• Let \(A = (a_{ij}) \) be an \(n \times n \) matrix and let \(M_{ij} \) denote the \((n-1) \times (n-1)\) matrix obtained from \(A \) by deleting the row and column containing \(a_{ij} \). The determinant of \(M_{ij} \) is called the minor of \(a_{ij} \). We define the cofactor \(A_{ij} \) of \(a_{ij} \) by
\[
A_{ij} = (-1)^{i+j} \det(M_{ij})
\]

• Subspace: If \(S \) is a nonempty subset of a vector space \(V \), and \(S \) satisfies the conditions
 (i) \(\alpha x \in S \) whenever \(x \in S \) for any scalar \(\alpha \)
 (ii) \(x + y \in S \) whenever \(x \in S \) and \(y \in S \)
then \(S \) is said to be a subspace of \(V \).

• Let \(v_1, v_2, \ldots, v_n \) be vectors in a vector space \(V \). The set
\[
\{ \alpha_1 v_1 + \alpha_2 v_2 + \cdots + \alpha_n v_n \mid \alpha_1, \ldots, \alpha_n \in \mathbb{R} \}
\]
is called the span of \(v_1, v_2, \ldots, v_n \) and is denoted by \(\text{Span}(v_1, v_2, \ldots, v_n) \).

• The vectors \(v_1, v_2, \ldots, v_n \) in a vector space \(V \) are said to be linearly independent if
\[
c_1 v_1 + c_2 v_2 + \cdots + c_n v_n = 0
\]
implies that all the scalars \(c_1 = c_2 = \cdots = c_n = 0 \).

Theorem 0.1. Let \(x_1, x_2, \ldots, x_n \) be \(n \) vectors in \(\mathbb{R}^n \) and let
\[
X = (x_1, x_2, \ldots, x_n)
\]
The vectors \(x_1, x_2, \ldots, x_n \) will be linearly independent and span \(\mathbb{R}^n \) if and only if \(X \) is nonsingular.

• If vectors \(v_1, v_2, \ldots, v_n \) are linearly independent and span \(V \), then \(v_1, v_2, \ldots, v_n \) form a basis for \(V \) and \(V \) has dimension \(n \).

Theorem 0.2. If vectors \(v_1, v_2, \ldots, v_n \) form a basis for \(V \), then any collection of (strictly) more than \(n \) vectors in \(V \), is linearly dependent.

• The rank of a matrix \(A \), denoted \(\text{rank}(A) \), is the number of non-zero rows in the reduced echelon form of \(A \). The dimension of the null space of a matrix is called the nullity of the matrix.

Theorem 0.3. If \(A \) is an \(m \times n \) matrix, then the rank of \(A \) plus the nullity of \(A \) equals \(n \).

• For an \(n \times n \) matrix \(A = (a_{ij}) \), \(p(\lambda) = \det(A - \lambda I) \) is called the characteristic polynomial of \(A \).
\[
\text{tr}(A) = \sum_{i=1}^{n} a_{ii}
\]
is called the trace of \(A \).

Theorem 0.4. If \(\lambda_1, \lambda_2, \ldots, \lambda_n \) are the eigenvalues of \(A \), then
\[
\lambda_1 \lambda_2 \cdots \lambda_n = \det(A) = p(0) \tag{0.1}
\]
\[
\lambda_1 + \lambda_2 + \cdots + \lambda_n = \text{tr}(A) = \sum_{i=1}^{n} a_{ii} \tag{0.2}
\]

• An \(n \times n \) matrix \(A \) is said to be diagonalizable if there exists a nonsingular matrix \(X \) and a diagonal matrix \(D \) such that \(X^{-1}AX = D \). We say that \(X \) diagonalizes \(A \).

Theorem 0.5. An \(n \times n \) matrix \(A \) is diagonalizable if and only if \(A \) has \(n \) linearly independent eigenvectors.

• A mapping \(L \) from a vector space \(V \) into a vector space \(W \) is said to be a linear transformation if for all \(v_1, v_2 \in V \) and all scalars \(\alpha \)
 (i) \(L(v_1 + v_2) = L(v_1) + L(v_2) \)
 (ii) \(L(\alpha v_1) = \alpha L(v_1) \)
Let \(L : V \rightarrow W \) be a linear transformation. Let \(0_V \) and \(0_W \) be the zero vectors in \(V \) and \(W \), respectively. The kernel of \(L \), denoted \(\ker(L) \), is defined by
\[
\ker(L) = \{ v \in V \mid L(v) = 0_W \}
\]
Let \(S \) be a subspace of \(V \). The image of \(S \), denoted \(L(S) \), is defined by
\[
L(S) = \{ L(v) \mid v \in S \}
\]
The image of the entire vector space, \(L(V) \), is called the range of \(L \).

