1 Loewner Equations

1.1

Chordal Loewner equation

Let T € (0,00] and A € C([0,T)), the set of real valued continuous functions on [0,7"). The
chordal Loewner equation driven by A is

2

PEESYOR 0<t<T, go(z)=-z (1.1)

Orgi(2) =

For every z € C, let 7(z) > 0 be such that [0,7(z)) is the maximal interval of the solution
t — g:(2). So g; is defined on {z € C: 7(z) > t}. We have the following facts.

1.
2.

If z € R, then gi(z) € R for 0 <t < 7(z).

If 2z € H = {Imz > 0}, then ¢;(z) stays inside H because it can not reach R; and
t — Im g¢(z) is decreasing because Im W%A(t) < 0if gi(2) € H.

. Each ¢g; commutes with the conjugate map z — Z because g,(z) satisfies the same ODE.

If 7(2) < T, then lim;_,,(.) g:(2)—A(t) = 0. In fact, there are only two cases for the solution
t + g¢(z) to blow up before T either limy_,,(,) g:(2) — A(t) = 0 or lim,_,, (. [g:(2)| = 0.
If the second case happens, then |0,g¢(z)| = |m| is bounded on [0,7(z)). Since
7(z) < oo, we get a contradiction.

. For each t, {z € C: 7(z) > t} is open, and ¢; is analytic on {z € C: 7(z) > t}. The proof

uses some standard arguments in the theory of ordinary differential equations, which says
that the solution of the ODE has differentiable dependence on the parameter. Here to
prove that g; is complex differentiable at zp, we define

Anfe) = 220y )

where h;(z) is the solution of d;h.(z) = %, ho(zo) = 1. Here hy(2) is expected to
be equal to g;(z), and the ODE for h; is obtained by differentiating w.r.t. z. Then
Ap(z) = 0 and A¢(z) satisfies an equation like 0;A:(z) = F(t, 2, 20)At(2) + G(t, 2, 20).
When z — 2, F and G both tend to 0. Then Gronwall’s inequality can be applied to show
that A;(z) — 0. This shows that g; is complex differentiable at z, and g;(z9) = hs(20)-
This argument also shows that the complex derivative of ¢; commutes with the partial
derivative 0, and we have

2g(2)
(9e(2) = A(1)*’

Each ¢; is conformal (i.e., univalent analytic) on {z € C : 7(z) > t}. This follows from
the uniqueness of the solution of ODE.

gy (2) = — g90(2) = 1.



7. Each g maps {z € H: 7(2) > t} onto H. Let ¢ty € [0,T). First, we know that g;,({z €
H: 7(2) > to}) C H. Second, fix any 2y € H, consider the ODE

0 <t< t(), h(to) = Z20.

As t decreases from ty to 0, Im h(t) increases, so the solution will not hit the singularity,
which implies that it does not blow up on [0, ty]. Then we have h(0) € H and g4, (h(0)) =
h(to) = Z20.

Lemma 1.1 Let tg € [0,T). Suppose that |\(t)] < M on [0,t9]. Then
(i) {T(z) <to} C {|z| < M +2y/2tp}.
(ii) If |z| > M + 2+/2tg, then |gi,(2)| > |z| — M — /2to.

Proof. Let |z| > M + 2v/2ty. Then |go(z) — A(0)| > |z| — M > 24/2tg. Let so be the maximal
number on [0, ] such that the solution ¢;(z) exists on [0, sp) and [g:(z) — A(t)| > /2o on
[0, 50). Then we get |9;g:(2)] < \/2/to for 0 < t < sg, which implies that |g;(2)| > |z]| — /2to for
0 <t < sp. Sowehave |gi(2)—A(t)| > |ge(2)|—M > |z|—v/2tg— M > /2t for 0 < t < sg. First,
this means that g;(z) does not blow up at sg. Second, we have sy = tg because if sy < ¢y then
limy s, |g:(2) — A(t)| = v/2to, which is a contradiction. So we conclude that, if |z| > M +2+/2t,
then 7(z) > to. This finishes the proof of (i). Since |g:(2) —A(t)| > |z] — /2t for 0 < t < s = to,
we get g, (2) — A(to)| > |2| — v/2to. The proof of (ii) is finished since [A(to)] < M. O

This lemma implies that g; has a pole at co. The pole has order 1 because ¢; is conformal
near co. We write the power series expansion of g; at co as

gi(2) = a1(t)z + ao(t) + a‘;(t) - +0(272).

We have
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Thus, a}(t) = ay(t) =0 and a)(t) = a12(t). Since go(z) = 2z, a1 = 1, ap = 0, and ax(t) = 2t.

Let Ky ={2€H:7(2) <t},0<t<T. Then Ky = 0; K;, C Ky, if t; < to; each K; is a
Conf
relatively closed bounded subset of H, g; : (H \ K;00) 5 (H; 00), and satisfies

g(z) =z + % +0(z7%), z— 0. (1.2)

The g¢; is uniquely determined by K;. If t; < ta, then g+, # g,, so K, ; Ky,.

Definition 1.1 We call g; and K; the chordal Loewner maps and hulls driven by .



Lemma 1.2 (Linearity) Suppose g; and K; are chordal Loewner maps and hulls driven by
A(t). Leta >0 and b € R. Then agq2((-—b)/a)+b and aky /.2 +b are chordal Loewner maps
and hulls driven by a\(t/a?) +b.

Proof. The proof is straightforward. We leave it as an exercise. O

Exercise. Let \(t) = cv/t, t > 0. Let g; be the chordal Loewner maps driven by A. Since
aX(t/a?) = A\(t) for any a > 0, we have agyjq2(2/a) = gi(z). Letting a = Vi, we get gi(2) =
Vtgi(z/v/'t). We may derive an ODE for g; using the chordal Loewner equation. We can solve
this ODE to get ¢;.

Corollary 1.1 If K; are chordal Loewner maps driven by \(t), then mte(O,T)E = {\0)}.

Proof. For t € (0,T), K; is a nonempty compact set because K; is a nonempty and bounded.
Since K; is increasing in ¢, we conclude that mte(O,T)E is nonempty. Let zg lie in the inter-
section. From Lemma K; — X\(0) are chordal Loewner hulls driven by A(¢) — A(0). Let
My = supsejo 4 [A(s) — A(0)[. Then lim;—o M; = 0. From Lemma we get Ky —A(0) C {|]z] <
M; + 2+/2t}. Thus, |20 — A(0)| < M; + 2v/2t for any t € (0,T). So zp must be A(0). O

Lemma 1.3 Suppose g; and K; are chordal Loewner maps and hulls driven by A € C([0,T)).
Let tg € [0,T). Then giy+t © g{ol and gy (Ktg4t \ Kty), 0 < t < T —tg, are chordal Loewner
maps and hulls driven by \(to +t).

