Landscape theory for finite \mathbb{Z}^{1} lattice,

Last updated, February 21, 2019

Theorem 0.1 (Landscape theory for finite matrix. M. L. Lyra, S. Mayboroda and M. Filoche). Let

$$
H=\left(\begin{array}{ccccc}
v_{1} & -1 & 0 & \cdots & 0 \tag{0.1}\\
-1 & v_{2} & -1 & \ddots & \vdots \\
0 & \ddots & \ddots & \ddots & 0 \\
\vdots & \ddots & \ddots & v_{n-1} & -1 \\
0 & \cdots & 0 & -1 & v_{n}
\end{array}\right)
$$

If $v_{j} \geq 2, j=1, \cdots, n$, and $H \vec{x}=\lambda \vec{x}$, then for all $j=1, \cdots, n$,

$$
\begin{equation*}
\frac{\left|x_{j}\right|}{\max _{1 \leq k \leq n}\left|x_{k}\right|} \leq \lambda u_{j} \tag{0.2}
\end{equation*}
$$

where $\vec{u} \in \mathbb{R}^{n}$ is the landscape function satisfying

$$
H \vec{u}=\left(\begin{array}{c}
1 \tag{0.3}\\
\vdots \\
1
\end{array}\right)=: \overrightarrow{1}
$$

1 Useful lemmas

Lemma 1.1. Let H be given in 0.1. If If $v_{j} \geq 2, j=1, \cdots, n$, then H is invertible. Let $G_{i j}=H^{-1}(i, j)$ be the (i, j) entry of the inverse of H. As a consequence, there is always a $\vec{u} \in \mathbb{R}^{n}$ satisfying eq. 0.3), with explicit expression as

$$
\begin{equation*}
u_{j}=\sum_{k=1}^{n} G_{j k} \tag{1.1}
\end{equation*}
$$

Moreover, all the eigenvalues of H are strictly positive.
Lemma 1.2. Let $H, G_{i j}=H^{-1}(i, j)$ and u_{j} be as above. $G_{i j}>0$ for all i, j. As a consequence,

$$
\begin{equation*}
u_{j}>0 \tag{1.2}
\end{equation*}
$$

Exercise 1.3. Use Lemma 1.2 to prove Theorem 0.2 ,

2 Proof of Lemma 1.1: Existence of Green's function

Let $H=V-H_{0}$, where

$$
V=\left(\begin{array}{ccccc}
v_{1} & 0 & 0 & \cdots & 0 \tag{2.1}\\
0 & v_{2} & 0 & \ddots & \vdots \\
0 & \ddots & \ddots & \ddots & 0 \\
\vdots & \ddots & \ddots & v_{n-1} & 0 \\
0 & \cdots & 0 & 0 & v_{n}
\end{array}\right), \quad \text { and } \quad H_{0}=\left(\begin{array}{ccccc}
0 & 1 & 0 & \cdots & 0 \\
1 & 0 & 1 & \ddots & \vdots \\
0 & \ddots & \ddots & \ddots & 0 \\
\vdots & \ddots & \ddots & 0 & 1 \\
0 & \cdots & 0 & 1 & 0
\end{array}\right)
$$

Exercise 2.1. Consider the usual matrix 2-norm $\|\cdot\|$ (defined in HW1). Prove that $\left\|H_{0}\right\| \leq 2$. As a consequence, all eigenvalues $\left\{\mu_{1}, \mu_{2}, \cdots, \mu_{n}\right\}$ of H_{0} are contained in $[-2,2]$, i.e. $\left|\mu_{j}\right| \leq 2$ for all j.
Proof. Let

$$
R=\left(\begin{array}{ccccc}
0 & 0 & 0 & \cdots & 0 \tag{2.2}\\
1 & 0 & 0 & \ddots & \vdots \\
0 & \ddots & \ddots & \ddots & 0 \\
\vdots & \ddots & \ddots & 0 & 0 \\
0 & \cdots & 0 & 1 & 0
\end{array}\right), \quad L=\left(\begin{array}{ccccc}
0 & 1 & 0 & \cdots & 0 \\
0 & 0 & 1 & \ddots & \vdots \\
0 & \ddots & \ddots & \ddots & 0 \\
\vdots & \ddots & \ddots & 0 & 1 \\
0 & \cdots & 0 & 0 & 0
\end{array}\right)
$$