• Let \(L : \mathbb{R}^n \rightarrow \mathbb{R}^m \) be a linear transformation. An \(m \times n \) matrix \(A \) is called the (standard) matrix representation of \(A \) if
\[
L(x) = Ax, \quad x \in \mathbb{R}^n
\]

Theorem 0.6. For any linear transformation \(L : \mathbb{R}^n \rightarrow \mathbb{R}^m \), \(L \) has an \(m \times n \) matrix representation \(A \). Moreover,
\[
A = (L(e_1), L(e_2), \ldots, L(e_n))
\]
where \(e_1, \ldots, e_n \) is the standard basis of \(\mathbb{R}^n \).
Let $\langle x, y \rangle = x^T y$ be the usual inner product in \mathbb{R}^n. Then

1. $\langle x, x \rangle \geq 0$ with equality if and only if $x = 0$.
2. $\langle x, y \rangle = \langle y, x \rangle$ for all $x, y \in \mathbb{R}^n$.
3. $\langle \alpha x + \beta y, z \rangle = \alpha \langle x, z \rangle + \beta \langle y, z \rangle$ for all $x, y, z \in \mathbb{R}^n$ and all scalars in α and β.

Let $\|x\| = \sqrt{\langle x, x \rangle}$ be the usual 2-norm in \mathbb{R}^n. Then

1. $\|x\| \geq 0$ with equality if and only if $x = 0$.
2. $\|\alpha x\| = |\alpha| \|x\|$ for any scalar α.
3. $\|x + y\| \leq \|x\| + \|y\|$ for all $x, y \in \mathbb{R}^n$.

Theorem 0.7 (The Pythagorean Law). If x, y are orthogonal vectors in \mathbb{R}^n, then $\|x + y\|^2 = \|x\|^2 + \|y\|^2$.

- If $y \neq 0$, then the scalar projection of x onto y is given by
 $$ \alpha = \frac{\langle x, y \rangle}{\|y\|} $$
 and the vector projection of x onto y is given by
 $$ p = \alpha \left(\frac{y}{\|y\|} \right) = \frac{\langle x, y \rangle}{\|y\|^2} y $$

Theorem 0.8. If $y \neq 0$ and p is the vector projection of x onto y, then $x - p$ and p are orthogonal.

Two subspaces X and Y of \mathbb{R}^n are said to be orthogonal if $\langle x, y \rangle = 0$ for every $x \in X$ and every $y \in Y$. If X and Y are orthogonal, we write $X \perp Y$.

Let Y a subspace of \mathbb{R}^n. The set of all vectors in \mathbb{R}^n that are orthogonal to every vector in Y will be denoted Y^\perp. Thus,

$$ Y^\perp = \{x \in \mathbb{R}^n \mid \langle x, y \rangle = 0 \text{, for every } y \in Y \} $$

The set Y^\perp is called the orthogonal complement of Y.

Theorem 0.9. Let v_1, v_2, \cdots, v_m be m vectors in \mathbb{R}^n. Let $A = \begin{pmatrix} v_1^T \\ \vdots \\ v_m^T \end{pmatrix}$ be an $m \times n$ matrix. If $V = \text{span}(v_1, v_2, \cdots, v_m)$, then $V^\perp = N(A)$.

Theorem 0.10. If A is an $m \times n$ matrix of rank n, the equations

$$ A^T Ax = A^T b $$

have a unique solution

$$ \hat{x} = (A^T A)^{-1} A^T b $$

and \hat{x} is the unique least squares solution of the system $Ax = b$.

- Let v_1, v_2, \cdots, v_n be non-zero vectors in \mathbb{R}^m. If $\langle v_i, v_j \rangle = 0$ whenever $i \neq j$, then $\{v_1, v_2, \cdots, v_n\}$ is said to be an orthogonal set in \mathbb{R}^m. An orthonormal set of vectors is an orthogonal set of unit vectors.

Theorem 0.11. If u_1, u_2, \cdots, u_n is an orthonormal set in \mathbb{R}^n, then u_1, u_2, \cdots, u_n is an orthonormal basis for \mathbb{R}^n. And if $v = \sum_{i=1}^n c_i u_i$, then $c_i = \langle v, u_i \rangle$. Moreover,

$$ \|v\|^2 = \sum_{i=1}^n c_i^2. \text{ (Parseval’s Formula)} $$

- An $n \times n$ matrix Q is said to be orthogonal matrix if the column vectors of Q form an orthonormal set in \mathbb{R}^n.

Theorem 0.12. Q is an orthogonal matrix if and only if $Q^T Q = I$. If Q is an orthogonal matrix, then

1. $Q^T = Q^{-1}$
2. $\langle Qx, Qy \rangle = \langle x, y \rangle$
3. $\|Qx\| = \|x\|$

Theorem 0.13. If u_1, u_2, \cdots, u_k is an orthonormal set in \mathbb{R}^n, then the orthogonal (vector) projection of a vector $x \in \mathbb{R}^n$ onto $\text{Span}(u_1, u_2, \cdots, u_k)$ is given by

$$ p = \sum_{i=1}^k \langle x, u_i \rangle u_i $$

Theorem 0.14 (The Gram–Schmidt Process). Let x_1, x_2, \cdots, x_n be a basis for \mathbb{R}^n. In Step 1, let

$$ u_1 = \frac{1}{\|x_1\|} x_1 $$

and define u_2, u_3, \cdots, u_n recursively by:

in Step $k + 1$, let

$$ p_k = \sum_{i=1}^k \langle x_{k+1}, u_i \rangle u_i $$

and define $v_{k+1} = x_{k+1} - p_k$, and $u_{k+1} = \frac{1}{\|v_{k+1}\|} v_{k+1}$

Then u_1, u_2, \cdots, u_n is an orthonormal basis for \mathbb{R}^n.