Q1[Sec1.4, Average rate of change/Average velocity, see also $Q 9]$ Let $f(x)=\cos x+2$. Compute the average rate of change of $f(x)$ on the interval $\left[0, \frac{\pi}{2}\right]$
Average rate of change of $f(x)$ over $[a, b]$
$f(b)-f(a)$
$=\frac{f(b)-f(a)}{b-a}$
Q2[Sec1.5/1.6, Limit and Limit Laws] Evaluate the following limits
(a)Direct plug in-type
Suppose $\lim _{x \rightarrow 4} f(x)=2, \lim _{x \rightarrow 4} g(x)=3$. Find $\lim _{x \rightarrow 4} \frac{x f(x)+2}{f(x)-\sqrt{g(x)}}$
Direct Plug in 4
and use linear properties of limit.
(b) $\frac{1}{0}$-type/One-sided limits

$$
\lim _{x \rightarrow 0^{+}} \frac{x-3}{x^{2}(x+5)}
$$

Plug in 0 , we have $\frac{0-3}{0.5} \sim \frac{1}{0}$-type. figure out the sign

* (c)Cancellation-type

$$
\lim _{x \rightarrow-2^{+}} \frac{\left|x^{2}-4\right|}{x+2}
$$

when $x \rightarrow-2^{+}, x>-2$

$\Rightarrow x^{2}-4<0$ or $4-x^{2}>0$
$\Rightarrow\left|x^{2}-4\right|=4-x^{2}=(2+x)(2-x)$.

* 4 Q3[Sec1.7, Limit Definition] For $f(x)=\sqrt{9-x} ; L=2, a=5, \varepsilon=1$, use the graph of $f(x)$ to find the largest value of δ of $|x-a|<\delta$ in the formal definition of a limit which ensures that $|f(x)-L|<\varepsilon$.
Options: A. $\delta=5 ; \quad$ B. $\delta=2 ; \quad$ C. $\delta=3 ; \quad$ D. $\delta=4$.

Q4 [Se c1.8, Domain of continuity $]$ Use interval notation to indicate where $f(x)$ is continuous.
(a)
$f(x)=\frac{x^{2}-3 x+1}{x-3}$. Choose from below The x for which the denominator is not zero.
A. $(-\infty,+\infty) ; \quad$ B. $(-\infty, 3) \cup(3,+\infty) ; \quad$ C. $(-\infty, 1) \cup(1,+\infty) ; \quad$ D. $(-\infty, 1) \cup(1,3) \cup(3,+\infty)$.
(b)
$f(x)=\sqrt{x+1}$. Choose from below The x for which below root is positule.
A. $(-\infty,+\infty)$;
B. $(-\infty,-1)$;
C. $[-1,+\infty)$;
D. $(1,+\infty)$.
(c)
$f(x)=\frac{\left(x^{2}-3 x+1\right) \sqrt{x+1}}{x-3} . \quad$ Use (a,b) to indicate the intervals of continuous for (c)

Q5[Sec1.8, Piecewise function] For what value of k will $f(x)$ be continuous for all values of x ?

$$
f(x)=\left\{\begin{array}{ll}
\frac{x^{2}-3 k}{x-3}, & x \leq 2 \\
8 x-k, & x>2
\end{array} \quad \text { Fling } \quad X=2\right. \text { into the fest and second }
$$

A $\quad k=2 ;$ formulas, then set them equal.
B $\quad k=3 ;$
C $\quad k=4 ;$
D $\quad k=5$.

Q6[Sec1.8, Intermediate Value Theorem (IVT)] Suppose function $h(x)$ is continuous on [0,4]. Suppose $h(0)=2, h(1)=0, h(2)=-3, h(3)=2, h(4)=5$. For what value of N, the must be a $c \in(3,4)$ such that $h(c)=N ?$

A $N=0.5$
B $N=0$
Draw the pictave of $h(x)$ and find the intumediate
C $N=-2$ value N in $(3,4)$
D $N=2.5$

Q6[Sec2.1/2.2, derivative at given point] Select all true statements about the function $f(x)= \begin{cases}|x|, & x<2 \\ 0, & x \geq 2\end{cases}$ I $f(x)$ is differentiable at $x=0$ Draw the procure of II $f(x)$ is continuous at $x=2$
III $\lim _{x \rightarrow 0} f(x)$ exists Food the jumpy parts and slapp-twheng pats.

Q7[Sec2.1/2.2, definition of derivative] Let $f(x)=\frac{1}{x+1}$
(a) [Derivative as a limit] Use the definition of the derivative to find $f^{\prime}(x)$. (Your calculation must include computing a limit.)
Definition of dervade.

