Multiple Choice. Circle the best answer. No work needed. No partial credit available.

Q1 Which statement is true about the series

$$\sum_{n=1}^{\infty} (1+\frac{1}{n})^n$$

A The nth term test concludes that the series converges.

B The **nth term test** concludes that the series diverges.

C The **nth term test** hypotheses are not met by this series, so it cannot be applied.

D The **nth term test** hypotheses are met by this series however the test is inconclusive.

E None of the above are true. The nth term test concludes that the series converges.

Q2 Which statement is true about the series

$$\sum_{n=2}^{\infty} \frac{10n}{\sqrt{n^2 + 2}}$$

A The integral test concludes that the series converges.

- **B** The **integral test** concludes that the series diverges.
- **C** The **integral test** hypotheses are not met by this series, so it cannot be applied.
- **D** The **integral test** hypotheses are met by this series however the test is inconclusive.
- **E** None of the above are true.

conisder

 $\frac{10 \times 10}{100}$ dx via usb $u=\chi^2+2$

na

Q3 Determine whether the following series are absolutely convergent, conditionally convergent, or divergent:

(1)
$$\sum_{n=1}^{\infty} \frac{\sin(n) + 1}{2^n}$$
 and (2) $\sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt{n+2}}$

- \mathbf{A} (1) is absolutely convergent; (2) is divergent.
- \mathbf{B} (1) is conditionally convergent; (2) is divergent.
- \mathbf{C} (1) is absolutely convergent; (2) is conditionally convergent.
- \mathbf{D} (1) is divergent; (2) is conditionally convergent.
- \mathbf{E} (1) and (2) are conditionally convergent.

 $\left|\frac{\sin(n)+1}{2n}\right| \leq \frac{1}{2n} \sin(\alpha - |\sin(n)|) \leq |$ (2)- Sternating Series with on = _____ Q4 Determine whether the following series converge or diverge. (a) $\sum_{n=1}^{\infty} \frac{2^n (n^2 + 1)}{3^n} \quad \text{Ratio [est]}$ gord for product/rado of expression and power function

(b) $\sum_{n=1}^{\infty} \frac{\sqrt{n} + n^3 + 2n}{\sqrt{9n^8 + 7n}}$

Limit conparison test, choose on va "kadreg term" rale (-the terms with highest degree).

Q5 Check the convergence/divergence of

$$\sum_{n=1}^{\infty} \frac{2n+1}{n^2+n}$$

using integral test. (Note: you need to check the series satisfies ALL the THREE hypotheses of integral test.)

To check
$$f(n) = \frac{2N+1}{N+N}$$
, compute the dentative
is decreasing.
A fine wa ghostenet vale.
Consolu $\int_{1}^{\infty} \frac{2X+1}{X^{2}+X} dxvia$ (L-SL). $U=X^{2}+X$.
shue $du = (2X+1) dx$.

Q6 Find the exact arc-length of $f(x) = \frac{1}{2}x^2 - \frac{1}{4}\ln x$ from x = 1 to x = 2.

compute f'1x> forst. then complete the square using $(a + \frac{1}{4a})^2 = a^2 + (\frac{1}{4a})^2 + \frac{1}{2}$ to remove the square root in archenge. formula

Q7 Consider the series $2 - \frac{4}{3e} + \frac{8}{9e^2} - \frac{16}{27e^3}$ Give the value of the nth term a_n which would allow us to rewrite this series as $\sum_{n=1}^{\infty} a_n$ and find the sum a_n which would allow us a = foste tem? 2 $r = \frac{2nd}{1} \frac{\text{term}}{\text{term}} = \frac{-}{-}$ then $a_n = a \cdot p^{n_1}$, $n = 1, 2, \dots$ Q8 Find the sum of the series $\sum_{n=1}^{\infty} \frac{2^{2n+1} - (-1)^{n-1}}{9^n}$ econe to $\frac{2^{n}}{q_{n}} = \frac{2^{n} \cdot 2}{q_{n}} = \frac{4^{n} \cdot 2}{q_{n}}$ $\frac{(-1)^n}{q_n} = \frac{(-1)^n}{q_n q_{n+1}} = \left(\frac{1}{q_n}\right)$

Q9 Find the radius of convergence of

 $\sum_{n=1}^{\infty} \frac{(n+3)(2x-3)^n}{3^n}$ Apply have test to an = Solve lim (and) < 1, to mappahenty like K-3/R

Q11 Find the first three non-zero terms of the Maclaurin series of the function

 $f(x) = xe^x + \cos x$ use paier series formules fin e^x and cosx drectly.

Q12 Consider the function $f(x) = \frac{3x}{2+3x^2}$. Find the power series representation of f and the radius of convergence.

 $f(\kappa) = 3\chi \cdot \frac{1}{2 \cdot \left(1 + \frac{3\chi}{2}\right)}$ <u>} X</u>

rtespondo

Q13 Find the 4th degree Taylor polynomial of $f(x) = 3\sin(2x)$ centered at $a = \pi/8$

Compute the demand table up to m-4 Then apply to $|_4(\mathbf{X})|$ flas + f'las (xa) + f". (xa) $f^{(3)}(a)_{(x-a)} + \frac{f^{(4)}(a)_{(x-a)}}{4}(x-a)^{4}$ -+

Q14 Find the Taylor series at x = 0 for $f(x) = x^2 e^{-2x}$ (find the general nth term and write it in Sigma notation).

Apply the former]. vath 13 = -2X