Q1[Sec1.4, Average rate of change/Average velocity, see also Q9] Let $f(x) = \cos x + 2$. Compute the average rate of change of f(x) on the interval $[0, \frac{\pi}{2}]$

Average inter of charge of fix over [a,b]
=
$$\frac{f(b) - f(a)}{b - a}$$

Q2[Sec1.5/1.6, Limit and Limit Laws] Evaluate the following limits

(a)Direct plug in-type

Suppose $\lim_{x \to 4} f(x) = 2$, $\lim_{x \to 4} g(x) = 3$. Find $\lim_{x \to 4} \frac{xf(x) + 2}{f(x) - \sqrt{g(x)}}$ Direct Plug in $\frac{24}{9}$ and use linear properties of limit.

(b) $\frac{1}{0}$ -type/One-sided limits

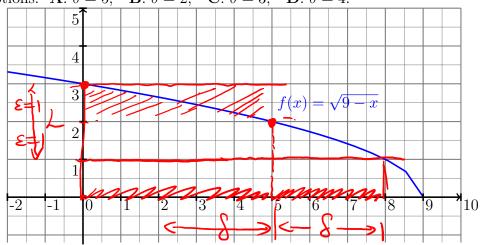
$$\lim_{x\to 0^+} \frac{x-3}{x^2(x+5)}$$

Plug in 0, we have $\frac{0-3}{0.5} \sim \frac{1}{0}$ -type.
figure out the sign

$$\begin{array}{c} \bigstar(\mathbf{c}) \text{ Cancellation-type} \\ \lim_{x \to -2^+} \frac{|x^2 - 4|}{x + 2} \\ \text{when } \chi_{\rightarrow} -2^+, \chi_{>-2} \\ \Rightarrow \chi^2 - 4 < 0 \text{ or } 4 - \chi > 0 \end{array}$$

 $\Rightarrow |x^2 - 4| = 4 - \chi^2 = (2+\chi)(2-\chi)$

Q3[Sec1.7, Limit Definition] For $f(x) = \sqrt{9-x}$; $L = 2, a = 5, \varepsilon = 1$, use the graph of f(x) to find the largest value of δ of $|x - a| < \delta$ in the formal definition of a limit which ensures that $|f(x) - L| < \varepsilon$. Options: **A**. $\delta = 5$; **B**. $\delta = 2$; **C**. $\delta = 3$; **D**. $\delta = 4$.



Q4[Sec1.8, Domain of continuity] Use interval notation to indicate where f(x) is continuous.

(a)

$$f(x) = \frac{x^2 - 3x + 1}{x - 3}.$$
 Choose from below The X for which the densitiestor is not Zelto.
A. $(-\infty, +\infty);$ B. $(-\infty, 3) \cup (3, +\infty);$ C. $(-\infty, 1) \cup (1, +\infty);$ D. $(-\infty, 1) \cup (1, 3) \cup (3, +\infty)$
(b)

$$f(x) = \sqrt{x + 1}.$$
 Choose from below The X for which below Tool is positile.
A. $(-\infty, +\infty);$ B. $(-\infty, -1);$ C. $[-1, +\infty);$ D. $(1, +\infty).$
(c)

$$(x^2 - 3x + 1)\sqrt{x + 1}$$

$$f(x) = \frac{(x^2 - 3x + 1)\sqrt{x + 1}}{x - 3}$$
. Use (a,b) to indicate the intervals of continuous for (c)

Q5[Sec1.8, Piecewise function] For what value of k will f(x) be continuous for all values of x?

$$f(x) = \begin{cases} \frac{x^2 - 3k}{x - 3}, & x \le 2\\ 8x - k, & x > 2 \end{cases}$$
 Plug X=2 into the first and second
A $k = 2;$
B $k = 3;$
C $k = 4;$
D $k = 5$

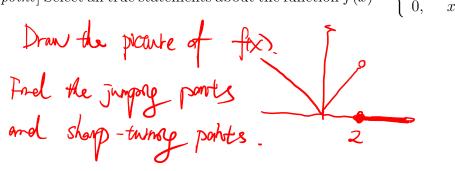
Q6[Sec1.8, Intermediate Value Theorem(IVT)] Suppose function h(x) is continuous on [0, 4]. Suppose h(0) = 2, h(1) = 0, h(2) = -3, h(3) = 2, h(4) = 5. For what value of N, the must be a $c \in (3, 4)$ such that h(c) = N?

A
$$N = 0.5$$
Draw the picture of $h(x)$ B $N = 0$ and find the interneoliateC $N = -2$ value N in $(3/4)$

D
$$N = 2.5$$

Q6[Sec2.1/2.2, derivative at given point] Select all true statements about the function $f(x) = \begin{cases} |x|, & x < 2 \\ 0, & x \ge 2 \end{cases}$

I f(x) is differentiable at x = 0 **II** f(x) is continuous at x = 2**III** $\lim_{x\to 0} f(x)$ exists



1

Q7[Sec2.1/2.2, definition of derivative] Let $f(x) = \frac{1}{x+1}$

(a) [Derivative as a limit] Use the definition of the derivative to find f'(x). (Your calculation must include computing a limit.)

