Q1[Sec1.4, Average rate of change/Average velocity, see also $Q 9]$ Let $f(x)=\cos x+2$. Compute the average rate of change of $f(x)$ on the interval $\left[0, \frac{\pi}{2}\right]$
Solution: Average rate of change:

$$
\begin{aligned}
\text { A.R.o.C. } & =\frac{f(\pi / 2)-f(0)}{\pi / 2-0} \\
& =\frac{(\cos (\pi / 2)+2)-(\cos 0+2)}{\pi / 2-0} \\
& =\frac{(0+2)-(1+2)}{\pi / 2}=\frac{-1}{\pi / 2}=-\frac{2}{\pi}
\end{aligned}
$$

Q2[Sec1.5/1.6, Limit and Limit Laws] Evaluate the following limits

(a)Direct plug in-type

Suppose $\lim _{x \rightarrow 4} f(x)=2, \lim _{x \rightarrow 4} g(x)=3$. Find $\lim _{x \rightarrow 4} \frac{x f(x)+2}{f(x)-\sqrt{g(x)}}$

Solution:

$$
\begin{aligned}
\lim _{x \rightarrow 4} \frac{x f(x)+2}{f(x)-\sqrt{g(x)}} & =\frac{\lim _{x \rightarrow 4} x \cdot \lim _{x \rightarrow 4} f(x)+2}{\lim _{x \rightarrow 4} f(x)-\sqrt{\lim _{x \rightarrow 4} g(x)}} \\
& =\frac{4 \cdot 2+2}{2-\sqrt{3}} \\
& =\frac{10}{2-\sqrt{3}}
\end{aligned}
$$

(b) $\frac{1}{0}$-type/One-sided limits

$$
\lim _{x \rightarrow 0^{+}} \frac{x-3}{x^{2}(x+5)}
$$

Solution:

$$
\begin{aligned}
& x \rightarrow 0^{+} \Longrightarrow x-3 \rightarrow 0-3=-3<0 \text { (negative), } x^{2}>0 \text { (positive), } x+5 \rightarrow 0+5=5>0 \text { (positive). } \\
& \frac{x-3}{x^{2}(x+5)} \sim \frac{n e g a t i v e}{\text { positive } \times \text { postive }} \sim \text { negative }, \Longrightarrow \frac{x-3}{x^{2}(x+5)} \rightarrow \frac{0-3}{0^{2} \cdot(0+5)}=\frac{-3}{0 \cdot 5} \rightarrow-\infty \\
& \lim _{x \rightarrow 0^{+}} \frac{x-3}{x^{2}(x+5)}=-\infty
\end{aligned}
$$

(c)Cancellation-type

$$
\lim _{x \rightarrow-2^{+}} \frac{\left|x^{2}-4\right|}{x+2}
$$

Solution: $x \rightarrow-2 \Longrightarrow \frac{\left|x^{2}-4\right|}{x+2} \rightarrow \frac{\left|(-2)^{2}-4\right|}{-2+2}=\frac{|0|}{0}$, which is $\frac{0}{0}$-type. We need to cancel out the 'zero terms' then plug in $x=-2$. Before that, we need to remove the abstract value $|\cdot|$ first.
As $x \rightarrow-2^{+}, x>-2 \Longrightarrow x^{2}-4<0 \Longrightarrow\left|x^{2}-4\right|=-\left(x^{2}-4\right)=4-x^{2}$. Actually, $x^{2}-4<0$ follows from the graph of $y=x^{2}-4$:

Notice that $|■|=-\llbracket$ if $\llbracket 0$. Therefore, $x^{2}-4<0 \Longrightarrow\left|x^{2}-4\right|=-\left(x^{2}-4\right)=4-x^{2}$. Now we have

$$
\begin{aligned}
\lim _{x \rightarrow-2^{+}} \frac{\left|x^{2}-4\right|}{x+2} & =\lim _{x \rightarrow-2^{+}} \frac{4-x^{2}}{x+2}, \quad \text { Facterization }: a^{2}-b^{2}=(a+b)(a-b) \\
& =\lim _{x \rightarrow-2^{+}} \frac{(2+x)(2-x)}{x+2}, \quad \text { Cancel out the zero term } x+2 \\
& =\lim _{x \rightarrow-2^{+}} 2-x=2-(-2)=4 . \quad \text { Plug in } x=-2
\end{aligned}
$$

