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Abstract

The main result of this paper is that, for κ ∈ (0, 4], whole-plane SLEκ satisfies reversibil-
ity, which means that the time-reversal of a whole-plane SLEκ trace is still a whole-plane
SLEκ trace. In addition, we find that the time-reversal of a radial SLEκ trace for κ ∈ (0, 4]
is a disc SLEκ trace with a marked boundary point. The main tool used in this paper is a
stochastic coupling technique, which is used to couple two whole-plane SLEκ traces so that
they overlap. Another tool used is the Feynman-Kac formula, which is used to solve a PDE.
The solution of this PDE is then used to construct the above coupling.

1 Introduction

The stochastic Loewner evolution (SLE) introduced by Oded Schramm ([17]) describes some
random fractal curves in plane domains that satisfy conformal invariance and Domain Markov
Property. These two properties make SLEs the most suitable candidates for the scaling limits
of many two-dimensional lattice models at criticality. These models are proved or conjectured
to converge to SLE with different parameters (e.g., [11][12][18][19][21][22]). For basics of SLE,
the reader may refer to [7] and [16].

There are several different versions of SLEs, among which chordal SLE and radial SLE are
the most well-known. A chordal or radial SLE trace is a random fractal curve that grows in a
simply connected plane domain from a boundary point. A chordal SLE trace ends at another
boundary point, and a radial SLE trace ends an interior point. Their behaviors both depend
on a positive parameter κ. When κ ∈ (0, 4], both traces are simple curves, and all points on
the trace other than the initial and final points lie inside the domain. When κ > 4, the traces
have self-intersections.

A stochastic coupling technique was introduced in [26] to prove that, for κ ∈ (0, 4], chordal
SLEκ satisfies reversibility, which means that if β is a chordal SLEκ trace in a domain D from
a to b, then after a time-change, the time-reversal of β becomes a chordal SLEκ trace in D
from b to a. The technique was later used ([27][28]) to prove Duplantier’s duality conjecture,
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which says that, for κ > 4, the boundary of the hull generated by a chordal SLEκ trace looks
locally like an SLE16/κ trace. The technique was also used to prove that the radial or chordal
SLE2 can be obtained by erasing loops on a planar Brownian motion ([31]), and the chordal
SLE(κ, ρ) introduced in [11] also satisfies reversibility for κ ∈ (0, 4] and ρ ≥ κ/2− 2 ([29]).

Since the initial point and final point of a radial SLE are topologically different, the time-
reversal of a radial SLE trace can not be a radial SLE trace. However, we may consider whole-
plane SLE instead, which describes a random fractal curve in the Riemann sphere Ĉ = C∪{∞}
that grows from one interior point to another interior point. Whole-plane SLE is related to
radial SLE as follows: conditioned on the initial part of a whole-plane SLEκ trace, the rest
part of such trace has the distribution of a radial SLEκ trace that grows in the complementary
domain of the initial part of this trace. The main result of this paper is the following theorem.

Theorem 1.1. Whole-plane SLEκ satisfies reversibility for κ ∈ (0, 4].

The theorem in the case κ = 2 has been proved in [30]. The proof used the reversibility of
loop-erased random walk (LERW for short, see [6]) and the convergence of LERW to whole-plane
SLE2. In this paper we will obtain a slightly more general result: the reversibility of whole-
plane SLE(κ, s) process, which is defined by adding a constant drift to the driving function for
the whole-plane SLEκ process. This is the statement of Theorem 7.1.

To get some idea of the proof, let’s first review the proof of the reversibility of chordal SLEκ
in [26]. We constructed a pair of chordal SLEκ traces γ1 and γ2 in a simply connected domain
D, where γ1 grows from a boundary point a1 to another boundary point a2, γ2 grows from a2 to
a1, and these two traces commute in the following sense. Fix j 6= k ∈ {1, 2}, if Tk is a stopping
time for γk, then conditioned on γk(t), t ≤ Tk, the part of γj before hitting γk(t)((0, Tk]) has
the distribution of a chordal SLEκ trace that grows from aj to γk(Tk) in Dk(Tk), which is a
component of D \ γk(t)((0, Tk]). In the case κ ≤ 4, a.s. γj hits γk(t)((0, Tk]) exactly at γk(Tk),
so γj visits γk(Tk) before any γk(t), t < Tk. Since this holds for any stopping time Tk for γk,
the two traces a.s. overlap, which implies the reversibility.

To prove the reversibility of whole-plane SLEκ, we want to construct two whole-plane SLEκ
traces in D = Ĉ, one is γ1 from a1 to a2, the other is γ2 from a2 to a1, so that γ1 and γ2

commute. Here we can not expect that they commute in exactly the same sense as in the above
paragraph. Note that conditioned on γk(t), t ≤ Tk, the part of γj before hitting γk(t), t ≤ Tk,
can not have the distribution of a whole-plane SLEκ trace in Dk(Tk) from a1 to γk(Tk) because
now the complementary domain Dk(Tk) is topologically different from Ĉ, while whole-plane
SLEs are only defined in Ĉ. Since the conditional curve grows from an interior point to a
boundary point, it is neither a radial SLE trace nor a chordal SLE trace.

Thus, we need to define SLE traces in simply connected domains that grow from an interior
point to a boundary point. We use the idea of defining whole-plane SLE using radial SLE.
The situation here is a little different: after a positive initial part, the rest part of the curve
grows in a doubly connected domain. Another difference is that there is a marked point on the
boundary of the initial domain. In this paper, we use the annulus Loewner equation introduced
in [23] together with an annulus drift function Λ = Λ(t, x) to define the so-called annulus
SLE(κ,Λ) process in a doubly connected domain D, which starts from a point a ∈ ∂D, and
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whose growth is affected by a marked point b ∈ ∂D. In the case when a and b lie on different
boundary components, by shrinking the boundary component containing a to a singlet, we get
the so called disc SLE(κ,Λ), which describes a random curve that grows in a simply connected
domain and starts from an interior point.

We find that if Λ = κΓ′

Γ , where Γ is a positive differentiable function defined on (0,∞)×R
that solves a linear PDE and satisfies some periodic condition (see (4.1) and (4.2)), then using
the coupling technique we could construct a coupling of two whole-plane SLEκ traces: γ1 and
γ2, which commute in the sense that, conditioned on one curve up to a finite stopping time T ,
the other curve is a disc SLE(κ,Λ) trace in the remaining domain, and its marked point is the
tip point of the first curve at T .

The main new idea in the current paper is an application of a Feynman-Kac representation,
which is used to get a formal solution of the PDE for Γ in the case κ ∈ (0, 4]. Using Fubini’s
Theorem, Itô’s formula, and some estimations, we prove that the formal solution Γκ is smooth

and solves the PDE. We then find that Λκ := κΓ′κ
Γκ

satisfies the property that the marked point
for an annulus or disc SLE(κ,Λκ) process is a subsequential limit point of the trace. This
property implies that, if two whole-plane SLEκ traces commute as in the previous paragraph,
then they must overlap. So the main theorem is proved. Moreover, from the relation between
whole-plane SLEκ and radial SLEκ, we conclude that, for κ ∈ (0, 4], the time-reversal of a radial
SLEκ trace is a disc SLE(κ,Λκ) trace.

The marked point and the initial point of an annulus SLE(κ,Λ) process could also lie on
the same boundary component. In this case, if Λ = κΓ′

Γ , and Γ satisfies a similar linear PDE
(see (4.48)), then for a doubly connected domain D with two boundary points a1 and a2 on
the same boundary component, we can construct a pair of annulus SLE(κ,Λ) traces γ1 and γ2

in D, which commute with each other. If an SLE process in a doubly connected domain is the
scaling limit of some random path in a lattice, which satisfies reversibility at the discrete level,
then such SLE should satisfy reversibility. We hope that the work in this paper will shed some
light on the study of these processes.

The study on the commutation relations of SLE in doubly connected domains continues
the work in [5] by Dubédat, who used some tools from Lie Algebra to obtain commutation
conditions of SLE in simply connected domains. The annulus SLE(κ,Λκ) process used to prove
the reversibility of whole-plane SLEκ was later studied in [32]. When κ = 8/3, the process
satisfies the restriction property, which is similar to the restriction property for chordal SLE8/3

(see [11]). For κ ∈ (0, 4] \ {8/3}, it satisfies some “weak” restriction property.
G. F. Lawler ([8]) used a different method to define annulus SLEκ processes for κ ∈ (0, 4],

which agree with our annulus SLE(κ,Λκ) processes. His construction uses the Brownian loop
measures. The “strong” (κ = 8/3) and “weak” (κ 6= 8/3) restriction properties of Lawler’s
annulus SLE processes are immediate from the definition; and the reversibility of these processes
follows from the chordal reversibility. However, the reversibility of whole-plane SLE is not
proved in [8]. To get the whole-plane reversibility, some additional work is required based on
Lawler’s work. In this paper, the reversibility of annulus SLE(κ,Λκ) and the reversibility of
whole-plane SLEκ are proved separately, and the coupling technique is applied in both proofs,
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which are similar though.
J. Miller and S. Sheffield recently proved the reversibility of whole-plane SLE ([15]) for all

κ ∈ [0, 8]. Their proof uses the imaginary geometry of Gaussian free field developed in their
earlier papers (c.f. [14]).

This paper is organized as follows. In Section 2, we introduce some symbols and notations.
In Section 3, we review several versions of Loewner equations. In Section 3.4, we define annulus
SLE(κ,Λ) and disc SLE(κ,Λ) processes, whose growth is affected by one marked boundary
point. In Section 4 we prove that when Γ solves (4.1) or (4.48), there is a commutation coupling
of two annulus SLE(κ,Λ) processes, where Λ = κΓ′

Γ . In Section 5, we construct a coupling of
two whole-plane SLE processes, which is similar to the coupling in the previous section. In
Section 6, we solve PDE (4.1) using a Feynman-Kac expression, and the solution is then used
in Section 7 to prove the reversibility of whole-plane SLEκ process. In fact, we obtain a slightly
more general result: the reversibility of skew whole-plane SLEκ processes for κ ∈ (0, 4]. In the
last section, we find some solutions to the PDE for Γ and Λ when κ ∈ {0, 2, 3, 4, 16/3}, which
can be expressed in terms of well-known special functions.

Acknowledgements. I would like to thank Alexander Volberg for his suggestions on trans-
forming PDE (4.4) into (4.5), and thank Zhen-Qing Chen for his help on Lemma 6.2. I also
thank Gregory Lawler for his valuable comments and suggestions.

2 Preliminary

2.1 Symbols

Throughout this paper, we will use the following symbols. Let Ĉ = C ∪ {∞}, D = {z ∈ C :
|z| < 1}, T = {z ∈ C : |z| = 1}, and H = {z ∈ C : Im z > 0}. For p > 0, let Ap = {z ∈ C :
1 > |z| > e−p} and Sp = {z ∈ C : 0 < Im z < p}. For p ∈ R, let Tp = {z ∈ C : |z| = e−p} and
Rp = {z ∈ C : Im z = p}. Then ∂D = T, ∂H = R, ∂Ap = T ∪ Tp, and ∂Sp = R ∪ Rp. Let ei

denote the map z 7→ eiz. Then ei is a covering map from H onto D, and from Sp onto Ap; and
it maps R onto T and maps Rp onto Tp. For a doubly connected domain D, we use mod(D) to
denote its modulus. For example, mod(Ap) = p.

A conformal map in this paper is a univalent analytic function. A conjugate conformal map
is defined to be the complex conjugate of a conformal map. Let I0(z) = 1/z be the reflection
w.r.t. T. Then I0 is a conjugate conformal map from Ĉ onto itself, fixes T, and interchanges 0
and ∞. Let Ĩ0(z) = z be the reflection w.r.t. R. Then Ĩ0 is a conjugate conformal map from
C onto itself and satisfies ei ◦ Ĩ0 = I0 ◦ ei. For p > 0, let Ip(z) := e−p/z and Ĩp(z) = ip + z.

Then Ip and Ĩp are conjugate conformal automorphisms of Ap and Sp, respectively. Moreover,

Ip interchanges Tp and T, Ĩp interchanges Rp and R, and Ip ◦ ei = ei ◦ Ĩp.
We will frequently use functions cot(z/2), tan(z/2), coth(z/2), tanh(z/2), sin(z/2), cos(z/2),

sinh(z/2), and cosh(z/2). For simplicity, we write 2 as a subscript. For example, cot2(z) means
cot(z/2), and we have cot′2(z) = −1

2 sin−2
2 (z).

An increasing function in this paper will always be strictly increasing. For a real interval
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J , we use C(J) to denote the space of real continuous functions on J . The maximal solution
to an ODE or SDE with initial value is the solution with the biggest definition domain.

Many functions in this paper depend on two variables. In some of these functions, the
first variable represents time or modulus, and the second variable does not. In this case, we
use ∂t and ∂nt to denote the partial derivatives w.r.t. the first variable, and use ′, ′′, and the
superscripts (h) to denote the partial derivatives w.r.t. the second variable. For these functions,
we say that it has period r (resp. is even or odd) if it has period r (resp. is even or odd) in
the second variable when the first variable is fixed. Some functions in Section 4 and Section 5
depend on two variables: t1 and t2, which both represent time. In this case we use ∂j to denote
the partial derivative w.r.t. the j-th variable, j = 1, 2.

In this paper, a domain is a connected open subset of Ĉ, and a continuum is a connected
compact subset of Ĉ that contains more than one point. A continuum K is called a hull in C
if K ⊂ C and Ĉ \K is connected. In this case, there is a unique conformal map fK from Ĉ \D
onto Ĉ\K and satisfies limz→∞ fK(z)/z = aK for some positive number aK . Then aK is called
the capacity of K, and is denoted by cap(K).

A doubly connected domain in this paper is a domain whose complement is a disjoint union
of two continuums. Let D be a doubly connected domain. If K is a relatively closed subset
of D, has positive distance from one boundary component of D, and if D \ K is also doubly
connected, then we call K a hull in D, and call the number mod(D)−mod(D \K) the capacity
of K in D, and let it be denoted by capD(K).

2.2 Brownian motions

Throughout this paper, a Brownian motion means a standard one-dimensional Brownian mo-
tion, and B(t), 0 ≤ t <∞, will always be used to denote a Brownian motion. This means that
B(t) is continuous, B(0) = 0, and B(t) has independent increment with B(t)−B(s) ∼ N(0, t−s)
for t ≥ s ≥ 0. For κ ≥ 0, the rescaled Brownian motion

√
κB(t) will be used to define annulus

SLEκ. The symbols B∗(t), B̂∗(t), or B̃∗(t) will also be used to denote a Brownian motion, where
the ∗ stands for subscript. Let (Ft)t≥0 be a filtration. By saying that B(t) is an (Ft)-Brownian
motion, we mean that (B(t)) is (Ft)-adapted, and for any fixed t0 ≥ 0, B(t0 + t)−B(t0), t ≥ 0,
is a Brownian motion independent of Ft0 .

Definition 2.1. Let κ > 0 and (Ft)t∈R be a right-continuous filtration. A process B(κ)(t),
t ∈ R, is called a pre-(Ft)-(T;κ)-Brownian motion if (ei(B(κ)(t))) is (Ft)-adapted, and for any
t0 ∈ R,

Bt0(t) :=
1√
κ

(
B(κ)(t0 + t)−B(κ)(t0)

)
, 0 ≤ t <∞, (2.1)

is an (Ft0+t)-Brownian motion. If (Ft) is generated by (ei(B(κ)(t))), then we simply call
(B(κ)(t)) a pre-(T;κ)-Brownian motion.

Remark. The name of the pre-(T;κ)-Brownian motion comes from the fact that BT(t) :=
ei(B(κ)(t)), t ∈ R, is a Brownian motion on T with speed κ: for every t0 ∈ R, BT(t0) is
uniformly distributed on T; and BT(t0 + t)/BT(t0), t ≥ 0, has the distribution of ei(

√
κB(t)),
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t ≥ 0, and is independent of BT(t), t ≤ t0. One may construct B(κ)(t) as follows. Let B+(t) and
B−(t), t ≥ 0, be two independent Brownian motions. Let x be a random variable uniformly
distributed on [0, 2π), which is independent of (B±(t)). Let B(κ)(t) = x +

√
κBsign(t)(|t|) for

t ∈ R. Then B(κ)(t), t ∈ R, is a pre-(T;κ)-Brownian motion.

Definition 2.2. Let B(κ)(t), t ∈ R, be a pre-(Ft)-(T;κ)-Brownian motion, where (Ft) is right-
continuous, and every Ft contains all eligible events w.r.t. the process (ei(B(κ)(t))). Suppose
T is an (Ft)-stopping time, and T > t0 for a deterministic number t0 ∈ R. We say that X(t)
satisfies the (Ft)-adapted SDE

dX(t) = a(t)dB(κ)(t) + b(t)dt, −∞ < t < T,

if ei(X(t)), a(t), and b(t) are continuous and (Ft)-adapted, and if for any deterministic number
t0 with t0 < T , Xt0(t) := X(t0 + t)−X(t0) satisfies the following (Ft0+t)t≥0-adapted SDE with
the traditional meaning (c.f. Chapter IV, Section 3 of [13]):

dXt0(t) = at0(t)
√
κdBt0(t) + bt0(t)dt, 0 ≤ t < T − t0,

where Bt0(t) is given by (2.1), at0(t) := a(t0 + t), and bt0(t) := b(t0 + t). Note that Bt0(t) is an
(Ft0+t)t≥0-Brownian motion, Xt0(t), at0(t) and bt0(t) are all (Ft0+t)t≥0-adapted.

2.3 Special functions

We now introduce some functions that will be used to define annulus Loewner equations. For
t > 0, define

S(t, z) = lim
M→∞

M∑
k=−M

e2kt + z

e2kt − z
= P.V.

∑
2|n

ent + z

ent − z
,

H(t, z) = −iS(t, ei(z)) = −iP.V.
∑
2|n

ent + eiz

ent − eiz
= P.V.

∑
2|n

cot2(z − int).

Then H(t, ·) is a meromorphic function in C, whose poles are {2mπ + i2kt : m, k ∈ Z}, which
are all simple poles with residue 2. Moreover, H(t, ·) is an odd function and takes real values
on R \ {poles}; Im H(t, ·) ≡ −1 on Rt; H(t, z + 2π) = H(t, z) and H(t, z + i2t) = H(t, z) − 2i
for any z ∈ C \ {poles}.

The power series expansion of H(t, ·) near 0 is

H(t, z) =
2

z
+ r(t)z +O(z3), (2.2)

where r(t) =
∑∞

k=1 sinh−2(kt)− 1
6 . As t→∞, S(t, z)→ 1+z

1−z , H(t, z)→ cot2(z), and r(t)→ −1
6 .

So we define S(∞, z) = 1+z
1−z , H(∞, z) = cot2(z), and r(∞) = −1

6 . Then r is continuous on
(0,∞], and (2.2) still holds when t = ∞. In fact, we have r(t)− r(∞) = O(e−t) as t → ∞, so
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we may define R on (0,∞] by R(t) = −
∫∞
t (r(s)− r(∞))ds. Then R is continuous on (0,∞],

R(t) = O(e−t) as t→∞, and for 0 < t <∞,

R′(t) = r(t)− r(∞). (2.3)

Let SI(t, z) = S(t, e−tz) − 1 and HI(t, z) = −iSI(t, eiz) = H(t, z + it) + i. It is easy to
check:

SI(t, z) = P.V.
∑
2-n

ent + z

ent − z
, HI(t, z) = P.V.

∑
2-n

cot2(z − int). (2.4)

So HI(t, ·) is a meromorphic function in C with poles {2mπ + i(2k + 1)t : m, k ∈ Z}, which
are all simple poles with residue 2; HI(t, ·) is an odd function and takes real values on R; and
HI(t, z + 2π) = HI(t, z), HI(t, z + i2t) = HI(t, z)− 2i for any z ∈ C \ {poles}.

It is possible to express H and HI using classical functions. Let θ(ν, τ) and θk(ν, τ), k =
1, 2, 3, be the Jacobi theta functions defined in Chapter V, Section 3 of [1]. Define Θ(t, z) =
θ( z

2π ,
it
π ) and ΘI(t, z) = θ2( z

2π ,
it
π ). Then ΘI has period 2π, Θ has antiperiod 2π, and

H = 2
Θ′

Θ
, HI = 2

Θ′I
ΘI

. (2.5)

These follow from the product representations of Θ and ΘI . For example,

ΘI(t, z) =

∞∏
m=1

(1− e−2mt)(1− e−(2m−1)teiz)(1− e−(2m−1)te−iz). (2.6)

Both Θ and ΘI solve the heat equation

∂tΘ = Θ′′, ∂tΘI = Θ′′I . (2.7)

So H and HI solve the PDE:

∂tH = H′′ + H′H, ∂tHI = H′′I + H′IHI . (2.8)

We rescale the functions H and HI as follows. For t > 0 and z ∈ C, let

Ĥ(t, z) =
π

t
H
(π2

t
,
π

t
z
)

+
z

t
, ĤI(t, z) =

π

t
HI

(π2

t
,
π

t
z
)

+
z

t
. (2.9)

Since Ĥ and ĤI have period 2π,

Ĥ(t, z + 2kt) = Ĥ(t, z) + 2k, ĤI(t, z + 2kt) = ĤI(t, z) + 2k, k ∈ Z. (2.10)

From the identities for θ in [1] or formula (3) in [24], we see H(t, z) = iπtH(π
2

t , i
π
t z)−

z
t . So

Ĥ(t, z) = −iH(t,−iz) = P.V.
∑
2|n

coth2(z − nt). (2.11)
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Since HI(t, z) = H(t, z + it) + i,

ĤI(t, z) = Ĥ(t, z + πi) = P.V.
∑
2|n

tanh2(z − nt). (2.12)

From (2.8) and (2.9) we may check that

− ∂tĤ = Ĥ
′′

+ Ĥ
′
Ĥ, −∂tĤI = Ĥ

′′
I + Ĥ

′
IHI . (2.13)

From (2.11) and (2.12) we see that Ĥ(t, ·)→ coth2 and ĤI(t, ·)→ tanh2 as t→∞.
From (2.4) we see that as t → ∞, HI(t, z) → 0, so its derivatives about z also tend to 0.

The following lemma gives some estimations of these limits.

Lemma 2.1. If | Im z| < t, then

|HI(t, z)| ≤
4e| Im z|−t

(1− e| Im z|−t)2(1− e2(| Im z|−t))
. (2.14)

If t ≥ | Im z| + 2, then |HI(t, z)| < 5.5e| Im z|−t. For any h ∈ N, if t ≥ | Im z| + h + 2, then

|H(h)
I (t, z)| < 15

√
he| Im z|−t.

