List of key points for Mid 2, MTH 309

- Sec 3.1
 - Euclidean vector spaces \mathbb{R}^n
 - Polynomial vector spaces P_n
 - Verifying whether a given set is a vector space or not by the definition (C1,C2 and A1-A8 will be provided).
- Sec 3.2
 - Definition of vector subspace;
 - Subspace of \mathbb{R}^n and P_n
 - Null space of an $m \times n$ matrix
 - Linear combination and the span of vectors v_1, \dots, v_n (in \mathbb{R}^n and P_n)
 - Spanning set of \mathbb{R}^n , P_n and their subspaces
 - Using determinant to check whether n vectors v_1, \dots, v_n in \mathbb{R}^n span \mathbb{R}^n or not
- Sec 3.3
 - Linear dependence/independence in \mathbb{R}^n and P_n
 - Using determinant to check whether n vectors v_1, \cdots, v_n in \mathbb{R}^n are linearly independent or not
- $\bullet~$ Sec 3.4
 - Basis and dimension of \mathbb{R}^n and P_n
 - Basis and dimension of subspaces of \mathbb{R}^n and P_n
- $\bullet~$ Sec 3.5
 - Transition matrix from one basis to another in \mathbb{R}^n
 - Changing coordinates using transition matrix in \mathbb{R}^n
- Sec 3.6
 - Definition of the rank and the nullity of an $m \times n$ matrix
 - The Rank-Nullity Theorem
- Sec 6.1
 - Definition of eigenvalues and eigenvectors
 - Finding eigenvalues, eigenvectors and eigenspaces of 2×2 and 3×3 matrices
 - The product and sum of eigenvalues and their relation to determinants and traces
- Sec 6.3
 - Diagonalization using eigenvalues and eigenvectors for 2×2 and 3×3 matrices
 - Computing the power of a matrix using diagonalization
- Sec 4.1
 - Linear transformation from \mathbb{R}^n to \mathbb{R}^m
 - Linear transformation from P_n to P_m
 - Kernel and range of a linear transformation from \mathbb{R}^n to \mathbb{R}^m
- Sec 4.2
 - Matrix representation of a linear transformation from \mathbb{R}^n to \mathbb{R}^m