Q3[Sec1.7, Limit Definition] For $f(x)=\sqrt{9-x} ; L=2, a=5, \varepsilon=1$, use the graph of $f(x)$ to find the largest value of δ of $|x-a|<\delta$ in the formal definition of a limit which ensures that $|f(x)-L|<\varepsilon$.
Options: A. $\delta=5 ; \quad$ B. $\delta=2 ; \quad$ C. $\delta=3$ (Correct answer.); D. $\delta=4$.

Solution: $|f(x)-L|<\varepsilon=1$ gives us the vertical green window for y from 1 to 3 (vertically). Then the intersection of the green window with the blue curve gives us the horizontal window for x from 0 to 8 . The distance to $a=5$ is 5 on the left hand side and 3 on the right hand side. We need to pick an interval for x centered at $a=5$ and with maximum radius δ in this red window. Therefore, the maximum δ would be 3 . (If you choose $\delta=5$, the interval $|x-5|<5$ will exceed the red window on the right hand side. Then the corresponding $f(x)$ will escape the vertical green window.)

Q4 [Sec1.8, Domain of continuity] Use interval notation to indicate where $f(x)$ is continuous.
(a)

$$
f(x)=\frac{x^{2}-3 x+1}{x-3} . \quad \text { Choose from below }
$$

A. $(-\infty,+\infty)$;
B. $(-\infty, 3) \cup(3,+\infty)$;
C. $(-\infty, 1) \cup(1,+\infty)$;
D. $(-\infty, 1) \cup(1,3) \cup(3,+\infty)$.

Solution: $f(x)$ is continuous everywhere in its domain. The domain of $f(x)$ is all those x such that $f(x)$ is computable(meaningful/finite number). The only point not in f 's domain is $x=3$, which makes the denominator zero. Therefore, $f(x)$ is continuous everywhere except $x=3$.
(b)

$$
f(x)=\sqrt{x+1} . \quad \text { Choose from below }
$$

A. $(-\infty,+\infty)$;
B. $(-\infty,-1]$;
C. $[-1,+\infty)$;
D. $(1,+\infty)$.

Solution: Similar to part (a), $f(x)$ is continuous everywhere in its domain. The expression under square root has to be nonnegative, i.e., $x+1 \geq 0 \Longrightarrow x \geq-1 \Longrightarrow x \in[-1,+\infty)$.
(c)

$$
f(x)=\frac{\left(x^{2}-3 x+1\right) \sqrt{x+1}}{x-3} . \quad \text { Use }(\mathrm{a}, \mathrm{~b}) \text { to indicate the intervals of continuous for (c) }
$$

Solution: The function contains both expression in (a) and (b). Therefore, the domain where $f(x)$ where it is continuous should satisfy both (a) and (b). Combine part (a) and part (b), we have the answer $[-1,3) \cup(3,+\infty)$.

Q5[Sec1.8, Piecewise function] For what value of k will $f(x)$ be continuous for all values of x ?

$$
f(x)= \begin{cases}\frac{x^{2}-3 k}{x-3}, & x \leq 2 \\ 8 x-k, & x>2\end{cases}
$$

Options: A. $k=2 ; \quad$ B. $k=3 ; \quad$ C. $k=4 ; \quad$ D. $k=5$.
Solution: $f(x)$ is a piecewise function which might have a break at the connecting point $x=2$. The strategy is simply to plug $x=2$ into the first and second expression of f. Then set them equal and solve for k.