Proof. From (2.4), if | Im z| < t, then

|HI(t, z)| =

∣∣∣∣∣
∞∑
k=0

(e(2k+1)t + eiz

e(2k+1)t − eiz
+
e−(2k+1)t + eiz

e−(2k+1)t − eiz
)∣∣∣∣∣

=

∣∣∣∣∣
∞∑
k=0

2 sin(z)

cosh((2k + 1)t)− cos(z)

∣∣∣∣∣ ≤
∞∑
k=0

2e| Im z|

cosh((2k + 1)t)− cosh(| Im z|)
. (2.15)

Here we use the facts that | sin(z)| ≤ e| Im z| and | cos(z)| ≤ cosh(| Im z|) < cosh(t). Let h0 =
t− | Im z| > 0. Then for k ≥ 0,

cosh((2k + 1)t)− cosh(| Im z|) = 2 sinh2((2k + 1)t+ | Im z|) sinh2((2k + 1)t− | Im z|)

=
1

2
e((2k+1)t+| Im z|)/2(1− e−(2k+1)t−| Im z|)e((2k+1)t−| Im z|)/2(1− e−(2k+1)t+| Im z|)

≥ 1

2
e((2k+1)t+| Im z|)/2e((2k+1)t−| Im z|)/2(1− e−h0)2 =

1

2
e(2k+1)t(1− e−h0)2.

So the RHS of (2.15) is not bigger than

∞∑
k=0

4e| Im z|e−(2k+1)t

(1− e−h0)2
=

4e| Im z|−t

(1− e−h0)2(1− e−2t)
≤ 4e−h0

(1− e−h0)2(1− e−2h0)
.

So we proved (2.14).
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If t ≥ | Im z| + 2, then 4/((1− e| Im z|−t)2(1− e2(| Im z|−t))) ≤ 4/((1 − e−2)2(1 − e−4)) < 5.5.
From (2.14) we have |HI(t, z)| < 5.5e| Im z|−t. Now we assume h ∈ N and t ≥ | Im z| + h + 2.
Then for any w ∈ C with |w − z| = h, we have t ≥ | Imw| + 2, so |HI(t, w)| < 5.5e| Imw|−t ≤
5.5ehe| Im z|−t. From Cauchy’s integral formula and Stirling’s formula, we have

|H(h)
I (t, z)| ≤ 5.5

h!eh

hh
e| Im z|−t ≤ 5.5

√
2πhe1/(12h)e| Im z|−t < 15

√
he| Im z|−t.

3 Loewner Equations

3.1 Whole-plane Loewner equation

To motivate the definition of the whole-plane Loewner equation, let’s start with the well-
known radial Leowner equation with reflection about the unit circle T. Let T ∈ (0,∞]. Let
βI : [0, T ) → C be a simple curve with βI(0) ∈ T and β(t) ∈ C \ D for t ∈ (0, T ). Let

KI(t) = D ∪ βI((0, t]), 0 ≤ t < T . Then each KI(t) is a hull in C, and the capacity increases
continuously in t. After a time-change, we may assume that cap(KI(t)) = et, 0 ≤ t < T . Let
gI(t, ·) be the unique conformal map from C \KI(t) conformally onto C \D with normalization
limz→∞ z/gI(t, z) = et. It turns out that there is ξ ∈ C([0, T )) such that gI(t, ·) satisfies the
radial Loewner equation

∂tgI(t, z) = gI(t, z)
eiξ(t) + gI(t, z)

eiξ(t) − gI(t, z)
(3.1)

with initial value gI(0, z) = z. In fact, each gI(t, ·)−1 extends continuously to T, and maps eiξ(t)

to βI(t), and the function ξ is determined by βI up to an integer multiple of 2π.
Let a ∈ R and T ∈ (a,∞]. Now suppose a simple curve βI : [a, T )→ C satisfies βI(0) ∈ eaT

and βI(t) ∈ C \ eaD for t ∈ (a, T ). Let KI(t) = eaD ∪ βI((a, t]), a ≤ t < T . Assume that
cap(KI(t)) = et, a ≤ t < T . Then the mappings gI(t, ·) determined by KI(t) also satisfy
(3.1) for some ξ ∈ C([a, T )), and the initial value now is gI(0, z) = e−az. Let a tend to −∞,
then the initial point of βI approaches 0. So let’s consider a simple curve βI : [−∞, T ) → C
with βI(−∞) = 0. Let KI(t) = βI([−∞, t]), −∞ < t < T . Assume that cap(KI(t)) = et,
−∞ < t < T . Then the mappings gI(t, ·) determined by KI(t) still satisfy (3.1) for some
ξ ∈ C((−∞, T )), and they have an asymptotic initial value at t = −∞:

lim
t→−∞

etgI(t, z) = z, z ∈ C \ {0}. (3.2)

For this reason, we also call (3.1) the whole-plane Loewner equation.
We now reverse the above process. Let T ∈ (−∞,∞] and ξ ∈ C((−∞, T )). Let gI(t, ·),

−∞ < t < T , be the solution of the whole-plane Loewner equation (3.1) with the asymptotic
initial value (3.2). Note that for each fixed z, (3.1) is an ODE in t. For each t ∈ (−∞, T ), let
KI(t) be the set of z ∈ C at which gI(t, ·) is not defined. Then KI(t) and gI(t, ·), −∞ < t < T ,
are called the whole-plane Loewner hulls and maps driven by ξ.
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Remark. Since the asymptotic initial value is used, the existence and uniqueness of the
solution is not trivial. From Proposition 4.21 in [7] we know that KI(t) and gI(t, ·) exist and
are determined by eiξ(s), −∞ < s ≤ t. Moreover, each gI(t, ·) maps Ĉ \ KI(t) conformally
onto Ĉ \ D and fixes ∞, and gI(t, z) = e−tz + O(1) near ∞. So each KI(t) is a hull in C with
cap(KI(t)) = et. The whole-plane Loewner equation can be viewed as a mapping which takes
the driving function ξ to a family of hulls (KI(t)) or conformal maps (gI(t, ·)). The family
(KI(t)) increases in t, but may not be simple curves.

We say that ξ generates a whole-plane Loewner trace βI if

βI(t) := lim
|z|>1,z→eiξ(t)

gI(t, ·)−1(z)

exists for t ∈ (−∞, T ), and if βI(t), −∞ ≤ t < T , is a continuous curve in C. Such a trace, if
it exists, starts from 0, i.e., βI(−∞) := limt→−∞ βI(t) = 0. The trace is called simple if βI(t),
−∞ ≤ t < T , has no self-intersection. If ξ generates a whole-plane Loewner trace βI , then for
each t, C \KI(t) is the unbounded component of C \ βI([−∞, t]). In particular, if βI is simple,
then KI(t) = βI([−∞, t]) for each t, and we recover an earlier picture.

Let κ > 0. A pre-(T;κ)-Brownian motion a.s. generates a whole-plane Loewner trace, which
is called a standard whole-plane SLEκ trace. The trace goes from 0 to∞, i.e., limt→∞ βI(t) =∞.
If κ ∈ (0, 4], the trace is simple. If the driving function is the sum of a pre-(T;κ)-Brownian
motion and s0t for some constant s0 ∈ R, then we also get a whole-plane Loewner trace, which is
called a standard whole-plane SLE(κ, s0) trace. The trace still goes from 0 to∞ as t→∞, and
is simple when κ ≤ 4. For any z1 6= z2 ∈ Ĉ, we may define whole-plane SLEκ and SLE(κ, s0)
trace from z1 to z2 via Möbius transform.

Remark. Whole-plane SLEκ is related to radial SLE in the way that, if T ∈ R is fixed, then
conditioned on KI(t), −∞ < t ≤ T , the curve βI(T + t), t ≥ 0, is the radial SLEκ trace in
Ĉ\KI(T ) from βI(T ) to∞. Whole-plane SLE(κ, s0) is related to radial SLE(κ,−s0) (the radial
Loewner process driven by

√
κB(t)− s0t) in a similar way. The additional negative sign is due

to the reflection about T.

We will need the following inverted whole-plane Loewner process, which grows from∞. For
−∞ < t < T , let K(t) = I0(KI(t)) and g(t, ·) = I0 ◦ gI(t, ·) ◦ I0. Then for each t, g(t, ·) maps
Ĉ \K(t) conformally onto D and fixes 0. Moreover, g(t, ·) satisfies (3.1) with some initial value
at −∞. We call K(t) and g(t, ·) the inverted whole-plane Loewner hulls and maps driven by ξ.
If ξ generates a whole-plane Loewner trace βI , then β(t) := I0 ◦ βI(t) is a continuous curve in
Ĉ that satisfies β(−∞) = ∞ and β(t) = limD3z→eiξ(t) g(t, ·)−1(z), −∞ < t < T . We call β the
inverted whole-plane Loewner trace driven by ξ.

Let KI(t) and gI(t, ·), −∞ < t < T , be as before. Let K̃I(t) = (ei)−1(KI(t)), −∞ < t < T .
It is easy to see that there exists a unique family g̃I(t, ·), −∞ < t < T , such that, g̃I(t, ·) maps
C \ K̃I(t) conformally onto −H, ei ◦ g̃I(t, ·) = gI(t, ·) ◦ ei, and g̃I satisfies

∂tg̃I(t, z) = cot2(g̃I(t, z)− ξ(t)), −∞ < t < T, (3.3)
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and the initial value at −∞:
lim

t→−∞
(g̃I(t, z)− it) = z.

Then we call K̃I(t) and g̃I(t, ·) the covering whole-plane Loewner hulls and maps driven by ξ.
For −∞ < t < T , let K̃(t) = Ĩ0(K̃I(t)) and g̃(t, ·) = Ĩ0 ◦ g̃I(t, ·) ◦ Ĩ0. Then K̃(t) =

(ei)−1(K(t)) and ei ◦ g̃(t, ·) = g(t, ·) ◦ ei. We call K̃(t) and g̃(t, ·) the inverted covering whole-
plane Loewner hulls and maps driven by ξ. Then for each t ∈ (−∞, T ), g̃(t, ·) maps C \ K̃(t)
conformally onto H, and satisfies (3.3) for t ∈ (−∞, T ) and the initial value at −∞:

lim
t→−∞

(g̃(t, z) + it) = z. (3.4)

3.2 Annulus Loewner equation

The annulus Loewner equation was introduced in [23] to describe curves in a doubly connected
domain. Let p ∈ (0,∞). To motivate the definition, we consider a simple curve β(t), 0 ≤ t < T ,
with β(0) ∈ T and β(t) ∈ Ap, 0 < t < T . Let K(t) = β((0, t]), 0 ≤ t < T . Then each K(t)
is a hull in Ap, and capAp(K(t)) increases continuously. After a time-change, we may assume
that capAp(K(t)) = t for all t. For each t, there exists g(t, ·), which maps Ap \K(t) conformally
onto Ap−t, and maps Tp onto Tp−t. Such g(t, ·) is unique only up to a rotation. There are
different ways to make g(t, ·) unique. For example, we may fix a point on w0 ∈ Tp and require
that e−tg(t, ·) fixes w0. The normalization used here does not have a clear geometric meaning.
The work in [23] shows that the g(t, ·) can be chosen to satisfy annulus Loewner equation of
modulus p for some ξ ∈ C([0, T )):

∂tg(t, z) = g(t, z)S(p− t, g(t, z)/eiξ(t)), 0 ≤ t < T, g(0, z) = z, (3.5)

We now reverse the above process. Let ξ ∈ C([0, T )) where 0 < T ≤ p. Let g(t, ·) be the
solution of the ODE (3.5). For 0 ≤ t < T , let K(t) denote the set of z ∈ Ap such that the
solution g(s, z) blows up before or at time t. We call K(t) and g(t, ·), 0 ≤ t < T , the annulus
Loewner hulls and maps of modulus p driven by ξ. It turns out that, fo each t, K(t) is a
hull in Ap with capAp(K(t)) = t, and g(t, ·) maps Ap \K(t) conformally onto Ap−t and maps
Tp onto Tp−t. To see that g(t, ·) maps Tp onto Tp−t, one may note that (3.5) implies that
∂t ln |g(t, z)| = Re S(p − t, g(t, z)/eiξ(t)), and Re S(r, ·) ≡ 1 on Tr because Im H(r, ·) ≡ −1 on
Rr and H(r, z) = −iS(t, ei(z)).

We say that ξ generates an annulus Loewner trace β of modulus p if

β(t) := lim
Ap−t3z→eiξ(t)

g(t, ·)−1(z) (3.6)

exists for all t ∈ [0, T ), and if β(t), 0 ≤ t < T , is a continuous curve. The curve lies in Ap ∪ T
and starts from eiξ(0) ∈ T. The trace is called simple if β has no self-intersection and stays
inside Ap for t > 0. In that case, we have K(t) = β((0, t]) for each t, and recover the picture at
the beginning of this subsection.

Remarks.
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1. If ξ generates an annulus Loewner trace β, then for each t, Ap \K(t) is the component
of Ap \ β((0, t]) whose boundary contains Tp. If the trace is simple, then K(t) = β((0, t])
for each t.

2. Let β(t), 0 ≤ t < T , be a simple curve with β(0) ∈ T and β(t) ∈ Ap for 0 < t < T .
If it is parameterized by capacity in Ap, i.e., capAp(β((0, t])) = t for each t, then it is
an annulus Loewner trace of modulus p. In the general case, let u(t) = capAp(β((0, t])).

Then β(u−1(t)) is an annulus Loewner trace of modulus p.

3. If ξ(t) =
√
κB(t), 0 ≤ t < p, then a.s. ξ generates an annulus Loewner trace. If κ ∈ (0, 4],

the trace is simple. From Girsanov theorem, the above still hold if ξ is a semimartingale,
whose stochastic part is

√
κB(t), and whose drift part is a continuously differentiable

function.

The covering annulus Loewner equation of modulus p driven by the above ξ is

∂tg̃(t, z) = H(p− t, g̃(t, z)− ξ(t)), g̃(0, z) = z. (3.7)

For 0 ≤ t < T , let K̃(t) denote the set of z ∈ Sp such that the solution g̃(s, z) blows up before

or at time t. Then for 0 ≤ t < T , g̃(t, ·) maps Sp \ K̃(t) conformally onto Sp−t and maps Rp
onto Rp−t. We call K̃(t) and g̃(t, ·), 0 ≤ t < T , the covering annulus Loewner hulls and maps
of modulus p driven by ξ. Let K(t) and g(t, ·) be the notations appeared above. Then we have
K̃(t) = (ei)−1(K(t)) and ei ◦ g̃(t, ·) = g(t, ·) ◦ ei for 0 ≤ t < T .

Since g̃(t, ·) maps Rp onto Rp−t and HI(t, z) = H(t, z + it) + i, we have

∂t Re g̃(t, z) = HI(p− t,Re g̃(t, z)− ξ(t)), z ∈ Rp.

Differentiating the above formula w.r.t. z, we obtain

∂tg̃
′(t, z) = g̃′(t, z)H′I(p− t,Re g̃(t, z)− ξ(t)), z ∈ Rp. (3.8)

If ξ generates an annulus Loewner trace β of modulus p, then a.s.

β̃(t) := lim
Sp−t3z→ξ(t)

g̃(t, ·)−1(z)

exists for 0 ≤ t < T , and β̃(t), 0 ≤ t < T , is a continuous curve in Sp ∪ R started from

β̃(0) = ξ(0) ∈ R. Such β̃ is called the covering annulus Loewner trace of modulus p driven by
ξ. And we have β = ei ◦ β̃. If β is a simple trace, then β̃ has no self-intersection, stays inside
Sp for t > 0, and K̃(t) = β̃((0, t]) + 2πZ for each t.

Let KI(t) = Ip(K(t)), gI(t, ·) = Ip−t ◦ g(t, ·) ◦ Ip, K̃I(t) = Ĩp(K̃(t)), and g̃I(t, ·) = Ĩp−t ◦
g̃(t, ·) ◦ Ĩp. Then KI(t) is a hull in Ap with capAp(KI(t)) = t, and gI(t, ·) maps Ap \ KI(t)

conformally onto Ap−t and maps T onto T. Moreover, K̃I(t) = (ei)−1(KI(t)), g̃I(t, ·) maps
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Sp \ K̃I(t) conformally onto Sp−t, maps R onto R, satisfies ei ◦ g̃I(t, ·) = gI(t, ·) ◦ ei, and the
equation

∂tg̃I(t, z) = HI(p− t, g̃I(t, z)− ξ(t)), g̃(0, z) = z. (3.9)

We call KI(t) and gI(t, ·) (resp. K̃I(t) and g̃I(t, ·)) the inverted annulus (resp. inverted covering
annulus) Loewner hulls and maps of modulus p driven by ξ. The inverted hulls grow from the
smaller circle Tp instead of the unit circle T.

3.3 Disc Loewner equation

We now review the definition of the disc Loewner equation, which is used to describe a simple
curve in a simply connected domain started from an interior point. The relation between the
disc Loewner equation and the annulus Loewner equation is similar to that between the whole-
plane Loewner equation and the radial Loewner equation. Intuitively, one considers the inverted
annulus Loewner equations of modulus p so that the hulls start from Tp, and then lets p→∞.

Let T ∈ (−∞, 0] and ξ ∈ C((−∞, T )). Let gI(t, ·), −∞ < t < T , be the solution of

∂tgI(t, z) = gI(t, z)SI(−t, gI(t, z)/eiξ(t)), −∞ < t < T ; (3.10)

lim
t→−∞

gI(t, z) = z, ∀z ∈ D \ {0}.

For each t ∈ (−∞, T ), let KI(t) be the set of z ∈ D at which gI(t, ·) is not defined. Then KI(t)
and gI(t, ·), −∞ < t < T , are called the disc Loewner hulls and maps driven by ξ.

Remark. From Proposition 4.1 and 4.2 in [23] we know that KI(t) and gI(t, ·) exist and are
determined by eiξ(s), −∞ < s ≤ t. Moreover, each gI(t, ·) maps D\KI(t) conformally onto A−t
and maps T onto T.

We say that ξ generates a disc Loewner trace β if

βI(t) := lim
A−t3z→et+iξ(t)

gI(t, ·)−1(z)

exists for every t ∈ (−∞, T ), and if βI(t), −∞ ≤ t < T , is a continuous curve in D with
βI(−∞) = 0. The trace is called simple if it has no self-intersection. If ξ generates a disc
Loewner trace βI , then for each t, C \KI(t) is the unbounded component of C \ βI([−∞, t]).
In particular, if βI is simple, then KI(t) = βI([−∞, t]) for each t.

Let βI(t), −∞ ≤ t < T , be a simple curve in D with βI(−∞) = 0. If it is parameterized by
capacity in D, i.e., mod(D \ βI([−∞, t])) = −t for each t, then βI is a disc Loewner trace. In
the general case, let u(t) = −mod(D \ βI([−∞, t])), then βI(u

−1(t)) is a disc Loewner trace.
We will need the following inverted disc Loewner process, which grows from ∞. For −∞ <

t < T , let K(t) = I0(KI(t)) and g(t, ·) = I−t ◦ g(t, ·) ◦ I0. Then each g(t, ·) maps Ĉ \ D \K(t)
conformally onto A−t and maps T onto T−t. Moreover, g(t, ·) satisfies (3.10) with SI replaced
by S. We call K(t) and g(t, ·), −∞ < t < T , the inverted disc Loewner hulls and maps driven
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by ξ. If ξ generates a disc Loewner trace βI , then β := I0◦βI is called the inverted disc Loewner
trace driven by ξ.

The covering disc Loewner hulls and maps are defined as follows. Let K̃I(t) = (ei)−1(KI(t)),
−∞ < t < T . There is a unique family g̃I(t, ·), −∞ < t < T , which satisfy that, for each t,
g̃I(t, ·) maps H \ K̃I(t) conformally onto S−t and maps R onto R, ei ◦ g̃I(t, ·) = gI(t, ·) ◦ ei, and
the following hold:

∂tg̃I(t, z) = HI(−t, g̃I(t, z)− ξ(t)); (3.11)

lim
t→−∞

g̃I(t, z) = z. (3.12)

We call K̃I(t) and g̃I(t, ·) the covering disc Loewner hulls and maps driven by ξ. Let K̃(t) =
Ĩ0(K̃I(t)) and g̃(t, ·) = Ĩ−t ◦ g̃I(t, ·) ◦ Ĩ0. Then g̃(t, ·) maps −H \ K̃(t) conformally onto S−t,
maps R onto R−t, ei ◦ g̃(t, ·) = g(t, ·) ◦ ei, and satisfies ∂tg̃(t, z) = H(−t, g̃(t, z)− ξ(t)). We call
K̃(t) and g̃(t, ·) the inverted covering disc Loewner hulls and maps driven by ξ.

Remark. Now we summarize the conformal maps that appear in the this section so far. The
relations between a (inverted) whole-plane, annulus, or disc Loewner map g(t, ·) or gI(t, ·) and its
corresponding covering map g̃(t, ·) or g̃I(t, ·) are g(t, ·)◦ei = ei◦g̃(t, ·) and gI(t, ·)◦ei = ei◦g̃I(t, ·).
The relation between the inverted pair g̃(t, ·) and g̃I(t, ·) depends on the three cases. For the
whole-plane Loewner maps,

g̃I(t, ·) : C \ K̃I(t)
Conf
� −H, g̃(t, ·) : C \ K̃(t)

Conf
� H, Ĩ0 ◦ g̃(t, ·) = g̃I(t, ·) ◦ Ĩ0.

For the annulus Loewner maps of modulus p,

g̃(t, ·) : (Sp \ K̃(t);Rp)
Conf
� (Sp−t;Rp−t), g̃I(t, ·) : (Sp \ K̃I(t);R)

Conf
� (Sp−t;R),

Ĩp−t ◦ g̃I(t, ·) = g̃(t, ·) ◦ Ĩp, t ∈ [0, p).

For the disc Loewner maps,

g̃I(t, ·) : (H \ K̃I(t);R)
Conf
� (S−t;R), g̃(t, ·) : (−H \ K̃(t);R)

Conf
� (S−t;R−t),

Ĩ−t ◦ g̃(t, ·) = g̃I(t, ·) ◦ Ĩ0, t ∈ (−∞, 0).

The relation between g(t, ·) and gI(t, ·) depends on the three cases in a similar way.

3.4 SLE with Marked Points

Definition 3.1. A covering crossing annulus drift function is a real valued C0,1 differentiable
function defined on (0,∞) × R. A covering crossing annulus drift function with period 2π is
called a crossing annulus drift function.
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Definition 3.2. Suppose Λ is a covering crossing annulus drift function. Let κ > 0, p > 0,
and x0, y0 ∈ R. Let ξ(t), 0 ≤ t < p, be the maximal solution to the SDE

dξ(t) =
√
κdB(t) + Λ(p− t, ξ(t)− Re g̃(t, y0 + pi))dt, ξ(0) = x0, (3.13)

where g̃(t, ·), 0 ≤ t < p, are the covering annulus Loewner maps of modulus p driven by ξ. Then
the covering annulus Loewner trace of modulus p driven by ξ is called the covering (crossing)
annulus SLE(κ,Λ) trace in Sp started from x0 with marked point y0 + pi.

