List of key points for Final Exam, MTH 309, Last updated April 23, 2019
Chap. 1,2 $\sim 20 \%$; Chap. 3,4,6 $\sim 30 \%$; Chap. $5 \sim 50 \%$;

- Sec 1.1
- (Solving) Linear system; Consistent and inconsistent system
- Coefficient matrix and augmented matrix; Elementary row operations
- Sec 1.2
- (Reduced) Row echelon form
- Free and lead variables
- Sec 1.3
- Matrix equations
- Matrix arithmetic (addition/multiplication/transpose); Symmetric matrix
- Sec 1.4
- Matrix algebra (algebraic rules for matrices); Matrix power; Indentity matrix;
- Matrix inverse (singular and nonsingular matrix);
- Sec 1.5
- Three types of elementary matrices; their relations to elementary row operations;
- Use elementary row operation to find the inverse of a 3×3 matrix
- Sec 2.1
- Definition of the determinant/cofactor
- Determinant of transpose, triangular, and diagonal matrices
- $\operatorname{Sec} 2.2$
- Determinant of elementary matrices, and matrix product
- Determinant of singular and nonsingular matrix
- Sec 3.1
- Euclidean vector spaces \mathbb{R}^{n}
- Polynomial vector spaces P_{n}
- Sec 3.2
- Subspace of \mathbb{R}^{n} and P_{n}
- (Finding) Null space of an $m \times n$ matrix
- Linear combination and the span of vectors v_{1}, \cdots, v_{n} (in \mathbb{R}^{n} and P_{n})
- Using determinant to check whether n vectors v_{1}, \cdots, v_{n} in \mathbb{R}^{n} span \mathbb{R}^{n} or not
- Sec 3.3
- Linear dependence/independence in \mathbb{R}^{n} and P_{n}
- Using determinant to check whether n vectors v_{1}, \cdots, v_{n} in \mathbb{R}^{n} are linearly independent or not
- Sec 3.4
- Basis and dimension of \mathbb{R}^{n} and P_{n}
- Basis and dimension of subspaces of \mathbb{R}^{n} and P_{n}
- Sec 3.5
- Transition matrix from one basis to another in \mathbb{R}^{n}
- Sec 3.6
- Definition of the rank and the nullity of an $m \times n$ matrix
- The Rank-Nullity Theorem
- Sec 6.1
- Definition of eigenvalues and eigenvectors
- Finding eigenvalues, eigenvectors and eigenspaces of 2×2 and 3×3 matrices
- The product and sum of eigenvalues and their relation to determinants and traces
- Sec 6.3
- Diagonalization using eigenvalues and eigenvectors for 2×2 and 3×3 matrices
- Computing the power of a matrix using diagonalization
- Sec 4.1
- Linear transformation from \mathbb{R}^{n} to \mathbb{R}^{m}
- Kernel and range of a linear transformation from \mathbb{R}^{n} to \mathbb{R}^{m}
- Sec 4.2
- Matrix representation of a linear transformation from \mathbb{R}^{n} to \mathbb{R}^{m}
- Sec 5.1
- Scalar (inner) product and length (norm)in \mathbb{R}^{n};
- Distance and angles between vectors in \mathbb{R}^{n};
- Orthogonal vectors and scalar/vector projection
- Sec 5.2
- Orthogonal subspaces
- Orthogonal compliment of a subspace spanned by several vectors
- Sec 5.3
- Least squares solutions to a inconsistent system
- Sec 5.4
- Inner product in \mathbb{R}^{n} and the Pythagorean law
- Different norms in \mathbb{R}^{n}
- Sec 5.5
- Orthogonal set; orthonormal set; orthonormal basis; orthogonal matrix
- Sec 5.6
- Gram-Schmidt process for finding orthonormal basis