Proof. The proof is straightforward. We leave it as an exercise. O

Lemma 1.4 Suppose g; and K; are chordal Loewner maps and hulls driven by A € C([0,T)).
Then for any t € [0,T),

D= ) @Ee \K). (1.3)

e€(0,T—t)
Proof. This follows from Corollary [I.1] and Lemma [1.3] O

Remark. This corollary says that we may recover the driving function using the maps and
hulls. Since the maps are also determined by the hulls, the driving function is completely
determined by the hulls.

Definition 1.2 We say that A generates a chordal Loewner trace B if for every t,

= i ~1
Blt) Hazlin)\(t) 9 (2)

exists, and [ is a continuous curve. Such [ lies on HUR with (0) = A(0) € R. We call the
trace 8 simple if it has no self intersection and intersects R only at 3(0).



Example. If \(t) = 0, 0 < t < oo, then 0ig:(2) = 2/g:(2). So gi(z) = V22 +4t. If gi(2)
blows up at some finite time tg, then /22 + 4ty = 0, which implies that z = 42i\/fy. So
{7(2) <t} = [~2iv/to,2iV/1] and K; = (0,iV/4t], 0 < t < co. We have g; '(2) = V22 — 4t. We
have B(t) := limygs,—0 g{l(z) = i\/4t, 0 < t < oo, is continuous, has no self-intersection, and
stays in H for ¢ > 0. So A generates a simple trace. Note that K; = 5((0,¢]) for each ¢.

Proposition 1.1 If A\ generates a chordal Loewner trace (B, then for each t, H \ K; is the
unbounded connected component of H\ 5((0,t]). In particular, if B is simple, then K; = $((0,]).
Moreover, for each t, gt_1 extends continuously to H U R.

Remark. This proposition says that if the trace exists, then it determines the hulls, which in
turn determine the driving function. The proof will be given later.

Lemma 1.5 Let a > 0 and b € R. If A(t) generates a chordal Loewner trace ((t), then
aX(t/a?) + b generates the chordal Loewner trace aB(-/a?) +b.

Proof. This follows from Lemma and some straightforward argument. O

Lemma 1.6 Let A € C([0,7)), to € [0,T), and A\y(t) = A(to+1t), 0 <t < T —ty. Let g
be the chordal Loewner maps driven by A. Suppose X generates a chordal Loewner trace 5 and
Aty generates a chordal Loewner trace By,. Extend gt_o1 continuously from H to HUR. Then

Bto+1) = g3, (Bio(t) + A(to)) for 0 <t < T —to.

Proof. Let gy, be the chordal Loewner maps driven by Ag,. From Lemma [I.2] and Lemma [1.3]
we get go.t(2) = Go4t © gt_ol(z + A(to)) — A(to). So we get

gt_oi_t(z) = gt_ol(gt_o,lt(z — Ato)) + A(to)), =ze€H.

This equality still holds for z € HUR if gt_oit, gt_ol, and gt_o}t extend continuously to H U R.
Letting z = A(to + t), we get the desired result. O

Odes Schramm introduced SLE (shorthand for stochastic Loewner evolution or Schramm-
Loewner evolution) by combining Loewner equation with stochastic processes.

Definition 1.3 For k > 0, a standard chordal SLE(k) is defined to be the chordal Loewner
process driven by A(t) = \/kB(t), 0 <t < oo, where B(t) is a standard Brownian motion.

Note that the maps from the space of A(f) to space of (g;) and the space of (K;) are
continuous or measurable if these spaces are assigned some suitable topology or o-algebra.
Here is one example. We consider the case T = oo. Let the topology on the linear space
C([0,00)) be generated by semi-norms: ||\l = supg<;<, |A(t)[. Let the topology on the space
of (g¢) be generated by {(g:) : gt_ol(zo) € Uy} for ty € [0,00), 29 € H, and open set Uy C H. Let
the topology on the space of (K;) be generated by {(K;) : zo # Ky, } for tg € [0,00) and zp € H.
Then the chordal Loewner maps are continuous.

This means that the distribution of SLE is a pushforward measures of the Wiener measure
(the distribution of Brownian motion) under the chordal Loewner map.
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Theorem 1.1 (Rohde-Schramm, Lawler-Schramm-Werner ) For any k > 0, with prob-
ability 1 a standard chordal SLE(k) trace exists; the trace tends to oo as t — oo; is simple iff
k € (0,4]; visits every point on HUR iff k > 8.

Remark. Rohde and Schramm proved the case k # 8 using Stochastic Analysis and Conformal
Geometry. Lawler, Schramm and Werner proved the case k = 8 using a different method. They
showed that SLE(8) is the scaling limit of the uniform spanning tree Peano curve. We will
prove Rohde and Schramm’s result later.

Lemma 1.7 Let 3(t) be a standard chordal SLE(k) trace. Let a > 0. Then af(t/a®) has the
same distribution as B(t).

Proof. This follows from Lemma with b = 0 and the fact that aB(t¢/a?) has the same
distribution as B(t). O

Remark. The lemma states that if we dilate a standard chordal SLE(k) trace 5 by a factor
a, then the new curve has the same distribution as 8 up to a linear time-change. If we do not
care about the parametrization, then af has the same distribution as .

Since a standard chordal SLE(k) trace lies on H, starts from A(0) = 0, and ends at oo, we
also view it as a chordal SLE(k) trace in H from 0 to co.

We now define chordal SLE in a general simply connected domain. A domain in this
lecture will always be a connected open subset of the extended Complex plane C=C Li{oo}
with spherical metric. A simply connected domain is a domain whose complement in C is a
(nondegenerate) continuum, which is a connected compact subset with more than one point.
For example, half-planes and discs are simply connected domains, but C and C are not. When
we talk about the closure or boundary of a simply connected domain, we mean its closure or
boundary in C. For example, oo is a boundary point of H. Riemann’s mapping theorem says
that any two simply connected domains are conformally equivalent.

Definition 1.4 Let 8 be a standard chordal SLE(k) trace. Let W : H o D. Then we call
W o a chordal SLE(k) trace in D from W(0) to W(o0).

Remarks.

1. Initially W is not defined at 0 and co. The values of W on 0H = R = R U {c0} should
be understood as prime ends of D. If V' is another conformal map from H onto D, then

W oV~ is a Mobius transformation, which extends continuously to H. For z € 0H, we
say W (x) = V(z) if the extension of W o V! fixes .

2. If D is bounded by a Jordan curve, then W extends continuously to H=HURU {oo}
and induces a homeomorphism between R = RU {oco} and J. In this case, we may view
W(0) and W (oo) as two points on J.



3. In general we do not view W (x) for x € JH as boundary points of D even if W extends
continuously to H. For example, W (z) = 22 maps H onto C \ [0, 00), and its continuation
maps 1 and —1 to the same point 1. But we want to distinguish W (1) from W (—1).

