Practice Final, Sec13

Multiple Choice Problems.

1. (S17) Suppose f(x) is a continuous function with values given by the table below.

Х	-2	-1	0	1
f(x)	0	3	0	-3

Which of the following statement is correct?

A f(x) = 2 has a root $c \in (-1, 0)$.

B f(x) = 2 has a root $c \in (0, 1)$.

C f(x) = 4 has a root $c \in (-1, 0)$.

- **D** f(x) = 4 has a root $c \in (-2, 1)$.
- **E** None of the above
- 2. (S17) Suppose f(x) is a differntiable function with values given by the table below.

х	-2	-1	0	1
f(x)	0	3	0	-3

According to Mean Value Theorem, which of the following statement is correct?

- A There is $c \in (-1, 0)$ such that f'(c) = 3.
- **B** There is $c \in (-2, 0)$ such that f'(c) = 3.
- **C** There is $c \in (-1, 1)$ such that f'(c) = -1.
- **D** There is $c \in (-2, 1)$ such that f'(c) = -1.
- E None of the above
- 3. Using a linearization at a = 100, the linear approximation of $\sqrt{99}$ is

 $\begin{array}{l} {\bf A} & \frac{199}{20} \\ {\bf B} & \frac{201}{20} \\ {\bf C} & \frac{99}{10} \\ {\bf D} & \frac{101}{10} \\ {\bf E} & {\rm None \ of \ the \ above} \end{array}$

- 4. (S17) Suppose you are estimating the root of $x^5 = 33$ using Newton's method. If you use $x_1 = 1$, find the exact value of x_2
 - **A** $x_2 = 1 \frac{32}{5}$ **B** $x_2 = 1 + \frac{32}{5}$ **C** $x_2 = 33 - \frac{1}{5}$ **D** $x_2 = 33 + \frac{32}{5}$ **E** $x_2 = 1 + \frac{1}{5}$

5. Evaluate the limit:

$$\lim_{x \to -3^+} \frac{x - 2}{x^2(x + 3)}$$

- $\mathbf{A} \ +\infty$
- $\mathbf{B}\ -\infty$
- \mathbf{C} -5
- **D** 5
- \mathbf{E} -3
- 6. Find the limit:

$$\lim_{x \to \infty} \frac{x-2}{3x+5}$$

- **A** $+\infty$ **B** 0 **C** $\frac{1}{3}$ **D** $-\frac{2}{3}$ **E** $-\frac{2}{5}$
- 7. Compute the limit:

$$\lim_{h \to 0} \frac{\frac{1}{h+2} - \frac{1}{2}}{h}$$

- **A** $+\infty$ **B** $\frac{1}{2}$ **C** $\frac{1}{4}$ **D** $-\frac{1}{4}$ **E** 0
- 8. (Spring 16) Find the limit:

$$\lim_{x \to 1} \frac{\sin(x-1)}{x^2 - 1}$$

A -1B 0 C $\frac{1}{2}$ D $-\frac{1}{1}$ E Does not exist.

9. Suppose
$$\int_0^2 f(x) dx = -4$$
, $\int_0^5 f(x) dx = 6$. Find $\int_2^5 f(x) dx$ and the average of $f(x)$ over $[2, 5]$

A $\int_{2}^{5} f(x)dx = 2$, average of f is $\frac{2}{3}$ **B** $\int_{2}^{5} f(x)dx = 10$, average of f is $\frac{10}{3}$ **C** $\int_{2}^{5} f(x)dx = -10$, average of f is $-\frac{10}{3}$ **D** $\int_{2}^{5} f(x)dx = -2$, average of f is $-\frac{2}{3}$ **E** $\int_{2}^{5} f(x)dx = 10$, average of f is $\frac{10}{5}$

10. Evaluate

$$\int_{-\pi}^{\pi} \sin x \cdot \sqrt{\cos x + 2} \, dx$$

- **A** $\frac{4}{3}$ **B** 0 **C** $-\frac{4}{3}$ **D** $-\frac{2}{3}$ **E** 2
- 11. Suppose

$$F(x) = \int_{-\pi}^{\tan x} \sqrt{2+t^2} dt$$

Find F'(x)A $\sqrt{2 + (\tan x)^2}$ B $\sqrt{2 + (\tan x)^2} \cdot \sec^2 x$ C $\sqrt{2 + t^2} \cdot \sec^2 x$ D $-\sqrt{2 + \pi^2} \cdot \sec^2 x$ E $\int_{-\pi}^{\tan x} \sqrt{2 + (\tan x)^2} \cdot \sec^2 x \, dt$

12. Suppose

$$F(x) = \sqrt{2 + (\tan x)^2}$$

Find F'(x)

$$\mathbf{A} \quad \frac{1}{2}(2 + (\tan x)^2)^{-1/2} \\ \mathbf{B} \quad \frac{1}{2}(2 + (\tan x)^2)^{-1/2} \cdot (2\tan x) \\ \mathbf{C} \quad \frac{1}{2}(2 + (\tan x)^2)^{-1/2} \cdot (2\tan x) \cdot (\sec^2 x) \\ \mathbf{D} \quad \sqrt{2 + (\tan x)^2} \cdot (2\tan x) \cdot (\sec^2 x) \\ \mathbf{E} \quad \sqrt{2 + (\tan x)^2} \cdot (2\tan x) \\ \end{aligned}$$

Standard Response Problems.

1. (S17) Calculate the derivatives of $f(x) = x \sin(3x)$. And find the equation of the tangent line to the curve y = f(x) at $x = \frac{\pi}{3}$

- 2. (S17) Suppose $f(x) = \frac{1}{x+7}$
 - (a) Use the definition of the derivative to find f'(x)

(b) Find the equation of the tangent line to the curve y = f(x) at x = -2

3. (S17) Suppose that y and x satisfy the implicit equation

$$xy^3 + xy = 20$$

(a) Find $\frac{dy}{dx}$

(b) Use your answer in part (a) to find the equation of the tangent line to the curve $xy^3 + xy = 20$ at the point (10, 1).

4. If the radius of a circular ink blot is growing at a rate of 3 cm/min. How fast (in cm^2/min) is the area of the blot growing when the radius is 10 cm?

5. Air is being pumped into a spherical balloon so that its volume increase at a rate of $100 \text{ cm}^3/\text{s}$. How fast is the radius of the balloon increasing when the diameter is 50cm?

6. Give a right triangle as below with base 5 cm and height 6 cm. A rectangle is inscribed with its two edges on the right triangle and its upper right corner on the hypotenuse of the right triangle. What are the dimensions of such a rectangle with the greatest possible area?

7. A particle moves with velocity $v(t) = -t^2 + 6t - 8$, $0 \le t \le 6$. Sketch the graph of v(t) on [0, 6]. When is the acceleration a(t) positive? When does the particle speed up?

- 8. (S16) Suppose $f(x) = x^4 6x^2 3$.
 - (a) Identify the intervals over which f(x) is increasing and decreasing, and all values of x where f(x) attains its local maximum or minimum.

(b) Identify the intervals over which f(x) is concave up and down, and all values of x where f(x) has an inflection point.

9. Calculate the integral $\int \tan^3 x \cdot \sec^2 x \, dx$

10. Calculate the integral $\int_0^{\pi/4} \tan x \cdot \sec x + 2x \ dx$

11. Find the area of the region enclosed by the graphs of the equations y = x + 4 and $y = x^2 - x + 1$.