Plug $x=2$ into $\frac{x^{2}-3 k}{x-3}$, we get $\frac{2^{2}-3 k}{2-3}=\frac{4-3 k}{-1}=-(4-3 k)=3 k-4$.
Plug $x=2$ into $8 x-k$, we get $8 x-k=8 \cdot 2-k=16-k$.
Set them equal: $3 k-4=16-k \Longrightarrow 4 k=20 \Longrightarrow k=5$.
The reason why these three steps give us the k such that f is continuous is as follows: $f(x)$ is continuous at $x=2$ if and only if

$$
\text { (*) } \quad f(2)=\lim _{x \rightarrow 2^{-}} f(x)=\lim _{x \rightarrow 2^{+}} f(x)
$$

It graphically means that the left part of the curve and the right part of the curve are connected at $x=2$. In the piecewise expression of $f(x)$, it is \leq in the first part. Therefore,

$$
f(2)=\lim _{x \rightarrow 2^{-}} f(x)=\lim _{x \rightarrow 2^{-}} \frac{x^{2}-3 k}{x-3}=\frac{4-3 k}{-1}=3 k-4
$$

Similarly, we have

$$
\lim _{x \rightarrow 2^{-}} f(x)=\lim _{x \rightarrow 2^{+}} 8 x-k=8 \cdot 2-k=16-k
$$

Now due to $(*)$, it is enough to let $3 k-4=16-k$ and solve for k.

Q6[Sec1.8, Intermediate Value Theorem $(I V T)$] Suppose function $h(x)$ is continuous on [0,4]. Suppose $h(0)=2, h(1)=0, h(2)=-3, h(3)=2, h(4)=5$. For what value of N, the must be a $c \in(3,4)$ such that $h(c)=N$?
Options: A. $N=0.5 ; \quad$ B. $N=0 ; \quad$ C. $N=-2 ; \quad$ D. $N=2.5$.
Intermediate Value Theorem(IVT): If f is continuous on $[a, b], f(a) \neq f(b)$, and N is between $f(a)$ and $f(b)$ then there exists $c \in(a, b)$ that satisfies $f(c)=N$.

Q6[Sec2.1/2.2, derivative at given point $]$ Select all true statements about the function $f(x)= \begin{cases}|x|, & x<2 \\ 0, & x \geq 2\end{cases}$
(False) I $f(x)$ is differentiable at $x=0$.
(False) II $f(x)$ is continuous at $x=2$
(True)III $\lim _{x \rightarrow 0} f(x)$ exists

Solution:From the above graph, $f(x)$ has a jump at $x=2$ (the left and right parts are not connected), therefore, $f(x)$ is not continuous at $x=2 . f(x)$ has a sharp turn at $x=0$, the left line has slope -1 and the right line has slope +1 , therefore, $f(x)$ is not differentiable at $x=0$. Also we can read the limits of f from the graph directly:

$$
\lim _{0} f(x)=0, \quad \lim _{2^{-}} f(x)=2, \quad \lim _{2^{+}} f(x)=0
$$

Therefore, $\lim _{x \rightarrow 0} f(x)$ exists and $\lim _{x \rightarrow 2} f(x)$ does not exist.

Q7[Sec2.1/2.2, definition of derivative $]$ Let $f(x)=\frac{1}{x+1}$
(a)[Derivative as a limit] Use the definition of the derivative to find $f^{\prime}(x)$. (Your calculation must include computing a limit.)
Solution:

$$
\begin{aligned}
f(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=\lim _{h \rightarrow 0} \frac{\frac{1}{x+h+1}-\frac{1}{x+1}}{h}=\lim _{h \rightarrow 0} \frac{\frac{1}{x+h+1}-\frac{1}{x+1}}{h} & =\lim _{h \rightarrow 0} \frac{\frac{x+1}{(x+h+1)(x+1)}-\frac{x+h+1}{(x+1)(x+h+1)}}{h} \\
& =\lim _{h \rightarrow 0} \frac{\frac{(x+1)-(x+h+1)}{(x+h+1)(x+1)}}{h} \\
& =\lim _{h \rightarrow 0} \frac{\frac{-h}{(x+h+1)(x+1)}}{h} \\
& =\lim _{h \rightarrow 0} \frac{-1}{(x+h+1)(x+1)} \\
& =\frac{-1}{(x+0+1)(x+1)}=\frac{-1}{(x+1)^{2}}
\end{aligned}
$$