Conf
4. If there is another V : H — D such that V(0) = W(0) and V(co) = W(o0). Then

Conf
VoW=t: (H;0,00) — (H;0,00), which implies that V o W~1(z) = az for some a > 0.

So V(z) = W(az). Thus, V(8(t)) = W(ap(t)). From Lemma we see that V(3(t/a?))
has the same distribution as W (3(¢)). Thus, up to a linear time-change, the distribution
of a chordal SLE(k) trace does not depend on the choice of .

Proposition 1.2 (Domain Markov Property for Chordal SLE) Let K; and ((t), 0 <
t < o0, be the chordal Loewner hulls and trace driven by \(t) = /kB(t). Let Ty be a finite
stopping time w.r.t. the filtration F; generated by B(t). Then conditioned on Fr,, B(To + t),
0 <t < oo, isachordal SLE(k) trace in H\ K, from 5(1p) to oo.

Proof. Let g; be the chordal Loewner maps driven by A. Let Ap (¢) = A(Tp + t) — A(Tp).
From the properties of Brownian motion, we know that Az, (¢) has the same distribution as
A(t), and is independent of Fr,. So A7, generates a standard chordal SLE( ) trace, say (1,
which is independent of Fr,. From Lemma we see that 5(To +1t) = gp, LB, () + MTp)).
The conclusion follows because z +— g}ol(z + A(Tp)) is adapted to Fr,, and maps (H;0,c0)
conformally onto (H \ Krz,; 8(Tp),00). O
1.2 Radial Loewner equation
The radial Loewner equation driven by A € C([0,7)) is
—|— z
O0rgt(2) = ge(2 ) Y gt( i, 0<t<T, go(z)=-z (1.4)

e gt(z

For every z € C, let 7(z) > 0 be such that [0,7(z)) is the maximal interval of the solution
t — gi(2). So g; is defined on {z € C: 7(z) > t}. We have the following facts.

1. g(0) =0 for all t € [0, 7).

2. Each g commutes with the map z — %, which is the reflection about T = {|z| = 1}. This
is because 1/g(z) satisfies the same ODE as in (1.4)).

3. Each ¢; is conformal on {z € C: 7(z) > t}.

9 log(g:(2)/2) =

Letting z — 0, we get 9;1log(g;(0)) = 1. So g;(0) = €.



5. If z € T then g:(2) stays on T before 7(z). This is because the real part of ?87% is 0
if g+(z) € T.

6. If z € D = {|z] < 1} then g.(2) stays inside D before 7(z), and t — |g(2)| is increasing.
6M<t)+gt(z)

This is because the real part of O gi(2)

is positive if g;(z) € D.

7. If 7(2) < T, then lim;_, ;) g:(2) — eM) = 0. If z € DUT, then g;(z) stays inside the
bounded set D U T. If the solution blows up before T', it must hit the singularity. If
z € {|z| > 1}, then the result follows from the mirror symmetry about T.

8. Each ¢, maps {z € D: 7(2) >t} onto D. Let ¢ty € [0,7"). First, we know that g;,({z € D:
T(z) > to}) C H. Second, fix any zy € H, consider the ODE

ez‘A(t) + h(t)

W (t) = h(t)m’

0<t<ty hit)=z.
As t decreases from ty to 0, |h(t)| decreases, so the solution will not hit the singularity
e which implies that it does not blow up on [0,%y]. Then we have h(0) € D and

9to (h(0)) = h(to) = 2o

Remark. The radial Loewner equation is the original Loewner equation introduced by Charles
Loewner. The chordal Loewner equation is in fact introduced by Oded Schramm.

Let K; ={2ze€D:7(2) <t},0<t<T. Then Ky = 0; Ky, C Ky, if t1 < t9; each Ky is
Conf
a relatively closed subset of H, g; : (D \ Ky;0) i (D;0), and satisfies ¢;(0) = €. The g; is

uniquely determined by K;. If t; < ta, then g; (0) # g1,(0), so Ky, & K, .
Definition 1.5 We call g and Ky the radial Loewner maps and hulls driven by .

Lemma 1.8 Suppose g; and Ky are radial Loewner maps and hulls driven by \(t). Let b € R.
Then e g,(-/e®) and e K; are radial Loewner maps and hulls driven by A(t) + b.

Note that for any n € Z, A 4+ 2nw generate the same radial Loewner maps and hulls as A.

Lemma 1.9 Suppose g; and K; are radial Loewner maps and hulls driven by X € C([0,T)).
Let tg € [0,T). Then g+t © gtj)l and g, (Kig+¢ \ Kiy), 0 <t < T —to, are radial Loewner maps
and hulls driven by A(to + t).

Lemma 1.10 Suppose g; and K, are radial Loewner maps and hulls driven by A € C([0,T)).
Then for any t € [0,T),

{2 = () g(Kie \ Ky). (1.5)
e€(0,7—t)



This lemma asserts that the radial Loewner hulls determine the driving function up to an
integer multiple of 27.

Definition 1.6 We say that A generates a radial Loewner trace 3 if

t)= lim Lz
B(t) DA 9 (2)
exists for 0 < t < T and is a continuous curve. Such B lies on DUT and 5(0) = ¢ ¢ T.
We call the trace B simple if it has no self intersection and intersects T only at B(0).

Proposition 1.3 If A generates a radial Loewner trace (3, then for each t, D\ K, is the connected
component of D\ 5((0,t]) that contains 0. In particular, if B is simple, then K; = 5((0,¢]).
Moreover, for each t, g;l extends continuously to DUT.

Definition 1.7 For k > 0, a standard radial SLE(k) is defined to be the radial Loewner process
driven by A\(t) = /kB(t), 0 <t < 0.

The distribution of radial SLE is the pushforward measures of the Wiener measure under
the radial Loewner maps.

Theorem 1.2 For any k > 0, with probability 1 a standard radial SLE(K) trace exists; tends
to 0 as t — oo; is simple iff k € (0,4]; visits every point on DU T\ {0} iff k > 8.

Remark. This theorem follows Theorem and the weak equivalence between chordal SLE
and radial SLE.

Since a standard radial SLE(x) trace lies on D, starts from e’
also view it as a radial SLE(k) trace in D from 1 to 0.

M0 =1, and ends at 0, we

Conf
Definition 1.8 Let 8 be a standard radial SLE(k) trace. Let W : D 2 D. Then we call

W o B a radial SLE(k) trace in D from W (1) to W(0).

Remark. Since W is defined on D, W (0) is well defined; while W (1) should be understood as
a prime end of D as in the definition of chordal SLE in a general simply connected domain.

