This tells us to end with i = n.

This tells us to add.

This tells us to start with i = m.

A convenient way of writing sums uses the Greek letter Σ (capital sigma, corresponding to our letter S) and is called **sigma notation**.

1 Definition If $a_m, a_{m+1}, \ldots, a_n$ are real numbers and m and n are integers such that $m \leq n$, then

$$\sum_{i=m}^{n} a_i = a_m + a_{m+1} + a_{m+2} + \dots + a_{n-1} + a_n$$

With function notation, Definition 1 can be written as

$$\sum_{i=m}^{n} f(i) = f(m) + f(m+1) + f(m+2) + \dots + f(n-1) + f(n)$$

Thus the symbol $\sum_{i=m}^{n}$ indicates a summation in which the letter *i* (called the **index of summation**) takes on consecutive integer values beginning with *m* and ending with *n*, that is, *m*, *m* + 1, ..., *n*. Other letters can also be used as the index of summation.

EXAMPLE 1

(a) $\sum_{i=1}^{4} i^2 = 1^2 + 2^2 + 3^2 + 4^2 = 30$ (b) $\sum_{i=3}^{n} i = 3 + 4 + 5 + \dots + (n-1) + n$ (c) $\sum_{j=0}^{5} 2^j = 2^0 + 2^1 + 2^2 + 2^3 + 2^4 + 2^5 = 63$ (d) $\sum_{k=1}^{n} \frac{1}{k} = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n}$ (e) $\sum_{i=1}^{3} \frac{i-1}{i^2+3} = \frac{1-1}{1^2+3} + \frac{2-1}{2^2+3} + \frac{3-1}{3^2+3} = 0 + \frac{1}{7} + \frac{1}{6} = \frac{13}{42}$ (f) $\sum_{i=1}^{4} 2 = 2 + 2 + 2 + 2 = 8$

EXAMPLE 2 Write the sum $2^3 + 3^3 + \cdots + n^3$ in sigma notation.

SOLUTION There is no unique way of writing a sum in sigma notation. We could write

$$2^{3} + 3^{3} + \dots + n^{3} = \sum_{i=2}^{n} i^{3}$$
$$2^{3} + 3^{3} + \dots + n^{3} = \sum_{j=1}^{n-1} (j+1)^{3}$$

or

or

$$2^{3} + 3^{3} + \dots + n^{3} = \sum_{k=0}^{n-2} (k+2)^{3}$$

The following theorem gives three simple rules for working with sigma notation.

2 Theorem If c is any constant (that is, it does not depend on i), then
(a)
$$\sum_{i=m}^{n} ca_i = c \sum_{i=m}^{n} a_i$$
 (b) $\sum_{i=m}^{n} (a_i + b_i) = \sum_{i=m}^{n} a_i + \sum_{i=m}^{n} b_i$
(c) $\sum_{i=m}^{n} (a_i - b_i) = \sum_{i=m}^{n} a_i - \sum_{i=m}^{n} b_i$

PROOF To see why these rules are true, all we have to do is write both sides in expanded form. Rule (a) is just the distributive property of real numbers:

$$ca_m + ca_{m+1} + \cdots + ca_n = c(a_m + a_{m+1} + \cdots + a_n)$$

Rule (b) follows from the associative and commutative properties:

$$(a_m + b_m) + (a_{m+1} + b_{m+1}) + \dots + (a_n + b_n)$$

= $(a_m + a_{m+1} + \dots + a_n) + (b_m + b_{m+1} + \dots + b_n)$

Rule (c) is proved similarly.

EXAMPLE 3 Find $\sum_{i=1}^{n} 1$.

SOLUTION

 $\sum_{i=1}^{n} 1 = \underbrace{1 + 1 + \dots + 1}_{n \text{ terms}} = n$

EXAMPLE 4 Prove the formula for the sum of the first *n* positive integers:

$$\sum_{i=1}^{n} i = 1 + 2 + 3 + \dots + n = \frac{n(n+1)}{2}$$

SOLUTION This formula can be proved by mathematical induction (see page 76) or by the following method used by the German mathematician Karl Friedrich Gauss (1777–1855) when he was ten years old.

Write the sum *S* twice, once in the usual order and once in reverse order:

$$S = 1 + 2 + 3 + \dots + (n - 1) + n$$

$$S = n + (n - 1) + (n - 2) + \dots + 2 + 1$$

Adding all columns vertically, we get

$$2S = (n + 1) + (n + 1) + (n + 1) + \dots + (n + 1) + (n + 1)$$

On the right side there are *n* terms, each of which is n + 1, so

$$2S = n(n+1)$$
 or $S = \frac{n(n+1)}{2}$

EXAMPLE 5 Prove the formula for the sum of the squares of the first *n* positive integers:

$$\sum_{i=1}^{n} i^2 = 1^2 + 2^2 + 3^2 + \dots + n^2 = \frac{n(n+1)(2n+1)}{6}$$

SOLUTION 1 Let S be the desired sum. We start with the *telescoping sum* (or collapsing sum):

Most terms cancel in pairs.

$$\sum_{i=1}^{n} \left[(1+i)^3 - i^3 \right] = (2^3 - 1^3) + (3^3 - 2^3) + (4^3 - 3^3) + \dots + \left[(n+1)^3 - p^3 \right]$$
$$= (n+1)^3 - 1^3 = n^3 + 3n^2 + 3n$$