(b) [Evaluating the derivative function at given point] Find $f^{\prime}(2)$

Solution: $f^{\prime}(2)=\frac{-1}{(2+1)^{2}}=-\frac{1}{9}$
(c)[Point-slope formula for the tangent line] Use part (b) to find an equation of a tangent line of $f(x)$ at $x=2$.
Solution:Slope $=f^{\prime}(2)=-\frac{1}{9}$. Point: $(2, f(2))$, where $f(2)=\frac{1}{2+1}=\frac{1}{3}$. According to the Point-Slope formula, the equation of the tangent line at $x=2$ is given by:

$$
y-\frac{1}{3}=\left(-\frac{1}{9}\right)(x-2) \Longleftrightarrow y=\left(-\frac{1}{9}\right)(x-2)+\frac{1}{3}
$$

Q7*[Sec2.1/2.2, definition of derivative $]$ Use the definition of the derivative to find $g^{\prime}(1)$ for $g(x)=2 \sqrt{x}$. Solution:

$$
\begin{aligned}
g^{\prime}(1)=\lim _{h \rightarrow 0} \frac{g(1+h)-g(1)}{h}=\lim _{h \rightarrow 0} \frac{2 \sqrt{1+h}-2 \sqrt{1}}{h} & =\lim _{h \rightarrow 0} \frac{2(\sqrt{1+h}-1)}{h} \cdot \frac{\sqrt{1+h}+1}{\sqrt{1+h}+1} \\
& =\lim _{h \rightarrow 0} \frac{2(\sqrt{1+h}-1)(\sqrt{1+h}+1)}{h(\sqrt{1+h}+1)} \\
& =\lim _{h \rightarrow 0} \frac{2\left((\sqrt{1+h})^{2}-1^{2}\right)}{h(\sqrt{1+h}+1)} \\
& =\lim _{h \rightarrow 0} \frac{2(1+h-1)}{h(\sqrt{1+h}+1)} \\
& =\lim _{h \rightarrow 0} \frac{2 h}{h(\sqrt{1+h}+1)} \\
& =\lim _{h \rightarrow 0} \frac{2}{\sqrt{1+h}+1}=\frac{2}{\sqrt{1+0}+1}=1
\end{aligned}
$$

Q8[Sec2.3/2.4/2.5, Differentiation Formulas/Laws] Find the derivatives of the following functions. Do not need to simplify.
(a)[Linear Rule + Power functions]
$T(x)=2 \sqrt{x}-\frac{1}{2 \sqrt{x}}$

Solution:

$$
\begin{aligned}
T^{\prime}(x)=\left(2 \sqrt{x}-\frac{1}{2 \sqrt{x}}\right)^{\prime} & =\left(2 x^{1 / 2}\right)^{\prime}-\left(\frac{1}{2} x^{-1 / 2}\right)^{\prime} \\
& =2 \cdot \frac{1}{2} x^{1 / 2-1}-\frac{1}{2} \cdot\left(-\frac{1}{2}\right) x^{-1 / 2-1} \\
& =x^{-1 / 2}+\frac{1}{4} x^{-3 / 2}
\end{aligned}
$$

(b) [Product Rule + Power functions $]$

$$
g(t)=\left(\frac{1}{t^{5}}-2 t\right)\left(\frac{1}{\sqrt{t}}+\pi\right)
$$

Solution:

$$
\begin{aligned}
g^{\prime}(t)=\left(\left(\frac{1}{t^{5}}-2 t\right)\left(\frac{1}{\sqrt{t}}+\pi\right)\right)^{\prime} & =\left(\frac{1}{t^{5}}-2 t\right)^{\prime} \cdot\left(\frac{1}{\sqrt{t}}+\pi\right)+\left(\frac{1}{t^{5}}-2 t\right) \cdot\left(\frac{1}{\sqrt{t}}+\pi\right)^{\prime} \\
& =\left(t^{-5}-2 t\right)^{\prime} \cdot\left(t^{-1 / 2}+\pi\right)+\left(t^{-5}-2 t\right) \cdot\left(t^{-1 / 2}+\pi\right)^{\prime} \\
& =\left(\left(t^{-5}\right)^{\prime}-(2 t)^{\prime}\right) \cdot\left(t^{-1 / 2}+\pi\right)+\left(t^{-5}-2 t\right) \cdot\left(\left(t^{-1 / 2}\right)^{\prime}+(\pi)^{\prime}\right) \\
& =\left((-5) t^{-5-1}-2\right) \cdot\left(t^{-1 / 2}+\pi\right)+\left(t^{-5}-2 t\right) \cdot\left(-\frac{1}{2} t^{-1 / 2-1}+0\right)
\end{aligned}
$$

(c) [Trig functions+Chain Rule]

$$
y=\sin \left(x^{2}\right)
$$

Solution: Outer function: $\sin (\boldsymbol{\square})$; Inner function: x^{2}.

$$
\begin{aligned}
& \text { outer }^{\prime}=(\sin (\boldsymbol{\square}))^{\prime}=\cos (\mathbf{\square}) \rightarrow\left(\text { plug inner } x^{2} \text { in }\right) \rightarrow \cos \left(x^{2}\right) ; \\
& \text { inner }{ }^{\prime}=\left(x^{2}\right)^{\prime}=2 x \\
& y^{\prime}=\left(\sin \left(x^{2}\right)\right)^{\prime}=\text { outer }^{\prime}(\text { inner }) \cdot \text { inner }^{\prime}=\cos \left(x^{2}\right) \cdot(2 x)
\end{aligned}
$$

$\left(\mathbf{c}^{*}\right)$ [Trig functions+Chain Rule]

$$
y=\sin ^{2}(x)
$$

Solution: Outer function: \square^{2}; Inner function: $\sin x$.

$$
\begin{aligned}
& \text { outer }^{\prime}=\left(\mathbf{\bullet}^{2}\right)^{\prime}=2 \boldsymbol{\square} \rightarrow(\text { plug inner } \sin x \text { in }) \rightarrow 2 \sin x ; \\
& \text { inner }^{\prime}=(\sin x)^{\prime}=\cos x \\
& y^{\prime}=\left(\sin ^{2}(x)\right)^{\prime}=\text { outer }^{\prime}(\text { inner }) \cdot \text { inner }^{\prime}=2 \sin x \cdot \cos x
\end{aligned}
$$

(d)[Quotient Rule+Trig functions+Chain Rule]
$f(t)=\frac{3 t}{\tan \left(t^{2}-1\right)}$
Solution: Apply quotient rule first with Numerator: $3 t$; Denominator: $\tan \left(t^{2}-1\right)$.

$$
\begin{aligned}
f^{\prime}(t)=\left(\frac{3 t}{\tan \left(t^{2}-1\right)}\right)^{\prime} & =\frac{(\text { numerator })^{\prime} \cdot \text { denominator }- \text { numerator } \cdot(\text { denominator })^{\prime}}{(\text { denominator })^{2}} \\
& =\frac{(3 t)^{\prime} \cdot \tan \left(t^{2}-1\right)-3 t \cdot\left(\tan \left(t^{2}-1\right)\right)^{\prime}}{\left(\tan \left(t^{2}-1\right)\right)^{2}} \\
& =\frac{3 \cdot \tan \left(t^{2}-1\right)-3 t \cdot\left(\tan \left(t^{2}-1\right)\right)^{\prime}}{\left(\tan \left(t^{2}-1\right)\right)^{2}}
\end{aligned}
$$

To compute $\left(\tan \left(t^{2}-1\right)\right)^{\prime}$, we need chain rule with Outer function $\tan (\boldsymbol{\square})$ and Inner function $t^{2}-1$.

