Multiple Choice. Circle the best answer. No work needed. No partial credit available.

Q1 Which statement is true about the series

$$
\sum_{n=1}^{\infty}\left(1+\frac{1}{n}\right)^{n}
$$

A The nth term test concludes that the series converges.
B The nth term test concludes that the series diverges.
C The nth term test hypotheses are not met by this series, so it cannot be applied.
D The nth term test hypotheses are met by this series however the test is inconclusive.
E None of the above are true. The nth term test concludes that the series converges.

Q2 Which statement is true about the series

$$
\sum_{n=2}^{\infty} \frac{10 n}{\sqrt{n^{2}+2}}
$$

A The integral test concludes that the series converges.
B The integral test concludes that the series diverges.
C The integral test hypotheses are not met by this series, so it cannot be applied.
D The integral test hypotheses are met by this series however the test is inconclusive.
E None of the above are true.

Q3 Determine whether the following series are absolutely convergent, conditionally convergent, or divergent:

$$
\text { (1) } \sum_{n=1}^{\infty} \frac{\sin (n)+1}{2^{n}} \quad \text { and (2) } \quad \sum_{n=1}^{\infty} \frac{(-1)^{n}}{\sqrt{n+2}}
$$

A (1) is absolutely convergent; (2) is divergent.
$\mathbf{B}(1)$ is conditionally convergent; (2) is divergent.
\mathbf{C} (1) is absolutely convergent; (2) is conditionally convergent.
D (1) is divergent; (2) is conditionally convergent.
E (1) and (2) are conditionally convergent.

Q4 Determine whether the following series converge or diverge.
(a)

$$
\sum_{n=1}^{\infty} \frac{2^{n}\left(n^{2}+1\right)}{3^{n}}
$$

(b)

$$
\sum_{n=1}^{\infty} \frac{\sqrt{n}+n^{3}+2 n}{\sqrt{9 n^{8}+7 n}}
$$

Q5 Check the convergence/divergence of

$$
\sum_{n=1}^{\infty} \frac{2 n+1}{n^{2}+n}
$$

using integral test. (Note: you need to check the series satisfies ALL the THREE hypotheses of integral test.)

Q6 Find the exact arc-length of $f(x)=\frac{1}{2} x^{2}-\frac{1}{4} \ln x$ from $x=1$ to $x=2$.

Q7 Consider the series $2-\frac{4}{3 e}+\frac{8}{9 e^{2}}-\frac{16}{27 e^{3}}+\cdots$. Give the value of the nth term a_{n} which would allow us to rewrite this series as $\sum_{n=1}^{\infty} a_{n}$ and find the sum.

Q8 Find the sum of the series

$$
\sum_{n=1}^{\infty} \frac{2^{2 n+1}-(-1)^{n-1}}{9^{n}}
$$

Q9 Find the radius of convergence of

$$
\sum_{n=0}^{\infty} \frac{(n+3)(2 x-3)^{n}}{3^{n}}
$$

Q11 Find the first three non-zero terms of the Maclaurin series of the function

$$
f(x)=x e^{x}+\cos x
$$

Q12 Consider the function $f(x)=\frac{3 x}{2+3 x^{2}}$. Find the power series representation of f and the radius of convergence.

Q13 Find the 4th degree Taylor polynomial of $f(x)=3 \sin (2 x)$ centered at $a=\pi / 8$

Q14 Find the Taylor series at $x=0$ for $f(x)=x^{2} e^{-2 x}$ (find the general nth term and write it in Sigma notation).

