This tells us to end with $i=n$.
This tells us to add.
This tells us to start with $i=m$ \uparrow

A convenient way of writing sums uses the Greek letter Σ (capital sigma, corresponding to our letter S) and is called sigma notation.

1 Definition If $a_{m}, a_{m+1}, \ldots, a_{n}$ are real numbers and m and n are integers such that $m \leqslant n$, then

$$
\sum_{i=m}^{n} a_{i}=a_{m}+a_{m+1}+a_{m+2}+\cdots+a_{n-1}+a_{n}
$$

With function notation, Definition 1 can be written as

$$
\sum_{i=m}^{n} f(i)=f(m)+f(m+1)+f(m+2)+\cdots+f(n-1)+f(n)
$$

Thus the symbol $\sum_{i=m}^{n}$ indicates a summation in which the letter i (called the index of summation) takes on consecutive integer values beginning with m and ending with n, that is, $m, m+1, \ldots, n$. Other letters can also be used as the index of summation.

EXAMPLE 1

(a) $\sum_{i=1}^{4} i^{2}=1^{2}+2^{2}+3^{2}+4^{2}=30$
(b) $\sum_{i=3}^{n} i=3+4+5+\cdots+(n-1)+n$
(c) $\sum_{j=0}^{5} 2^{j}=2^{0}+2^{1}+2^{2}+2^{3}+2^{4}+2^{5}=63$
(d) $\sum_{k=1}^{n} \frac{1}{k}=1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n}$
(e) $\sum_{i=1}^{3} \frac{i-1}{i^{2}+3}=\frac{1-1}{1^{2}+3}+\frac{2-1}{2^{2}+3}+\frac{3-1}{3^{2}+3}=0+\frac{1}{7}+\frac{1}{6}=\frac{13}{42}$
(f) $\sum_{i=1}^{4} 2=2+2+2+2=8$

EXAMPLE2 Write the sum $2^{3}+3^{3}+\cdots+n^{3}$ in sigma notation.
SOLUTION There is no unique way of writing a sum in sigma notation. We could write
or

$$
\begin{aligned}
& 2^{3}+3^{3}+\cdots+n^{3}=\sum_{i=2}^{n} i^{3} \\
& 2^{3}+3^{3}+\cdots+n^{3}=\sum_{j=1}^{n-1}(j+1)^{3} \\
& 2^{3}+3^{3}+\cdots+n^{3}=\sum_{k=0}^{n-2}(k+2)^{3}
\end{aligned}
$$

The following theorem gives three simple rules for working with sigma notation.

2 Theorem If c is any constant (that is, it does not depend on i), then
(a) $\sum_{i=m}^{n} c a_{i}=c \sum_{i=m}^{n} a_{i}$
(b) $\sum_{i=m}^{n}\left(a_{i}+b_{i}\right)=\sum_{i=m}^{n} a_{i}+\sum_{i=m}^{n} b_{i}$
(c) $\sum_{i=m}^{n}\left(a_{i}-b_{i}\right)=\sum_{i=m}^{n} a_{i}-\sum_{i=m}^{n} b_{i}$

PROOF To see why these rules are true, all we have to do is write both sides in expanded form. Rule (a) is just the distributive property of real numbers:

$$
c a_{m}+c a_{m+1}+\cdots+c a_{n}=c\left(a_{m}+a_{m+1}+\cdots+a_{n}\right)
$$

Rule (b) follows from the associative and commutative properties:

$$
\begin{aligned}
& \left(a_{m}+b_{m}\right)+\left(a_{m+1}+b_{m+1}\right)+\cdots+\left(a_{n}+b_{n}\right) \\
& \quad=\left(a_{m}+a_{m+1}+\cdots+a_{n}\right)+\left(b_{m}+b_{m+1}+\cdots+b_{n}\right)
\end{aligned}
$$

Rule (c) is proved similarly.

EXAMPLE 3 Find $\sum_{i=1}^{n} 1$

SOLUTION

$$
\sum_{i=1}^{n} 1=\underbrace{1+1+\cdots+1}_{n \text { terms }}=n
$$

EXAMPLE 4 Prove the formula for the sum of the first n positive integers:

$$
\sum_{i=1}^{n} i=1+2+3+\cdots+n=\frac{n(n+1)}{2}
$$

SOLUTION This formula can be proved by mathematical induction (see page 76) or by the following method used by the German mathematician Karl Friedrich Gauss (1777-1855) when he was ten years old.