Clearly, $H_{0}=L+R$. For any $\vec{x}=\left(x_{1}, x_{2}, \cdots, x_{n}\right)^{T}$, direct computation shows that

$$
R \vec{x}=R\left(\begin{array}{c}
x_{1} \tag{2.3}\\
x_{2} \\
x_{3} \\
\vdots \\
x_{n-1} \\
x_{n}
\end{array}\right)=\left(\begin{array}{c}
0 \\
x_{1} \\
x_{2} \\
\vdots \\
x_{n-2} \\
x_{n-1}
\end{array}\right)
$$

Therefore,

$$
\begin{equation*}
\|R \vec{x}\|^{2}=x_{1}^{2}+x_{2}^{2}+\cdots+x_{n-1}^{2} \leq x_{1}^{2}+x_{2}^{2}+\cdots+x_{n-1}^{2}+x_{n}^{2}=\|\vec{x}\|^{2} \tag{2.4}
\end{equation*}
$$

which implies $\|R \vec{x}\| \leq\|\vec{x}\|$. According to the definition of the matrix norm and 2.4 :

$$
\begin{equation*}
\|R\|=\max _{\vec{x} \neq \overrightarrow{0}} \frac{\|R \vec{x}\|}{\|\vec{x}\|} \leq 1 \tag{2.5}
\end{equation*}
$$

Exact the same argument shows that $\|L\| \leq 1$. Therefore, by the property (triangle inequality) of the matrix norm, we have that

$$
\begin{equation*}
\left\|H_{0}\right\| \leq\|L\|+\|R\| \leq 2 \tag{2.6}
\end{equation*}
$$

which completes the proof.
Exercise 2.2. Assume first that $v_{j}>2, j=1, \cdots, n$, (all v_{j} are strictly greater than 2). Prove that $H=V-H_{0}$ is invertible.
Exercise 2.3. Prove that $\left|\mu_{j}\right|<2$, i.e., -2 and 2 are not eigenvalues of H_{0}.
Hint: consider the difference equation $H_{0} \vec{x}=2 \vec{x}$, where $\vec{x}=\left(x_{1}, \cdots, x_{n}\right)$, as part of the infinite system (see Ex. 2.6) below), with zero boundary condition $x_{0}=x_{n+1}=0$.

Exercise 2.4. Prove that $\left\|H_{0}\right\|<2$.
Hint: prove that for any symmetric $n \times n$ matrix A

$$
\begin{equation*}
\|A\|:=\sup _{\|\vec{x}\|=1}\|A \vec{x}\|=\max _{1 \leq j \leq n}\left|\mu_{j}\right| \tag{2.7}
\end{equation*}
$$

where $\left\{\mu_{1}, \mu_{2}, \cdots, \mu_{n}\right\}$ are the eigenvalues of A.
Exercise 2.5. Complete the proof of Lemma 1.1 under the assumption $v_{j} \geq 2, j=1, \cdots, n$, .
Exercise 2.6. (Supplementary problem) Consider the difference equation (on a infinite lattice)

$$
\begin{equation*}
x_{n+1}+x_{n-1}=\lambda x_{n}, n \in \mathbb{Z}, \lambda \in \mathbb{C} \tag{2.8}
\end{equation*}
$$

1. Prove that the following expression solves eq. 2.8 for all $n \in \mathbb{Z}$

$$
\begin{equation*}
x_{n}=c_{1} \mu^{n}+c_{2} \mu^{-n}, \quad c_{1}, c_{2} \in \mathbb{C}, \quad \mu=\frac{\lambda+\sqrt{\lambda^{2}-4}}{2} \tag{2.9}
\end{equation*}
$$

And find $c_{1} c_{2}$ (in terms of $\left.\mu\right)$ if $x_{0}=0, x_{1}=1$.
2. For any $|\lambda| \neq 2$, consider the two infinite sequences $\vec{\alpha}, \vec{\beta}$ given by μ^{n} and μ^{-n}, i.e.,

$$
\begin{align*}
& \vec{\alpha}=\left(\cdots, \alpha_{-1}, \alpha_{0}, \alpha_{1}, \alpha_{2}, \cdots\right)=\left(\cdots, \mu^{-1}, 1, \mu^{1}, \mu^{2}, \cdots\right) \tag{2.10}\\
& \vec{\beta}=\left(\cdots, \beta_{-1}, \beta_{0}, \beta_{1}, \beta_{2}, \cdots\right)=\left(\cdots, \mu^{1}, 1, \mu^{-1}, \mu^{-2}, \cdots\right) \tag{2.11}
\end{align*}
$$