On the other hand, using Theorem 2 and Examples 3 and 4, we have

$$\sum_{i=1}^{n} \left[(1+i)^3 - i^3 \right] = \sum_{i=1}^{n} \left[3i^2 + 3i + 1 \right] = 3 \sum_{i=1}^{n} i^2 + 3 \sum_{i=1}^{n} i + \sum_{i=1}^{n} 1$$
$$= 3S + 3 \frac{n(n+1)}{2} + n = 3S + \frac{3}{2}n^2 + \frac{5}{2}n$$

Thus we have

$$n^3 + 3n^2 + 3n = 3S + \frac{3}{2}n^2 + \frac{5}{2}n$$

Solving this equation for S, we obtain

$$3S = n^3 + \frac{3}{2}n^2 + \frac{1}{2}n$$
$$S = \frac{2n^3 + 3n^2 + n}{6} = \frac{n(n+1)(2n+1)}{6}$$

or

SOLUTION 2 Let S_n be the given formula.

1.
$$S_1$$
 is true because $1^2 = \frac{1(1+1)(2 \cdot 1 + 1)}{6}$

2. Assume that
$$S_k$$
 is true; that is,

$$1^{2} + 2^{2} + 3^{2} + \dots + k^{2} = \frac{k(k+1)(2k+1)}{6}$$

Then

$$1^{2} + 2^{2} + 3^{2} + \dots + (k+1)^{2} = (1^{2} + 2^{2} + 3^{2} + \dots + k^{2}) + (k+1)^{2}$$
$$k(k+1)(2k+1)$$

$$= \frac{k(k+1)(2k+1)}{6} + (k+1)^{2}$$

$$= (k+1)\frac{k(2k+1) + 6(k+1)}{6}$$

$$= (k+1)\frac{2k^{2} + 7k + 6}{6}$$

$$= \frac{(k+1)(k+2)(2k+3)}{6}$$

$$= \frac{(k+1)[(k+1) + 1][2(k+1) + 1]}{6}$$

So S_{k+1} is true.

By the Principle of Mathematical Induction, S_n is true for all n.

Principle of Mathematical Induction

Let S_n be a statement involving the positive integer *n*. Suppose that 1. S_1 is true.

2. If S_k is true, then S_{k+1} is true.

Then S_n is true for all positive integers n.

See pages 76 and 79 for a more thorough discussion of mathematical induction.

We list the results of Examples 3, 4, and 5 together with a similar result for cubes (see Exercises 37-40) as Theorem 3. These formulas are needed for finding areas and evaluating integrals in Chapter 5.

3 Theorem Let c be a constant and n a positive integer. Then
(a)
$$\sum_{i=1}^{n} 1 = n$$
 (b) $\sum_{i=1}^{n} c = nc$
(c) $\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$ (d) $\sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}$
(e) $\sum_{i=1}^{n} i^3 = \left[\frac{n(n+1)}{2}\right]^2$

EXAMPLE 6 Evaluate
$$\sum_{i=1}^{n} i(4i^2 - 3)$$
.

SOLUTION Using Theorems 2 and 3, we have

$$\sum_{i=1}^{n} i(4i^2 - 3) = \sum_{i=1}^{n} (4i^3 - 3i) = 4 \sum_{i=1}^{n} i^3 - 3 \sum_{i=1}^{n} i^3$$
$$= 4 \left[\frac{n(n+1)}{2} \right]^2 - 3 \frac{n(n+1)}{2}$$
$$= \frac{n(n+1)[2n(n+1) - 3]}{2}$$
$$= \frac{n(n+1)(2n^2 + 2n - 3)}{2}$$

EXAMPLE 7 Find
$$\lim_{n \to \infty} \sum_{i=1}^{n} \frac{3}{n} \left[\left(\frac{i}{n} \right)^2 + 1 \right]$$
.
SOLUTION

 $\lim_{n\to\infty}\sum_{i=1}^n$

The type of calculation in Example 7 arises in Chapter 5 when we compute areas.

$$\frac{3}{n} \left[\left(\frac{i}{n}\right)^2 + 1 \right] = \lim_{n \to \infty} \sum_{i=1}^n \left[\frac{3}{n^3} i^2 + \frac{3}{n} \right]$$
$$= \lim_{n \to \infty} \left[\frac{3}{n^3} \sum_{i=1}^n i^2 + \frac{3}{n} \sum_{i=1}^n 1 \right]$$
$$= \lim_{n \to \infty} \left[\frac{3}{n^3} \frac{n(n+1)(2n+1)}{6} + \frac{3}{n} \cdot n \right]$$
$$= \lim_{n \to \infty} \left[\frac{1}{2} \cdot \frac{n}{n} \cdot \left(\frac{n+1}{n}\right) \left(\frac{2n+1}{n}\right) + 3 \right]$$
$$= \lim_{n \to \infty} \left[\frac{1}{2} \cdot 1 \left(1 + \frac{1}{n}\right) \left(2 + \frac{1}{n}\right) + 3 \right]$$
$$= \frac{1}{2} \cdot 1 \cdot 1 \cdot 2 + 3 = 4$$