$$
\begin{align*}
& \text { outer }^{\prime}=(\tan (■))^{\prime}=\sec ^{2}(\mathbf{■}) \rightarrow\left(\text { plug inner } t^{2}-1 \mathrm{in}\right) \rightarrow \sec ^{2}\left(t^{2}-1\right) ; \\
& \text { inner }^{\prime}=\left(t^{2}-1\right)^{\prime}=2 t-0=2 t \\
& \left(\tan \left(t^{2}-1\right)\right)^{\prime}=\text { outer }^{\prime}(\text { inner }) \cdot \text { inner }^{\prime}=\sec ^{2}\left(t^{2}-1\right) \cdot(2 t) \tag{2t}
\end{align*}
$$

Plug $\left(\tan \left(t^{2}-1\right)\right)^{\prime}$ back to the quotient rule, we have

$$
f^{\prime}(t)=\left(\frac{3 t}{\tan \left(t^{2}-1\right)}\right)^{\prime}=\frac{3 \cdot \tan \left(t^{2}-1\right)-3 t \cdot\left(\tan \left(t^{2}-1\right)\right)^{\prime}}{\left(\tan \left(t^{2}-1\right)\right)^{2}}=\frac{3 \cdot \tan \left(t^{2}-1\right)-3 t \cdot \sec ^{2}\left(t^{2}-1\right) \cdot(2 t)}{\left(\tan \left(t^{2}-1\right)\right)^{2}}
$$

(e) [Trig functions+Double Chain Rule]

$f(x)=-2 \sec \left(\cos \left(x^{2}+x\right)\right)$
Solution: $f(x)$ is a composition of three functions: $-\sec (\boldsymbol{\square}), \cos (\boldsymbol{\square})$ and $x^{2}+x$. We need to apply chain rule twice.
1st Chain rule: Outer function: $-\sec (■)$; Inner function: $\cos \left(x^{2}+x\right)$.

$$
\begin{gathered}
\text { outer }^{\prime}=(-\sec (\mathbf{\square}))^{\prime}=-\sec (\mathbf{\square}) \cdot \tan (\mathbf{\square}) \\
\left(\text { plug inner } \cos \left(x^{2}+x\right) \text { in }\right) \rightarrow-\sec \left(\cos \left(x^{2}+x\right)\right) \cdot \tan \left(\cos \left(x^{2}+x\right)\right) \\
\text { inner }^{\prime}=\left(\cos \left(x^{2}+x\right)\right)^{\prime} \\
(*): \quad f^{\prime}(x)=\text { outer }^{\prime}(\text { inner }) \cdot \text { inner }^{\prime}=-\sec \left(\cos \left(x^{2}+x\right)\right) \cdot \tan \left(\cos \left(x^{2}+x\right)\right) \cdot\left(\cos \left(x^{2}+x\right)\right)^{\prime}
\end{gathered}
$$

To compute $\left(\cos \left(x^{2}+x\right)\right)^{\prime}$, we need to apply the second chain rule with Outer function: $\cos (\boldsymbol{\square})$; Inner function: $x^{2}+x$.

$$
\begin{aligned}
& \text { outer }^{\prime}=(\cos (\mathbf{\square}))^{\prime}=-\sin (■) \rightarrow\left(\text { plug inner } x^{2}+x \text { in }\right) \rightarrow-\sin \left(x^{2}+x\right) ; \\
& \text { inner }^{\prime}=\left(x^{2}+x\right)^{\prime}=\left(x^{2}\right)^{\prime}+x^{\prime}=2 x+1 \\
&(* *): \quad\left(\cos \left(x^{2}+x\right)\right)^{\prime}=\text { outer }^{\prime}(\text { inner }) \cdot \text { inner }^{\prime}=-\sin \left(x^{2}+x\right) \cdot(2 x+1)
\end{aligned}
$$