Definition 3.3. Suppose Λ is a crossing annulus drift function. Let κ > 0, p > 0, a ∈ T and
b ∈ Tp. Choose x0, y0 ∈ R such that a = eix0 and b = e−p+iy0. Let ξ(t), 0 ≤ t < p, be the
maximal solution to (3.13). The annulus Loewner trace β driven by ξ is called the (crossing)
annulus SLE(κ,Λ) trace in Ap started from a with marked point b.

The above definition does not depend on the choices of x0 and y0 because Λ has period 2π,
and for any n ∈ Z, the annulus Loewner objects driven by ξ(t) + 2nπ agree with those driven
by ξ(t).

A covering chordal-type annulus drift function is a real valued C0,1 differentiable function
defined on (0,∞) × (R \ 2πZ). The word “covering” is omitted if the function has period 2π.
If Λ is a chordal-type annulus drift function, using the same idea, we may define the annulus
SLE(κ,Λ) processes, where the initial point a = eix0 and marked point b = eiy0 both lie on T
and are distinct. The driving function ξ is the solution to (3.13) with Re g̃(t, y0 + pi) replaced
by g̃(t, y0).

Via conformal maps, we can then define annulus SLE(κ,Λ) process and trace in any doubly
connected domain started from one boundary point with another boundary point being marked.
Here Λ is a chordal-type or crossing annulus drift function depending on whether or not the
initial point and the marked point lie on the same boundary component. Let ΛI(p, x) =
−Λ(p,−x), then ΛI is called the dual of Λ. If W is a conjugate conformal map of Ap, and ΛI is
the dual of Λ, then (W (K(t))) is an annulus SLE(κ,ΛI) process in W (Ap) started from W (a)
with marked point W (b).

Definition 3.4. Let κ ≥ 0, b ∈ T, and Λ be a crossing annulus drift function. Choose y0 ∈ R
such that eiy0 = b. Let B

(κ)
∗ (t), t ∈ R, be a pre-(T;κ)-Brownian motion. Suppose ξ(t), −∞ <

t < 0, satisfies the following SDE with the meaning in Definition 2.2:

dξ(t) = dB
(κ)
∗ (t) + Λ(−t, ξ(t)− g̃I(t, y0))dt, −∞ < t < 0,

where g̃I(t, ·) are the disc Loewner maps driven by ξ. Then we call the disc Loewner trace driven
by ξ the disc SLE(κ,Λ) trace in D started from 0 with marked point b.

Via conformal maps, we can define disc SLE(κ,Λ) trace in any simply connected domain
started from an interior point with a marked boundary point.
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4 Coupling of Two Annulus SLE traces

The goal of this section is to prove Theorem 4.1 below, which says that when certain PDE is
satisfied, we may couple two annulus SLE(κ; Λ) processes such that they commute with each
other. Although this result will not be used directly in the proof of the whole-plane reversibility,
we prove this theorem because on the one hand, the result may be used in the future, and on
the other hand, the proof will serve as a reference for a more complicated proof of the theorem
about coupling two whole-plane SLE processes.

After some preparation in Section 4.1, the construction formally starts from Section 4.2,
which resembles Section 3 of [26]. The extra complexity comes from the appearance of covering
maps and inverted maps. Then we construct a two-dimensional local martingale M in Section
4.3, which resembles Section 4 of [26]. In the same subsection, we derive the boundedness of
M when the two processes are stopped at some exiting time. In Section 4.4, we first construct
local commutation couplings using M , then construct the global commutation coupling using
the coupling technique, and finishes the proof.

Theorem 4.1. Let κ > 0 and s0 ∈ R. Suppose Γ is a positive C1,2 differentiable function on
(0,∞)× R that satisfies

∂tΓ =
κ

2
Γ′′ + HIΓ

′ +
(3

κ
− 1

2

)
H′IΓ; (4.1)

Γ(t, x+ 2π) = e
2πs0
κ Γ(t, x), t > 0, x ∈ R. (4.2)

We call Γ a partition function following Gregory Lawler’s terminology in [8]. Let Λ = κΓ′

Γ .
Then Λ is a crossing annulus drift function. Let Λ1 = Λ and Λ2 be the dual of Λ. Then for
any p > 0, a1, a2 ∈ T, there is a coupling of two curves: β1(t), 0 ≤ t < p, and β2(t), 0 ≤ t < p,
such that for j 6= k ∈ {1, 2}, the following hold.

(i) βj is an annulus SLE(κ,Λj) trace in Ap started from aj with marked point aI,k := Ip(ak).

(ii) If tk < p is a stopping time w.r.t. (βk(t)), then conditioned on βk(t), 0 ≤ t ≤ tk, after
a time-change, βj(t), 0 ≤ t < Tj(tk) is the annulus SLE(κ,Λj) process in a connected
component of Ap \ Ip(βk((0, tk])) started from aj with marked point Ip(βk(tk)), where
Tj(tk) is the first time that βj visits Ip ◦ βk((0, tk]), which is set to be p if such time does
not exist.

Remarks.

1. The Λ satisfies the PDE:

∂tΛ =
κ

2
Λ′′ +

(
3− κ

2

)
H′′I + ΛH′I + HIΛ

′ + ΛΛ′. (4.3)

On the other hand, if Λ satisfies (4.3), then there is Γ such that Λ = κΓ′

Γ and (4.1) holds.

2. The theorem also holds for κ = 0 if Λ satisfies (4.3) with κ = 0.
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4.1 Transformations of PDE

Lemma 4.1. Let σ, s0 ∈ R. Suppose Γ, Ψ, and Ψs0 are functions defined on (0,∞)×R, which

satisfy Ψ = ΓΘ
2
κ
I , Ψs = ΓsΘ

2
κ
I , and Ψs0(t, x) = e−

s0x
κ
− s

2
0t

2κ Ψ(t, x). Then the following PDEs are
equivalent:

∂tΓ =
κ

2
Γ′′ + HIΓ

′ +
(
σ − 1

κ
+

1

2

)
H′IΓ; (4.4)

∂tΨ =
κ

2
Ψ′′ + σH′IΨ; (4.5)

∂tΨs0 =
κ

2
Ψ′′s0 + s0Ψ′s0 + σH′IΨs0 . (4.6)

Proof. This follows from (2.5), (2.7), and some straightforward computations.

Remark. When σ = 4
κ − 1, (4.4) agrees with (4.1).

Lemma 4.2. Let σ, s0 ∈ R. Suppose Ψs0 is positive, has period 2π, and solves (4.6) in (0,∞)×
R. Then Ψs0(t, x)→ C as t→∞ for some constant C > 0, uniformly in x ∈ R.

Proof. Fix t0 > 0 and x0 ∈ R. For 0 ≤ t < t0, let Xx0(t) = x0 +
√
κB(t) + st and

M(t) = Ψs0(t0 − t,Xx0(t)) exp
(
σ

∫ t

0
H′I(t0 − r,Xx0(r))dr

)
.

From (4.6) and Itô’s formula, M(t), 0 ≤ t < t0, is a local martingale. Since Ψs0 and H′I
are continuous on (0,∞) × R and have period 2π, we see that, for any t1 ∈ (0, t0], M(t),
0 ≤ t ≤ t0 − t1, is uniformly bounded, so it is a bounded martingale. Thus,

Ψs0(t0, x0) = M(0) = E
[
Ψs0(t1, Xx0(t0 − t1)) exp

(
σ

∫ t0−t1

0
H′I(t0 − r,Xx0(r))dr

)]
. (4.7)

Now suppose t0 > t1 ≥ 3. From Lemma 2.1, we see that,∫ t0−t1

0
|H′I(t0 − r,Xx0(r))|dr ≤

∫ t0−t1

0
15er−t0dr ≤ 15e−t1 . (4.8)

Let ε > 0. Choose t1 ≥ 3 such that 15σe−t1 < ε/3. For t ∈ [t1,∞) and x ∈ R, define

Ψs0,t1(t, x) = E [Ψs0(t1, Xx(t− t1))].

As t→∞, the distribution of ei(Xx(t− t1)) tends to the uniform distribution on T. Since Ψs0

is positive, continuous, and has period 2π, we see that Ψs0,t1(t, x)→ 1
2π

∫ 2π
0 Ψs0(t1, x)dx > 0 as

t → ∞, uniformly in x ∈ R. Thus, limt→∞ ln(Ψs0,t1) converges uniformly in x ∈ R. So there
is t2 > t1 such that if ta, tb ≥ t2 and xa, xb ∈ R, then | ln(Ψt1(ta, xa)) − ln(Ψt1(tb, xb))| < ε/3.
From (4.7) and (4.8) we see that

| ln(Ψs0(t, x))− ln(Ψs0,t1(t, x))| ≤ 15σe−t1 < ε/3, t ≥ t1, x ∈ R.

Thus, | ln(Ψs0(ta, xa)) − ln(Ψs0(tb, xb))| < ε if ta, tb ≥ t2 and xa, xb ∈ R. So limt→∞ ln(Ψs0)
converges uniformly in x ∈ R, which implies the conclusion of the lemma.
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Lemma 4.3. Let s0 ∈ R. Suppose Γ is positive, satisfies (4.2), and solves (4.4). Then there is

C > 0 such that Γs0(t, x) := C−1e−
s0x
κ
− s

2
0t

2κ Γ(t, x) has period 2π and satisfies limt→∞ Γs0(t, x) =
1, uniformly in x ∈ R.

Proof. Let Ψs0 be given by Lemma 4.1. Since ΘI > 0, Ψs0 is positive and solves (4.6). Since Γ
satisfies (4.2) and ΘI has period 2π, Ψs0 also has period 2π. From Lemma 4.2, there is C > 0

such that Ψs0 → C as t→∞, uniformly in x ∈ R. Let Γs0(t, x) := C−1e−
s0x
κ
− s

2
0t

2κ Γ(t, x). Then

Γs0 = C−1Ψs0ΘI(t, x)−
2
κ . From (2.6), ΘI → 1 as t → ∞, uniformly in x ∈ R. Since ΘI has

period 2π, we get the desired conclusion.

4.2 Ensemble

Let p > 0 and ξ1, ξ2 ∈ C([0, p)). For j = 1, 2, let gj(t, ·) (resp. gI,j(t, ·)), 0 ≤ t < p, be
the annulus (resp. inverted annulus) Loewner maps of modulus p driven by ξj . Let g̃j(t, ·)
and g̃I,j(t, ·), 0 ≤ t < p, j = 1, 2, be the corresponding covering Loewner maps. Suppose ξj
generates a simple annulus Loewner trace of modulus p: βj , j = 1, 2. Let βI,j = Ip◦βj , j = 1, 2,
be the inverted trace. Define

D = {(t1, t2) : β1((0, t1]) ∩ βI,2((0, t2]) = ∅} = {(t1, t2) : βI,1((0, t1]) ∩ β2((0, t2]) = ∅}. (4.9)

For (t1, t2) ∈ D, we define

m(t1, t2) = mod(Ap \ β1([0, t1]) \ βI,2([0, t2])) = mod(Ap \ βI,1([0, t1]) \ β2([0, t2])). (4.10)

Fix any j 6= k ∈ {1, 2} and tk ∈ [0, p). Let Tj(tk) be the maximal number such that for any
tj < Tj(tk), we have (t1, t2) ∈ D. As tj → Tj(tk)

−, the spherical distance between βj((0, tj ])
and βI,k((0, tk]) tends to 0, so m(t1, t2)→ 0. For 0 ≤ tj < Tj(tk), let βj,tk(tj) = gI,k(tk, βj(tj)).
Then βj,tk(tj), 0 ≤ tj < Tj(tk), is a simple curve that starts from gI,k(tk, e

iξj(tj)) ∈ T, and stays
inside Ap for tj > 0. Let

vj,tk(tj) = capAp−tk
(βj,tk((0, tj ])) = p− tk −m(t1, t2). (4.11)

Then vj,tk is continuous and increasing and maps [0, Tj(tk)) onto [0, Sj,tk) for some Sj,tk ∈ (0, p−
tk]. Since m → 0 as tj → Tj(tk), Sj,tk = p − tk. Then γj,tk(t) := βj,tk(v−1

j,tk
(t)), 0 ≤ t < p − tk,

are the annulus Loewner trace of modulus p − tk driven by some ζj,tk ∈ C([0, p − tk)). Let
γI,j,tk(t) be the corresponding inverted annulus Loewner trace. Let hj,tk(t, ·) and hI,j,tk(t, ·) be

the corresponding annulus and inverted annulus Loewner maps. Let h̃j,tk(t, ·), and h̃I,j,tk(t, ·)
be the corresponding covering maps.

For 0 ≤ tj < Tj(tk), let ξj,tk(tj), βI,j,tk(tj), gj,tk(tj , ·), gI,j,tk(tj , ·), g̃j,tk(tj , ·), and g̃I,j,tk(tj , ·)
be the time-changes of ζj,tk(t), γI,j,tk(t), hj,tk(t, ·), hI,j,tk(t, ·), h̃j,tk(t, ·), and h̃I,j,tk(t, ·), re-
spectively, via the map vj,tk . For example, this means that ξj,tk(tj) = ζj,tk(vj,tk(tj)) and
gj,tk(tj , ·) = hj,tk(vj,tk(tj), ·).
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For 0 ≤ tj < Tj(tk), let

GI,k,tk(tj , ·) = gj,tk(tj , ·) ◦ gI,k(tk, ·) ◦ gj(tj , ·)−1, (4.12)

G̃I,k,tk(tj , ·) = g̃j,tk(tj , ·) ◦ g̃I,k(tk, ·) ◦ g̃j(tj , ·)−1. (4.13)

Then GI,k,tk(tj , ·) maps Ap−tj \gj(tj , βI,k((0, tk])) conformally onto Am(t1,t2) and maps T onto T;

ei◦G̃I,k,tk(tj , ·) = GI,k,tk(tj , ·)◦ei; and G̃I,k,tk(tj , ·) maps R onto R. Since γj,tk(t) = βj,tk(v−1
j,tk

(t)),

from (3.6) and a similar formula for γ, we find that eiξj,tk (tj) = GI,k,tk(tj , e
iξj(tj)) for 0 ≤ tj <

Tj(tk). So there is n ∈ Z such that G̃I,k,tk(tj , ξj(tj)) = ξj,tk(tj) + 2nπ for 0 ≤ tj < Tj(tk). Since
ζj,tk + 2nπ generates the same annulus Loewner hulls as ζj,tk , we may choose ζj,tk such that for
0 ≤ tj < Tj(tk),

ξj,tk(tj) = G̃I,k,tk(tj , ξj(tj)). (4.14)

For 0 ≤ tj < Tj(tk), let

Aj,h(t1, t2) = G̃
(h)
I,k,tj

(tk, ξj(tj)), h = 1, 2, 3, (4.15)

Aj,S(t1, t2) =
Aj,3(t1, t2)

Aj,1(t1, t2)
− 3

2

(Aj,2(t1, t2)

Aj,1(t1, t2)

)2
. (4.16)

Then Aj,S(t1, t2) is the Schwarzian derivative of G̃I,k,tj (tk, ·) at ξj(tj). A standard argument
using Lemma 2.1 in [23] shows that, for 0 ≤ tj < Tj(tk),

v′j,tk(tj) = |G′I,k,tk(tj , ξj(tj))|2 = G̃′I,k,tk(tj , ξj(tj))
2 = Aj,1(t1, t2)2, (4.17)

so from (4.11) we have
∂j m = −A2

j,1. (4.18)

Moreover, for 0 ≤ tj < Tj(tk),

∂tg̃j,tk(tj , z) = Aj,1(t1, t2)2H(m(t1, t2), g̃j,tk(tj , z)− ξj,tk(tj)); (4.19)

∂tg̃I,j,tk(tj , z) = Aj,1(t1, t2)2HI(m(t1, t2), g̃I,j,tk(tj , z)− ξj,tk(tj)). (4.20)

From (4.13) we have

G̃I,k,tk(tj , ·) ◦ g̃j(tj , z) = g̃j,tk(tj , ·) ◦ g̃I,k(tk, z). (4.21)

Differentiate (4.21) w.r.t. tj . Let w = g̃j(tj , z) → ξj(tj). From (3.7), (4.14), (4.19), and (2.2)
we get

∂tG̃I,k,tk(tj , ξj(tj)) = −3G̃′′I,k,tk(tj , ξj(tj)) = −3Aj,2(t1, t2). (4.22)

Differentiate (4.21) w.r.t. tj and z, and let w = g̃j(tj , z)→ ξj(tj). Then we get

∂tG̃
′
I,k,tk

(tj , ξj(tj))

G̃′I,k,tk(tj , ξj(tj))
=

1

2
·
(Aj,2
Aj,1

)2
− 4

3
· Aj,3
Aj,1

+A2
j,1r(m)− r(p− tj). (4.23)
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Note that both GI,k,tk(tj , ·) and gI,k,tj (tk, ·) map Ap−tj \ βI,k,tj ((0, tk]) conformally onto
Am(t1,t2) and maps T onto T. So they differ by a multiplicative constant of modulus 1. Thus,
there is Ck(t1, t2) ∈ R such that

G̃I,k,tk(tj , ·) = g̃I,k,tj (tk, ·) + Ck(t1, t2). (4.24)

Interchanging j and k in (4.24), we see that there is Cj(t1, t2) ∈ R such that

G̃I,j,tj (tk, ·) = g̃I,j,tk(tj , ·) + Cj(t1, t2). (4.25)

From (4.13) we have

g̃I,j,tk(tj , ·) ◦ g̃k(tk, ·) + Cj = g̃k,tj (tk, ·) ◦ g̃I,j(tj , ·), (4.26)

g̃I,k,tj (tk, ·) ◦ g̃j(tj , ·) + Ck = g̃j,tk(tj , ·) ◦ g̃I,k(tk, ·). (4.27)

From the definition of inverted annulus Loewner maps, we have

g̃j,tk(tj , ·) = Ĩm(t1,t2) ◦ g̃I,j,tk(tj , ·) ◦ Ĩp−tk , g̃j(tj , ·) = Ĩp−tj ◦ g̃I,j(tj , ·) ◦ Ĩp;

g̃I,k,tj (tk, ·) = Ĩm(t1,t2) ◦ g̃k,tj (tk, ·) ◦ Ĩp−tj , g̃I,k(tk, ·) = Ĩp−tk ◦ g̃k(tk, ·) ◦ Ĩp.

From (4.27) and the above formulas, we get g̃k,tj (tk, ·) ◦ g̃I,j(tj , ·) + Ck = g̃I,j,tk(tj , ·) ◦ g̃k(tk, ·).
Comparing this formula with (4.26), we see that C1 +C2 ≡ 0. Now we define X1 and X2 on D
by

Xj(t1, t2) = ξj,tk(tj)− g̃I,j,tk(tj , ξk(tk)) = G̃I,k,tk(tj , ξj(tj))− g̃I,j,tk(tj , ξk(tk)). (4.28)

From (4.24), (4.25), and C1 + C2 ≡ 0, we have

X1 +X2 ≡ 0. (4.29)

Since H′′′I is even, we may define Q on D by

Q = H′′′I (m, X1) = H′′′I (m, X2). (4.30)

Differentiate (4.20) w.r.t. z twice. We get

∂tg̃
′
I,j,tk

(tj , z)

g̃′I,j,tk(tj , z)
= A2

j,1H
′
I(m, g̃I,j,tk(tj , z)− ξj,tk(tj)). (4.31)

∂t

( g̃′′I,j,tk(tj , z)

g̃′I,j,tk(tj , z)

)
= A2

j,1H
′′
I (m, g̃I,j,tk(tj , z)− ξj,tk(tj))g̃

′
I,j,tk

(tj , z). (4.32)

Let z = ξk(tk) in (4.20), (4.31), and (4.32). Since HI and H′′I are odd and H′I is even, from
(4.25) and (4.28) we have

∂j g̃I,j,tk(tj , ξk(tk)) = −A2
j,1HI(m, Xj). (4.33)
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∂jAk,1
Ak,1

= A2
j,1H

′
I(m, Xj). (4.34)

∂j

(Ak,2
Ak,1

)
= −A2

j,1H
′′
I (m, Xj)Ak,1. (4.35)

Differentiate (4.32) w.r.t. z again, and let z = ξk(tk). Since H′′′I is even, we get

∂j

(Ak,3
Ak,1

−
(Ak,2
Ak,1

)2)
= A2

j,1[H′′′I (m, Xj)A
2
k,1 −H′′I (m, Xj)Ak,2],

which together with (4.30) and (4.35) implies that

∂jAk,S = A2
j,1A

2
k,1Q. (4.36)

Define F on D by

F (t1, t2) = exp
(∫ t2

0

∫ t1

0
A1,1(s1, s2)2A2,1(s1, s2)2Q(s1, s2)ds1ds2

)
, (4.37)

Since g̃I,j,tk(0, ·) = h̃I,j,tk(0, ·) = id, when tj = 0, we have Ak,1 = 1, Ak,2 = Ak,3 = 0, hence
Ak,S = 0. From (4.36), we see that

∂jF

F
= Aj,S . (4.38)

Remark. There is an explanation of F in terms of Brownian loop measure. If R is a function
on (0,∞) that satisfies R′(t) = r(t) + 1

t , then

−1

3
lnF (t1, t2)−R(t1, t2) +R(t1, 0) +R(0, t2)−R(0, 0)

is the Brownian loop measure of the loops in Ap that intersect both β1([0, t1]) and βI,2([0, t2]).

4.3 Martingales in two time variables

Let a1, a2 ∈ T be as in Theorem 4.1. Let aI,j = Ip(aj) ∈ Tp, j = 1, 2. Choose x1, x2 ∈ R
such that aj = eixj , j = 1, 2. Let B1(t) and B2(t) be two independent Brownian motions. For

j = 1, 2, let (F jt ) be the complete filtration generated by (Bj(t)). Let Γ, Λ, Λ1, and Λ2 be as
in Theorem 4.1. Since Γ satisfies (4.2), Λj , j = 1, 2, has period 2π, which implies that they are
annulus drift functions. For j = 1, 2, let ξj(tj), 0 ≤ tj < p, be the solution to the SDE:

dξj(tj) =
√
κdBj(tj) + Λj(p− tj , ξj(tj)− g̃I,j(tj , x3−j))dtj , ξj(0) = xj . (4.39)

Then (ξ1) and (ξ2) are independent. For simplicity, suppose κ ∈ (0, 4] (for the case κ > 4, we
may work on Loewner chains and apply Proposition 2.1 in [23]). Then for j = 1, 2, a.s. (ξj)
generates a simple annulus Loewner trace βj , which is an annulus SLE(κ,Λj) trace βj in Ap
started from aj with marked point aI,3−j . We may apply the results in the prior subsection.
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As the annulus Loewner objects driven by ξj , βj , βI,j = Ip ◦ βj , (gI,j(tj , ·)), (g̃j(tj , ·)), and

(g̃I,j(tj , ·)) are all (F jtj )-adapted. Fix j 6= k ∈ {1, 2}. Since βj is (F jtj )-adapted and (gI,k(tk, ·))
is (Fktk)-adapted, we see that (t1, t2) 7→ βj,tk(tj) = gI,k(tk, βj(tj)) defined on D is (F1

t1 × F
2
t2)-

adapted. Since g̃j,tk(tj , ·) and g̃I,j,tk(tj , ·) are determined by βj,tk(sj), 0 ≤ sj ≤ tj , they are

(F1
t1 ×F

2
t2)-adapted. From (4.13), (G̃I,k,tk(tj , ·)) is (F1

t1 ×F
2
t2)-adapted. From (4.14), (ξj,tk(tj))

is also (F1
t1 × F

2
t2)-adapted. From (4.10), (4.28), (4.15), and (4.16), we see that (m), (Xj),

(Aj,h), h = 1, 2, 3, and (Aj,S) are all (F1
t1 ×F

2
t2)-adapted.