Prove that

$$
W(\vec{\alpha}, \vec{\beta}):=\operatorname{det}\left(\begin{array}{cc}
\alpha_{n+1} & \beta_{n+1} \tag{2.12}\\
\alpha_{n} & \beta_{n}
\end{array}\right)
$$

is a constant (independent of n). 1
3. Putting 1 and 2 together, we actually can say that if $|\lambda| \neq 2$, then all solutions $\vec{x}=\left\{x_{j}\right\}$ to eq. 2.8 is a linear combination of $\vec{\alpha}, \vec{\beta}$,

$$
\begin{equation*}
\vec{x}=c_{0} \vec{\alpha}+c_{1} \vec{\beta} \tag{2.13}
\end{equation*}
$$

This is not the case if $|\lambda|=2$. Prove that if $|\lambda|=2$, then $\vec{\alpha}=\vec{\beta}=$ a constant vector. Then find another solution (a non-constant vector) $\vec{\gamma}=\left\{\gamma_{n}\right\}$, which solves eq. 2.8) (for $\lambda=2$) and satisfies that $W(\vec{\alpha}, \vec{\gamma})$ is a constant.

3 Proof of Lemma 1.2: Positivity of the Green's function

3.1 Maximum principle and the first (original) proof

Lemma 3.1 (Maximum principle). Let H be given as in 0.1 . For any $\vec{x} \in \mathbb{R}^{n}$, let $\vec{y}=H \vec{x}$. If $y_{i} \geq 0$ for all $i=1,2, \cdots, n$, then

$$
\begin{equation*}
x_{i} \geq 0, \quad i=1,2, \cdots, n \tag{3.1}
\end{equation*}
$$

[^0]Exercise 3.2. Prove Lemma 3.1 by contradiction.
Hint: consider the equation $H \vec{x}=\vec{y}$ as a boundary problem on the extended lattice: $[0,1, \cdots, n, n+$ 1], with zero boundary condition: $x_{0}=x_{n+1}=0$. Fix \vec{y}, assume that there is a minimum inside the lattice, that is, there exists $j \in[1, \cdots, n]$ such that $x_{j} \leq x_{j+1}$ and $x_{j} \leq x_{j-1}$. Prove that this will contradict the condition that $y_{i} \geq 0$ for all $i=1,2, \cdots, n$.

Lemma 3.3 (Strong Maximum principle). Following the notation in Lemma 3.1, if we assume additionally that there exist an i_{0} such that $y_{i_{0}}>0$ (strictly positive), then

$$
\begin{equation*}
x_{i}>0, \quad i=1,2, \cdots, n \tag{3.2}
\end{equation*}
$$

Exercise 3.4. Prove Lemma 3.3 by contradiction.
Hint: continue with Lemma 3.1, assume that there exists $j \in[1, \cdots, n]$ such that $x_{j}=0$. Prove that this will lead to $y_{i} \geq 0$ for all $i=1,2, \cdots, n$, which contradict the condition that $y_{i_{0}}>0$ for some i_{0}.
Lemma 3.5. Let $\vec{e}_{j}=\left(\begin{array}{c}0 \\ \vdots \\ 0 \\ 1 \\ 0 \\ \vdots \\ 0\end{array}\right), j=1,2 \cdots, n$ be the standard basis of \mathbb{R}^{n}, with 0 entries except for 1 in the j-th place. Let

$$
\vec{g}=\left(\begin{array}{c}
G_{1 j} \tag{3.3}\\
G_{2 j} \\
\vdots \\
G_{n j}
\end{array}\right)
$$

be the j-th column vector of H^{-1}, where $H^{-1}=\left\{G_{i j}\right\}$ is given as in Lemma 1.1. Prove that for all $j=1,2, \cdots, n$,

$$
\begin{equation*}
H \vec{g}=\vec{e}_{j} \tag{3.4}
\end{equation*}
$$

Exercise 3.6. Use Lemma 3.3 and Lemma 3.5 to prove Lemma 1.2 .
Hints: apply Lemma 3.3 to each pair of \vec{g} and \vec{e}_{j}.

3.2 Power series expansion and an alternative proof of Lemma 1.2
 References

[FM12] Marcel Filoche and Svitlana Mayboroda, Universal mechanism for Anderson and weak localization, 2012 Proc. Natl. Acad. Sci. U.S.A. 10914761
[LFM15] M. L. Lyra, S. Mayboroda and M. Filoche, Dual landscapes in Anderson localization on discrete lattices. EPL (Europhysics Letters), Volume 109, Number 4, 2015.

[^0]: ${ }^{1} W$ is usually referred to be the Wronski of the system (or simply of eq. 2.8) , which plays important role in the general study of second order difference/differential equations.