Plug (**) into (*), we have

$$
\begin{aligned}
f^{\prime}(x) & =-\sec \left(\cos \left(x^{2}+x\right)\right) \cdot \tan \left(\cos \left(x^{2}+x\right)\right) \cdot\left(\cos \left(x^{2}+x\right)\right)^{\prime} \\
& =-\sec \left(\cos \left(x^{2}+x\right)\right) \cdot \tan \left(\cos \left(x^{2}+x\right)\right) \cdot\left(-\sin \left(x^{2}+x\right) \cdot(2 x+1)\right) \\
& =\sec \left(\cos \left(x^{2}+x\right)\right) \cdot \tan \left(\cos \left(x^{2}+x\right)\right) \cdot \sin \left(x^{2}+x\right) \cdot(2 x+1)
\end{aligned}
$$

Q9[Sec2.7, Rates of Change/Functions of motion] A particle moves according to the law of motion $s(t)=$ $t^{3}-5 t^{2}+6 t$, where t is measured in seconds and s in feet
(a)[1.4, Average velocity] Find the average velocity over the interval [0, 2].

Solution: Average velocity=Average rate of change of $s(t)$ over $[0,2]$

$$
v_{\text {ave }}=\frac{s(2)-s(0)}{2-0}=\frac{\left(2^{3}-5 \cdot 2^{2}+6 \cdot 2\right)-(0)}{2}=\frac{8-20+12}{2}=0 \mathrm{ft} / \mathrm{s}
$$

(b) [Velocity and position] Find the velocity at time t.

Solution:

$$
v(t)=s^{\prime}(t)=\left(t^{3}-5 t^{2}+6 t\right)^{\prime}=\left(t^{3}\right)^{\prime}-\left(5 t^{2}\right)^{\prime}+(6 t)^{\prime}=3 t^{2}-5 \cdot 2 t+6=3 t^{2}-10 t+6
$$

(c)[Acceleration and velocity] What is the acceleration after 6 seconds?

Solution:

$$
\begin{aligned}
& a(t)=v^{\prime}(t)=\left(3 t^{2}-10 t+6\right)^{\prime}=\left(3 t^{2}\right)^{\prime}-(10 t)^{\prime}+(6)^{\prime}=3 \cdot 2 t-10+0=6 t-10 \\
& a(6)=6 \cdot 6-10=26 \mathrm{ft} / \mathrm{s}^{2}
\end{aligned}
$$

(d)[Velocity and speed] What is the speed of the particle when the acceleration is zero? Solution: $a(t)=6 t-10=0 \Longrightarrow t=\frac{10}{6}=\frac{5}{3}$. Plug $t=5 / 3$ into $v(t)$, we have

$$
v\left(\frac{5}{3}\right)=3\left(\frac{5}{3}\right)^{2}-10 \frac{5}{3}+6=-\frac{7}{3} \Longrightarrow \text { speed }=|v|=\frac{7}{3} \mathrm{ft} / \mathrm{s}
$$

Q10[Sec2.7, Graph of the velocity] The accompanying figure shows the velocity $v(t)$ of a particle moving on a horizontal coordinate line, for t in the closed interval $[0,6]$.

Solution:

(a) When does the particle move forward?

Move forward $\Longleftrightarrow v>0 \Longleftrightarrow t \in(4,6)$
(b) When does the particle slow down?

$$
\text { Slow down } \Longleftrightarrow \text { Speed }|v| \text { drops } \Longleftrightarrow t \in(2,4)
$$

(c) When is the particle's acceleration positive?
acceleration positive $\Longleftrightarrow a(t)=v^{\prime}(t)>0 \Longleftrightarrow$ slope of the tangent line is positive $/ v$ is increasing $\Longleftrightarrow t \in(2,6)$
(d) When does the particle move at its greatest speed in $[0,6]$? greatest speed \Longleftrightarrow highest or lowest point in the graph $\Longleftrightarrow t=6$ (greatest speed=6)

Q11[Sec2.6, Implicit differentiation] Consider the curve $y^{2}+2 x y+x^{3}=x$
(a) Find the slope of the tangent line of the curve at the point $(1,-2)$.