Lemma 1.11 (Domain Markov Property of radial SLE) Let K; and (t), 0 < t < oo,
be the radial Loewner hulls and trace driven by A(t) = /kB(t). Let T be a finite stopping time
w.r.t. the filtration F; generated by B(t). Then conditioned on Fr, B(T +1t), 0 <t < o0, is a
radial SLE(k) trace in D\ Ky from 5(T) to 0.



2 Conformal Mappings

2.1 Koebe’s 1/4 theorem and distortion theorem

Let S denote the set of maps f that maps D conformally into C with f(0) = 0 and f'(0) =
Any f € S has expansion
o]
z)=z+ Z anz".
n=2

Given f € S, let F(z) =1/f(1/z). Then F maps @\ (DUT) conformally into C \ {0} with
F(00) = 0o. The Laurent expansion of F' at oo is

[e.e]
z)=z+ Z bz "
n=0

We have by = —ap and by = a3 — a3. Let K = C \ F(((A:) Then K is a compact subset of C.

Proposition 2.1 (Area Theorem)

o

area(K) = (1= ) n|by ).

n=1
In particular, we have > oo nlb,|* < 1.

Proof. For r > 1, let K, denote the region bounded by v, := Fx({|z] =r}). Then area(K) =
lim,_,q+ area(K,). We may calculate area(k,) using Green’s Theorem. We have

2iarea(K,) = / Zdz =

- 2w R . .
F(2)Fp(2)dz = / Fy (re®) Fi(re')ire'® do
- |z|=r 0

27 &
:/ (7,671'9_’_%_’_ Zmrfneinﬁ an pnl Zn+1)9)”,610d9
0

n=1

o
= 2mi(r Zr 2 b, [2)
n=1

Thus, area(K,) = m(r* — 3% 772"|b,|?). The conclusion follows by letting r — 1. O
Lemma 2.1 If f €S, then there exists h € S such that h(z)?* = f(2?) for € D.

Proof. First, f(z)/z extends to a non-zero analytic function on D. Second, there is an analytic
function g on D such that g(2)? = f(2)/z. Let h(z) = zg(2%). Then h is analytic, h(0) = 0,
R'(0) = g(0) = 1, and h(z)? = f(22). If h(z1) = h(z2), then f(z?) = f(22), which implies that
Z1 = 29 OT 29 = —z9. If 21 = —z9, then g(zf) = —g(z%), which is a contradiction. So h is
conformal. Thus, h € S§. O



Proposition 2.2 If f € S, then |az| < 2.

Proof. Suppose f(z) = z +a2? +--- € S and let h be as in the previous lemma. Then
h(z) = 24+ %23+---. Let g(z) = 1/h(1/z). The g has an expansion at co: g(z) = z—%—i—- e
The Area Theorem implies that |as| < 2. O

Remark. Charles Loewner introduced (radial) Loewner equation to prove |az| < 3. Now it is
known that |a,| < n for all n € N.

Theorem 2.1 (Koebe’s 1/4 Theorem) 1. If f € S, then dist(0,0f(D)) > 1/4.

Conf
2. [ff . (Dl;zl) - (DQ;ZQ), then

|f/(Z1)| < diSt(Zg,aDg)
4 - diSt(Zl,aDl)

< A[f'(z1)].

Proof. 1. Let r = dist(0,df(D)). Suppose zg € C\ f(D). Define h(z) = % Then h € S
and has expansion

1

h(z)=z+ (ag+ —)22 +--- .

20
From Proposition [2.2] we have |as| < 2 and |az + 1/20| < 2. This implies |29| > 1/4. Since this
is true for all zg € C\ f(D), we get r > 1/4.

2. Let r; = dist(z;,0D;), j = 1,2. Define h(z) = fnEta)=z  Then h € S and

r1f'(z1)

. / _ Conf
dist(0, 0h(D)) < Pt From Part 1, we get 2> W, Let g = f~!. Then g : (Dg;20) —»
(D1;21). So 7t > ¢

]
S

g'(z2)] _ 1

T = A

Examples.

1. 1/4 is the best possible number. The Koebe’s function is f(z) = ﬁ =3 nz". We

have

1/14+2N\2 1
e=30=) -1
Since z — 12 maps D conformally onto {Rez > 0} and z + 2% maps {Rez > 0}

conformally onto C\ (—o0, 0], we see that f maps D conformally onto C \ (—oo,—1/4].
Thus, f € S and dist(0,0f(D)) = 1/4.

2. Suppose g; and K;, 0 < t < oo, are radial Loewner maps and hulls driven by A €
. Conf
C([0,00)). Since g : (D \ K;0) — (D;0) and ¢;(0) = €', from Koebe’s 1/4 theorem,
dist(0, K;) < 4e”! — 0 as t — oco.
3. Suppose ¢; and K;, 0 < t < 0o, are chordal Loewner maps and hulls driven by A. Since

onf

C
gt H\K; — H, we have min{Im zo, dist(zo, K;)} =< Im g+(20)/|9;(z0)| for any zo € H\ K.
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This property could be used to study the phase change of SLE. Using Stochastic Analysis
we can prove that for any fixed zo € H, almost surely 1) 7(zp) = oo for k < 4 and 7(29) <
oo for k > 4; 2) limy_,; (o) Im g;(20)/]g;(20)| = 0 for kK > 8, and > 0 for x < 8. Assume
that we have proved the existence of the chordal SLE(k) trace 5. Suppose x € (4,8). The
above result implies that a.s. lim,_,, ()~ dist(zo, 8((0,1])) = lim,_,, ()~ dist(zo, K;) = 0.
Thus, 2o # B((0,7(20)]) but 20 € K (), which means that zq lies in the interior of K.
After 7(20), B grows in H\ K, (.,). So zp is almost surely not visited by the trace j.
Suppose k£ > 8, then we have a.s. lim;_,(,,)- dist(z0, 8((0,])) = 0, which implies that
20 = B(7(20)). This can be used to show that § visits every point on H.