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

(b) [Evaluating the derivative function at given point] Find $f^{\prime}(2)$ Ploy 2 into $f^{\prime}(x)$ yon fiorin ias
(c)[Point-slope formula for the tangent line] Use part (b) to find an equation of a tangent line of $f(x)$ at $x=2$.
Port-sloge formula for toneme he at $x=a$

$$
y=f^{\prime}(a) \cdot(x-a)+f(2)
$$

\& $\mathbf{Q} 7^{*}[$ Sec2.1/2.2, definition of derivative $]$ Use the definition of the derivative to find $g^{\prime}(1)$ for $g(x)=2 \sqrt{x}$.

$$
\text { To simplify } \frac{2 \sqrt{x+h}-2 \sqrt{x}}{h}
$$

use the conjugation thick:

$$
\begin{aligned}
\sqrt{A}-\sqrt{B} & =\frac{(\sqrt{A}-\bar{B})(\sqrt{A}+\sqrt{B})}{\sqrt{A}+\sqrt{B}} \\
& =\frac{A-B}{\sqrt{A}+\sqrt{B}}
\end{aligned}
$$

Q8[Sec2.3/2.4/2.5, Differentiation Formulas/Laws] Find the derivatives of the following functions. Do not need to simplify.
(a) [Linear Rule+Power functions]

$$
\begin{aligned}
& T(x)=2 \sqrt{x}-\frac{1}{2 \sqrt{x}} \\
& \sqrt{x}=X^{\frac{1}{2}} \cdot \frac{1}{x^{a}}=X^{-a} \\
& \left(x^{n}\right)^{\prime}=n \cdot X^{n-1}
\end{aligned}
$$

(b) [Product Rule+ Power functions]

$$
g(t)=\left(\frac{1}{t^{5}}-2 t\right)\left(\frac{1}{\sqrt{t}}+\pi\right)
$$

product wale $\underbrace{}_{f} \underbrace{}_{g}$.
(c) [Trig functions+ Chain Rule]

$$
y=\sin \left(x^{2}\right)
$$

Outer: \sin 圈
Inner: x^{2}
(c^{*})[Trig functions+ Chain Rule]

$$
y=\sin ^{2}(x)=[\sin x]^{2}
$$

alter: Ned ${ }^{2}$
Inner: $\sin x$.

* (d)[Quotient Rule + Trig functions + Chain Rule]
$f(t)=\frac{(3 t)}{\sqrt[\tan \left(t^{2}-1\right)]{\sqrt{2}}}>$ quowent rule.
then apply chain rule to
$[\tan (t-1)] /$
\& \& (e)[Trig functions+Double Chain Rule]

$$
f(x)=-2 \sec \left(\cos \left(x^{2}+x\right)\right)
$$

I attar:
lost chain: $-2 \sec$ then
inner: $\cos \left(x^{2}+x\right)$
$\xrightarrow{\text { and chain } \begin{array}{l}\text { alter: } \cos x \\ \text { inner: } x^{2}+x .\end{array} . . . ~}$

Q9[Sec2.7, Rates of Change/Functions of motion] A particle moves according to the law of motion $s(t)=$ $t^{3}-5 t^{2}+6 t$, where t is measured in seconds and s in feet
(a)[1.4, Average velocity] Find the average velocity over the interval [0, 2].
$V_{\text {ave }}=\frac{S\left(t_{2}\right)-S\left(t_{1}\right)}{t_{2}-t_{4}}$
(b)[Velocity and position] Find the velocity at time t.
$v(t)=S^{\prime}(t)$
(c)[Acceleration and velocity] What is the acceleration after 6 seconds?
$a(t)=V^{\prime}(t)$. Ply in 6 to got $a(t)$
\& (d)[Velocity and speed] What is the speed of the particle when the acceleration is zero?
speed $=|V(t)|$
Q10[Sec2.7, Graph of the velocity] The accompanying figure shows the velocity $v(t)$ of a particle moving on a horizontal coordinate line, for t in the closed interval $[0,6]$.

(a) When does the particle move forward?
move for paved: $v>0$
\& (b) When does the particle slow down?
slow down: speed drops: $|W|$ is decreasing.
(c) When is the particle's acceleration positive?
$a(t)=V^{\prime}(t)>0 \Leftrightarrow V(t)$ is increasing
(d) When does the particle move at its greatest speed in $[0,6]$?
highest (or last) past in the graph

Q11[Sec2.6, Implicit differentiation] Consider the curve $y^{2}+2 x y+x^{3}=x$
(a) Find the slope of the tangent line of the curve at the point $(1,-2)$.
(b) Find the equation of the tangent line of the curve at the point $(1,-2)$.
(a). Take dernove (w.r.t x) both sides of the equation.

Consider $y=y(x)$ as an implore funoven.
plug in $x=1, y=-2$. and salve for y^{\prime} (as a number) slope $=y^{\prime}$ at $x=1$.

$$
\text { (b) Plant-slope formula for }(1,-2)
$$

\& Q12, Sec 2.8, Related Rates A boat is pulled into a dock by a rope attached to the bow of the boat and passing through a pulley on the dock that is 1 m higher than the bow of the boat. If the rope is pulled in at a rate of $1 \mathrm{~m} / \mathrm{s}$, how fast is the boat approaching the dock when it is 8 m from the dock?

Target function s : $S(t)$.
fulton between sand $\quad s=8 \Rightarrow L=\sqrt{64+1}=\sqrt{65}$.

$$
S^{2}+I^{2}=L^{2}
$$

Take cenvorne w.r.t t.

$$
s^{2}(t)+1=L^{2}(t)
$$

Ply in $S=8, L=\sqrt{65}, L^{\prime}=1$ to she for $S^{\prime}(t)$