Fix j 6= k ∈ {1, 2} and any (Fkt )-stopping time tk ∈ [0, p). Let F j,tktj
= F jtj ×F

k
tk

, 0 ≤ tj < p.

Then (F j,tktj
)0≤tj<p is a filtration. Since (Bj(tj)) is independent of Fktk , it is also an (F j,tktj

)-

Brownian motion. Thus, (4.39) is an (F j,tktj
)-adapted SDE. From now on, we will apply Itô’s

formula repeatedly, all SDE will be (F j,tktj
)-adapted, and tj ranges in [0, Tj(tk)).

From (4.22), (4.28), (4.15), and (4.33), we see that Xj satisfies

∂jXj = Aj,1∂ξj(tj) +
(κ

2
− 3
)
Aj,2∂tj +A2

j,1HI(m, Xj)∂tj . (4.40)

Let Γ1 = Γ and Γ2(t, x) = Γ(t,−x). Then for j = 1, 2, Λj =
Γ′j
Γj

and Γj satisfies (4.1). From

(4.29), we may define Y on D by

Y = Γ1(m, X1) = Γ2(m, X2). (4.41)

From (4.1), (4.18), (4.40), and (4.41), we have

∂jY

Y
=

1

κ
Λj(m, Xj)Aj,1∂ξj(tj)−

(3

κ
− 1

2

)(
A2
j,1H

′
I(m, Xj) + Λj(m, Xj)Aj,2

)
∂tj . (4.42)

From (4.23) we have

∂jAj,1
Aj,1

=
Aj,2
Aj,1

· ∂ξj(tj) +
(1

2
·
(Aj,2
Aj,1

)2
+
(κ

2
− 4

3

)
· Aj,3
Aj,1

)
∂tj +A2

j,1r(m)∂tj − r(p− tj)∂tj .

Let

α =
6− κ

2κ
, c =

(8− 3κ)(κ− 6)

2κ
.

Actually, c is the central charge for SLEκ. Then we compute

∂jA
α
j,1

Aαj,1
= α · Aj,2

Aj,1
· ∂ξj(tj) +

c

6
Aj,S∂tj + αA2

j,1r(m)∂tj − αr(p− tj)∂tj . (4.43)

Recall the R defined in Section 2.3. Define M̂ on D by

M̂ = Aα1,1A
α
2,1F

− c
6Y exp(αR(m)). (4.44)
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Then M̂ is positive. From (2.3), (4.18), (4.34), (4.38), (4.42), and (4.43), we have

∂jM̂

M̂
= α

Aj,2
Aj,1

∂ξj(tj) +
Aj,1
κ

Λj(m, Xj)∂ξj(tj)− αr(p− tj)∂tj + αA2
j,1r(∞)∂tj . (4.45)

When tk = 0, we have Aj,1 = 1, Aj,2 = 0, m = p− tj , and Xj = ξj(tj)− g̃I,j(tj , xk), so the RHS
of (4.45) becomes 1

κΛj(p− tj , ξj(tj)− g̃I,j(tj , xk))∂ξj(tj). Define M on D by

M(t1, t2) =
M̂(t1, t2)M̂(0, 0)

M̂(t1, 0)M̂(0, t2)
. (4.46)

Then M is also positive, and M(·, 0) ≡M(0, ·) ≡ 1. From (4.39) and (4.45) we have

∂jM

M
=
[(

3− κ

2

)Aj,2
Aj,1

+ Λj(m, Xj)Aj,1 − Λj(p− tj , ξj(tj)− g̃I,j(tj , xk))
]∂Bj(tj)√

κ
. (4.47)

So when tk ∈ [0, p) is a fixed (Fkt )-stopping time, M is a local martingale in tj .

Let J denote the set of Jordan curves in Ap that separate T and Tp. For J ∈ J and
j = 1, 2, let Tj(J) be the first time that βj visits J . It is also the first time that βI,j visits
Ip(J). Let JP denote the set of pairs (J1, J2) ∈ J 2 such that Ip(J1) ∩ J2 = ∅ and Ip(J1) is
surrounded by J2. This is equivalent to that Ip(J2) ∩ J1 = ∅ and Ip(J2) is surrounded by J1.
Then for every (J1, J2) ∈ JP, βI,1((0, t1])∩ β2((0, t2]) = ∅ when t1 ≤ T1(J1) and t2 ≤ T2(J2), so
[0, T1(J1)]× [0, T2(J2)] ⊂ D.

Lemma 4.4. There are positive continuous functions NL(p) and NS(p) defined on (0,∞) that
satisfies NL(p), NS(p) = O(pe−p) as p → ∞ and the following properties. Suppose K is an
interior hull in D containing 0, g maps D \ K conformally onto Ap for some p ∈ (0,∞) and
maps T onto T, and g̃ is an analytic function that satisfies ei ◦ g̃ = g ◦ ei. Then for any x ∈ R,
| ln(g̃′(x))| ≤ NL(p) and |Sg̃(x)| ≤ NS(p), where Sg̃(x) is the Schwarzian derivative of g̃ at x,
i.e., Sg̃(x) = g̃′′′(x)/g̃′(x)− 3

2(g̃′′(x)/g̃′(x))2.

Proof. Let f = g−1 and f̃ = g̃−1. Then ei ◦ f̃ = f ◦ei. Since f̃ ′(g̃(x)) = 1/g̃′(x) and Sf̃(g̃(x)) =
−Sg̃(x)/g̃′(x)2, we suffice to prove the lemma for f̃ . Let P (p, z) = −Re SI(p, z)− ln |z|/p and
P̃ (p, z) = P (p, eiz) = Im HI(p, z) + Im z/p. Then P (p, ·) vanishes on T and Tp \ {e−p} and is

harmonic inside Ap. Moreover, when z ∈ Ap is near e−p, P (p, z) behaves like−Re( e
−p+z
e−p−z )+O(1).

Thus, −P (p, ·) is a renormalized Poisson kernel in Ap with the pole at e−p. Since ln |f | is negative
and harmonic in Ap and vanishes on T, there is a positive measure µK on [0, 2π) such that

ln |f(z)| = −
∫
P (p, z/eiξ)dµK(ξ), z ∈ Ap,

which implies that

Im f̃(z) =

∫
P (p, eiz/eiξ)dµK(ξ) =

∫
P̃ (p, z − ξ)dµK(ξ), z ∈ Sp
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So for any x ∈ R and h = 1, 2, 3, f̃ (h)(x) =
∫

∂h

∂xh−1∂y
P̃ (p, x− ξ)dµK(ξ). Let

mp = inf
x∈R

∂

∂y
P̃ (p, x), Mp = sup

x∈R

∂

∂y
P̃ (p, x), M (h)

p = sup
x∈R
| ∂h

∂h−1
x ∂y

P̃ (p, x)|, h = 2, 3.

We have 0 < mp < Mp < ∞ and mp|µK | ≤ f̃ ′ ≤ Mp|µK | on R. Since f̃(2π) = f̃(0) + 2π, we

get 1/Mp ≤ |µK | ≤ 1/mp. Thus, mp/Mp ≤ f̃ ′ ≤ Mp/mp and |f̃ (h)| ≤ M
(h)
p /mp, h = 2, 3, from

which follows that |Sf̃ | ≤ M
(3)
p Mp

m2
p

+ 3
2(
M

(2)
p Mp

m2
p

)2 on R. Since P̃ (p, z) = Im HI(p, z) + Im z/p,

we see that ∂
∂y P̃ (p, x) = H′I(p, x) + 1

p and ∂h

∂xh−1∂y
P̃ (p, x) = H

(h)
I (p, x), h = 2, 3. From Lemma

2.1, Mp,mp = 1
p + O(e−p) and M

(h)
p = O(e−p), h = 2, 3, as p → ∞. So we have ln(Mp/mp) =

O(pe−p) and
M

(3)
p Mp

m2
p

+ 3
2(
M

(2)
p Mp

m2
p

)2 = O(pe−p).

Proposition 4.1. (Boundedness) Fix (J1, J2) ∈ JP. Then | ln(M)| is bounded on [0, T1(J1)]×
[0, T2(J2)] by a constant depending only on J1 and J2.

Proof. In this proof, we say a function is uniformly bounded if its values on [0, T1(J1)] ×
[0, T2(J2)] are bounded in absolute value by a constant depending only on p, J1, and J2. If
there is no ambiguity, let Ω(A,B) denote the domain bounded by sets A and B, and let
mod(A,B) denote the modulus of this domain if it is doubly connected. Let JI,2 = I0(J2). Let
p0 = mod(J1, JI,2) > 0. If t1 ≤ T1(J1) and t2 ≤ T2(J2), since Ω(J1, JI,2) disconnects K1(t1) and
KI,2(t2) in Ap, m(t1, t2) ≥ p0. Since m ≤ p always holds, m ∈ [p0, p] on [0, T1(J1)]× [0, T2(J2)].
Since R is continuous on (0,∞), R(m) is uniformly bounded. Since Q = H′′′I (m, X1) and H′′′I
is continuous and has period 2π, Q is uniformly bounded. From Lemma 4.4, for j = 1, 2,
| ln(Aj,1)| ≤ NL(m), so it is uniformly bounded. From (4.38), ln(F ) is uniformly bounded. Let
s0 ∈ R be as in Theorem 4.1. Let Γs0 > 0 be defined by Lemma 4.3, and Ys0 = Γs0(X1). Then

Γs0 has period 2π. So ln(Ys0) is uniformly bounded. Define M̂s0 and Ms0 using (4.44) and

(4.46) with Y and M̂ replaced by Ys0 and M̂s0 , respectively. Then ln(M̂s0) and ln(Ms0) are
uniformly bounded because their factors are. Now it suffices to show that ln(M) − ln(Ms0) is
uniformly bounded. We have

ln(M(t1, t2))− ln(Ms0(t1, t2)) =
s0

κ
(X1(t1, t2)−X1(t1, 0)−X1(0, t2) +X1(0, 0))

+
s2

0

2κ
(m(t1, t2)−m(t1, 0)−m(0, t2) + m(0, 0)).

The second term on the RHS of the above formula is uniformly bounded because m ∈ [p0, p].
So it suffices to show that X1(t1, t2)−X1(t1, 0)−X1(0, t2)+X1(0, 0) is uniformly bounded. Let

G̃(t1, t2) = G̃I,2,t2(t1, ξ1(t1)), g̃(t1, t2) = g̃I,1,t2(t1, ξ2(t2)).

From (4.28) we have X1 = G̃ − g̃. So it suffices to show that G̃(t1, t2) − G̃(t1, 0) − G̃(0, t2) +
G̃(0, 0) and g̃(t1, t2)− g̃(t1, 0)− g̃(0, t2) + g̃(0, 0) are both uniformly bounded. From (4.20) we
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have ∂1g̃(t1, t2) = A2
1,1HI(m(t1, t2), g̃(t1, t2) − ξ1,t2(t1)). Since A2

1,1 is uniformly bounded, m ∈
[p0, p], and HI is continuous and has period 2π, g̃(t1, t2)− g̃(0, t2) is uniformly bounded. Thus,
g̃(t1, t2) − g̃(t1, 0) − g̃(0, t2) + g̃(0, 0) is uniformly bounded. Let G̃d(t1, t2) = G̃(t1, t2) − ξ1(t1).
Then G̃(t1, t2)− G̃(t1, 0)− G̃(0, t2) + G̃(0, 0) = G̃d(t1, t2)− G̃d(t1, 0)− G̃d(0, t2) + G̃d(0, 0). To
finish the proof it suffices to show that G̃d is uniformly bounded.

Let J be a Jordan curve which is disjoint from J1 and Ip(J2), and separates these two curves.

Let J̃ = (ei)−1(J). Since G̃d(t1, t2) = G̃I,2,t2(t1, ξ1(t1)) − ξ1(t1), from the Maximum principle,

we suffice to show that sup
z∈g̃1(t1,J̃)

(G̃I,2,t2(t1, z)− z) is uniformly bounded. Recall from (4.13)

that G̃I,2,t1(t1, ·) = g̃1,t2(t1, ·) ◦ g̃I,2(t2, ·) ◦ g̃1(t1, ·)−1. So we suffice to show that the following
three quantities are uniformly bounded:

sup
z∈J̃
|g̃1(t1, z)− z|, sup

z∈J̃
|g̃I,2(t2, z)− z|, sup

z∈g̃I,2(t2,J̃)

|g̃1,t2(t1, z)− z|.

The uniformly boundedness of these quantities follow from similar arguments. We only
work on the last one since it is the hardest. From (4.19) we have

g̃1,t2(t1, z)− z =

∫ t1

0
A1,1(s, t2)2H(m(s, t2), g̃1,t2(s, z)− ξ1,t2(s))ds.

Since
∫ t1

0 A1,1(s, t2)2ds = m(0, t2)−m(t1, t2) is uniformly bounded, we suffice to show that

sup
z∈g̃I,2(t2,J̃)

|H(m(t1, t2), g̃1,t2(t1, z)− ξ1,t2(t1))|

is uniformly bounded. From the properties of H, we suffice to show that there is a constant
h > 0 such that Im g̃1,t2(t1, ·) ◦ g̃I,2(t2, z) ≥ h for any z ∈ J̃ . This is equivalent to that
|g1,t2(t1, ·) ◦ gI,2(t2, z)| ≤ e−h for any z ∈ J . We suffice to show that the extremal distance (c.f.
[2]) between T and g1,t2(t1, ·) ◦ gI,2(t2, J) is bounded below by a positive constant depending
only on p, J , J1 and J2. From conformal invariance, that is equal to the extremal distance
between J and Tp ∪ βI((0, t2]), which is not smaller than the extremal distance between J and
Ip(J2) since Ip(J2) separates J from Tp ∪ βI((0, t2]). So we are done.

4.4 Local couplings and global coupling

Let µj denote the distribution of (ξj), j = 1, 2. Let µ = µ1×µ2. Then µ is the joint distribution
of (ξ1) and (ξ2), since ξ1 and ξ2 are independent. Fix (J1, J2) ∈ JP. From the local martingale
property of M and Proposition 4.1, we have E µ[M(T1(J1), T2(J2))] = M(0, 0) = 1. Define
νJ1,J2 by dνJ1,J2/dµ = M(T1(J1), T2(J2)). Then νJ1,J2 is a probability measure. Let ν1 and
ν2 be the two marginal measures of νJ1,J2 . Then dν1/dµ1 = M(T1(J1), 0) = 1 and dν2/dµ2 =
M(0, T2(J2)) = 1, so νj = µj , j = 1, 2. Suppose temporarily that the joint distribution of (ξ1)
and (ξ2) is νJ1,J2 instead of µ. Then the distribution of each (ξj) is still µj .
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Fix an (F2
t )-stopping time t2 ≤ T2(J2). From (4.39), (4.47), and Girsanov theorem (c.f.

Chapter VIII, Section 1 of [13]), under the probability measure νJ1,J2 , there is an (F1
t1×F

2
t2)t1≥0-

Brownian motion B̃1,t2(t1) such that ξ1(t1), 0 ≤ t1 ≤ T1(J1), satisfies the (F1
t1×F

2
t2)t1≥0-adapted

SDE:

dξ1(t1) =
√
κdB̃1,t2(t1) +

(
3− κ

2

)A1,2

A1,1
dt1 + Λ1(m, X1)A1,1dt1,

which together with (4.14), (4.22), and Itô’s formula implies that

dξ1,t2(t1) = A1,1

√
κdB̃1,t2(t1) +A2

1,1Λ1(m, ξ1,t2(t1)− g̃I,1,t2(t1, ξ2(t2)))dt1.

Recall that ζ1,t2(s1) = ξ1,t2(v−1
1,t2

(s1)) and h̃I,1,t2(s1, ·) = g̃I,1,t2(v−1
1,t2

(s1), ·). So from (4.11) and

(4.17), there is another Brownian motion B̂1,t2(s1) such that for 0 ≤ s1 ≤ v1,t2(T1(J1)),

dζ1,t2(s1) =
√
κdB̂1,t2(s1) + Λ1(p− t2 − s1, ζ1,t2(s1)− h̃I,1,t2(s1, ξ2(t2)))ds1.

Moreover, the initial values is ζ1,t2(0) = ξ1,t2(0) = G̃I,2,t2(0, x1) = g̃I,2(t2, x1). Thus, after a
time-change, gI,2(t2, β1(t1)), 0 ≤ t1 ≤ T1(J1), is a partial annulus SLE(κ,Λ1) trace in Ap−t2
started from gI,2(t2, a1) with marked point Ip−t2 ◦ ei(ξ2(t2)). This means that, conditioning
on F2

t2 , after a time-change, β1(t1), 0 ≤ t1 ≤ T1(J1), is a partial annulus SLE(κ,Λ1) trace in
Ap \ βI,2((0, t2]) started from a1 with marked point βI,2(t2). Similarly, the above statement
holds true if the subscripts “1” and “2” are exchanged.

The joint distribution νJ1,J2 is a local coupling such that the desired properties in the
statement of Theorem 4.1 holds true up to the stopping time T1(J1) and T2(J2). Then we can
apply the coupling technique developed in Section 7 of [26] to construct a global coupling using
the local couplings for different pairs (J1, J2).

The coupling technique is composed of several steps. First, let {(Jk1 , Jk2 ) : k ∈ N} denote
the set of all pairs in JP such that Jkj , k ∈ N, j = 1, 2, are polygonal curves, whose vertices have
rational coordinates. Second, for every n ∈ N, one may find a coupling of β1 and β2 such that,
for every 1 ≤ k ≤ n, if β1 is stopped at τJk1

, and β2 is stopped at τJk2
, then the joint distribution

is νJk1 ,Jk2
. To construct such coupling, we work on the two-dimensional random process M . One

may prove that there is a process Mn defined on [0, p]2, which satisfies the following properties:

1. Mn is a martingale in one variable, when the other variable is fixed;

2. Mn = 1 when either variable is 0;

3. Mn = M on [0, τJk1
]× [0, τJk2

], 1 ≤ k ≤ n.

To construct Mn, we use vertical lines {t1 = τJk1
} and horizontal lines {t2 = τJk2

}, 1 ≤ k ≤ n,

to divide the square [0, p]2 into smaller rectangles. First define Mn on

n⋃
k=1

[0, τJk1
]× [0, τJk2

] ∪ ({0} × [0, p]) ∪ ([0, p]× {0})
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according to 2 and 3. Then we extend Mn to other smaller rectangles one by one in such a way
that in each rectangle R not contained in any [0, τJk1

] × [0, τJk2
], Mn(t1, t2) = fR(t1)gR(t2) for

some suitable functions fR and gR. Such extension exists, is unique, and satisfies the desired
properties. The reader is referred to Theorem 6.1 in [26] for details. The νn is then defined by
dνn/dµ = Mn(p, p). Finally, the global coupling measure ν is any subsequential weal limit of
the sequence (νn) in some suitable topology.

4.5 Other results

Here we state without proofs some other results which can be proved using the idea in the proof
of Theorem 4.1.

Theorem 4.2. Let κ > 0. Suppose Γ is a C1,2 differentiable function on (0,∞) × (R \ 2πZ)
that satisfies

∂tΓ =
κ

2
Γ′′ + HΓ′ +

(3

κ
− 1

2

)
H′Γ. (4.48)

Let Λ = κΓ′

Γ , Λ1 = Λ, and Λ2 be the dual of Λ. Then for any p > 0 and a1 6= a2 ∈ T, there is a
coupling of two curves: β1(t), 0 ≤ t < T1, and β2(t), 0 ≤ t < T2, such that for j 6= k ∈ {1, 2}
the following hold.

(i) βj is an annulus SLE(κ,Λj) trace in Ap started from aj with marked point ak.

(ii) If tk ∈ [0, Tk) is a stopping time w.r.t. (Kk(t)), then conditioned on βk(t), 0 ≤ t ≤ tk,
after a time-change, βj(t), 0 ≤ t < Tj(tk), is a partial annulus SLE(κ,Λj) process in a
component of Ap \ βk((0, tk]) started from aj with marked point βk(tk), where Tj(tk) is
the first time that βj hits βk([0, tk]), and is set to be Tj if such time does not exist. If
κ ∈ (0, 4], the word “partial” could be removed.

Remark.

1. The Λ in the theorem satisfies the following partial differential equation:

∂tΛ =
κ

2
Λ′′ +

(
3− κ

2

)
H′′ + ΛH′ + HΛ′ + ΛΛ′. (4.49)

On the other hand, if Λ satisfies (4.49), then there is Γ, which satisfies Λ = κΓ′

Γ and (4.48).

2. Theorem 4.2 also holds for κ = 0 if Λ solves (4.48).

3. We may also derive similar results for radial SLE(κ,Λ) process and strip SLE(κ,Λ) pro-
cess. In these two cases, Γ and Λ are functions of a single variable, and Λ = κΓ′

Γ . If
Λ = ρ

2 cot2 or Λ = ρ
2 coth2, respectively, in these two cases, then we get the radial

SLE(κ, ρ) and strip SLE(κ, ρ) processes, respectively (c.f. [20]). For the radial SLE(κ,Λ)
process, to have the commutation relation, we need that Γ solves the ODE

0 =
κ

2
Γ′′ + cot2 Γ′ +

(3

κ
− 1

2

)
cot′2 Γ + CΓ, (4.50)
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where C is a constant. For the strip SLE(κ,Λ) process, Γ must solves (4.50) with cot2

replaced by coth2 to guarantee the existence of the commutation coupling.

5 Coupling of Whole-Plane SLE

The goal of this section is to prove Theorem 5.1 below, which is about commutation couplings
of two whole-plane SLE processes. This result will later be used to prove the whole-plane
reversibility. Since the proof is similar to the proof of Theorem 4.1, we will frequently quote
the arguments in the previous section.

Theorem 5.1. Let κ > 0 and s0 ∈ R. Suppose Γ is a positive C1,2 differentiable function on
(0,∞) × R that satisfies (4.1) and (4.2). We also call Γ a partition function. Let Λ = κΓ′

Γ ,
Λ1 = Λ, and Λ2 be the dual of Λ1. Let s1 = s0 and s2 = −s0. Then there is a coupling of
two curves βI,1(t), −∞ < t < ∞, and βI,2(t), −∞ < t < ∞, such that for j 6= k ∈ {1, 2}, the
following hold.