Suppose f € Sand w € D. Let T,,(2) = f‘jfgz Then T, : (ID;0) ot (D;w), T, (0) = 1—|w|?

and T"(0) = —2w(1 — |w|?). We may construct another function h € S by

ey — FEE) — Fw) _ F(Tulz) = Fw)
FTy0) )t =)

Then

wiiey - P EEDTUC) + (Tl Ty )
S (w)(1 = |w]?) '
In particular, we get

_ S (W)T(0) + £ (w) T, (02 f'(w) (=201 — [w]?) + f"(w) (1 — [w]?)
f'(w)(1 = |w?) f'(w) (1 = |w?)

f"(w)

f'(w)

From Proposition [2.2] we get |h”(0)| < 4. So

h// (0)

= —2w +

(1~ |wf?).

w ffw) 2wl | 4
ol filw) ~ T—[wlP| = T=Jul’

(2.1)

Theorem 2.2 (Distortion Theorem) If f € S and z € D, then

A S G <

1+ |2|
(1—12])3

Proof. Let h(z) =log(f’(z)). Then h is analytic on D with 2(0) = 0, and b’ = f”/f’. Suppose
z=re? 0<r<1and @ cR. Then

/ I AP N T Tf//(sew) i0
h(z)dz-/o h'(se™)e ds-/o f’(seie)e ds

log(/'(2)) = h() = |

[0,2]

11



From (2.1) we get

T 2s T4
log(f'(2)) — d‘</) d
ox(f:) = [ ogis| < [ s

which is [log(f'(2)) + log(1 — r?)| < 2log(1 + r) — 2log(1 — 7). Taking real part, we get

—3log(1+r) +log(l —r) <log|f'(z)] <log(l+r)—3log(l—r).
The proof is complete by exponentiating this inequality. O

Remark. Integrating the estimation for |f’(2)| along a radial line, we can show

2]
e SRS -
(1+z))? (1—z))?
Corollary 2.1 There is a constant C' > 1 such that the following is true. Suppose D is a
domain, f is conformal on D, and zy,wy € D. Suppose there is a piecewise C' curve ~y
connecting z and w. Let | be the length of v and r = dist(~y, dD). Then |f'(wo)| < |f(20)|CY".

Proof. Let n = [2[/r]. We may find 21, 22, ..., 2z, on 7y such that z, = wo and |z; —z;_1| < r/2,
1 < j < n. Construct f; € S by fj(2) = f(zj—1 +72)/(rf'(2j-1)). Then fi(2) = f'(2j-1 +
rz)/f(zj—1). Letting z = (z; — zj—1)/r and applying Distortion Theorem, we get

|f'(z5)]
| (zj-1)]
Thus, |f (wo)| = |f'(zn)] < 127 f(20)] < 122741 f'(20)|. If 1 > r/2, then 21/ + 1 < 41/r, so

|f'(wo)| < (1297 | f'(20)|. Now suppose | < /2. Then n = 1 and |z — wo| < 1 < r/2. The
above computation gives

14 |2] 1+1/2
Ao S a-12p >

<

Pl 14U
Fla)) S @1y =0

where Cp = e”. Then C := max{12%, Cy} is the constant we want. O

2.2 Extremal length

Extremal length is about some measurement of a family of curves. The value is a nonnegative
real number. It is important for this course because it is conformally invariant. Let D be a
domain. Let p be a nonnegative Borel function on D. The p-area of D is

AD) = [ pePaace)
D
Let v be a piecewise C! curve in D, the p-length of v is

L) = [ olz)ds(a).

12



Let ' be a family of piecewise C! curves in D, the p-length of T is

L,(T) = inf Ly().

The extremal length of I' in D is

Ly(T)?
Ap(D)

L(T; D) = sup
p

For two sets A and B, we say a curve v connects A and B if one end of vy approaches to a point
on A and the other end of v approaches to a point on B. We say a curve +y separates A and B
in D if v lies in D and any curve in D connecting A and B must intersects v. Let I'p(A, B)
denote the set of piecewise C'! curves in D connecting A and B. Let I'},(A, B) denote the set of
piecewise C! curves in D separating A and B. Then the extremal length of I'p(A, B) is called
the extremal distance between A and B in D, and is denoted by dp(A, B); and the extremal
length of I'},(A, B) is called the conjugate extremal distance between A and B in D, and is
denoted by d},(A, B)

Remark The D in L(T; D) is unnecessary. In fact, if D’ D D, then L(I'; D') = L(T'; D). Since
I' lie in D, to maximize L,(I") while keeping A,(D’) unchanged, p must concentrate on D.

Examples.

1. Let D be a rectangle {0 < z < a,0 < y < b}. Let I' be the set of piecewise C! curves
in D connecting the two vertical sides (of length b). Let p = 1. Then A,(D) = ab and
a

L,(T') = a. So L(I';D) > §. Now suppose p is any nonnegative Borel function on D.
From Hoélder’s inequality, we have

Ap(D) = /Ob/oap(fv,y)wxdy > /Obi(/oap(%y)dﬂf)Qdy

> /Ob l(L,,(F)>2dy = ng(F)2,

a

which gives i’;((l;j)j < %. Thus, dp([0,4b], [a, a-+ib]) = ¢. Similarly, dp([0,al, [a, a+ib]) = 2.
We also have d},([0,b], [a,a +4b]) = &. Similarly, d([0,al, [a,a + ib]) = &.

a

2. Let D be an annulus {r; < |z| < ra}. Let Cj = {|z| = r;}, j = 1,2, be its two boundary
circles. Let T' be the set of piecewise C! curves in D connecting the two boundary
circles. Let p(z) = . Then A,(D) = 2mlog(ra/r1) and L,(T') = log(r2/r1). Thus,

ER

L(T;D) > %. Using Holder’s inequality, we can show that L(T") = %. Thus,

dp(Ch, Cp) = 2R Similarly, dj, (C1, Cs) = 1y

13



Conf
Theorem 2.3 Let I'y be a family of piecewise C* curves in Dy. Suppose f : Dy e Do. Let

Iy = f(I'1):={foy:yeTl1}. Then L(I'1;D1) = L(I'y; D2).

Proof. This is because there is a one-to-one correspondence between the set of nonnegative
Borel functions on D; and the set of nonnegative Borel functions on Ds: p; <> p2 such that
A, (D1) = Ay, (D) and Ly, () = Ly, (foy) for each v € I'y. In fact, given ps, the corresponding

pr is defined by p1(2) = |f()|p2(f(2)). Then

Apl(Dl)Z/ f’(Z)\sz(f(Z))QdA(Z)Z/ p2(w)*dA(w) = Ay, (D2);

Do

Dy
LM%=/W@WU@W@=/ pa(w)ds(w) = Ly (f 07). O
Y

foy
Remark. Two rectangles or two annuli are conformally equivalent iff they have similar shapes.

Lemma 2.2 (Comparison Principle) Let 'y and I's be two families of piecewise C1 curves.
If every curve in 'y contains a subcurve in 'y, then L(I'y) > L(Tg).

Proof. This is because L,(I's) > L,(I'1) for every p. O

Example. Suppose diam(A4) = r < R = dist(A4, B). Let Q be the annulus {r < |z — 29| < R},
and Cr and C, be its boundary circles. Any curve connecting A and B must cross the annulus,
so it contains a subcurve in  connecting C'r and C,. Thus, for any domain D, dp(A, B) >

do(Cr,Cr) = log(R/r)/(2m).

2.3 Boundary behaviors of conformal maps

Definition 2.1 A topological space X is called locally connected if for every x € X and open
set U > x, there exists a connected neighborhood N of x that is contained in U. A subset of a
topological space X is a locally connected set if it is a locally connected space when viewed as a
subspace of X.

