Multiple Choice. Circle the best answer. No work needed. No partial credit available.

Q1 Which statement is true about the series

$$
\sum_{n=1}^{\infty}\left(1+\frac{1}{n}\right)^{n}
$$

A The nth term test concludes that the series converges.
B The nth term test concludes that the series diverges.
C The nth term test hypotheses are not met by this series, so it cannot be applied.
D The nth term test hypotheses are met by this series however the test is inconclusive.
E None of the above are true. The nth term test concludes that the series converges.

$$
\begin{aligned}
& a_{n}=\left(1+\frac{1}{n}\right)^{n}=e^{\ln \left(1+\frac{1}{n}\right)^{n}} \\
& \text { Find } \lim _{n \rightarrow \infty} \ln \left(1+\frac{1}{n}\right)^{n}=\lim _{n \rightarrow \infty} \frac{\ln \left(1+\frac{1}{n}\right)}{\frac{1}{n}} \text { liam l'Hospital } \\
& \text { la le forte. }
\end{aligned}
$$

A The integral test concludes that the series converges.
B The integral test concludes that the series diverges.
C The integral test hypotheses are not met by this series, so it cannot be applied.
D The integral test hypotheses are met by this series however the test is inconclusive.
\mathbf{E} None of the above are true.

Q3 Determine whether the following series are absolutely convergent, conditionally convergent, or divergent:

$$
\text { (1) } \sum_{n=1}^{\infty} \frac{\sin (n)+1}{2^{n}}
$$

and (2) $\quad \sum_{n=1}^{\infty} \frac{(-1)^{n}}{\sqrt{n+2}}$
A (1) is absolutely convergent; (2) is divergent.
B (1) is conditionally convergent; (2) is divergent.
C (1) is absolutely convergent; (2) is conditionally convergent.
D (1) is divergent; (2) is conditionally convergent.
\mathbf{E} (1) and (2) are conditionally convergent.
(1).

$$
\left|\frac{\sin (n+\mid}{2^{n}}\right| \leqslant \frac{2}{2^{n}} \text { sin }-k \sin 01
$$

(2).

$$
\text { Sternaing Series with on }=\frac{1}{\sqrt{n+2}}
$$

Q4 Determine whether the following series converge or diverge.
(a)

$$
\sum_{n=1}^{\infty} \frac{2^{n}\left(n^{2}+1\right)}{3^{n}} \text { Tanto Test }
$$

praduot/rato

(b)

$$
\sum_{n=1}^{\infty} \frac{\sqrt{n}+n^{3}+2 n}{\sqrt{9 n^{8}+7 n}}
$$

limit comparison
test,
 -
. 1
leading term"

Q5 Check the convergence/divergence of
$\sum_{n=1}^{\infty} \frac{2 n+1}{n^{2}+n}$
using integral test. (Note: you need to check the series satisfies ALL the THREE hypotheses of integral test.)
To che ch $f(n)=\frac{2 n+1}{n+n}$, compute the denature
of $f(n)$ wa quotient vale.
Consoler $\int_{1}^{\infty} \frac{2 x+1}{x^{2}+x} d x$ via u sub. $u=x^{2}+x$. since $d u=(2 x+1) d x$.

Q6 Find the exact arc-length of $f(x)=\frac{1}{2} x^{2}-\frac{1}{4} \ln x$ from $x=1$ to $x=2$.
compute $f^{\prime} /(x)$ forest.
then complete the square using

$$
\left(a+\frac{1}{4 a}\right)^{2}=a^{2}+\left(\frac{1}{4 a}\right)^{2}+\frac{1}{2}
$$

to remove the square root in arclength formula

$$
\begin{aligned}
& a=\text { foot term }=2 \\
& r=\frac{\text { Ind term }}{1 \text { st term }}=\frac{-\frac{4}{3 e}}{2}
\end{aligned}
$$

then $a_{n}=a \cdot r^{n-1}, n=1,2, \ldots \ldots$
Q8 find the sunlit of the series
Geometric

$$
\frac{2^{2 n+1}}{q^{n}}=\frac{2^{2 n}-2}{9^{n}}=\frac{4^{n} \cdot 2}{9^{n}}=2 \cdot\left(\frac{4}{9}\right)^{n}
$$

$$
\begin{equation*}
\left.\frac{(-1)^{n-1}}{9^{n}}=\frac{(-1)^{n-1}}{9 \cdot 9^{n-1}}=\left(\frac{1}{9}\right)\left(\frac{-1}{9}\right)^{n-1} \alpha^{2}\right]^{2} \tag{4}
\end{equation*}
$$

$$
{\underset{a}{2}}^{2}
$$

Q9 Find the radius of convergence of

$$
\sum_{n=0}^{\infty} \frac{(n+3)(2 x-3)^{n}}{3^{n}}
$$

Aptly ratio test to $a_{n}=\frac{(n+3) \cdot(2 x-3)^{n}}{3^{n}}$
Solve $\lim _{h \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|<1$, to get inequality like $\left|x-\frac{3}{2}\right|<R$ Q11 Find the first three non-zero terms of the Maclaurin series of the function

$$
f(x)=x e^{x}+\cos x
$$

use paier series formulas for e^{x} and $\cos x$ directly Q12 Consider the function $f(x)=\frac{3 x}{2+3 x^{2}}$. Find the power series representation of f and the radius of
convergence.

$$
\begin{array}{rlr}
f(x) & =3 x \cdot \frac{1}{2 \cdot\left[1+\frac{3 x^{2}}{2}\right]} & \text { apply the } \\
& =\frac{3 x}{2} \cdot \frac{1}{1-\left(-\frac{3 x^{2}}{2}\right)} & \begin{array}{l}
\text { cortespondog } \\
\text { formula to } \\
\text { ova }=\frac{3 x^{2}}{2}
\end{array}
\end{array}
$$

Q13 Find the 4th degree Taylor polynomial of $f(x)=3 \sin (2 x)$ centered at $a=\pi / 8$
complete the denvanue table up to $0=4$
Then apply to

$$
\begin{aligned}
& T_{4}(x)= \\
& f(a)+f^{\prime}(a)(x-a)+f^{\prime \prime}(a) \cdot(x-a)^{2} \\
& +\frac{f^{(3)}(a)}{3!} \cdot(x-a)^{3}+\frac{f^{(4)}(a)}{4!}(x-a)^{4} .
\end{aligned}
$$

1

Q14 Find the Taylor series at $x=0$ for $f(x)=x^{2} e^{-2 x}$ (find the general nth term and write it in Sigma notation).

Apply the formant

$$
e^{n}=\sum_{n=a}^{\infty} \frac{n}{n!} \cdot \text { with }=-2 x .
$$