(i) βI,j is a whole-plane SLE(κ, sj) trace in Ĉ from 0 to ∞;

(ii) Let tk be a finite stopping time w.r.t. (KI,k(t)). Then conditioned on βI,k(s), −∞ < s ≤ tk,
after a time-change, the curve βI,j(tj), −∞ < tj < Tj(tk), is a disc SLE(κ,Λj) process in

a component of Ĉ \ I0(βI,j([−∞, tj ])) started from 0 with marked point I0(βI,j(tj)), where
Tj(tk) is the first time that βj hits βk([−∞, tk]), or ∞ if such time does not exist.

5.1 Estimations on Loewner maps

Let g̃(t, ·), t ∈ R, be the inverted covering whole-plane Loewner maps driven by some ξ ∈ C(R).
Let z ∈ C and h(t) = Im g̃(t, z) > 0 for t ∈ (−∞, τz), the interval on which g̃(t, z) is defined.
From (3.3) we have − tanh2(h(t)) ≥ h′(t) ≥ − coth2(h(t)), and

|∂tg̃(t, z) + i| ≤ 2

eIm g̃(t,z) − 1
=

2

eh(t) − 1
, t ∈ (−∞, τz). (5.1)

So h(t) decreases, and d
dt ln(cosh2(h(t))) ≥ −1/2, which together with (3.4) and integration

implies that cosh2(h(t)) ≥ 1
2e

Im z
2
− t

2 . Then we have eh(t) ≥ eIm z−t − 3. From (5.1) we see that,
if t < Im z − ln(8), then |∂tg̃(t, z) + i| ≤ 2

eIm z−t−4
≤ 4et−Im z. From (3.4) and integration we

have
|g̃(t, z) + it− z| ≤ 4et−Im z ≤ 1/2, if t ≤ Im z − ln(8). (5.2)

If g̃(t, ·) are the covering whole-plane Loewner maps, then from g̃(t, ·) = Ĩ0 ◦ g̃I(t, ·)◦ Ĩ0, we have

|g̃I(t, z)− it− z| ≤ 4et+Im z ≤ 1/2, if t ≤ − Im z − ln(8). (5.3)

Let g̃I(t, ·), −∞ < t < 0, be the covering disc Loewner maps driven by some ξ ∈ (−∞, 0).
Let z ∈ H and h(t) = Im g̃I(t, z) > 0 for t ∈ (−∞, τz). From Lemma 2.1 and (3.11) we
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see that if −t ≥ h(t) + 2 then |h′(t)| ≤ 5.5eh(t)+t, so | ddte
−h(t)| ≤ 5.5et. From (3.12) we see

that −t ≥ h(t) + 2 when t is close to −∞. Suppose that −t ≥ h(t) + 2 does not hold for
all t ∈ (−∞, τz), and let t0 be the first t such that −t = h(t) + 2. Then | ddte

−h(t)| ≤ 5.5et

on (−∞, t0]. From (3.12) and integration we have et0+2 = e−h(t0) ≥ e− Im z − 5.5et0 , which
implies that e− Im z ≤ (e2 + 5.5)et0 < 13et0 . Thus, if t ≤ − Im z − ln(13) then −t ≥ h(t) + 2,
so |h′(t)| ≤ 5.5eh(t)+t. From (3.12) and integration, we see that, if t ≤ − Im z − ln(13), then
e− Im g̃I(t,z) ≥ 7.5

13 e
− Im z, which implies that Im g̃I(t, z) ≤ Im z + ln(13/7.5) < −t − 2, which,

together with Lemma 2.1, implies that |HI(−t, g̃I(t, z) − ξ(t))| ≤ 5.5 13
7.5e

Im z+t < 10eIm z+t.
From (3.11), (3.12) and integration we have |g̃I(t, z)− z| ≤ 10eIm z+t, if t ≤ − Im z − ln(13). If
g̃(t, ·) are the inverted covering disc Loewner maps, then from g̃(t, ·) = Ĩ−t ◦ g̃I(t, ·)◦ Ĩ0, we have

|g̃(t, z) + it− z| ≤ 10e− Im z+t ≤ 10/13, if t ≤ Im z − ln(13). (5.4)

5.2 Ensemble

The argument in this subsection is parallel to that in Section 4.2. Let ξ1, ξ2 ∈ C(R). For j = 1, 2,
let gI,j(t, ·) (resp. gj(t, ·)), t ∈ R, be the whole-plane (resp. inverted whole-plane) Loewner
maps driven by ξj . Let g̃I,j(t, ·) and g̃j(t, ·), t ∈ R, j = 1, 2, be the corresponding covering
Loewner maps. Suppose ξj generates a simple whole-plane Loewner trace: βI,j , j = 1, 2. Let
βI,j = I0 ◦ βj , j = 1, 2, be the inverted trace. Let Kj(t) and KI,j(t) be the corresponding hulls.

Define D and m using (4.9) and (4.10) with 0 replaced by −∞ and Ap replaced by Ĉ. Fix any
j 6= k ∈ {1, 2} and tk ∈ R. Let Tj(tk) be as defined as before. Then for any tj < Tj(tk), we
have (t1, t2) ∈ D. Moreover, as tj → Tj(tk)

−, m(t1, t2)→ 0.
For −∞ ≤ tj < Tj(tk), let βI,j,tk(tj) = gk(tk, βI,j(tj)). Then βj,tk is a simple curve in D

starts from 0. For −∞ < tj < Tj(tk), let vj,tk(tj) = −mod(D \ βI,j,tk([−∞, tj ])) = −m(t1, t2).
Then vj,tk is continuous and increasing and maps (−∞, Tj(tk)) onto (−∞, 0). Let γI,j,tk(t) =
βI,j,tk(v−1

j,tk
(t)), −∞ ≤ t < 0. Then γI,j,tk is the disc Loewner trace driven by some ζj,tk ∈

C((−∞, 0)). Let γj,tk be the corresponding inverted disc Loewner trace. Let hI,j,tk(t, ·) and

hj,tk(t, ·) be the corresponding disc and inverted disc Loewner maps. Let h̃I,j,tk(t, ·) and h̃j,tk(t, ·)
be the corresponding covering Loewner maps.

For−∞ < tj < Tj(tk), let ξj,tk(tj), βj,tk(tj), gI,j,tk(tj , ·), gj,tk(tj , ·), g̃I,j,tk(tj , ·), and g̃j,tk(tj , ·)
be the time-changes of ζj,tk(t), γj,tk(t), hI,j,tk(t, ·), hj,tk(t, ·), h̃I,j,tk(t, ·), and h̃j,tk(t, ·), respec-
tively, via vj,tk .

Define GI,k,tk(tj , ·) and G̃I,k,tk(tj , ·) by (4.12) and (4.13). Then we could choose the driving
function ζj,tk such that (4.14) holds. Define Aj,h and Aj,S using (4.15) and (4.16). A standard
argument using Lemma 2.1 in [23] shows (4.17) and (4.18) hold here. From the definition of
G̃I,k,tk(tj , ·), we get (4.21), which can be differentiated to conclude that (4.22) holds here, and
(4.23) holds with p− tj replaced by ∞. Let Xj be defined by (4.28). Then (4.29) holds. Let Q
be defined by (4.30). Then (4.31)-(4.36) still hold.

From Lemma 2.1, we have

Q = O(e−m), as m→∞. (5.5)
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From Lemma 4.4, we see that, for j = 1, 2,

ln(Aj,1), Aj,S = O(m e−m), as m→∞. (5.6)

Since etj is the capacity of KI,j(tj), which contains 0, we have KI,j(tj) ⊂ {|z| ≤ 4etj}. This

then implies that Kj(tj) ⊂ {|z| ≥ e−tj/4}, K̃I,j(tj) ⊂ {Im z ≥ −tj − ln(4)}, and K̃j(tj) ⊂
{Im z ≤ ln(4) + tj}. Thus,

{(t1, t2) ∈ R2 : t1 + t2 < − ln(16)} ⊂ D, (5.7)

m(t1, t2) ≥ −t1 − t2 − ln(16), if (t1, t2) ∈ D. (5.8)

From (5.5)-(5.8), we see that A2
1,1A

2
2,1Q = O(et1+t2) as t1 + t2 → −∞. Define F on D using

(4.37) with the lower bounds 0 replaced by −∞. From Lemma 4.4, Ak,S → 0 as tj → −∞.

Thus, (4.38) still holds here, and ln(F (t1, t2)) =
∫ t1
−∞

A1,S(s1,t2)
A1,1(s1,t2)2

· A1,1(s1, t2)2ds1. Changing

variable with x(s1) = m(s1, t2), and using (4.18) and (5.6),we conclude that

ln(F ) = O(m e−m), as m→∞. (5.9)

5.3 Martingales in two time variables

The argument in this subsection is parallel to that in Section 4.3. Let (B
(κ)
1 (t)) and (B

(κ)
2 (t))

be two independent pre-(T;κ)-Brownian motion. Let ξj(t) = B
(κ)
j (t) + sjt, t ∈ R, j = 1, 2.

For simplicity, suppose κ ∈ (0, 4]. Then for j = 1, 2, a.s. (ξj) generates a simple whole-plane

Loewner trace βI,j , which is a whole-plane SLE(κ, s0) trace in Ĉ from 0 to ∞. We may apply

the results in the prior subsection. For j = 1, 2, let (F jt )t∈R be the complete filtration generated
by ei(ξj). The whole-plane Loewner objects driven by ξj are all (F jt )-adapted, because they are
all determined by (ei(ξj(t))). It is easy to check that for j 6= k ∈ {1, 2}, the processes (βI,j,tk),

(g̃I,j,tk(tj , ·)), (Aj,h), h = 1, 2, 3, (Aj,S), (GI,j,tj (tk, ·)), (G̃I,j,tj (tk, ·)), (ei(ξj,tk)), (ei(Xj)), (m),

(H
(h)
I (m, X1)), (Γj(m, Xj)), (Λj(m, Xj)), (Q) and (F ) defined on D are all (F1

t1×F
2
t2)-adapted.

This is not true for (ξj,tk(tj)) and (Xj), but is true for their images under the map ei. Define
Y using (4.41). Then (Y ) is also (F1

t1 ×F
2
t2)-adapted since Γj has period 2π.

In this section we work on SDE with the meaning as in Definition 2.2: the stochastic part
contains pre-(T;κ)-Brownian motions, and the time intervals start from −∞. The traditional
Itô’s formula works only for time intervals that start from 0 or a finite number. To derive the
results in this section, we may truncate the interval “(−∞, T )” by an arbitrary real number
c (and we work on the interval [c, T )), which is close to −∞. Fix j 6= k ∈ {1, 2} and any
(Fkt )-stopping time tk ∈ R. Let F j,tktj

= F jtj × F
k
tk

, tj ∈ R. From now on, all SDE will be

(F j,tktj
)-adapted (with the meaning as in Definition 2.2), and tj ranges in [0, Tj(tk)).

First, we find that (4.40) still holds here, which then implies (4.42). From the modified

(4.23), we see that (4.43) holds here with p − tj replaced by ∞. Let M̂ be defined by (4.44).
Then (4.45) holds with p− tj replaced by ∞.

30



Define M on D by

M = M̂ exp
(
αr(∞)(m +t1 + t2) +

∑
j=1,2

−sj
κ
ξj(tj) +

s2
j

2κ
tj

)
. (5.10)

Then M is (F1
t1 ×F

2
t2)-adapted. From the modified (4.45) and that ξj(tj) = B

(κ)
j (tj) + sjtj , we

compute

∂jM

M
=
[(

3− κ

2

)Aj,2
Aj,1

+Aj,1Λj(m, Xj)− sj
]∂B(κ)

j (tj)

κ
. (5.11)

So M is a local martingale in tj when tk is a finite stopping time.

Let J denote the set of Jordan curves in C\{0} that surround 0. For J ∈ J and j = 1, 2, let
Tj(J) denote the first time that βj hits J . Then Tj(J) is also the first time that βI,j hits I0(J).
Let HJ denote the closure of the domain bounded by I0(J), and let CJ denote the capacity of
HJ . If KI,j(t) ⊂ HJ , then et ≤ CJ . So we have Tj(J) ≤ ln(CJ).

Let JP denote the set of pairs (J1, J2) ∈ J 2 such that I0(J1) ∩ J2 = ∅ and I0(J1) is
surrounded by J2. This is equivalent to that I0(J2) ∩ J1 = ∅ and I0(J2) is surrounded by
J1. Then for every (J1, J2) ∈ JP, βI,1(t1) 6= β2(t2) when t1 ≤ T1(J1) and t2 ≤ T2(J2), so
(−∞, T1(J1)]× (−∞, T2(J2)] ⊂ D.

Proposition 5.1. (Boundedness) Fix (J1, J2) ∈ JP. (i) | ln(M)| is bounded on (−∞, T1(J1)]×
(−∞, T2(J2)] by a constant depending only on J1 and J2. (ii) Fix any j 6= k ∈ {1, 2}. Then
ln(M)→ 0 as tj → −∞ uniformly in tk ∈ (−∞, Tk(Jk)].

Proof. Let Γs0 be given by Lemma 4.3. Let Γs0,1 = Γs0 , and Γs0,2(t, x) = Γs0(t,−x). Define Ys0

on D by Ys0 = Γs0,1(m, X1) = Γs0,2(m, X2). Then Ys0 = Y exp(− s0
κ X1 −

s20 m
2κ ). From Lemma

4.3,
ln(Ys0) = o(m) as m→∞. (5.12)

Define M̂s0 using (4.44) with Y replaced by Ys0 . From (5.10) we have

M = Ms0 exp
(

(αr(∞) +
s2

0

2κ
)(m +t1 + t2) +

s0

κ
(X1 − ξ1(t1) + ξ2(t2))

)
. (5.13)

From (5.6), (5.9), (5.12), and that R(p) = O(e−p) as p→∞, we see that there is a positive
continuous function f on (0,∞) with limx→∞ f(x) = 0 such that

| ln(Ms0(t1, t2))| ≤ f(m(t1, t2)). (5.14)

Let Ω(I0(J1), J2) denote the doubly connected domain bounded by I0(J1) and J2. Let p0 > 0
denote its modulus. For (t1, t2) ∈ (−∞, T1(J1)]× (−∞, T2(J2)], since Ω(I0(J1), J2) disconnects
KI,1(t1) from K2(t2), we have m(t1, t2) ≥ p0. On the other hand, m ≤ p. From (5.14) we see
that ln(Ms0) is uniformly bounded. From (5.7), (5.8), (5.14), and that Tk(Jk) ≤ CJk <∞, we
see that ln(M)→ 0 as tj → −∞ uniformly in tk ∈ (−∞, Tk(Jk)]. The rest of the proof follows
from (5.13) and the following proposition.
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Proposition 5.2. Fix (J1, J2) ∈ JP. (i) |X1 − ξ1 + ξ2| and |m +t1 + t2| are bounded on
(−∞, T1(J1)] × (−∞, T2(J2)] by constants depending only on J1 and J2. (ii) For any j 6= k ∈
{1, 2}, X1 − ξ1 + ξ2 → 0 and m +t1 + t2 → 0 as tj → −∞, uniformly in tk ∈ (−∞, Tk(Jk)].

Proof. Recall that Tj(Jj) ≤ CJj < ∞ for j = 1, 2, and m ≥ p0 > 0 on (−∞, T1(J1)] ×
(−∞, T2(J2)]. If there is no ambiguity, let Ω(A,B) denote the domain bounded by sets A and
B, and let mod(A,B) denote the modulus of this domain if it is doubly connected.

From (4.28) we have X1(t1, t2) = G̃I,2,t2(t1, ξ1(t1))− g̃I,1,t2(t1, ξ2(t2)). So

|X1(t1, t2)− ξ1(t1) + ξ2(t2)| ≤ |g̃I,1,t2(t1, ξ2(t2))− ξ2(t2)|+ |G̃I,2,t2(t1, ξ1(t1))− ξ1(t1)|. (5.15)

From (3.12) we have limt1→−∞ g̃I,1,t2(t1, ξ2(t2)) = ξ2(t2). From (4.18), (4.20), and Lemma 2.1,
we see that there is a deterministic positive decreasing function f(x) with limx→∞ f(x) = 0 such
that |g̃I,1,t2(t1, ξ2(t2)) − ξ2(t2)| ≤ f(m(t1, t2)). Since m ≥ p0 on (−∞, T1(J1)] × (−∞, T2(J2)],
|g̃I,1,t2(t1, ξ2(t2)) − ξ2(t2)| is uniformly bounded by f(p0). From (5.8) and that T2(J2) ≤ CJ2 ,
we see that g̃I,1,t2(t1, ξ2(t2))− ξ2(t2)→ 0 as t1 → −∞, uniformly in t2 ∈ (−∞, T2(J2)].

Let J be a Jordan curve separating J1 and JI,2. Let p1 = mod(J, J1) and p2 = mod(J, JI,2).

Let J̃ = (ei)−1(J). Let hm = inf{Im z : z ∈ J̃} and hM = sup{Im z : z ∈ J̃}. Then both hm
and hM are finite. For j = 1, 2, there is hj > 0 depending only on pj , such that, if K ⊂ D
is an interior hull with 0 ∈ K and mod(D \K) ≥ pj , then K ⊂ {|z| ≤ e−hj}. If t1 ≤ T1(J1),
then J1 disconnects J from K1(t1), so mod(J,K1(t1)) ≥ p1. Since Ω(J,K1(t1)) is mapped by
g1(t1, ·) conformally onto Ω(g1(t1, J),T) ⊂ D, mod(g1(t1, J),T) ≥ p1. Since g1(t1, J) surrounds
0, g1(t1, J) ⊂ {|z| ≤ e−h1}. Since g̃1(t1, J̃) = (ei)−1(g1(t1, J)), g̃1(t1, J̃) ⊂ {Im z ≥ h1}.
Similarly, if t2 ≤ T2(J2), then g̃I,2(t2, J̃) ⊂ {Im z ≤ −h2}. If t1 ≤ T1(J1) and t2 ≤ T2(J2), then
g1,t2(t1, ·)◦gI,2(t2, ·) maps C\K1(t1)\KI,2(t2) conformally onto Am. A similar argument shows

that the image of J under this map lies in {e−m +h2 ≤ |z| ≤ e−h1}. Thus, g̃1,t2(t1, g̃I,2(t2, J̃)) ⊂
{h1 ≤ Im z ≤ m−h2}, if t1 ≤ T1(J1) and t2 ≤ T2(J2).

Let z0 ∈ C\K̃1(t1)\K̃I,2(t2), w1 = g̃1(t1, z0), w2 = g̃I,2(t2, z0), and w3 = g̃1,t2(t1, w2). From
(5.2), (5.3), and (5.4) we see that

|w1 − (z0 − it1)| ≤ 4et1−Im z0 ≤ 1/2, if t1 ≤ Im z0 − ln(8); (5.16)

|w2 − (z0 + it2)| ≤ 4et2+Im z0 ≤ 1/2, if t2 ≤ − Im z0 − ln(8); (5.17)

|w3 − (w2 + im)| ≤ 10e−m− Imw2 < 1, if Imw2 + m ≥ ln(13). (5.18)

Now let z0 ∈ J̃ . From the prior paragraph, Im g̃1(s, z0) ≥ h1 for s ≤ t1, Im g̃I,2(s, z0) ≤ −h2 for
s ≤ t2, and m(s, t2) − h2 ≥ g̃1,t2(s, w2) ≥ h1 for s ≤ t1. From (5.1) we have |∂tg̃1(s, z0) + i| ≤

2
eh1−1

, for s ≤ t1. Similarly, |∂tg̃I,2(s, z0)− i| ≤ 2
eh2−1

for s ≤ t2. If t1 ≤ Im z0− ln(8), then from

(5.16), |w1−(z0−it1)| ≤ 1/2. If t1 > Im z0− ln(8), we let t′1 = Im z0− ln(8), and w′1 = g̃1(t′1, z0).
Then we have |w′1 − (z0 − it′1)| ≤ 1/2. From the bound of |∂tg̃1(s, z0) + i|, we see that

|(w1 + it1)− (w′1 + it′1)| ≤ 2(t1 − t′1)

eh1 − 1
≤ 2CJ1 − 2(Im z0 − ln(8))

eh1 − 1
≤ 2CJ1 + 2 ln(8)− 2hm

eh1 − 1
.
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Let A1 = 1
2 + max{0, 2CJ1+2 ln(8)−2hm

eh1−1
}. Then in all cases we have

|w1 − (z0 − it1)| ≤ A1. (5.19)

Similarly, let A2 = 1
2 + max{0, 2CJ2+2 ln(8)+2hM

eh2−1
}. Then we always have

|w2 − (z0 + it2)| ≤ A2. (5.20)

Since Im z0 ≥ hm, we have

t2 − Imw2 ≤ A2 − Im z0 ≤ A2 − hm. (5.21)

If Imw2 +m(t1, t2) ≥ ln(13), from (5.18), we have |w3−(w2 + im(t1, t2))| < 1. Now suppose
that Imw2 + m(t1, t2) < ln(13). We may choose t′1 < t1 such that Imw2 + m(t′1, t2) = ln(13).
Let w′3 = g̃1,t2(t′1, w2). Then we have |w′3 − (w2 + im(t′1, t2))| < 1. For s ≤ t1, since h1 ≤
Im g̃1,t2(s, w2) ≤ m(s, t2)− h2, from Lemma 2.1 we have

|HI(m(s, t2), im(s, t2)− g̃1,t2(s, w2) + ξ1,t2(s))| ≤ 4e−h1

(1− e−h1)3
.

Since HI(m, z) + i = HI(m, z − im) = −HI(m, im−z), we have

|H(m(s, t2), g̃1,t2(s, w2)− ξ1,t2(s)) + i| ≤ 4e−h1

(1− e−h1)3
, if s ≤ t1.

Let C0 = 4e−h1
(1−e−h1 )3

. From (4.18), (4.20), (5.8), (5.21), and the above inequality, we have

|(w3 − im(t1, t2))− (w′3 − im(t′1, t2))| ≤ C0(m(t′1, t2)−m(t1, t2))

≤ C0(ln(13)− Imw2 + t1 + t2 + ln(16)) ≤ C0(ln(13) + ln(16) + CJ1 +A2 − hm).

Let A3 = 1 + max{0, C0(ln(13) + ln(16) +CJ1 +A2−hm)}. Then |w3− (w2 + im)| ≤ A3 always
holds, which together with (5.19) and (5.20) implies that, for any t1 ≤ T1(J1) and t2 ≤ T2(J2),

|G̃I,2,t2(t1, w1)− w1 − i(m +t1 + t2)| ≤ A1 +A2 +A3, w1 ∈ g̃1(t1, J̃). (5.22)

Now g̃1(t1, J̃) is a curve with period 2π above R, the function w 7→ G̃I,2,t2(t1, w)−w has period

2π, is analytic in Ω(g̃1(t1, J̃),R), and its imaginary part vanishes on R. Applying the maximum
principle to the real part of this function, and using (5.22), we conclude that

|G̃I,2,t2(t1, ξ1(t1))− ξ1(t1)| ≤ A1 +A2 +A3, if t1 ≤ T1(J1) and t2 ≤ T2(J2).