Remark. If X is a metric space, then X is locally connected iff for every x € X and ¢ > 0,
there is § > 0 such that if dist(z,y) < § then = and y lie in a connected subset of X with
diameter less than €. In addition, if X is compact, the § can be chosen to be independent of x.

Examples.
1. Any convex set in C is locally connected.
2. An relatively open subset of a locally connected set is locally connected.

3. {z+isin(1/z) : x > 0} U[—4,1] is connected but not locally connected.
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Lemma 2.3 If f : X — Y is continuous and X is compact and locally connected and Y is
Hausdorff, then f(X) is locally connected.

Proof. We may assume that Y = f(X). Let y € Y and V be an open subset of Y with
y € V. Let S be a connected component of V that contains y. Let w € f~1(S) C f~1(V).
Since X is locally connected and f~!(V) is open, there is a connected neighborhood N of w
which is contained in f~1(V). Then f(N) is a connected subset of V which contains f(w) € S.
Since S is a connected component and f(N) NS # @, we have f(N) C S, which implies that
N C f71(9). Now for every w € f~1(S), we find a neighborhood N of w which is contained in
F7HS). So f71(S) is open. Since X is compact and Y is Hausdorff, we conclude that S is an
open subset of Y. So § is a connected neighborhood of y in Y that is contained in V. O

Theorem 2.4 Let D be a simply connected set. The followings are equivalent.
(i) Any conformal map from D onto D extends continuously to D.
(ii) 0D is locally connected.

(iii) There is a locally connected set K in C such that D is a connected component of@ \ K.

Proof. (i) implies (ii). Riemann’s mapping theorem assures the existence of a conformal map
from D onto . Since it extends continuously to D, we get a continuous map from T onto dD.
Since T is locally connected, from Lemma 0D is locally connected.

(ii) implies (iii). We may simply let K = 0D.

(iii) implies (i). We use extremal length in the argument. We also use the fact that if

the diameter of a closed set S C C has diameter d < 7/4, then at most one component of

~ Conf
C \ F has diameter greater than 2d. Suppose W : D 2% D. Let zo € T. For r > 0, let

Sy ={z€D:|z—z]| <r}. Wesuffice to show that the diameter of W (S, ) tends to 0 as r — 0.
Let E be a continuum in D and R = dist(z9, £) > 0. For r € (0, R), let I, denote the family of
curves in D that disconnect E from S,. Note that any curve in the annulus {r < |z — z9| < R}
that disconnects the two boundary circle contains a subcurve which belongs to I'.. Thus,
L(T,) < 2x/log(R/r), which tends to 0 as » — 0. From the conformal invariance of extremal
length, L(W(I';)) — 0 as r — 0. Note that W (I';) is the family of curves that separate W (S;)
from W(E). Let p(z) = ﬁ Then we get the spherical metric. So A,(D) < Ap(@) = 4.
Thus, L,(W(I';)) — 0 as r — 0. In particular, this means that we may choose v, € W(I',)
such that the spherical length of v, tends to 0 as r — 0. Since ~, has finite spherical length, its
closure has at most two points more than itself. There are three cases. Case 1. 7; intersects
0D at no more than one point. Then W (E) and W(S,) lie in two components of C\ 7;. Since
the diameter of 7, tends to 0 and the diameter of W (FE) is positive, the diameter of W (S,)
should also tends to 0. Case 2. 7, intersects D at two points, say a, and b.. Then a,, b, € K
and dist(a, b) < diam(,). Since K is locally connected and diam(y,) — 0 as » — 0, K contains
a connected subset L, 3 a,, b, with diameter tends to 0 as r — 0. Now ~, U L, has diameter
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tends to 0 as r — 0, and separates W (FE) from W (S,). Again we conclude that the diameter
of W(S;,) tends to 0. O

Remarks.

1. The lemma is still true if D is replaced by a Jordan domain. This implies that a conformal
map from D onto a Jordan domain extends to a homeomorphism between the closures.

2. Suppose J is a Jordan curve. There is a conformal map W; from D onto its interior, and a
conformal map Wj from {|z| > 1} to the exterior of J. Then we get two homeomorphism
induced by W7 and W3 from T onto J. Then Wi Lo W, is an orientation preserving
automorphism of T. The conformal welding problem is: given the homeomorphism of T,
determine wether it is induced by the above conformal maps, and find the cuve J.

3. Suppose that A generates a chordal Loewner trace 3, and we have proved that H \ K is
the unbounded component of H \ 3([0,¢]). From Lemma we see that R U 3([0,¢]) is
locally connected. Since H \ K; is one connected component of C \ (]lA% U £([0,t])), from
Theorem the conformal map g, ! from H onto H \ K; extends continuously to H. The
same argument works for the radial Loewner trace.

Theorem 2.5 Suppose W : D o D. Let v(t), 0 <t <1, be a curve with v(0) € D and
~v((0,1]) € D. Then limy_o W(~(t)) exits. Moreover, if B has the same property as v, and

B(0) # v(0), then lim_o W (~y(t)) # limy_,o W(5(t)).

Proof. Let zp = v(0), E be a continuum in D, and R = dist(zp, £) > 0. For any r € (0, R),
there is 6 > 0 such that v([0,0]) C {|z — 20| < r}. Let p be a curve in {r < |z — zp| < R that
separates the two boundary circle. Let ¢ty be the biggest number such that v(¢) € p. Then
p contains a subcurve py which contains y(tp) and whose two ends approach two boundary
points. Then pg disconnects E from ~((0,d]) in D. Thus, d},(E,~v((0,]) < 27/log(R/r). From
conformal invariance, dj (W (E),W o ~v((0,4])) < 27/log(R/r). Let p =1 on D. Then we get
the Euclidean metric. Since A,(D) = area(D) = , this implies that there is a curve o, with
length less than 2m/log(R/r) that separates W (E) from Wo~((0,0]) in D. If r is close to 0, the
length of «,. is also close to 0. If r is small enough, the length of «, is less than the diameter of
W (FE) and the distance between W (E) and T. Then «, must touches T and does not intersect
W (E). Since W (v((0,¢])) is disconnected from W (E) in D by a,., we see that the diameter of
W (~((0,0])) is no more than the length of a,. Thus, the the diameter of W(v((0,4])) tends
to 0 as § — 0, which implies that lim; o W (7y(t)) exists. Suppose 8 has the same property
as 7, and $(0) # v(0). Then lim;,o W(S(t)) also exists. Since a(0) # 5(0), we may choose
d > 0 such that dp(«((0,6]),5((0,0])) > 0. Thus, dp(W(«((0,0])), W(B((0,46]))) > 0. If
limy o W (7y(t)) = limy_—0 W(B(¢)) := wo, then the extremal distance is 0 because there is r > 0
such that any curve in {0 < |z — wp| < r} that surrounds 0 contains a subcurve in D that
connects W (a((0,4])) and W(B((0,4])). O

Remark.
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1. If 5(0) = v(0), we can not conclude that lim;_,o W(~v(t)) = limy—,0 W(5(¢)).

