Appendix E-Sigma Notation

Section Objective(s):

- Express sums using sigma notation.
- Memorize a few common finite sums.
- Understand basic properties of finite sums and use them to compute more complicated finite sums.

Definition(s) 4.1.7. If $a_{m}, a_{m+1}, \ldots, a_{n-1}, a_{n}$ are real numbers and m and n are integers such that $m \leq n$, then

$$
\sum_{i=m}^{n} a_{i}=
$$

Definition(s) 4.1.8. This way of short-handing sums of many numbers is called
\qquad (uses the Greek letter Σ "Sigma"). The letter i above is called the \qquad and it takes on consecutive integer values starting with m and ending with n.

Theorem 4.1.9. If c is any constant then:
(a) $\sum_{i=m}^{n} c a_{i}=$
(b) $\sum_{i=m}^{n}\left(a_{i}+b_{i}\right)=$
(c) $\sum_{i=m}^{n}\left(a_{i}-b_{i}\right)=$

Theorem 4.1.10. Let c be a constant and n a positive integer. Then
(a) $\sum_{i=1}^{n} 1=$
(b) $\sum_{i=1}^{n} i=$
(c) $\sum_{i=1}^{n} i^{2}=$

Example 4.1.11. Evaluate the following sums
(a) $\sum_{k=0}^{4} \frac{2 k-1}{2 k+1}$
(b) $\sum_{i=0}^{4}(2-3 i)$
(c) $\sum_{i=1}^{38}\left(3^{i}-3^{i-1}\right)$

Example 4.1.12. Write the sum: $\sqrt{3}+\sqrt{4}+\cdots+\sqrt{25} \quad$ in sigma notation

Example 4.1.13. Write the sum: $\sqrt{3}-\sqrt{5}+\sqrt{7}-\sqrt{9}+\cdots+\sqrt{27}$ in sigma notation