This together with (5.15) and the estimation of |g̃I,1,t2(t1, ξ2(t2)) − ξ2(t2)| implies that |X1 −
ξ1 + ξ2| is uniformly bounded on (−∞, T1(J1)]× (−∞, T2(J2)].
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Since GI,2,t2(t1, ·) maps T onto T, and is conformal in the domain that contains the region
between g1(t1, J) and T, there must exist z1 ∈ g1(t1, J) such that |GI,2,t2(t1, z1)| = |z1|. Choose

w1 ∈ g̃1(t1, J̃) such that ei(w1) = z1. Then Im G̃I,2,t2(t1, w1) = Imw1. From (5.22) we get
|m +t1 + t2| ≤ A1 +A2 +A3, if t1 ≤ T1(J1) and t2 ≤ T2(J2), which finishes the proof of (i).

Now suppose t1 + t2 ≤ −1− 2 ln(13)− 2 ln(16) and Im z0 = t1−t2
2 . Then

Im z0 − t1 = − Im z0 − t2 = − t1 + t2
2

≥ 1

2
+ ln(13) + ln(16) ≥ ln(8).

Since K̃1(t1) ⊂ {Im z ≤ ln(4) + ln(t1)} and K̃I,2(t2) ⊂ {Im z ≥ − ln(t2) − ln(4)}, we have

z0 ∈ C \ K̃1(t1) \ K̃I,2(t2). From (5.16) and (5.17) we have

|w1 − (z0 − it1)|, |w2 − (z0 + it2)| ≤ 4e
t1+t2

2 ≤ 1/2. (5.23)

From (5.8), (5.23), and the upper bound of t1 + t2, we have

Imw2 + m ≥ Im z0 + t2 −
1

2
− t1 − t2 − ln(16) = − t1 + t2 + 1

2
− ln(16) ≥ ln(13).

Thus, from (5.18) and the above inequality we have

|g̃1,t2(t1, w2)− (w2 + im)| ≤ 10e−m− Imw2 ≤ 264e
t1+t2

2 . (5.24)

From (4.13), (5.23), and (5.24) we see that if t1 + t2 ≤ −1− 2 ln(13)− 2 ln(16), then

|G̃I,2,t2(t1, w1)− w1 − i(m +t1 + t2)| ≤ 272e
t1+t2

2 , w1 ∈ g̃1(t1,R(t1−t2)/2).

The argument between (5.22) and the end of part (i) can be used here to show that, if t1 + t2 ≤
−1−2 ln(13)−2 ln(16), then |G̃I,2,t2(t1, ξ1(t1))−ξ1(t1)| ≤ 272e

t1+t2
2 and |m +t1+t2| ≤ 272e

t1+t2
2 .

These inequalities together with the uniform limit of g̃I,1,t2(t1, ξ2(t2))− ξ2(t2) and the fact that
T2(J2) ≤ CJ2 imply that (ii) hold for j = 1 and k = 2. Interchanging t1 and t2, we find that
m +t1 + t2 → 0 and X2 − ξ2 + ξ1 → 0 as t2 → 0, uniformly in t1 ∈ (−∞, T1(J1)]. From (4.29)
we see that X2 − ξ2 + ξ1 = −(X1 − ξ1 + ξ2), so we have X1 − ξ1 + ξ2 → 0 as t2 → 0, uniformly
in t1 ∈ (−∞, T1(J1)]. This completes the proof of part (ii).

Let D̂ = D ∪ {(t1,−∞) : t1 ∈ [−∞,∞)} ∪ {(−∞, t2) : t2 ∈ [−∞,∞)}, and extend M to
D̂ such that M = 1 if t1 or t2 equals −∞. From Proposition 5.1, we see that M is positive
and continuous on D̂. So for any fixed j 6= k ∈ {1, 2} and any (Fkt )-stopping time tk which is
uniformly bounded above, M is a local martingale in tj ∈ [−∞, Tj(tk)).

5.4 Local coupling and global coupling

Let µj denote the distribution of (ξj), j = 1, 2. Let µ = µ1×µ2. Then µ is the joint distribution
of (ξ1) and (ξ2), since ξ1 and ξ2 are independent. Fix (J1, J2) ∈ JP. From the local martingale
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property of M and Proposition 5.1, we have E µ[M(T1(J1), T2(J2))] = M(−∞,−∞) = 1.
Define νJ1,J2 by dνJ1,J2 = M(T1(J1), T2(J2))dµ. Then νJ1,J2 is a probability measure. Let ν1

and ν2 be the two marginal measures of νJ1,J2 . Then dν1/dµ1 = M(T1(J1),−∞) = 1 and
dν2/dµ2 = M(−∞, T2(J2)) = 1, so νj = µj , j = 1, 2. Suppose temporarily that the distribution
of (ξ1, ξ2) is νJ1,J2 instead of µ. Then the distribution of each (ξj) is still µj .

We may now use the argument in Section 4.4 with a few changes. Here M(t1, t2) satisfies
(5.11) instead of (4.47); ξj(tj) does not satisfy (4.39), but is a pre-(T;κ)-Brownian motion with
drift sj ·t. The traditional Girsanov theorem needs to be modified to work for the current setting.
Eventually, we can conclude that, under the probability measure νJ1,J2 , for any j 6= k ∈ {1, 2},
if tk is a fixed (Fkt )-stopping time with tk ≤ Tk(Jk), and gk(t, ·), −∞ < t < ∞, are the
inverted whole-plane Loewner maps driven by ξk, then conditioned on Fktk , after a time-change,
gk(tk,KI,j(tj)), −∞ < tj ≤ Tj(Jj), is a partial disc SLE(κ,Λj) process in D started from 0
with marked point ei(ξk(tk)).

The proof of Theorem 5.1 can be now completed by applying the coupling technique.

6 Partial Differential Equations

With Theorem 5.1 at hand, to prove the main theorem we need to find particular solutions to
(4.1) that satisfy certain properties. This section serves this purpose. From Lemma 4.1 we see
that solving (4.1) is equivalent to solving (4.5) with σ = 4

κ − 1. Throughout this section, we
assume that κ > 0 and σ ∈ [0, 4

κ), and will find solutions to (4.5) in these cases. In particular,
we will obtain solutions to (4.1) when κ ∈ (0, 4].

The solutions to (4.5) is obtained by construction. We will transform (4.5) into a similar
PDE (6.26), where HI is replaced by ĤI . We know that as t → ∞, ĤI(t, ·) → coth2, and
PDE (6.26) tends to another PDE (6.27), which has a simple solution Ψ̂∞ given by (6.28).
Then we let Ψ̂q = Ψ̂/Ψ̂∞, and find that Ψ̂ solves (6.26) if and only if Ψ̂q solves PDE (6.29). A
formal solution to (6.29) is expressed by a Feynman-Kac formula (6.30), which involves diffusion
processes. Such diffusion processes are introduced and studied in Section 6.1. In Section 6.2
we describe how close is ĤI(t, ·) to coth2 when t is big. In Section 6.3 we transform the PDE
(4.5) for Ψ into the PDE (6.29) for Ψ̂q, and give an intuitive reason why the formula (6.30)

gives a solution to (6.29). In Section 6.4 we prove that the Ψ̂q given by (6.30) is smooth, and
solves (6.29). So we obtain a solution Γ to (4.1). However, such Γ does not satisfy (4.2). For
this purpose, note that (4.1) is a linear PDE, and HI has period 2π, so any translation of Γ by
an integer multiple of 2π also solves (4.1). The solutions to (4.1) which also satisfy (4.2) will
be obtained by summing over all translations of Γ with suitable weights.

The following symbols will be used in this section. For any n, j ∈ N, we call an j-tuple
λ = (λ1, . . . , λj) ∈ Nj a partition of n if λ1 ≥ · · · ≥ λj and

∑j
k=1 λk = n. The length of such

partition is denoted by l(λ) = j. Let Pn denote the set of all partitions of n. For example, (n)
is the only element in Pn with length 1. Let PN =

⋃
n∈N Pn denote the set of all partitions.
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6.1 Diffusion processes

Fix τ ≤ 0. For x ∈ R, let u(t, x), t ≥ 0, be the solution to

∂tu(t, x) = τ tanh2(u(t, x) +
√
κB(t)); u(0, x) = x. (6.1)

Then Xx(t) := u(t, x) +
√
κB(t) satisfies the SDE

dXx(t) =
√
κdB(t) + τ tanh2(Xx(t))dt, Xx(0) = x. (6.2)

Lemma 6.1. For any x ∈ R, we have a.s.
∫∞

0 tanh′2(Xx(t))dt =∞ and

lim sup
t→∞

Xx(t) = +∞, lim inf
t→∞

Xx(t) = −∞. (6.3)

Proof. Fix x ∈ R. Let X(t) = Xx(t). Define f(t) =
∫ t

0 cosh2(s)−
4
κ
τds, t ∈ R. Then f is a

differentiable increasing odd function and satisfies κ
2f
′′ + τ tanh2 f

′ = 0. Let Y (t) = f(X(t)).
From (6.2) and Itô’s formula, we have dY (t) = f ′(X(t))

√
κdB(t). Define a time-change function

u(t) =
∫ t

0 κf
′(X(s))2ds. Since τ ≤ 0, f ′(t) ≥ 1, t ∈ R. Thus, u(t) ≥ t for all t ∈ R. So u

maps [0,∞) onto [0,∞), and Y (u−1(t)), 0 ≤ t <∞, has the distribution of a Brownian motion.
Thus, (6.3) holds with X replaced by Y , which then implies (6.3). Since X is recurrent, and
tanh′2 > 0 on R, we immediately have a.s.

∫∞
0 tanh′2(Xx(t))dt =∞.

Lemma 6.2. For any b, c > 0 and x ∈ R,

P[∃t ≥ 0, |Xx(t)| > ct+ b] ≤ 2e
2c
κ

(|x|−b). (6.4)

Proof. First, it is well known that (6.4) holds with Xx(t) replaced by x+
√
κB(t). So it suffices

to show that (|Xx(t)|) is bounded above by a process that has the distribution of (|x+
√
κB(t)|).

This can be proved by using Theorem 4.1 in [3]. Here we give a direct proof.
Let Y (t) = |Xx(t)| From (6.2) and Tanaka-Itô’s formula, we have

Y (t) = |x|+
√
κB0(t) +

κ

2
τ

∫ t

0
tanh2(Y (s))ds+ L(t), t ≥ 0, (6.5)

where B0(t) is a Brownian motion, L(t) is a non-decreasing function, which satisfies L(0) = 0
and is constant on every interval of {Y (t) > 0}.

Fix t0 ≥ 0. There is t′0 ∈ [0, t0] such that L(t) is constant on [t′0, t0]. We may assume t′0 is the
smallest such number. There are two cases. Case 1: t′0 = 0. Then L(t0) = L(t′0) = L(0) = 0.
Since τ ≤ 0, from (6.5), Y (t0) ≤ |x|+

√
κB0(t). Case 2: t′0 > 0. Then Y (t′0) = 0. Since τ ≤ 0,

from (6.5),

Y (t0)− |x| −
√
κB0(t0) ≤ Y (t′0)− |x| −

√
κB0(t′0) = −|x| −

√
κB0(t′0).
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Thus, in either case, we have

Y (t0) ≤ |x|+
√
κB0(t0) + max{0, sup

0≤s≤t0
{−|x| −

√
κB0(s)}}.

The RHS of the above inequality defines a process that has the distribution of |x+
√
κB(t0)|,

t0 ≥ 0 (c.f. Chapter VI, Section 2 of [13]), so the proof is completed.

Lemma 6.3. There are Cn > 0, n ∈ N, with C1 = 1, such that

| tanh
(n)
2 (x)| ≤ Cn tanh′2(x) ≤ Cn

2
, x ∈ R, n ∈ N.

Proof. Note that tanh′2(x) = 1
2 cosh−2

2 (x) ∈ (0, 1/2]. So the second “≤” holds. By induction,

one can prove that for every n, there are a
(n)
j ∈ R, 0 ≤ j ≤ n− 1, such that

tanh
(n)
2 (x) =

n−1∑
j=0

a
(n)
j cosh−2−j

2 (x) sinhj2(x) =
n−1∑
j=0

a
(n)
j cosh−2

2 (x) tanhj2(x).

Since | tanhj2(x)| ≤ 1 and cosh−2
2 = 2 tanh′2, we may choose Cn = 2

∑
j |a

(n)
j |.

Lemma 6.4. For every m ∈ N, there is a polynomial Pm(t) of degree m− 1 such that for any
t > 0 and x ∈ R, | ∂m∂xmXx(t)| ≤ Pm(t).

Proof. Since Xx(t) = u(t, x) +
√
κB(t), ∂n

∂xnXx(t) = u(n)(t, x). It suffices to show that for every
m ∈ N, there is some polynomial Pm(t) of degree m− 1, such that

|u(m)(t, x)| ≤ Pm(t), t > 0, x ∈ R. (6.6)

Let fx(t) = τ tanh′2(Xx(t)). Since τ ≤ 0 and tanh′2 > 0, fx(t) ≤ 0. Differentiating (6.1) w.r.t. x
and using u′(0, x) = 1, we get u′(t, x) = exp(

∫ t
0 fx(s)ds) ∈ (0, 1]. Thus, (6.6) holds in the case

n = 1 with P1(t) ≡ 1.
Let n ∈ N, n ≥ 2. Suppose that (6.6) holds for any m ≤ n−1. Differentiating (6.1) n times,

by induction we find that there are bn(λ) ∈ R for λ ∈ Pn with bn((n)) = τ such that

∂tu
(n)(t, x) =

∑
λ∈Pn

bn(λ) tanh
(l(λ))
2 (Xx(t))

l(λ)∏
k=1

u(λk)(t, x), u(n)(0, x) = 0. (6.7)

Observe that the term u(n)(t, x) appears only once in (6.7), i.e, in the case λ = ((n)), and the
coefficient is τ tanh′2(Xx(t)) = fx(t). From Lemma 6.3 and induction hypothesis, there is a
polynomial gx(t) of degree n− 2 such that

∂tu
(n)(t, x) = fx(t)u(n)(t, x) + gx(t), u(n)(0, x) = 0.

Solving this inequality using the fact that fx(t) ≤ 0, we can conclude that (6.6) holds in the
case m = n, which finishes the proof.
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6.2 Some estimations

We will need some estimations about the limits of ĤI − tanh2 as t→∞. Let

ĤI,q(t, z) = ĤI(t, z)− tanh2(z). (6.8)

From (2.12) we have

Ĥ
′
I,q(t, x) =

∑
2|n6=0

tanh′2(x− nt) =
∑

2|n6=0

1

2
cosh−2

2 (x− nt) > 0. (6.9)

Lemma 6.5. Let Cn, n ∈ N, be as in Lemma 6.3. Note that C1 = 1. Then

|ĤI,q(t, x)| ≤ |x|
t

+ 3 +
2e−t

1− e−2t
, t > 0, x ∈ R. (6.10)

|Ĥ
(n)

I,q (t, x)| ≤ Cn
(1

2
+

4e−t

1− e−2t

)
, t > 0, x ∈ R, n ∈ N. (6.11)

Moreover, for any c > 0,

|ĤI,q(t, x)| ≤ 2e(c−2)t

1− e−2t
, if t > 0, x ∈ R, |x| ≤ ct. (6.12)

|Ĥ
(n)

I,q (t, x)| ≤ Cn
4e(c−2)t

1− e−2t
, if t > 0, x ∈ R, |x| ≤ ct, n ∈ N. (6.13)

Proof. We first show (6.12). From (2.12) and (6.8) we have

ĤI,q(t, x) =
∞∑
m=1

(tanh2(x− 2mt) + tanh2(x+ 2mt))

=
∞∑
m=1

(
− e2mt − ex

e2mt + ex
+
e2mt − e−x

e2mt + e−x

)
=
∞∑
m=1

2(ex − e−x)

e2mt + e−2mt + ex + e−x
.

Thus,

|ĤI,q(t, x)| ≤
∞∑
m=1

2e|x|

e2mt
=

2e|x|−2t

1− e−2t
. (6.14)

Then (6.12) is a direct consequence of this inequality.
Secondly, we show (6.10). Since | tanh2(x)| ≤ 1, from (6.8) it suffices to show

|ĤI(t, x)| ≤ |x|
t

+ 2 +
2e−t

1− e−2t
. (6.15)
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We first consider the case |x| ≤ t. From (6.14) we have

|ĤI(t, x)| ≤ | tanh2(x)|+ |ĤI,q(t, x)| ≤ 1 +
2e|x|−2t

1− e−2t
≤ 1 +

2e−t

1− e−2t
. (6.16)

Thus, (6.15) holds in this case.
Then we consider the case |x| ≥ t. There exists m ∈ N such that (2m−1)t ≤ |x| ≤ (2m+1)t.

Since ĤI is odd, we only need to consider the case that (2m − 1)t ≤ x ≤ (2m + 1)t. Let
x0 = x − 2mt. Then |x0| ≤ t. From (2.10) we have ĤI(t, x) = 2m + ĤI(t, x0). From (6.16)
with x = x0 we have

|ĤI(t, x)| ≤ 2m+ |ĤI(t, x0)| ≤ 2m+ 1 +
2e−t

1− e−2t
≤ |x|

t
+ 2 +

2e−t

1− e−2t
,

where the last inequality uses |x|t ≥ 2m− 1. So we have (6.15) and (6.10).
Now we prove (6.11) and (6.13). From (6.9) we have

0 < Ĥ
′
I,q(t, x) =

∑
2|n6=0

1

2
cosh−2

2 (|nt− x|) ≤
∑

2|n6=0

1

2
cosh−2

2 (|n|t− |x|)

=

∞∑
m=1

cosh−2
2 (2mt− |x|) ≤ 4

∞∑
m=1

e|x|−2mt =
4e|x|−2t

1− e−2t
. (6.17)

which implies (6.13) in the case n = 1. From (6.17) we have Ĥ
′
I(t, x) < 1

2 + 4e−t

1−e−2t if |x| ≤ t.

Since Ĥ
′
I has period 2t, this inequality holds for all x ∈ R. Since Ĥ

′
I,q < Ĥ

′
I , (6.11) holds in

the case n = 1. From (6.9) and Lemma 6.3 we have |Ĥ
(n)

I,q (t, x)| ≤ CnĤ
′
I,q(t, x). So (6.11) and

(6.13) in the case n ≥ 2 follow from those in the case n = 1.

Lemma 6.6. For every n ∈ N ∪ {0}, there is a constant Dn > 0 such that for any j ∈ {1, 2},
t > 0, and x ∈ R,

|∂jt Ĥ
(n)

I,q (t, x)| ≤ Dn

( |x|
t

+ 3 +
2e−t

1− e−2t

)j(1

2
+

4e−t

1− e−2t

)
. (6.18)

Moreover, for any n ∈ N ∪ {0} and c > 0, there is a constant Dn > 0, such that

|∂jt Ĥ
(n)

I,q (t, x)| ≤ Dn

( 2e(c−2)t

1− e−2t

)j+1
, if t > 0, x ∈ R, |x| ≤ ct; (6.19)

Proof. Let A(t, x) = |x|
t +3+ 2e−t

1−e−2t , B(t, x) = 1
2 + 4e−t

1−e−2t , and Cc(t, x) = 2e(c−2)t

1−e−2t . In this proof,
by X . Y we mean that there is a constant C such that X ≤ CY . Here C may depend on n
if X depends on n. From (6.10), (6.11), (6.12), and (6.13), we see that

|HI,q(t, x)| . A(t, x), |H(n)
I,q (t, x)| . B(t, x) . A(t, x), x ∈ R, n ∈ N. (6.20)
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|H(n)
I,q (t, x)| . Cc(t, x), if x ∈ R, |x| ≤ ct, n ∈ N ∪ {0}. (6.21)

As t → ∞, ĤI → tanh2. Then (2.13) becomes 0 = tanh′′2 + tanh′2 tanh2, which can be
proved directly. From (2.13), (6.8), and the above equation, we get

∂tĤI,q = Ĥ
′′
I,q + Ĥ

′
I,qĤI,q + tanh′2 ĤI,q + Ĥ

′
I,q tanh2 . (6.22)

Then (6.18) and (6.19) in the case j = 1 and n = 0 follow from (6.20), (6.21), (6.22), and
Lemma 6.3.

Differentiating (2.13) w.r.t. x twice, we get

∂tĤ
′
I = Ĥ

′′′
I + Ĥ

′′
IĤI + (Ĥ

′
I)

2.

∂tĤ
′′
I = Ĥ

(4)

I + Ĥ
′′′
I ĤI + 3Ĥ

′′
IĤ
′
I .

Differentiating (2.13) w.r.t. t and using the above two displayed formulas, we obtain

∂2
t ĤI = Ĥ

(4)

I + 2Ĥ
′′′
I ĤI + 4Ĥ

′′
IĤ
′
I + Ĥ

′′
I (ĤI)

2 + 2(Ĥ
′
I)

2ĤI .

As t→∞, this equation tends to the following equation, which can also be checked directly.

0 = tanh
(4)
2 +2 tanh′′′2 tanh2 +4 tanh′′2 tanh′2 + tanh′′2 tanh2

2 +2(tanh′2)2 tanh2 .

From (6.8), and the above two equations, we compute

∂2
t ĤI,q = Ĥ

(4)

I,q + 2Ĥ
′′′
I,qĤI,q + 2 tanh′′′2 ĤI,q + 2Ĥ

′′′
I,qĤI,q + 4Ĥ

′′
I,qĤ

′
I,q

+4Ĥ
′′
I,q tanh′2 + tanh′′2(ĤI,q)

2 + 2Ĥ
′′
I,qĤI,q tanh2 +2 tanh′′2 ĤI,q tanh2

+Ĥ
′′
I,q(tanh2)2 + Ĥ

′′
I,q(ĤI,q)

2 + 2(Ĥ
′
I,q)

2ĤI,q + 4Ĥ
′
I,q tanh′2 ĤI,q

+ 2(tanh′2)2ĤI,q + 2(Ĥ
′
I,q)

2 tanh2 +4Ĥ
′
I,q tanh′2 tanh2 . (6.23)

Then (6.18) and (6.19) in the case j = 2 and n = 0 follow from (6.20), (6.21), (6.23), and
Lemma 6.3.

Differentiate (6.22) and (6.23) n times w.r.t. x. We see that ∂tĤ
(n)

I,q can be expressed as a

sum of finitely many terms, whose factors are H
(k)
I,q or tanh

(k)
2 , k ∈ N ∪ {0}. In every term, the

factors of the kind H
(k)
I,q appear at most twice, and the factor HI,q appears at most once. So we

derive (6.18) and (6.19) in the case j = 1 and n ∈ N from (6.20), (6.21), and Lemma 6.3. We

see that ∂2
t Ĥ

(n)

I,q can be expressed as a sum of finitely many terms, whose factors are constant,

H
(k)
I,q , or tanh

(k)
2 . In every term, the factors of the kind H

(k)
I,q appear at most three times, and

the factor HI,q appears at most twice. So we derive (6.18) and (6.19) in the case j = 2 and
n ∈ N from (6.20), (6.21), and Lemma 6.3.
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6.3 Feynman-Kac expression

We begin with a lemma, which can be proved directly. Recall the definition of ĤI in (2.9).

