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Theorem 0.1 (Landscape theory for finite matrix. M. L. Lyra, S. Mayboroda and M. Filoche).
Let
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where 4 € R™ is the landscape function satisfying
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1 Useful lemmas

Lemma 1.1. Let H be given in (0.1). If If v; > 2,5 = 1,---,n, then H is invertible. Let
Gij = H'(i,7) be the (i,j) entry of the inverse of H. As a consequence, there is always a @ € R
satisfying eq. (0.3)), with explicit expression as

U ZZij. (1'1)
k=1

Moreover, all the eigenvalues of H are strictly positive.

Lemma 1.2. Let H, G;; = H™'(i,j) and u; be as above. G;; > 0 for all i,j. As a consequence,
u; > 0. (12)

Exercise 1.3. Use Lemma[I.2] to prove Theorem



2 Proof of Lemma [1.1: Existence of Green’s function

Let H =V — Hy, where

vy O 0 - 0 0 1 o --- 0
0 vy 0 : 1 0 1 :
VZ 0 0 s and H(): 0 0 (21)
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Exercise 2.1. Consider the usual matrix 2-norm || - || (defined in HW1). Prove that ||Hp|| < 2. As
a consequence, all eigenvalues {1, pio, - - - , ptn } of Hp are contained in [—2,2], i.e. |p;| < 2 for all j.
Proof. Let
0 0 0 0 0 1 0 0
1 0 0 : 0 0 1 :
.0 0 0 1
0 0 1 0 0 0 0 0
Clearly, Hy = L + R. For any ¥ = (x1,22,--- ,2,)7, direct computation shows that
X1 0
T2 Z1
X3 X2
RZ =R = (2.3)
Tp—1 Tp—2
Tn Tn—1
Therefore,
IRZ|* = af + a3+ +ap_y Sai+ad+ - +an_y +ap = |7 (2.4)

which implies | RZ|| < ||Z]|. According to the definition of the matrix norm and (2.4):

Ry
1R|) = max I EE1 < (2.5)
z#0 |7l

Exact the same argument shows that ||L|| < 1. Therefore, by the property (triangle inequality) of
the matrix norm, we have that

[ Holl < [[L]| + | BRIl < 2, (2.6)
which completes the proof. O
Exercise 2.2. Assume first that v; > 2,5 = 1,--- ,n, (all v; are strictly greater than 2). Prove

that H =V — Hy is invertible.

Exercise 2.3. Prove that |p;| < 2, i.e., —2 and 2 are not eigenvalues of Hy.
Hint: consider the difference equation HyZ = 2%, where ¥ = (x1,- -+ ,xy), as part of the infinite
system (see Ex. (2.6)) below), with zero boundary condition z¢ = z,4+1 = 0.



Exercise 2.4. Prove that | Ho| < 2.
Hint: prove that for any symmetric n x n matrix A

Al := sup ||AZ|| = max |u;l, 2.7
IA41= s 147] = s s (27

where {1, 2, -+, un } are the eigenvalues of A.
Exercise 2.5. Complete the proof of Lemma under the assumption v; > 2,5 =1,--- ,n,.
Exercise 2.6. (Supplementary problem) Consider the difference equation (on a infinite lattice)
Tpal +Tpn1 =Axp, n€Z, NeC (2.8)
1. Prove that the following expression solves eq. 2.8/ for all n € Z

A+VA2—4

Tp=cL p"+eopu ", c1,c0€C, p= 5 (2.9)

And find ¢; ¢o (in terms of u) if kg = 0,21 = 1.

2. For any |\| # 2, consider the two infinite sequences @&, 5 given by u' and p=", i.e.,
0_2: ( 705—170[03011;0427"') = ( ,M71,17M17M27...) (210)
/g: ( aﬂ—lvﬂ07617/827“') = ( 7/1‘1517.[1717#727“') (211)
Prove that
W(O_Z _') — det An41 ﬂn—‘rl (212)
’ Qo ﬁn

is a constant (independent of n). [[]

3. Putting 1 and 2 together, we actually can say that if |A| # 2, then all solutions & = {z;} to
eq. (2.8)) is a linear combination of &, 3,

T=cod+cif3 (2.13)

—

This is not the case if |A| = 2. Prove that if |A\| = 2, then & = 5 = a constant vector. Then
find another solution (a non-constant vector) ¥ = {7,}, which solves eq. (2.8) (for A = 2)
and satisfies that W (&,¥) is a constant.

3 Proof of Lemma [1.2; Positivity of the Green’s function

3.1 Maximum principle and the first (original) proof
Lemma 3.1 (Maximum principle). Let H be given as in (0.1). For any & € R™, let ¥ = HZ. If
yi >0 foralli=1,2,--- ,n, then

z; >0, i=1,2,---,n. (3.1)

LW is usually referred to be the Wronski of the system (or simply of eq. (2.8)), which plays important role in the
general study of second order difference/differential equations.




Exercise 3.2. Prove Lemma [3.1] by contradiction.

Hint: consider the equation HY = § as a boundary problem on the extended lattice: [0,1, - ,n,n+
1], with zero boundary condition: xy = xp41 = 0. Fiz ¢, assume that there is a minimum inside
the lattice, that is, there exists j € [1,--- ,n] such that z; < z;11 and x; < xj_1. Prove that this
will contradict the condition that y; > 0 for alli=1,2,--- | n.

Lemma 3.3 (Strong Maximum principle). Following the notation in Lemma if we assume
additionally that there exist an ig such that y;, > 0 (strictly positive), then

2;>0, i=1,2-,n. (3.2)

Exercise 3.4. Prove Lemma [3:3] by contradiction.

Hint: continue with Lemma assume that there exists j € [1,--- ,n] such that x; = 0. Prove
that this will lead to y; > 0 for all i =1,2,--- ,n, which contradict the condition that y;, > 0 for
some ig.

0
0
Lemma 3.5. Leté&; = [1],5=1,2---,n be the standard basis of R"™, with 0 entries except for
0
0
1 in the j-th place. Let
G1j
L |G
g= : (3.3)
Gnj

be the j-th column vector of H=*, where H=* = {G;;} is given as in Lemma . Prove that for all
j: 1727"' y 1,

Hj=¢ 3.4
J

Exercise 3.6. Use Lemma [3.3] and Lemma [3.5] to prove Lemma [T.2
Hints: apply Lemma to each pair of G and €;.

3.2 Power series expansion and an alternative proof of Lemma [1.2
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