2. From Theorem if D is replaced by a simply connected domain with locally con-
nected boundary, the first statement is still true, but we may not have lim;_,o W (v(t)) #
limy_,o W(3(t)). The theorem still holds if D is replaced by a Jordan domain

2.4 Carathéodory convergence

Definition 2.2 Suppose D,, is a sequence of domains and D is a plane domain. We say that
Cara

(Dy) converges to D, denoted by D, — D, if for every z € D, dist(z,0D,,) — dist(z,9D).
This is equivalent to the followings:

(i) every compact subset of D is contained in all but finitely many Dy, ’s; and

(ii) for every point zy € D, dist(zg,0Dy) — 0 as n — oo.

Remarks.

1. The distance and boundary in the definition both refer to the spherical metric. If D,, and
D are all contained in C, then the Euclidean metric gives the same definition.

2. A sequence of domains may converge to two different domains. For example, let D, =
Cara

C\ ((—oo,n]). Then D, Carg H, and D,, — —H as well. But two different limit
domains of the same domain sequence must be disjoint from each other, because if they
have nonempty intersection, then one contains some boundary point of the other, which
implies a contradiction.

Definition 2.3 Suppose D, Carg D, f,: D, — (AJ, neN and f: D — C. We say that fy,

converges to f locally uniformly in D, or f, Lu, fin D, if for each compact subset F' of D, f,
converges to f uniformly on F in the spherical metric.

Cara Conf lL.u. . .
Lemma 2.4 Suppose D,, — D, f, : D, — FE,, n €N, and f,, — f in D. Then either

f is constant on D, or f is a conformal map on D. In the latter case, let E = f(D). Then

E, 8 E and f;' % ;L in E.

Proof. We first prove the case that D, an D do not contain co, and f, and f do not take
value oco. It is clear that f is analytic. Suppose that f is not constant.

Let z1 # 22 € D and w; = f(zj), j = 1,2. Since f is not constant, we may choose two
Jordan curves J; and Js surrounding z; and z9, respectively, such that the two curves together
with their interior, say €, lie in D, (J; UQ;) N (Jo U Q) =0, and f(z) = w; has no solution
on Jj, 7 =1,2. Since D, e D and In Lu, fin D, there is ng € N such that J; U§}; C Dy,
and maxze; [ fny(2) — f(2)] < min.ey; |f(2) — w;|. From Rouché’s theorem, there is 2} € €y
such that f,, (z;) = wj. Since fp, is conformal and Q; N Qs = 0, we have wy # wo. Thus, f is
conformal.
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We now prove that condition (i) in Definition holds for E,, and E. Suppose a compact
ball By = {|z—z0| < 7o} is contained in E. We may choose 71 > 7 such that By = {|z—z| < 71}
is also contained in E. Let J = f~1({|z — 20| = r1}) and Q = f~'({|z — 20| < r1}). For any
z € J and w € By, we have |f(z) —w| > r1 —ro > 0. There is ng € N such that for n > ny,
QUJ C Dy, and |f, — f| <71 — 19 on J. Rouché’s theorem implies that By C f,,(Q2) if n > nyg.
Thus, By C E, if n is big enough. This implies that for any compact set K C F, there is
nig € N such that K C E,, if n > ny,.

Now we prove that f,* LI f~!in E. If this is not true, then there is a compact set
K C FE such that f,, does not converge uniformly on K. By passing to a subsequence, we
may assume that there is @ > 0 such that sup,cx |f ' (w) — f~1(w)| > a for all n € N. So
there is a sequence (w,) in K such that |f; 1 (w,) — f~'(w,)| > a for all n € N. By passing
to a subsequence again, we may assume that w, — wg € K. Since f~!(w,) — f~'(wo), by
removing finitely many terms we may assume that |f, !(w,) — f~(wo)| > a for all n € N.
Let z9 = f~'(wp). We may choose a > 0 small enough such that J := {|z — 29| = a} and
Q= {]z— 20| < a} are all contained in D. Since f(z9) = wp € Q and f is one-to-one, f(z) —wp
has no root on J. Let b = inf,c;|f(2) — wo| > 0. There is ng € N such that QU J C Dy,
and sup,c ;| fno(2) — f(2)] < b/2 and |wp, — wo| < b/2. Rouché’s theorem implies that there is
Zno € S such that fy,(2n,) = wp,, which is a contradiction.

Now we prove that condition (ii) in Definition holds for E, and E. If this is not
true, there is wyp € OF such that dist(wg,0FE,) # 0. By passing to a subsequence, we
may assume that there is a > 0 such that dist(wg, F,,) > a for all n € N. Since wy € OF,
there is wy; € E with |wy — wg| < a/6. Then dist(w;,dE,) > 5/6a > 5dist(wy,0F). Since

it LN f~tin B, (f;71) (wy) LN (f~1(w1). From Koebe 1/4 theorem, dist(f,, *(w),0D,) >
2 dist(f~!(w1), 0D) when n is big enough. Let z; = f~!(wy) € D. Since f,; *(w1) = f~!(w1) =
z1, we have dist(z1,0D,) > gdist(zl,aD) when n is big enough, which contradicts that

D, Cira; D. So we conclude that E, Cir‘;i E.

For the general case we may use conformal charts for the Riemann sphere C. We leave this
as an exercise. O

Remarks.

1. The theorem holds if the underlying space C is replaced by other Riemann surfaces.

Cara

2. To apply the theorem, we often use another theorem, which says that if D, — D, if
fn : D — C is analytic in D, n € N, and if the family {f,} are uniformly bounded,
then (f,) contains a subsequence which converges locally uniformly in D. Using Mobius
transformation, we see that this is still true if f, : D,, — C and the images of f;, all avoid
an open subset of D.

3. Let K; and g; be chordal Loewner hulls and maps driven by A € C([0,T)). Let f; = g; .

onf

C
Then f; : H — H\ K;. Let (¢,) be a sequence in [0,7") that converges to ¢y € [0,T).
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Cara

Then f;, LN fto in H. Applying the above lemma, we get H \ K;, — H\ K},. For the
radial case, we get D\ Ky, Rl \ Ki,-

. For example, if (t), 0 <t < a, is a simple curve with 5((0,a)) C H and 5(0) # S(a) € R,

and if the chordal Loewner hulls Ky = 3((0,¢t]) for 0 < t < a, then K, equals the union of
B((0,a)) with the region bounded by 5 and [3(0), 3(a)]. From the view of Carathéodory
topology, there is no jump from K;, t < a, to K,.

