Multiple Choice Problems.

1. (S17) Suppose $f(x)$ is a continuous function with values given by the table below.

x	-2	-1	0	1
$\mathrm{f}(\mathrm{x})$	0	3	0	-3

Which of the following statement is correct?
A $f(x)=2$ has a root $c \in(-1,0)$.
B $f(x)=2$ has a root $c \in(0,1)$.
C $f(x)=4$ has a root $c \in(-1,0)$.
D $f(x)=4$ has a root $c \in(-2,1)$.
\mathbf{E} None of the above
2. (S17) Suppose $f(x)$ is a differntiable function with values given by the table below.

x	-2	-1	0	1
$f(x)$	0	3	0	-3

According to Mean Value Theorem, which of the following statement is correct?
A There is $c \in(-1,0)$ such that $f^{\prime}(c)=3$.
B There is $c \in(-2,0)$ such that $f^{\prime}(c)=3$.
C There is $c \in(-1,1)$ such that $f^{\prime}(c)=-1$.
D There is $c \in(-2,1)$ such that $f^{\prime}(c)=-1$.
E None of the above
3. Using a linearization at $a=100$, the linear approximation of $\sqrt{99}$ is

A $\frac{199}{20}$
B $\frac{201}{20}$
C $\frac{99}{10}$
D $\frac{101}{10}$
E None of the above
4. (S17) Suppose you are estimating the root of $x^{5}=33$ using Newton's method. If you use $x_{1}=1$, find the exact value of x_{2}

A $x_{2}=1-\frac{32}{5}$
B $x_{2}=1+\frac{32}{5}$
C $x_{2}=33-\frac{1}{5}$
D $x_{2}=33+\frac{32}{5}$
E $x_{2}=1+\frac{1}{5}$
5. Evaluate the limit:

$$
\lim _{x \rightarrow-3^{+}} \frac{x-2}{x^{2}(x+3)}
$$

A $+\infty$
B $-\infty$
C -5
D 5
E -3
6. Find the limit:

$$
\lim _{x \rightarrow \infty} \frac{x-2}{3 x+5}
$$

A $+\infty$
B 0
C $\frac{1}{3}$
D $-\frac{2}{3}$
E $-\frac{2}{5}$
7. Compute the limit:

$$
\lim _{h \rightarrow 0} \frac{\frac{1}{h+2}-\frac{1}{2}}{h}
$$

A $+\infty$
B $\frac{1}{2}$
C $\frac{1}{4}$
D $-\frac{1}{4}$
E 0
8. (Spring 16) Find the limit:

$$
\lim _{x \rightarrow 1} \frac{\sin (x-1)}{x^{2}-1}
$$

A -1
B 0
C $\frac{1}{2}$
D $-\frac{1}{1}$
E Does not exist.
9. Suppose $\int_{0}^{2} f(x) d x=-4, \int_{0}^{5} f(x) d x=6$. Find $\int_{2}^{5} f(x) d x$ and the average of $f(x)$ over $[2,5]$

A $\int_{2}^{5} f(x) d x=2$, average of f is $\frac{2}{3}$
B $\int_{2}^{5} f(x) d x=10$, average of f is $\frac{10}{3}$
C $\int_{2}^{5} f(x) d x=-10$, average of f is $-\frac{10}{3}$
D $\int_{2}^{5} f(x) d x=-2$, average of f is $-\frac{2}{3}$
$\mathbf{E} \int_{2}^{5} f(x) d x=10$, average of f is $\frac{10}{5}$
10. Evaluate

$$
\int_{-\pi}^{\pi} \sin x \cdot \sqrt{\cos x+2} d x
$$

A $\frac{4}{3}$
B 0
C $-\frac{4}{3}$
D $-\frac{2}{3}$
E 2
11. Suppose

$$
F(x)=\int_{-\pi}^{\tan x} \sqrt{2+t^{2}} d t
$$

Find $F^{\prime}(x)$
A $\sqrt{2+(\tan x)^{2}}$
B $\sqrt{2+(\tan x)^{2}} \cdot \sec ^{2} x$
C $\sqrt{2+t^{2}} \cdot \sec ^{2} x$
D $-\sqrt{2+\pi^{2}} \cdot \sec ^{2} x$
E $\int_{-\pi}^{\tan x} \sqrt{2+(\tan x)^{2}} \cdot \sec ^{2} x d t$
12. Suppose

$$
F(x)=\sqrt{2+(\tan x)^{2}}
$$

Find $F^{\prime}(x)$
A $\frac{1}{2}\left(2+(\tan x)^{2}\right)^{-1 / 2}$
B $\frac{1}{2}\left(2+(\tan x)^{2}\right)^{-1 / 2} \cdot(2 \tan x)$
C $\frac{1}{2}\left(2+(\tan x)^{2}\right)^{-1 / 2} \cdot(2 \tan x) \cdot\left(\sec ^{2} x\right)$
D $\sqrt{2+(\tan x)^{2}} \cdot(2 \tan x) \cdot\left(\sec ^{2} x\right)$
E $\sqrt{2+(\tan x)^{2}} \cdot(2 \tan x)$

Standard Response Problems.

1. (S17) Calculate the derivatives of $f(x)=x \sin (3 x)$. And find the equation of the tangent line to the curve $y=f(x)$ at $x=\frac{\pi}{3}$
2. (S17) Suppose $f(x)=\frac{1}{x+7}$
(a) Use the definition of the derivative to find $f^{\prime}(x)$
(b) Find the equation of the tangent line to the curve $y=f(x)$ at $x=-2$
3. (S17) Suppose that y and x satisfy the implicit equation

$$
x y^{3}+x y=20
$$

(a) Find $\frac{d y}{d x}$
(b) Use your answer in part (a) to find the equation of the tangent line to the curve $x y^{3}+x y=20$ at the point $(10,1)$.
4. If the radius of a circular ink blot is growing at a rate of $3 \mathrm{~cm} / \mathrm{min}$. How fast ($\mathrm{in} \mathrm{cm}^{2} / \mathrm{min}$) is the area of the blot growing when the radius is 10 cm ?
5. Air is being pumped into a spherical balloon so that its volume increase at a rate of $100 \mathrm{~cm}^{3} / \mathrm{s}$. How fast is the radius of the balloon increasing when the diameter is 50 cm ?
6. Give a right triangle as below with base 5 cm and height 6 cm . A rectangle is inscribed with its two edges on the right triangle and its upper right corner on the hypotenuse of the right triangle. What are the dimensions of such a rectangle with the greatest possible area?

7. A particle moves with velocity $v(t)=-t^{2}+6 t-8,0 \leq t \leq 6$. Sketch the graph of $v(t)$ on $[0,6]$. When is the acceleration $a(t)$ positive? When does the particle speed up?
8. (S16) Suppose $f(x)=x^{4}-6 x^{2}-3$.
(a) Identify the intervals over which $f(x)$ is increasing and decreasing, and all values of x where $f(x)$ attains its local maximum or minimum.
(b) Identify the intervals over which $f(x)$ is concave up and down, and all values of x where $f(x)$ has an inflection point.
9. Calculate the integral $\int \tan ^{3} x \cdot \sec ^{2} x d x$
10. Calculate the integral $\int_{0}^{\pi / 4} \tan x \cdot \sec x+2 x d x$
11. Find the area of the region enclosed by the graphs of the equations $y=x+4$ and $y=x^{2}-x+1$.

