- Sec 3.1
- Euclidean vector spaces \mathbb{R}^{n}
- Polynomial vector spaces P_{n}
- Verifying whether a given set is a vector space or not by the definition (C1,C2 and A1-A8 will be provided).
- Sec 3.2
- Definition of vector subspace;
- Subspace of \mathbb{R}^{n} and P_{n}
- Null space of an $m \times n$ matrix
- Linear combination and the span of vectors $v_{1}, \cdots, v_{n}\left(\right.$ in \mathbb{R}^{n} and $\left.P_{n}\right)$
- Spanning set of \mathbb{R}^{n}, P_{n} and their subspaces
- Using determinant to check whether n vectors v_{1}, \cdots, v_{n} in \mathbb{R}^{n} span \mathbb{R}^{n} or not
- Sec 3.3
- Linear dependence/independence in \mathbb{R}^{n} and P_{n}
- Using determinant to check whether n vectors v_{1}, \cdots, v_{n} in \mathbb{R}^{n} are linearly independent or not
- Sec 3.4
- Basis and dimension of \mathbb{R}^{n} and P_{n}
- Basis and dimension of subspaces of \mathbb{R}^{n} and P_{n}
- Sec 3.5
- Transition matrix from one basis to another in \mathbb{R}^{n}
- Changing coordinates using transition matrix in \mathbb{R}^{n}
- Sec 3.6
- Definition of the rank and the nullity of an $m \times n$ matrix
- The Rank-Nullity Theorem
- Sec 6.1
- Definition of eigenvalues and eigenvectors
- Finding eigenvalues, eigenvectors and eigenspaces of 2×2 and 3×3 matrices
- The product and sum of eigenvalues and their relation to determinants and traces
- Sec 6.3
- Diagonalization using eigenvalues and eigenvectors for 2×2 and 3×3 matrices
- Computing the power of a matrix using diagonalization
- Sec 4.1
- Linear transformation from \mathbb{R}^{n} to \mathbb{R}^{m}
- Linear transformation from P_{n} to P_{m}
- Kernel and range of a linear transformation from \mathbb{R}^{n} to \mathbb{R}^{m}
- Sec 4.2
- Matrix representation of a linear transformation from \mathbb{R}^{n} to \mathbb{R}^{m}