Lemma 6.7. Let Ψ and Ψ̂ be functions defined on (0,∞) × R. The following expressions are
equivalent:

Ψ̂(t, x) = e
x2

2κt

(π
t

)σ+ 1
2
Ψ
(π2

t
,
π

t
x
)
. (6.24)

Ψ(t, x) = e−
x2

2κt

(π
t

)σ+ 1
2
Ψ̂
(π2

t
,
π

t
x
)
. (6.25)

If the above two equalities hold, then Ψ satisfies (4.5) if and only if Ψ̂ satisfies

− ∂tΨ̂ =
κ

2
Ψ̂′′ + σĤ

′
IΨ̂. (6.26)

As t→∞, Ĥ
′
I → tanh′2, so (6.26) tends to

− ∂tΨ̂∞ =
κ

2
Ψ̂′′∞ + σ tanh′2(x)Ψ̂∞. (6.27)

Let τ be the non-positive root of the equation τ2

2κ = τ
4 + σ

2 , i.e., τ = κ/4−
√
κ2/16 + κσ. Then

τ = κ
2 − 2 when σ = 4

κ − 1. It is easy to check that (6.27) has a simple solution:

Ψ̂∞(t, x) = e−
τ2t
2κ cosh

2
κ
τ

2 (x). (6.28)

Recall the ĤI,q defined in (6.8). The proof of the following lemma is straightforward.

Lemma 6.8. Let Ψ̂ and Ψ̂q be defined on (0,∞) × R, and satisfy Ψ̂ = Ψ̂∞Ψ̂q, where Ψ∞ is

defined by (6.28). Then Ψ̂ satisfies (6.26) if and only if Ψ̂q satisfies

− ∂tΨ̂q =
κ

2
Ψ̂′′q + τ tanh2 Ψ̂′q + σĤ

′
I,qΨ̂q. (6.29)

Suppose Ψ̂q solves (6.29). Let Xx0(t) be as in (6.2). Fix t0 > 0 and x0 ∈ R. Let

M(t) = Ψ̂q(t0 + t,Xx0(t)) exp
(
σ

∫ t

0
Ĥ
′
I,q(t0 + s,Xx0(s))ds

)
.

From (6.2), (6.29), and Itô’s formula, we see that M(t) is a local martingale. If M(t) is a
martingale on [0,∞], and Ψ̂q → 1 as t→∞, then from M0 = Ψ̂q(t0, x0) we have

Ψ̂q(t0, x0) = E
[

exp
(
σ

∫ ∞
0

Ĥ
′
I,q(t0 + s,Xx0(s))ds

)]
. (6.30)

This Feynman-Kac formula holds under many additional assumptions. We do not try to prove
it. Instead, we now define Ψ̂q by (6.30). We will prove that Ψ̂q is finite and differentiable, and
solves (6.29).
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6.4 Regularity

Fix c0 ∈ (1 + κ
4σ, 2). This is possible because σ ∈ [0, 4

κ). Then we have

exp
( σ

2(c0 − 1)
− 2

κ

)
< 1. (6.31)

Throughout this subsection, we use C to denote a positive constant, which depends only on
κ, σ, c0, and could change between lines. The symbol X . Y means that X ≤ CY for some C.
Let α(t) = 4

1−e−2t . Then t−1 + 1 . α(t) . t−1 + 1. For m ∈ N ∪ {0}, let Em denote the event
that |Xx(s)| ≤ s+m for all s ≥ 0. From (6.4) we have

P[Ecm] ≤ 2e
2
κ

(|x|−m), m ∈ N ∪ {0}. (6.32)

Proposition 6.1. Ψ̂q is finite and satisfies

1 ≤ Ψ̂q(t, x) ≤ exp
(
C(t−1 + 1)e(c0−2)t

)
(1 + Ce

2
κ
|x|− 2

κ
c0t). (6.33)

Proof. Fix t > 0 and x ∈ R. Assume that Em occurs for some m ∈ N ∪ {0}. If s ≥ m−c0t
c0−1 then

|Xx(s)| ≤ s+m ≤ c0(s+ t), so from (6.13) with C1 = 1 we have

Ĥ
′
I,q(t+ s,Xx(s)) ≤ 4e(c0−2)(s+t)

1− e−2(s+t)
≤ α(t)e(c0−2)(s+t).

If 0 ≤ s ≤ m−c0t
c0−1 , from −1 ≤ c0 − 2 and (6.11) with C1 = 1, we have

Ĥ
′
I,q(t+ s,Xx(s)) <

1

2
+

4e−(s+t)

1− e−2(s+t)
≤ 1

2
+ α(t)e(c0−2)(s+t),

Since c0 − 2 < 0, at the event Em,∫ ∞
0

Ĥ
′
I,q(t+ s,Xx(s))ds ≤ 1

2
· (m− c0t) ∨ 0

c0 − 1
+
α(t)e(c0−2)t

2− c0
; (6.34)

Let H(t) = exp(σ
∫∞

0 Ĥ
′
I,q(t+ s,Xx(s))ds). From (6.32) and (6.34) we have

Ψ̂q(t, x) = E [1Ebc0tcH(t)] +

∞∑
m=bc0tc

E [1Em+1\EmH(t)]

≤ exp
(σα(t)e(c0−2)t

2− c0

)
+

∞∑
m=bc0tc

2e
2
κ

(|x|−m) exp
(1

2

σ(m+ 1− bc0tc)
c0 − 1

+
σα(t)e(c0−2)t

2− c0

)
. (6.35)

Change index using m = l + bc0tc. The second term of the RHS of (6.35) equals

2 exp
(2|x|
κ
− 2bc0tc

κ
+

σ

2(c0 − 1)
+
σα(t)e(c0−2)t

2− c0

) ∞∑
l=0

exp
( σ

2(c0 − 1)
− 2

κ

)l
. (6.36)
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From (6.31), the infinite sum is finite. Thus, from Ĥ
′
I,q > 0, σ ≥ 0, and (6.35), we have

1 ≤ Ψ̂q(t, x) ≤ exp
(σα(t)e(c0−2)t

2− c0

)(
1 + Ce

2|x|
κ
− 2c0t

κ

)
.

Then (6.33) follows from this formula and that α(t) . t−1 + 1.

Let n ∈ N. Formally differentiate (6.30) n times w.r.t. x. If the differentiation commutes
with the integration and expectation at every time, then we should have

Ψ̂(n)
q (t, x) = E

[
exp

(
σ

∫ ∞
0

Ĥ
′
I,q(t+ s,Xx(s))ds

)
·Q0,n(v0,k,λ(t, x))

]
, (6.37)

where Q0,n is a polynomial of degree ≤ n without constant term in the following variables:

v0,k,λ(t, x) :=

∫ ∞
0

Ĥ
(k)

I,q (t+ s,Xx(s))

l(λ)∏
r=1

∂λr

∂xλr
Xx(s)ds, k ∈ N, λ ∈ PN. (6.38)

With Q0,0 ≡ 1, (6.37) becomes (6.30). Let n ∈ N ∪ {0}. Formally differentiate (6.37) w.r.t.
t. If the differentiation commutes with the integration and expectation, then we should have

∂tΨ̂
(n)
q (t, x) = E

[
exp

(
σ

∫ ∞
0

Ĥ
′
I,q(t+ s,Xx(s))ds

)
·Q1,n(v0,k,λ, v1,k,λ)], (6.39)

where Q1,n is a polynomial of degree ≤ n + 1 without constant term in the variables v0,k,λ

defined by (6.38) and

v1,k,λ(t, x) :=

∫ ∞
0

∂tĤ
(k)

I,q (t+ s,Xx(s))

l(λ)∏
r=1

∂λr

∂xλr
Xx(s)ds, k ∈ N, λ ∈ PN ∪ {N0}. (6.40)

Here by λ ∈ N0 we mean that the factor
∏ ∂λr

∂xλr
Xx(s) disappears. Moreover, in every term of

Q1,n, factors v1,k,λ appear at most once.
Formally differentiate (6.39) w.r.t. t. If the differentiation commutes with the integration

and expectation, then we should have

∂2
t Ψ̂(n)

q (t, x) = E
[

exp
(
σ

∫ ∞
0

Ĥ
′
I,q(t+ s,Xx(s))ds

)
·Q2,n(v0,k,λ, v1,k,λ, v2,k,λ)

]
, (6.41)

where Q2,n is a polynomial of degree ≤ n + 2 without constant term in the variables v0,k,λ

defined by (6.38), v1,k,λ defined by (6.40), and

v2,k,λ(t, x) :=

∫ ∞
0

∂2
t Ĥ

(k)

I,q (t+ s,Xx(s))

l(λ)∏
j=1

∂λj

∂xλj
Xx(s)ds, k ∈ N, λ ∈ PN ∪ {N0}.
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Moreover, in every term of Q2,n, factors v2,k,λ appears at most once; when a factor v2,k,λ

appears, factors v1,k,λ disappear; and when factors v2,k,λ disappear, factors v1,k,λ appear at
most twice.

Now we suppose Em occurs for some m ∈ N ∪ {0}. Using (6.11), (6.13), (6.38), Lemma 6.4,
and the argument in (6.34), we conclude that, for any k ∈ N and λ ∈ PN, there is a polynomial
Pk,λ with no constant term such that

|v0,k,λ(t, x)| ≤ Pk,λ((m− c0t) ∨ 0) + Cα(t)e(c0−2)t. (6.42)

Let j ∈ {1, 2} and n ∈ N ∪ {0}. If s ≥ m−c0t
c0−1 then |Xx(s)| ≤ s+m ≤ c0(s+ t), so from (6.19)

we have

|∂jt Ĥ
(n)

I,q (t+ s,Xx(s))| ≤ Dn

(2e(c0−2)(t+s)

1− e−2t

)j+1
. α(t)j+1e(c0−2)(t+s).

If m ≥ c0t and 0 ≤ s ≤ m−c0t
c0−1 , from (6.18) and the definition of Em, we see that for j = 1, 2,

|∂jt Ĥ
(n)

I,q (t,Xx(s))| ≤ Dn

( |Xx(s)|
t+ s

+ 3 +
2e−t

1− e−2t

)j(1

2
+

4e−t

1− e−2t

)
≤ Dn

(m− c0t

t
+ c0 + 4 +

2e−t

1− e−2t

)j(1

2
+

4e−t

1− e−2t

)
. ((m− c0t)

j + 1)α(t)j+1.

Thus, from Lemma 6.4, for k ∈ N and λ ∈ PN ∪ {N0},

|vj,k,λ(t, x)| . α(t)j+1(e(c0−2)t + Pj,k,λ((m− c0t) ∨ 0)), j = 1, 2, (6.43)

where Pj,k,λ is a polynomial with no constant term.
Let (j, n) ∈ {0, 1, 2} × (N ∪ {0}) \ {(0, 0)}. From (6.42), (6.43), and the properties of Q0,n,

n ∈ N, Q1,n and Q2,n, n ∈ N ∪ {0}, we see that, at the event Em,

|Qj,n| . α(t)2j [Pj,n((m− c0t) ∨ 0) +Qj,n((m− c0t) ∨ 0)α(t)ne(c0−2)t], (6.44)

where Pj,n and Qj,n are polynomials, and Pj,n(0) = 0.

Proposition 6.2. For (j, n) ∈ {0, 1, 2} × (N ∪ {0}) \ {(0, 0)},

E
[

exp
(
σ

∫ ∞
0

Ĥ
′
I,q(t+ s,Xx(s))ds

)
· |Qj,n|

]
. exp

(
C(t−1 + 1)e(c0−2)t

)
(t−n−2j + 1)(e(c0−2)t + e

2|x|
κ
− 2c0t

κ ), (6.45)

Proof. Let Hj,n(t) = exp
(
σ
∫∞

0 Ĥ
′
I,q(t+s,Xx(s))ds

)
· |Qj,n|. Recall that (6.34) and (6.44) hold

at the event Em. Using (6.32) and the argument in (6.35) and (6.36), we see that

E [Hj,n(t)] = E [1Ebc0tcHj,n(t)] +

∞∑
m=bc0tc

E [1Em+1\EmHj,n(t)]
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. exp
(
Cα(t)e(c0−2)t

)
α(t)2j+ne(c0−2)t + exp

(2|x|
κ
− 2c0t

κ
+ Cα(t)e(c0−2)t

)
·

·
∞∑
l=0

α(t)2j(Pj,n(l + 1) +Qj,n(l + 1)α(t)ne(c0−2)t) exp
( σ

2(c0 − 1)
− 2

κ

)l
.

Then (6.45) follows from (6.31) and that α(t) . t−1 + 1 and α(t)2j+n . t−n−2j + 1.

Theorem 6.1. The function Ψ̂q is C∞,∞ differentiable and solves (6.29). Moreover, for j ∈
{0, 1, 2}, n ∈ N∪{0}, there is a positive continuous function cj,n(t) on (0,∞) such that for any

t ∈ (0,∞) and x ∈ R, |∂jt Ψ̂
(n)
q (t, x)| ≤ cj,n(t)e

2
κ
|x|.

Proof. For n ∈ N ∪ {0}, define Ψ̂
[0,n]
q , Ψ̂

[1,n]
q (t, x) and Ψ̂

[2,n]
q (t, x) to be equal to the RHS of

(6.37), (6.39) and (6.41), respectively. From the above two propositions, these functions are
well defined, and there are positive continuous functions cj,n(t) on (0,∞) such that

|Ψ̂[j,n]
q (t, x)| ≤ cj,n(t)e

2
κ
|x|, j = 0, 1, 2, n ∈ N ∪ {0}. (6.46)

Let n ∈ N ∪ {0}, j ∈ {0, 1, 2}, t ∈ (0,∞), and x1 < x2 ∈ R. Since |Ψ̂[j,n+1]
q | satisfies (6.46),

from Fubini’s Theorem, we have∫ x2

x1

Ψ̂[j,n+1]
q (t, x)dx = Ψ̂[j,n]

q (t, x2)− Ψ̂[j,n]
q (t, x1). (6.47)

Thus, Ψ̂
[j,n]
q is absolutely continuous in x when t is fixed, and its partial derivative w.r.t. x is a.s.

equal to Ψ̂
[j,n+1]
q . Since Ψ̂

[j,n+1]
q is continuous in x for fixed t, we see that Ψ̂

[j,n]
q is continuously

differentiable in x, and the partial derivative exactly equals Ψ̂
[j,n]
q . The above holds for any

n ∈ N, so Ψ̂
[j,0]
q is C∞ differentiable in x when t is fixed, and Ψ̂

[j,n]
q is its n-th partial derivative

w.r.t. x. Especially, since Ψ̂q = Ψ̂
[0,0]
q , we see that Ψ̂q is C∞ differentiable in x when t is fixed,

and Ψ̂
[0,n]
q is its n-th partial derivative w.r.t. x.

A similar argument using Fubini’s Theorem shows that, for any n ∈ N ∪ {0}, j ∈ {0, 1},
Ψ̂

[j,n]
q is absolutely continuous in t when x is fixed, and its partial derivative w.r.t. t is a.s.

equal to Ψ̂
[j+1,n]
q . So Ψ̂

[0,n]
q is continuously differentiable in t when x is fixed, and the partial

derivative exactly equals Ψ̂
[1,n]
q . From (6.46) and (6.47), we see that Ψ̂

[j,n]
q is locally uniformly

Lipschitz continuous in x. We have seen that Ψ̂
[j,n]
q is continuous in t for every fixed x. So Ψ̂

[j,n]
q

is continuous in both t and x. Thus, Ψ̂q = Ψ̂
[0,0]
q is C1,∞ differentiable.

Fix t0 ∈ (0,∞) and x0 ∈ R. Let M(t) = E
[

exp
(
σ
∫∞

0 Ĥ
′
I,q(t0 + s,Xx0(s))ds

)∣∣∣Ft], t ≥ 0.

Then M(t), 0 ≤ t <∞, is a uniformly integrable martingale. From (6.30) we have

M(t) = Ψ̂q(t0 + t,Xx0(t)) exp
(
σ

∫ t

0
Ĥ
′
I,q(t0 + s,Xx0(s))ds

)
. (6.48)
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From (6.2), Itô’s formula, and the differentiability of Ψ̂q, we see that Ψ̂q solves (6.29) for t ≥ t0.

Since this is true for any t0 ∈ (0,∞), Ψ̂q solves (6.29).

Since Ψ̂q is C1,∞ differentiable, the same is true for the RHS of (6.29). Thus, ∂tΨ̂q is also

C1,∞ differentiable. So Ψ̂q is C2,∞ differentiable. Iterating this argument, we conclude that Ψ̂q

is C∞,∞ differentiable. The previous argument shows that ∂jt Ψ̂
(n)
q = Ψ̂

[j,n]
q for any j ∈ {0, 1, 2}

and n ∈ N ∪ {0}. The bounds of |∂jt Ψ̂
(n)
q | then follow from (6.46).

Theorem 6.2. Let Ψ̂0 = Ψ̂q · Ψ̂∞, where Ψ̂∞ is defined by (6.28). Then Ψ̂0 is a positive C∞,∞

differentiable function on (0,∞)×R and solves (6.26). Moreover, j ∈ {0, 1, 2}, for n ∈ N∪{0},
there is a positive continuous function cj,n(t) on (0,∞) such that, for any t ∈ (0,∞) and x ∈ R,

|∂jt Ψ̂
(n)
0 (t, x)| ≤ cj,n(t)e

2
κ
|x|.

Proof. Since Ψ̂q and Ψ̂∞ are both positive and C∞,∞ differentiable, the same is true for Ψ̂0 =

Ψ̂q ·Ψ̂∞. Since Ψ̂q solves (6.29), from Lemma 6.8, Ψ̂0 solves (6.26). From Lemma 6.3, (6.28), and

that τ ≤ 0, we see that for any j, n ∈ N∪{0}, |∂jt Ψ̂
(n)
∞ (t, x)| is bounded by a positive continuous

function in t, which, together with Theorem 6.1, implies the upper bounds of |∂jt Ψ̂
(n)
0 (t, x)|.

Theorem 6.3. Let Ψ0 be the transformation of the above Ψ̂0 via (6.25) (with Ψ̂ replaced by Ψ̂0).
Then Ψ0 is a C∞,∞ differentiable positive function on (0,∞)× R and solves (4.5). Moreover,
for j ∈ {0, 1, 2}, n ∈ N∪{0}, there is a function hj,n(t, |x|), which is a polynomial in |x| for any
fixed t, and every coefficient is a positive continuous function in t, such that for any t ∈ (0,∞)

and x ∈ R, |∂jtΨ
(n)
0 (t, x)| ≤ hj,n(t, |x|)e−

x2

2κt
+

2π|x|
κt .

Proof. Since Ψ̂0 > 0, Ψ0 > 0 also. The differentiability of Ψ0 is obvious. Since Ψ̂0 solves
(6.29), from Lemma 6.7, Ψ0 solves (4.5). Let Ψa(t, x) = Ψ̂0(π

2

t ,
π
t x). From Theorem 6.2, it is

straightforward to check that for every j ∈ {0, 1, 2}, n ∈ N∪ {0}, there is a function fj,n(t, |x|),
which is a polynomial in |x| of degree j when t is fixed, and every coefficient is a positive
continuous function in t, such that∣∣∣∂jtΨ(n)

0 (t, x)
∣∣∣ ≤ fj,n(t, |x|)e

2
κ
π
t
|x|, t > 0, x ∈ R. (6.49)

It is easy to verify that for every j ∈ {0, 1, 2}, n ∈ N∪{0}, there is a function gj,n(t, |x|), which
is a polynomial in |x|, and every coefficient is a positive continuous function in t, such that∣∣∣∂jt ∂nx (e−

x2

2κt (
π

t
)σ+ 1

2 )
∣∣∣ ≤ gj,n(t, |x|)e−

x2

2κt , t > 0, x ∈ R. (6.50)

From (6.25), Ψ0(t, x) = e−
x2

2κt (πt )σ+ 1
2 Ψa(t, x). So we get the upper bounds of |∂jtΨ

(n)
0 (t, x)| from

(6.49) and (6.50).

Theorem 6.4. Let Ψ0 be as in the above theorem. Let Γ0 = Ψ0Θ
− 2
κ

I and Γm(t, x) = Γ0(t, x−
2mπ), m ∈ Z. For s0 ∈ R, let Γ〈s0〉 =

∑
m∈Z e

2π
κ
ms0Γm. Then Γ〈s0〉 is a C∞,∞ differentiable

positive function on (0,∞)× R, satisfies (4.2), and solves (4.4).

46



Proof. Let Ψm(t, x) = Ψ0(t, x − 2mπ) for m ∈ Z and Ψ〈s0〉 =
∑

m∈Z e
2π
κ
ms0Ψm. Since ΘI

has period 2π, we have Γ〈s0〉 = Ψ〈s0〉Θ
− 2
κ

I . Since ΘI is a C∞,∞ differentiable positive function
with period 2π, from Lemma 4.1 we suffice to show that Ψ〈s0〉 is a C∞,∞ differentiable positive
function, satisfies (4.2), and solves (4.5). It is clear from the definition that Ψ〈s0〉 satisfies (4.2).
Since Ψ0 is a C∞,∞ differentiable positive function that solves (4.5), and HI has period 2π,

every Ψm also satisfies these properties. So Ψ〈s0〉 is positive. The upper bounds of |∂jtΨ
(n)
0 (t, x)|

imply that Ψ〈s0〉 is finite, and the series
∑

m∈Z e
2π
κ
ms0∂jtΨ

(n)
m converges locally uniformly for

every j, n ≥ 0. Fubini’s Theorem implies that Ψ〈s0〉 is C∞,∞ differentiable and ∂jtΨ
(n)
〈s0〉 =∑

m∈Z e
2π
κ
ms0∂jtΨ

(n)
m Thus, Ψ〈s0〉 also solves (4.5).