Write the sum S twice, once in the usual order and once in reverse order:

$$
\begin{aligned}
& S=1+2+3+\cdots+(n-1)+n \\
& S=n+(n-1)+(n-2)+\cdots+2+1
\end{aligned}
$$

Adding all columns vertically, we get

$$
2 S=(n+1)+(n+1)+(n+1)+\cdots+(n+1)+(n+1)
$$

On the right side there are n terms, each of which is $n+1$, so

$$
2 S=n(n+1) \quad \text { or } \quad S=\frac{n(n+1)}{2}
$$

EXAMPLE 5 Prove the formula for the sum of the squares of the first n positive integers:

$$
\sum_{i=1}^{n} i^{2}=1^{2}+2^{2}+3^{2}+\cdots+n^{2}=\frac{n(n+1)(2 n+1)}{6}
$$

SOLUTION 1 Let S be the desired sum. We start with the telescoping sum (or collapsing

Principle of Mathematical Induction

Let S_{n} be a statement involving the positive integer n. Suppose that

1. S_{1} is true.

2. If S_{k} is true, then S_{k+1} is true.

Then S_{n} is true for all positive integers n.

See pages 76 and 79 for a more thorough discussion of mathematical induction.

$$
\begin{aligned}
\sum_{i=1}^{n}\left[(1+i)^{3}-i^{3}\right] & =\left(2^{\beta}-1^{3}\right)+\left(3^{3}-2^{z}\right)+\left(4^{8}-3^{3}\right)+\cdots+\left[(n+1)^{3}-n^{8}\right] \\
& =(n+1)^{3}-1^{3}=n^{3}+3 n^{2}+3 n
\end{aligned}
$$

On the other hand, using Theorem 2 and Examples 3 and 4, we have

$$
\begin{aligned}
\sum_{i=1}^{n}\left[(1+i)^{3}-i^{3}\right] & =\sum_{i=1}^{n}\left[3 i^{2}+3 i+1\right]=3 \sum_{i=1}^{n} i^{2}+3 \sum_{i=1}^{n} i+\sum_{i=1}^{n} 1 \\
& =3 S+3 \frac{n(n+1)}{2}+n=3 S+\frac{3}{2} n^{2}+\frac{5}{2} n
\end{aligned}
$$

Thus we have

$$
n^{3}+3 n^{2}+3 n=3 S+\frac{3}{2} n^{2}+\frac{5}{2} n
$$

Solving this equation for S, we obtain

$$
\begin{aligned}
3 S & =n^{3}+\frac{3}{2} n^{2}+\frac{1}{2} n \\
S & =\frac{2 n^{3}+3 n^{2}+n}{6}=\frac{n(n+1)(2 n+1)}{6}
\end{aligned}
$$

SOLUTION 2 Let S_{n} be the given formula.

1. S_{1} is true because $\quad 1^{2}=\frac{1(1+1)(2 \cdot 1+1)}{6}$
2. Assume that S_{k} is true; that is,

$$
1^{2}+2^{2}+3^{2}+\cdots+k^{2}=\frac{k(k+1)(2 k+1)}{6}
$$

Then

$$
\begin{aligned}
1^{2}+2^{2}+3^{2}+\cdots+(k+1)^{2} & =\left(1^{2}+2^{2}+3^{2}+\cdots+k^{2}\right)+(k+1)^{2} \\
& =\frac{k(k+1)(2 k+1)}{6}+(k+1)^{2} \\
& =(k+1) \frac{k(2 k+1)+6(k+1)}{6} \\
& =(k+1) \frac{2 k^{2}+7 k+6}{6} \\
& =\frac{(k+1)(k+2)(2 k+3)}{6} \\
& =\frac{(k+1)[(k+1)+1][2(k+1)+1]}{6}
\end{aligned}
$$

So S_{k+1} is true.
By the Principle of Mathematical Induction, S_{n} is true for all n.

We list the results of Examples 3, 4, and 5 together with a similar result for cubes (see Exercises 37-40) as Theorem 3. These formulas are needed for finding areas and evaluating integrals in Chapter 5.

3 Theorem Let c be a constant and n a positive integer. Then
(a) $\sum_{i=1}^{n} 1=n$
(b) $\sum_{i=1}^{n} c=n c$
(c) $\sum_{i=1}^{n} i=\frac{n(n+1)}{2}$
(d) $\sum_{i=1}^{n} i^{2}=\frac{n(n+1)(2 n+1)}{6}$
(e) $\sum_{i=1}^{n} i^{3}=\left[\frac{n(n+1)}{2}\right]^{2}$

EXAMPLE 6 Evaluate $\sum_{i=1}^{n} i\left(4 i^{2}-3\right)$.
SOLUTION Using Theorems 2 and 3, we have

$$
\begin{aligned}
\sum_{i=1}^{n} i\left(4 i^{2}-3\right) & =\sum_{i=1}^{n}\left(4 i^{3}-3 i\right)=4 \sum_{i=1}^{n} i^{3}-3 \sum_{i=1}^{n} i \\
& =4\left[\frac{n(n+1)}{2}\right]^{2}-3 \frac{n(n+1)}{2} \\
& =\frac{n(n+1)[2 n(n+1)-3]}{2} \\
& =\frac{n(n+1)\left(2 n^{2}+2 n-3\right)}{2}
\end{aligned}
$$

The type of calculation in Example 7 arises in Chapter 5 when we compute areas.