Solution: Apply Implicit differential rule to the equation $y^{2}+2 x y+x^{3}=x$.

$$
\begin{aligned}
\left(y^{2}+2 x y+x^{3}\right)^{\prime} & =(x)^{\prime} \\
\Longrightarrow\left(y^{2}\right)^{\prime}+(2 x y)^{\prime}+\left(x^{3}\right)^{\prime} & =1 \quad(*) \\
\Longrightarrow 2 y \cdot y^{\prime}+2 y+2 x y^{\prime}+3 x^{2} & =1 \quad(* *)
\end{aligned}
$$

From $(*)$ to $(* *)$, we use the chain rule for $\left(y^{2}\right)^{\prime}$ and product rule for $(2 x y)^{\prime}$, where

$$
\begin{aligned}
& \text { chain rule }:\left(y^{2}\right)^{\prime}=2 y(x) \cdot y^{\prime}(x)=2 y y^{\prime} \\
& \text { product rule }:(2 x y)^{\prime}=(2 x)^{\prime} \cdot y(x)+2 x \cdot y^{\prime}(x)=2 y+2 x y^{\prime} \\
& \left(x^{3}\right)^{\prime}=3 x^{2}
\end{aligned}
$$

Then plug $(x, y)=(1,-2)$, i.e., $x=1, y=-2$ into the above equation, we have

$$
2 \cdot(-2) \cdot y^{\prime}+2(-2)+2 \cdot 1 \cdot y^{\prime}+3 \cdot 1^{2}=1 \Longleftrightarrow-4 y^{\prime}-4+2 y^{\prime}+3=1 \Longleftrightarrow-2 y^{\prime}=2 \Longleftrightarrow y^{\prime}=-1
$$

Therefore, the slope of the tangent line at $(1,-2)$ equals $y^{\prime}=-1$
(b) Find the equation of the tangent line of the curve at the point $(1,-2)$.

Solution: Slope=-1. Point (1,-2). The slope-point formula gives the formula for the tangent line:

$$
y-(-2)=(-1)(x-1) \Longleftrightarrow y=(-1)(x-1)-2
$$

Q12, Sec2.8, Related Rates A boat is pulled into a dock by a rope attached to the bow of the boat and passing through a pulley on the dock that is 1 m higher than the bow of the boat. If the rope is pulled in at a rate of $1 \mathrm{~m} / \mathrm{s}$, how fast is the boat approaching the dock when it is 8 m from the dock?

Solution: Relation of s and L is given by Pythagorean theorem:

$$
\begin{equation*}
s^{2}(t)+1^{2}=L^{2}(t) \Longleftrightarrow s^{2}+1=L^{2} \tag{*}
\end{equation*}
$$

Take derivative both sides: $\left(s^{2}+1\right)^{\prime}=\left(L^{2}\right)^{\prime} \Longleftrightarrow\left(s^{2}\right)^{\prime}+1^{\prime}=\left(L^{2}\right)^{\prime}$. Since both $s=s(t)$ and $L=L(t)$ are functions, we need to apply chain rule to compute $\left(s^{2}\right)^{\prime}=2 s \cdot s^{\prime},\left(L^{2}\right)^{\prime}=2 L \cdot L^{\prime}$.

Now we get

$$
2 s \cdot s^{\prime}+0=2 L \cdot L^{\prime} \Longleftrightarrow s \cdot s^{\prime}=L \cdot L^{\prime} \quad(* *)
$$

Give $s=8$, from $(*)$ we can also figure out the corresponding L as $8^{2}+1=L^{2} \Longleftrightarrow L^{2}=61 \Longrightarrow L=\sqrt{65}$. Now we can plug $s=8, L=\sqrt{65}, L^{\prime}=1$ into $(* *)$ to solve for s^{\prime}, i.e.,

$$
8 \cdot s^{\prime}=\sqrt{65} \cdot 1 \Longrightarrow s^{\prime}=\frac{\sqrt{65}}{8} \Longrightarrow v(t)=s^{\prime}(t)=\frac{\sqrt{65}}{8} \mathrm{~m} / \mathrm{s}
$$

