Multiple Choice. Circle the best answer. No work needed. No partial credit available.

Q1 Which statement is true about the series

$$
\sum_{n=1}^{\infty} e^{\frac{2}{n}} \quad \text { Hint }-\lim _{n} e^{\frac{2}{n}}=e^{\frac{2}{\infty}}
$$

$=e^{0}=1$
B The nth term test concludes that the series diverges.
C The nth term test hypotheses are not met by this series, so it cannot be applied.
D The nth term test hypotheses are met by this series however the test is inconclusive.
E None of the above are true. The nth term test concludes that the series converges.

Q2 Which statement is true about the series

$$
\sum_{n=2}^{\infty} \frac{2 \ln n}{n} \sim \int_{2}^{\infty} \frac{2 \sqrt{\infty}}{\infty} d x
$$

A The integral test concludes that the series converges.
B The integral test concludes that the series diverges.
C The integral test hypotheses are not met by this series, so it cannot be applied.
D The integral test hypotheses are met by this series however the test is inconclusive.
E None of the above are true.

Q3 Determine whether the following series are absolutely convergent, conditionally convergent, or divergent:

$$
\text { (1) } \sum_{n=1}^{\infty} \frac{\sin (2 n)}{n^{2}}
$$

and (2) $\quad \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{3 n}$
both are nephork
A (1) is absolutely convergent; (2) is divergent.

B (1) is conditionally convergent; (2) is divergent.
C (1) is absolutely convergent; (2) is conditionally convergent.

D (1) is divergent; (2) is conditionally convergent.
\mathbf{E} (1) and (2) are conditionally convergent.

Q4 Determine whether the following series converge or diverge.
(a)

$$
\sum_{==1}^{n} \frac{\sqrt{n}+1}{a^{n}} \text { Ratio Test for } a_{n}=\frac{\sqrt{n}+1}{e^{n}}
$$

(b)

$$
\sum_{m=1}^{\sum} \frac{\sqrt{n+7}+\sqrt{n}}{3 m^{2}+n^{n}}<b_{n}=\frac{\sqrt{n^{3}}}{3 n^{2}}
$$

(c)

$$
\sum_{n=1}^{\infty} \frac{n+1}{\sqrt{4 n^{5}-1}}
$$

Q5 Check the convergence/divergence of

$$
\sum_{n=2 n+1}^{2 n}=a_{m}=f(n)
$$

using integral test. (Note: you need to check the series satisfies ALL the THREE hypotheses of integral test.)
$f(n)$ is cantinuass, positive
decreasing \leftarrow Hint: compute $f^{\prime}(n)$ and check $f^{\prime}(n)<0$

$$
\int_{1}^{\infty} \frac{2 x}{x^{2}+1} d x
$$

Q6 Find the exact arc-length of $f(x)=\frac{2}{3}\left(x^{2}+1\right)^{3 / 2}$ from $x=0$ to $x=2$.

$$
\text { Arc-tength }=\int_{a}^{b} \sqrt{1+\left[f^{\prime}(x)\right]^{2}} d x \text {. }
$$

In order to evaluate the integral, you need to complete the square ia

$$
1+4 a+4 a^{2}=(1+2 a)^{2}
$$

Q7 What does the series $-2+\frac{6}{5}-\frac{18}{25}+\frac{54}{125}+\cdots$ converge to? Find the sum.

$$
=\frac{a}{1-r}
$$

find a and r
a is the fist term -2 .
r is the common ratio $=\frac{\text { and term }}{1 \text { st term }}=\frac{\frac{6}{5}}{-2}=-\frac{3}{5}$ Q8 Find the sum of the series

$$
\sum_{n=1}^{\infty} \frac{g_{12(2 n+1)}^{\left(q^{2}+1\right)}}{}
$$

Hint: $q^{n / 2}=\left(9^{\frac{1}{2}}\right)^{n}=3^{n}$

$$
2^{2 n+1}=2^{2 n} \cdot 2=\left(2^{2}\right)^{n} \cdot 2=4^{n} \cdot 2
$$

Q9 Find the radius of convergence of

$$
\sum_{n=0}^{\infty} \frac{x^{n}\left(n^{2}+3\right)}{(-5)^{n}}
$$

Apply ratel test to $a_{n}=\frac{x^{n} \cdot\left(n^{2}+3\right)}{(-5)^{n}}$ and solve $\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=L<1$ for R. where $|x|<R$

Q10 Find the first three non-zero terms of the power series representation of the function

$$
f(x)=1-\frac{x}{1+2 x^{2}}
$$

Q11 Find the power series representation and the radius of convergence of the function

$$
f(x)=\frac{x^{2}}{3 x+2}
$$

Q12 Find the 3 rd degree Taylor polynomial of $f(x)=2+\cos (x)$ centered at $a=\pi / 3$ derivative Table at $a=\frac{\pi}{3}$. $n \quad f^{(n)}(x) \quad f^{(n)}\left(\frac{\pi}{3}\right)$
$n=0$
$n=1$

$$
\cos \frac{\pi}{3}=\frac{1}{2}
$$

$$
n=2
$$

$$
n=3
$$

Q13 Find the first three non-zero terms of the Taylor series at $x=0$ for $f(x)=3 \sin (2 x)+x^{2}$
use $\sin \left(=\sum_{n=0}^{\infty}(-1)^{n} \frac{2^{2 n+1}}{(2 n+1)!}\right.$

$$
=\text { 囫 }-\frac{0^{3}}{3!}+\frac{\pi^{5}}{5!}-\cdots \cdot
$$

replace by $2 x$ and only consider the first several non-zero tets.

