euclidean vector spaces \mathbb{R}^n
 - Polynomial vector spaces P_n
- Sec 3.2
 - Subspace of \mathbb{R}^n and P_n
 - (Finding) Null space of an $m \times n$ matrix
 - Linear combination and the span of vectors v_1, \cdots, v_n (in \mathbb{R}^n and P_n)
 - Using determinant to check whether n vectors v_1, \dots, v_n in \mathbb{R}^n span \mathbb{R}^n or not
- Sec 3.3
 - Linear dependence/independence in \mathbb{R}^n and P_n
 - Using determinant to check whether n vectors v_1, \dots, v_n in \mathbb{R}^n are linearly independent or not
- Sec 3.4
 - Basis and dimension of \mathbb{R}^n and P_n
 - Basis and dimension of subspaces of \mathbb{R}^n and P_n

- Sec 3.5
 - Transition matrix from one basis to another in \mathbb{R}^n
- Sec 3.6
 - Definition of the rank and the nullity of an $m \times n$ matrix
 - The Rank-Nullity Theorem
- Sec 6.1
 - Definition of eigenvalues and eigenvectors
 - Finding eigenvalues, eigenvectors and eigenspaces of 2×2 and 3×3 matrices
 - The product and sum of eigenvalues and their relation to determinants and traces
- Sec 6.3
 - Diagonalization using eigenvalues and eigenvectors for 2×2 and 3×3 matrices
 - Computing the power of a matrix using diagonalization
- Sec 4.1
 - Linear transformation from \mathbb{R}^n to \mathbb{R}^m
 - Kernel and range of a linear transformation from \mathbb{R}^n to \mathbb{R}^m
- Sec 4.2

– Matrix representation of a linear transformation from \mathbb{R}^n to \mathbb{R}^m

- Sec 5.1
 - Scalar (inner) product and length (norm) in \mathbb{R}^n ;
 - Distance and angles between vectors in \mathbb{R}^n ;
 - Orthogonal vectors and scalar/vector projection
- Sec 5.2
 - Orthogonal subspaces
 - Orthogonal compliment of a subspace spanned by several vectors
- Sec 5.3
 - Least squares solutions to a inconsistent system
- Sec 5.4
 - Inner product in \mathbb{R}^n and the Pythagorean law
 - Different norms in \mathbb{R}^n
- Sec 5.5
 - Orthogonal set; orthonormal set; orthonormal basis; orthogonal matrix
- Sec 5.6
 - Gram-Schmidt process for finding orthonormal basis