6.5 Distributions

Proposition 6.3. Let p > 0, s0 ∈ R, and x0, y0 ∈ R. Let Γm, m ∈ Z, and Γ〈s0〉 be as in

Theorem 6.4. Let Λ∗ = κΓ′∗
Γ∗

for ∗ ∈ {m, 〈s0〉}. For m ∈ Z, let β̃m be the covering annulus

SLE(κ,Λ0) trace in Sp started from x0 with marked point y0+2mπ+pi. Let β̃〈s0〉 be the covering
annulus SLE(κ,Λ〈s0〉) trace in Sp started from x0 with marked point y0 + pi. Let P

β̃,m
, m ∈ Z,

and P
β̃,〈s0〉 denote the distributions of β̃m, m ∈ Z, and β̃〈s0〉, respectively. Then

P
β̃,〈s0〉 =

∑
m∈Z

e
2π
κ
ms0 Γm(p, x0 − y0)

Γ〈s0〉(p, x0 − y0)
P
β̃,m

. (6.51)

Proof. For m ∈ Z, let ξm(t), 0 ≤ t < p, be the solution to (3.13) with Λ = Λ0 and y0 replaced
by y0 + 2mπ. Let ξ〈s0〉(t) be the solution to (3.13) with Λ = Λ〈s0〉. Then the covering annulus
Loewner traces of modulus p driven by ξm, m ∈ Z, and ξ〈s0〉 have distributions P

β̃,m
, m ∈ Z,

and P
β̃,〈s0〉, respectively. Let Xm(t) = ξm(t) − Re g̃ξm(t, y0 + 2mπ + pi) + 2mπ, m ∈ Z, and

X〈s0〉(t) = ξ〈s0〉(t) − Re g̃ξ〈s0〉(t, y0 + pi). Since Γm(t, x) = Γ0(t, x − 2mπ), we have Λm(t, x) =
Λ0(t, x − 2mπ). Since Re g(t, y + pi) = g̃I(t, y) for y ∈ R, and HI is odd and has period 2π,
from (3.9), we find that, for ∗ ∈ {m, 〈s0〉}, with Φ∗ := Λ∗ + HI , X∗(t) satisfies

dX∗(t) =
√
κdB(t) + Φ∗(p− t,X∗(t))dt, X∗(0) = x0 − y0.

Let PX,∗ denote the distributions of (X∗(t)). Since ξ∗(t) = X∗(t) + y0 −
∫ t

0 HI(p− r,X∗(r))dr,
0 ≤ t < p, we suffice to show that (6.51) holds with the subscripts “β̃” replaced by “X”. The
rest of the proof is a standard application of Girsanov theorem. One may check that for every

m ∈ Z, Mm(t) := e
2π
κ
ms0 Γm(p−t,X〈s0〉(t))

Γ〈s0〉(p−t,X〈s0〉(t))
is a nonnegative martingale w.r.t. PX,〈s0〉, and satisfies

that dMm(t)
Mm(t) = (Λm − Λ〈s0〉)

dB(t)√
κ

and
∑

m∈ZMm(t) = 1; and we have
dPX,m
dPX,〈s0〉

= Mm(∞)
Mm(0) .
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Remark. Since Γ〈s0〉 satisfies (4.2), Λ〈s0〉 has period 2π. So Λ〈s0〉 is a crossing annulus drift
function, and we could define the annulus SLE(κ,Λ〈s0〉) process. However, each Λm does not
have period 2π. It only makes sense to define the covering annulus SLE(κ,Λm) processes.

Proposition 6.4. Let p > 0 and x0, y0 ∈ R. Let Γ0 be as in Theorem 6.4, and Λ0 = κ
Γ′0
Γ0

. Let

β̃(t), 0 ≤ t < p, be the covering annulus SLE(κ,Λ0) trace in Sp started from x0 with marked

point y0 + pi. Then a.s. dist(y0 + pi, β̃([0, p)) + 2πZ) = 0.

Proof. Let ξ(t) be the driving function, and g̃(t, ·), 0 ≤ t < p, be the covering Loewner maps.
Then g̃(t, ·) maps Sp \ (β̃([0, p)) + 2πZ) conformally onto Sp−t, and maps Rp onto Rp−t. From
Koebe’s 1/4 Theorem, we suffice to show that a.s. g̃′(t, y0 + pi) · p

p−t →∞ as t→ p.
Let X(t) = ξ(t)− Re g̃(t, y0 + pi) and Φ0 = Λ0 + HI . Then X(t) satisfies the SDE:

dX(t) =
√
κdB(t) + Φ0(p− t,X(t)) dt, 0 ≤ t < p.

From (3.8) we have ln(g̃′(t, y0 + pi) · p
p−t) =

∫ t
0 (H′I(p − s,X(s)) + 1

p−s)ds. Let Φ̂0 = κ
Ψ̂′0
Ψ̂0

.

Since Ψ0 and Ψ̂0 satisfy (6.24), we have Φ̂0(s, z) = π
sΦ0(π

2

s ,
π
s z) + z

s . Let p̂ = π2

p and X̂(t) =
p̂+t
π X(p − π2

p̂+t), 0 ≤ t < ∞. Then X̂(0) = p̂
πX(0) = π

p (x0 − y0). Applying Itô’s formula and

time-change of a semimartingale, we see that X̂(t) satisfies the SDE:

dX̂(t) =
√
κB̂(t) + Φ̂0(p̂+ t, X̂(t))dt, 0 ≤ t <∞,

for some standard Brownian motion B̂(t). Changing variables using ŝ = π2

p−s − p̂, we get

∫ t

0
(H′I(p− s,X(s)) +

1

p− s
)ds =

∫ t̂

0

(
H′I(

π2

p̂+ ŝ
, X(p− π2

p̂+ ŝ
)) +

p̂+ s

π2

) π2

(p̂+ ŝ)2
dŝ

=

∫ t̂

0

( π2

(p̂+ ŝ)2
H′I(

π2

p̂+ ŝ
,

π

p̂+ ŝ
X̂(ŝ)) +

1

p̂+ s

)
dŝ =

∫ t̂

0
Ĥ
′
I(p̂+ ŝ, X̂(ŝ))dŝ,

where t̂ = π2

p−t − p̂, and the last equality follows from (2.9). So we have

lim
t→p−

ln(g̃′(t, y0 + pi) · p

p− t
) =

∫ ∞
0

Ĥ
′
I(p̂+ ŝ, X̂(ŝ))dŝ ≥

∫ ∞
0

tanh′2(X̂(ŝ))dŝ,

where the last inequality follows from (2.12).

From Girsanov theorem and the fact that κ
Ψ̂′0
Ψ̂0

= κ
Ψ̂′q

Ψ̂q
+ τ tanh2, we find that the distribu-

tion of (X̂(t)) is equivalent to that of (Xπ
p

(x0−y0)(t)) defined by (6.2), and the Radon-Nikodym

derivative is M(∞)/M(0), where M(t) is defined by (6.48). Since (Xπ
p

(x0−y0)(t)) is homo-

geneous and recurrent, we have a.s.
∫∞

0 tanh′2(Xπ
p

(x0−y0)(t))dt = ∞, which implies that a.s.∫∞
0 tanh′2(X̂(ŝ))dŝ =∞. Thus, a.s. g̃′(t, y0 + pi) · p

p−t →∞ as t→ p−.
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Corollary 6.1. Let p > 0, s0 ∈ R, and x0, y0 ∈ R. Let Γ〈s0〉 be as in Theorem 6.4, and

Λ〈s0〉 = κ
Γ′〈s0〉
Γ〈s0〉

. Let β(t), 0 ≤ t < p, be the annulus SLE(κ,Λ〈s0〉) trace in Sp started from eix0

with marked point e−p+iy0. Then a.s. dist(e−p+iy0 , β([0, p))) = 0.

Proof. This follows immediately from the above two propositions.

Remark. For the reader’s convenience, we now make a list of the functions defined in this
section. First, Ψ̂q is defined by a Feynman-Kac formula (6.30) depending on κ > 0 and σ ∈
[0, 4

κ). Second, Ψ̂0 is defined to be the product Ψ̂qΨ̂∞, where Ψ̂∞ is a simple solution of (6.27)

given by (6.28). Third, Ψ0 is the transformation of the Ψ̂0 via (6.25). Fourth, the partition

functions are defined by Γ0 = Ψ0Θ
− 2
κ

I , Γm(t, x) = Γ0(t, x−2mπ), and Γ〈s0〉 =
∑

m∈Z e
2π
κ
ms0Γm.

Fifth, the annulus drift functions are defined by Λ∗ = κΓ′∗
Γ∗

.

7 Reversibility

The main result of this section is the theorem below which generalizes Theorem 1.1.

Theorem 7.1. Let κ ∈ (0, 4] and s0 ∈ R. If β(t), −∞ ≤ t < ∞, is a whole-plane SLE(κ, s0)
trace in Ĉ from a to b, then the reversal of β, up to a time-change, has the distribution of a
whole-plane SLE(κ, s0) trace in Ĉ from b to a.

Proof. From conformal invariance, we only need to consider the case a = 0 and b = ∞. Let
Γ〈s0〉 be given by Theorem 6.4 with σ = 4

κ − 1. Then Γ〈s0〉 solves (4.1) and satisfies (4.2). We
now apply Theorem 5.1 to Γ = Γ〈s0〉. Let Λj , sj and βI,j(t), j = 1, 2, be given by Theorem 5.1.

Then for j = 1, 2, βI,j is a whole-plane SLE(κ, sj) trace in Ĉ from 0 to ∞, and satisfies that,
for any t2 ∈ Q, conditioned on βI,2(s), −∞ ≤ s ≤ t2, after a time-change, the curve βI,1(t1),
−∞ ≤ t1 < T1(t2), has the distribution of a disc SLE(κ,Λ1) trace in C \ I0(βI,2([−∞, t2]))
started from 0 with marked point βI,2(t2), where T1(t2) is the maximal number in (−∞,+∞]
such that β1(t) ∩ β2([−∞, t2]) = ∅ for −∞ < t < T1(t2).

Let ξ2 be the driving function for (βI,2(t)), and g2(t, ·), −∞ < t < ∞, be the inverted
whole-plane Loewner maps driven by ξ2. Then g2(t, ·) maps C \ I0(βI,2([−∞, t2])) conformally
onto D, fixes 0, and takes βI,2(t2) to ei(ξx(t2)). Thus, conditioned on βI,2(s), −∞ ≤ s ≤
t2, g2(t, βI,1(t1)), 0 ≤ t1 < T1(t2), is a time-change of a disc SLE(κ,Λ1) trace in D started

from 0 with marked point ei(ξx(t2)). Since Λ1 = Λ = κ
Γ′〈s0〉
Γ〈s0〉

, from Corollary 6.1 and the

relation between the disc SLE(κ,Λ) process and the annulus SLE(κ,Λ) process, we conclude
that a.s. ei(ξ2(t2)) is a subsequential limit of g2(t2, βI,1(t)) as t → T1(t2)−. Thus, β2(t2) is
a subsequential limit of βI,1(t) as t → T1(t2)−. If T1(t2) = ∞, then limt→T1(t2)− βI,1(t) =
∞ = β2(−∞) 6= β2(t2), which is a.s. a contradiction. So T1(t2) < ∞ a.s., and we have
βI,1(T1(t2)) = limt→T1(t2)− βI,1(t) = β2(t2) a.s. Since Q is countable, we conclude that, a.s.
βI,1(T1(t2)) = β2(t2) for every t2 ∈ Q, which implies that a.s. β2(R) ⊂ βI,1(R). Since both βI,1
and β2 are simple, and the initial (resp. final) point of βI,1 agrees with the final (resp. initial)
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point of β2, we see that β2 is a reversal of βI,1. Now βI,1 is a whole-plane SLE(κ, s0) trace in

Ĉ from 0 to ∞, and βI,2 is a whole-plane SLE(κ,−s0) trace in Ĉ started from 0 to ∞. Since I0

is conjugate conformal, β2 = I0(βI,2) is a whole-plane SLE(κ, s0) trace in Ĉ from ∞ to 0. So
we proved the theorem in the case a = 0 and b =∞.

Theorem 7.2. If β(t), 0 ≤ t <∞, is a radial SLE(κ,−s0) trace in a simply connected domain
D from a to b, then a.s. limt→∞ β(t) = b, and after a time-change, the reversal of β becomes a
disc SLE(κ,Λ〈s0〉) trace in D started from b with marked point a.

Proof. This follows from the property of the coupling in Theorem 7.1 and the relation between
whole-plane SLE(κ, s0) and radial SLE(κ,−s0).

Theorem 7.3. Let D be a doubly connected domain with two boundary points a, b lying on
different boundary components. If β(t), 0 ≤ t < p, is an annulus SLE(κ,Λ〈s0〉) trace in D
started from a with marked point b, then limt→p β(t) = b, and after a time-change, the reversal
of β becomes an annulus SLE(κ,Λ〈s0〉) trace in D started from b with marked point a.

Proof. This follows from the property of the coupling in Theorem 7.1, and the relation between
disc SLE(κ,Λ〈s0〉) and annulus SLE(κ,Λ〈s0〉).

Remark. For κ ∈ (0, 6) and σ = 1
2 + 1

κ ∈ [0, 4
κ), the Λ〈0〉 given by Proposition 6.3 can be used

to decompose an annulus SLEκ process (without marked point). The statement is similar to
Lemma 3.1 in [28].

8 Some Particular Solutions

In this section, for κ ∈ {4, 2, 3, 0, 16/3}, we will find solutions to the PDE for Λ ((4.3) and
(4.49)) and the PDE for Γ ((4.1) and (4.48)), which can be expressed in terms of H and HI .
Since Λ = κΓ′

Γ , multiplying a function in t to Γ does not change the value of Λ. So we may as
well consider the following PDEs for Γ, where C(t) is some real valued continuous depending
only on t:

∂tΓ =
κ

2
Γ′′ + HIΓ

′ +
(3

κ
− 1

2

)
H′IΓ + C(t)Γ. (8.1)

∂tΓ =
κ

2
Γ′′ + HΓ′ +

(3

κ
− 1

2

)
H′Γ + C(t)Γ. (8.2)

8.1 κ = 4

Let κ = 4. From Lemma 4.1 we see that if Ψ solves.

∂tΨ = 2Ψ′′, (8.3)

then Γ = ΨΘ
−2/κ
I solves (4.1). Similarly, Γ = ΨΘ−2/κ solves (4.48) if Ψ solves (8.3). The

solutions to (8.3) are well-known. For example, we have the following solutions: e2c2t+cx,
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1√
8πt
e−

(x−c)2
8t , e−t/2 sin2(x − c), Θ(2t, x − c), and ΘI(2t, x − c). The function ΘI(2t, x − π)

corresponds to the solution Γ(t, x) = ΘI(2t, x − π)ΘI(t, x)−1/2 of (8.1), which agrees with the
solution given by Section 6.3 for κ = 4 and σ = 4

κ − 1 = 0. Some of these solutions are related
to the Gaussian free field ([19]) in doubly connected domains.

8.2 κ = 2

Let κ = 2. In this case if Ξ on (0,∞)× R solves

∂tΞ = Ξ′′ + Ξ′HI + C(t)Ξ (8.4)

then Γ := Ξ′ solves (8.1). Similarly, if Ξ on (0,∞)× (R \ {2nπ : n ∈ Z}) solves

∂tΞ = Ξ′′ + Ξ′H + C(t)Ξ. (8.5)

then Γ := Ξ′ solves (8.2).
From (2.8) we see that Ξ1 = HI solves (8.4) and Ξ2 = H solves (8.5) with C(t) = 0. It is

also easy to check that Ξ3(t, x) = tHI(t, x) + x solves (8.4) and Ξ4(t, x) = tH(t, x) + x solves
(8.5) with C(t) = 0. The Ξ3 corresponds to the solution Γ(t, x) = tH′I(t, x) + 1, which agrees
with the solution given by Section 6.3 for κ = 2 and σ = 4

κ − 1 = 1. Such Γ is also the density
function of the distribution of the limit point of an annulus SLE2 trace.

We now derive more solutions. Fix t > 0. Let Lt = {2nπ+ i2kt : n, k ∈ Z}. Let F1,t denote
the set of odd analytic functions f on C \ Lt such that each z ∈ Lt is a simple pole of f , 2π
is a period of f , and i2t is an antiperiod of f , i.e., f(z + i2t) = −f(z). Let F2,t denote the
set of odd analytic functions f on C \ Lt such that each z ∈ Lt is a simple pole of f , 2π is an
antiperiod of f , and i2t is a period of f . Let F3,t denote the set of odd analytic functions f on
C \ Lt such that each z ∈ Lt is a simple pole of f , and both 2π and i2t are antiperiods of f .
Define

Ξ1(t, z) = H(2t, z)−HI(2t, z), Ξ2(t, z) =
1

2
H(

t

2
,
z

2
)− 1

2
H(

t

2
,
z

2
+ π),

Ξ3(t, z) =
1

2
H(t,

z

2
)− 1

2
HI(t,

z

2
)− 1

2
H(t,

z

2
+ π) +

1

2
HI(t,

z

2
+ π).

From the properties of H and HI , it is easy to check that Fj,t is the linear space spanned by
Ξj(t, ·) for j = 1, 2, 3. For j = 1, 2, 3, Define

Jj = ∂tΞj − Ξ′′j − Ξ′jH, Cj(t) =
1

2
Resz=0 Jj(t, ·).

Fix t > 0. Note that 0 is a simple pole of both H(t, ·) and Ξ1(t, ·) of residue 2. It is easy to
conclude that 0 is also a simple pole of J1(t, ·). From that Ξ1(t, ·) ∈ F1,t, that H(t, ·) has period
2π, and that H(t, z + 2π) = H(t, z) − 2i, it is easy to check that J1(t, ·) ∈ F1,t as well. So
J1(t, ·) = C1(t)Ξ1(t, ·). Thus, Ξ1 solves (8.5). Similarly, Ξ2 and Ξ3 both solve (8.5).
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8.3 κ = 3

Let κ = 3. Let Ξj , j = 1, 2, 3, be as in the previous subsection. For j = 1, 2, 3, let Γj = Ξj , and
define

Hj = ∂tΓj −
3

2
Γ′′j −HΓ′j −

1

2
H′Γj , Cj(t) =

1

2
Resz=0Hj(t, ·).

Using the argument in the last subsection, we find that Hj(t, ·) ∈ Fj,t for any t > 0. So
Hj(t, ·) = Cj(t)Γj(t, ·). Thus, Γ1,Γ2,Γ3 solve (8.2). For j = 4, 5, 6, let Γj(t, z) = Γj−3(t, z+ it).
Since HI(t, z) = H(t, z + it) + i, Γ4,Γ5,Γ6 solve (8.1).

For j = 2, 3, Γj takes positive real values on (0, 2π) + 4πZ, takes negative real values on

(−2π, 0) + 4πZ, and has antiperiod 2π. So Λj := 3
Γ′j
Γj

is a chordal-type annulus drift function

that solves (4.49) for κ = 3. It is worth to mention that the annulus SLE(κ; Λj) process
preserves the following local martingale, which resembles the G(Ω, a, b, z) in Proposition 11 of
[22]. The proof uses the fact that Γj solves (8.2) for z ∈ C \ {poles}.

Proposition 8.1. Let j ∈ {2, 3} and p > 0. Let x0 ∈ R and z0 ∈ R \ (x0 + 2πZ). Let ξ(t),
0 ≤ t < T , be the driving function for the covering annulus SLE(κ; Λj) process in Sp started
from x0 with marked point z0. Let g̃t, 0 ≤ t < T , be the covering annulus Loewner maps of
modulus p driven by ξ. Then for every z ∈ Sp,

Mt(z) :=
Γj(p− t, g̃t(z)− ξ(t))
Γj(p− t, g̃t(z0)− ξ(t))

· g̃
′
t(z)

1/2

g̃′t(z0)1/2

is a local martingale for 0 ≤ t < T .

For j = 1, Γ1(t, ·) takes nonzero pure imaginary values on Rt, the related function Γ4 agrees
with the solution given by Section 6.3 for κ = 3 and σ = 4

κ − 1 = 1
3 up to a pure imaginary

multiplicative constant, and Λ4 := 3
Γ′4
Γ4

is a crossing annulus drift function that solves (4.3) for
κ = 3. The annulus SLE(κ; Λ4) process also preserves a local martingale. In fact, Proposition
8.1 holds with z0 ∈ Rp, Λj replaced by Λ4, and Γj replaced by Γ1.

8.4 κ = 0

Let κ = 0. Let Lt be as in Section 8.2. Let H2(t, z) = H(t, z/2). From (2.8) we have

∂tH2 = 4H′′2 + 2H′2H2. (8.6)

Let Λ1 = H−2H2. Then for each t > 0, Λ1(t, ·) is an odd analytic function on C\Lt, and each
z ∈ Lt is a simple pole of Λ1. From H(t, z + 2π) = H(t, z) and H(t, z + i2t) = H(t, z)− 2i we
see that both 4π and i4t are periods of Λ1(t, ·). Fix t > 0, and define

J(z) =
Λ1(t, z)2

2
− 2Λ′1(t, z) + 3H′(t, z).

Then J is an even analytic function on C \ Lt and has periods 4π and i4t. Fix any z0 =
2n0π + i2k0t ∈ Lt for some n0, k0 ∈ Z. Then 2z0 is a period of J , so Jz0(z) := J(z − z0)
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is an even function. Thus, Resz=z0 J(z) = 0. The degree of z0 as a pole of J is at most 2.

The principal part of J at z0 is C(z0)
(z−z0)2

for some C(z0) ∈ C. Note that Resz0 H(t, z) = 2 and

Resz0 Λ1(t, z) = −6 or 2. In either case, we compute C(z0) = 0. Thus, every z0 ∈ Lt is a
removable pole of J , which, together with the periods 4π and i4t, implies that J is a constant
depending only on t. Differentiating J w.r.t. z, we conclude that

2Λ′′1 = Λ′1Λ1 + 3H′′. (8.7)

From Λ1 = H− 2H2 we have 2H2 = H− Λ1. So from (8.6) and (8.7), we have

∂tH− ∂tΛ1 = 2∂tH2 = 8H′′2 + 4H′2H2 = 4H′′ − 4Λ′′1 + (H′ − Λ′1)(H− Λ1)

= 4H′′ − 2(Λ′1Λ1 + 3H′′) + (H′ − Λ′1)(H− Λ1) = −2H′′ − Λ′1Λ1 + H′H− Λ′1H−H′Λ1.

From the above formula and (2.8), we have

∂tΛ1 = 3H′′ + Λ′1Λ1 + H′Λ1 + Λ′1H. (8.8)

Thus, Λ1 solves (4.49). Note that HI(t, z/2) also satisfies (8.6). Let Λ2(t, z) := H(t, z) −
HI(t,

z
2). Then Λ2(t, ·) is also an odd analytic function on C \ Lt and has periods 4π and i4t.

The principal part of Λ2(t, ·) at every z0 ∈ Lt is also either −6
z−z0 or 2

z−z0 . Using a similar
argument, we conclude that Λ2 also solves (4.49).

8.5 κ = 16/3

Let κ = 16/3. Let Λ1 and Λ2 be as in the last subsection. Let Λ3 = −Λ1/3. From (8.7) we
have

0 =
8

3
Λ′′3 + 4Λ′3Λ3 +

4

3
H′′.

From (8.8) we have
∂tΛ3 = −H′′ − 3Λ′3Λ3 + H′Λ3 + Λ′3H.

Summing up the above two equalities, we get

∂tΛ3 =
8

3
Λ′′3 +

1

3
H′′ + H′Λ3 + Λ′3H + Λ′3Λ3.

Thus, Λ3 solves (4.49). Similarly, Λ4 := −Λ2/3 also solves (4.49). Here Λ3 and Λ4 have period
4π instead of 2π. If we want a solution to (4.3) with period 2π, we may first restrict Λ3 or Λ4

to the interval (0, 2π) or (−2π, 0), and then extend it to R \ {2nπ : n ∈ Z} so that the function
has period 2π.
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