Definition of dentate. f'x>= lin fox+h>-fox> h>0 h

(b) [Evaluating the derivative function at given point] Find f'(2)

(c)[Point-slope formula for the tangent line] Use part (b) to find an equation of a tangent line of f(x) at x = 2.

Port-slope formula for targent line at
$$X=a$$

 $y = f(a) \cdot (x-a) + f(z)$

A Q7*[Sec2.1/2.2, definition of derivative] Use the definition of the derivative to find g'(1) for $g(x) = 2\sqrt{x}$.

To simplify
$$\frac{2\sqrt{x+h}-2\sqrt{x}}{h}$$

use the conjugation thick:
 $J\overline{A} - J\overline{B} = \frac{(J\overline{A}-\overline{B})(J\overline{A}+J\overline{B})}{J\overline{A}+J\overline{B}}$
 $= \frac{A-B}{J\overline{A}+J\overline{B}}$.

 $\mathbf{Q8}[Sec2.3/2.4/2.5, Differentiation Formulas/Laws]$ Find the derivatives of the following functions. Do not need to simplify.

(a)[Linear Rule+Power functions]

$$T(x) = 2\sqrt{x} - \frac{1}{2\sqrt{x}}$$

$$\int_{\mathbf{X}} = \mathbf{X}^{\frac{1}{2}}, \quad \frac{1}{\mathbf{x}^{\alpha}} = \mathbf{X}^{-\alpha},$$

$$(\mathbf{x}^{n})' \equiv \eta \cdot \mathbf{X}^{n}$$

(b)[Product Rule+Power functions] $g(t) = \left(\frac{1}{t^5} - 2t\right) \left(\frac{1}{\sqrt{t}} + \pi\right)$ Product rule f

- (c)[Trig functions+Chain Rule] $y = \sin(x^2)$
 - Outer: S'A R Innet: X²
- (c*)[Trig functions+Chain Rule] $y = \sin^2(x) = \left[\sin x \right]$ Autor : Inter : sinx .

(d)[Quotient Rule+Trig functions+Chain Rule] $f(t) = \underbrace{3t}_{\tan(t^2 - 1)} \quad \text{product rule} .$ then eaply dain rule to $\left[\tan(t^2 - 1) \right]$

(e) [Trig functions+Double Chain Rule] $f(x) = -2 \sec (\cos(x^2 + x))$ ater: $f(x) = -2 \sec (\cos(x^2 + x))$ $f(x) = -2 \sec (\cos(x^2 + x))$ f(x) = **Q9**[Sec2.7, Rates of Change/Functions of motion] A particle moves according to the law of motion $s(t) = t^3 - 5t^2 + 6t$, where t is measured in seconds and s in feet

(a)[1.4, Average velocity] Find the average velocity over the interval [0, 2].

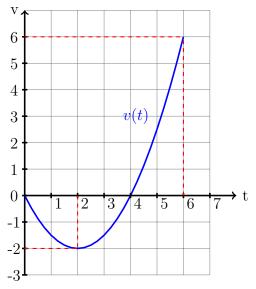
(b)[Velocity and position] Find the velocity at time t.

$$vH) = S'H$$

(c)[Acceleration and velocity] What is the acceleration after 6 seconds?

 \cancel{k} (d)[Velocity and speed] What is the speed of the particle when the acceleration is zero?

Q10[Sec2.7, Graph of the velocity] The accompanying figure shows the velocity v(t) of a particle moving on a horizontal coordinate line, for t in the closed interval [0, 6].



(a) When does the particle move forward? move former d: V > 0

- (b) When does the particle slow down? slaw down: speed drops: /1/ is decreasing.
- \bigstar (c) When is the particle's acceleration positive?

 $a(t) = V'(t) > 0 \iff V(t)$ is increasing

(d) When does the particle move at its greatest speed in [0, 6]?

highest (or lacest) port in the graph

- **Q11**[Sec2.6, Implicit differentiation] Consider the curve $y^2 + 2xy + x^3 = x$
- (a) Find the slope of the tangent line of the curve at the point (1, -2).

(b) Find the equation of the tangent line of the curve at the point (1, -2).

★ Q12, Sec2.8, Related Rates A boat is pulled into a dock by a rope attached to the bow of the boat and passing through a pulley on the dock that is 1 m higher than the bow of the boat. If the rope is pulled in at a rate of 1 m/s, how fast is the boat approaching the dock when it is 8 m from the dock?

