Q1 Sketch the region R bounded by $y=x^{2}+1, x=0, y=2$. Find the volume of the solid rotating R about the y-axis.

Q2 A vertical right-circular cylindrical tank measures 12 ft high and 10 ft in diameter. It is half full of kerosene weighing $20 \mathrm{lb} / \mathrm{ft}^{3}$. Find the work it would take to pump the kerosene to the top of the tank.

Q3 Find the arc-length of the curve $x=y^{3 / 2}$ from $y=0$ to $y=2$.

Q4 Evaluate the following integrals.
(a)

$$
\int 2 \sin ^{-1}(x) d x
$$

(b)

$$
\int_{0}^{1} x e^{2 x} \mathrm{~d} x
$$

(c)

$$
\int_{0}^{\pi / 4}(\sin \theta+\cos \theta) \cos \theta \mathrm{d} \theta
$$

Q5 Test the following improper integral. Evaluate it if it is convergent.

$$
\int_{0}^{1} \frac{1}{(x)^{4 / 3}} \mathrm{~d} x
$$

Q6 Determine whether each of the series is convergent or divergent.
(a)

$$
\sum_{n=1}^{\infty} n \sin \left(\frac{1}{n}\right)
$$

(b)

$$
\sum_{n=1}^{\infty} \frac{5^{n}}{n!}
$$

Q7 Evaluate the following limits.
(a)

$$
\lim _{n \rightarrow \infty}(\ln n)^{\frac{1}{n}}
$$

(b)

$$
\lim _{n \rightarrow \infty} \ln \left(\frac{3 n}{\sqrt{n^{2}+1}}\right)
$$

Q8 Find the derivative of $f(x)=\left(\sin ^{-1}(x)\right)^{\sqrt{x}}$

Q9 Consider the following power series. Find its center and radius of convergence.

$$
\sum_{n=1}^{\infty} n(2 x+1)^{n}
$$

Q10Consider $g(t)=\frac{1}{1-t^{2}}$. Find the first three non-zero terms of the Maclaurin series for $g(t)$. And then find the first three non-zero terms of the Maclaurin series for $\int_{0}^{3 x} g(t) \mathrm{d} t$.

Q11 Let $f(x)=1 / x$. Consider its Taylor series at $x=3$.
(a) Find $T_{2}(x)$, the second degree Taylor polynomial of $f(x)$ centered at 3 .
(b) Use Taylor's Inequality to estimate the maximum possible error in approximating $f(x)$ by $T_{2}(x)$ for $x \in[1,5]$.

Q12 Solve the following differential equation

$$
y^{\prime}(x)=e^{-2 y} x, y(0)=0
$$

Q13 Find the tangent line to the parametric curve

$$
x(t)=\ln (\sec t), \quad y(t)=(t-\pi / 4)^{2}+2(t-\pi / 4) \quad \text { at } \quad t=\pi / 4
$$

Q14 Consider the following polar curves given by $r_{1}=2(1+\cos \theta)$, and $r_{2}=2(1-\cos \theta)$.
(a) Sketch both curves r_{1} and r_{2}.