If A, — A in the semi-norm || - ||, then g;,% L, g; * for 0 <t < a. We then conclude that

Cara Cara

H\Kmt—)H\Kt OI‘D\Kn’t—>D\Kt fOI‘OStSG.

3 Hulls and Loewner Chains

3.1

Hulls

Definition 3.1 A hull K in C is a continuum in C such that C \ K is connected. Then @\K

Conf

is a simply connected domain. There is a unique fx : (C\D;00) — (C\K;o00), which satisfies

-1
fr(z) = a1z +ap+ Z anz", 2z — 00,

n=—oo

with a; > 0. The number ay is called the capacity of K, and is denoted by cap(K).

We have the following results.

1.

2.

3.

cap(D) = 1.
cap(aK +b) = |a| cap(K) if a,b € C and a # 0.

The capacity of any closed disc is its radius.

. cap([—2,2]) = 1, where fx(z) =z + 1.

. The capacity of a line segment equals to one quarter of its length.

If K1 C Ky, then cap(K7) < cap(K32). The equality holds only if K; = K. The proof
uses Schwarz lemma.

cap(K) < diam(K) < 4 cap(K). The second inequality follows from Koebe’s 1/4 theorem,
and the equality holds for line segments.

Definition 3.2 A hull K in a simply connected domain D is a relatively closed subset of D
such that D\ K is also simply connected.
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Definition 3.3 A D-hull is a hull in D that does not contain 0. If K is a D-hull, there is

Conf
a unique gg : (D\ K;0) — (D;0) which satisfies g5 (0) > 0. Then log(g}(0)) is called the

D-capacity of K, and is denoted by dcap(K).
We have the following results.

1. The empty set is a D-hull, gy = id, and dcap(@) = 0.
2. If K1 G K>, then cap(K1) < cap(K2). The proof uses Schwarz lemma.

3. %e‘ deap(K) < dist(0, TUK) < e~ deap(K) ' The two inequalities follow from Schwarz lemma
and Koebe’s 1/4 theorem.

4. Let K be a D-hull. Let K* = Du{z € C:1/z € K}. Then K* is a hull in C, and
cap(K) = exp(dcap(K)).

5. If Ky are radial Loewner hulls, then each K is a D-hull, and dcap(Ky) =t
Definition 3.4 An H-hull is a bounded (from oc) hull in H.

We will use Ig to denote the complex conjugate map z — z. If K is a nonempty H-hull,
then K NR is a nonempty compact set. Let ax and bx be the minimum and maximum of this
set. Define

K =K UJ[a, b UIg(K).

= Conf ~ =~
Then K is a hull in C with Iz(K) = K. Thus, there is a unique Iz ((C\ID) o) = (C\K;00)

such that in the power series expansion of fz at oo, say fz(2) = a1z +ao+O(1/2) as z — oo,
the first coefficient a; is positive. Let f = Ir o fr o Ir. Since IR(K) = K is symmetric about

Con
R and a; > 0, we have f : (C\]D;oo) o (C\ K;o00) and f(2) = a1z +ag+ O(1/2) as z — oo.
The uniqueness of fp implies that f = fz. Thus, ap € R and fz commutes with Ig. Let

~. =5 Conf ~
g=Wo f}:{l, where W(z) = 2 4+ 1. Then g :(C\ K;00) — (C\ [-2,2];00), and the power

series expansion of g at oo is g(z) = a—l — 224+ 0O(1/2). Since both fp and W commute with
Ir, the same is true for g. Let gx(z) = alg( ) + ag. Set cx = ap — 2a1 and dxg = ag + 2a;.
Conf

Then gx : (C\ K;00) — (C\ [ck,dk];00) and satisfies s gk (2) = 2+ O(1/z) as z — oo. Since
ap, a1 € R, gi also commutes with Ig. Thus, gk maps R \ K= ]R\ [ax, bg] onto ]R\ ek, di].
Since R\ |ax, b] divides C \ K into two components: H\ K and Iz(H\ K), and R\ [cx, dx]
divides C\ [ck, dk] into two components: H and Ir(H), we conclude that gx maps H\ K onto

H or Ig(H). Since gr(z) = z + O(27 ') as z — oo. The second case does not happen. So

Conf Conf
x : (H\ K;00) 5 (H; 00). If K = 0, we let gx = id. Then g : (H\ K;00) 5 (H; 00)

and gi(z) = 2+ O(1/z) as z — oo still hold. Note that such gk is unique because if hg also

Conf

satisfies the properties of gx, then hKogK H — H, and hKogK (2) =2+0(z71) as 2 — oo,
which forces hg o gf(l =id.
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Definition 3.5 If K is an H-hull, let gi denote the unique conformal map from (H\ K;o0)
onto (H;o00) that satisfies gi(z) = z + O(1/2) as z — oo. If the expansion of gk at oo is
gr(z) =z + Z;ifoo b_nz"™, we call the number b_1 the H-capacity of K, and let it be denoted
by heap(K). In case K # 0, we define I?, ak, b, cx, dg to be as in the above argument, and
gx will also be understood as a conformal map from C \ K onto C \ [ex, dK].

Examples.
1. If K =0, then gx(z) = 2z, and hecap(K) = 0.

2. U K={z€H:|z—x| <r} for some xyg € R and r > 0, then ax = xy — r, bx = xo + 7}

gr(z) =2+ 2 ;e = x0 — 27, dig = w9 + 2r; and hecap(K) = 2.

zZ—x0

3. If K = (0,i], then ax = bx = 0; g (2) = V22 +1 = 2/1 + 22, where the branch of
the square root is chosen such that v1+ 272 — 1 as 2 — oo0; cx = —1, dg = 1. Since
gi(z) =2(14+ 3272+ --+) as z — o0, heap(K) = 1/2.

4. If K; and ¢, 0 < t < T, are chordal Loewner hulls and maps driven by A € C([0,7)),

Conf
then each K is an H-hull, ¢; = gk,, and hcap(K;) = 2¢t. Recall that g, : H\ Ky — H

. _ 2t —2
and satisfies g¢(2) = 2+ £ + O(27%) as z — o0.

Lemma 3.1 If K is an H-hull, and a > 0, b € R, then aK + b is also an H-hull, g,51p(z) =
agi ((z —b)/a) + b, and hcap(aK + b) = a® hcap(K).

Proof. The proof is straightforward. We leave it as an exercise. O

Let K be a nonempty H-hull. Let h(z) = gj' (z) — 2. Then h is a C-valued analytic function
defined on C\ K. In fact, h(z) = —h%p(f() +0(1/2%) near oo, so h(co) = 0. Then Im h is a real
valued harmonic function on C \ K. Let § > 0 be small. Since g;(l maps 0 + R into H, we have
Imh(z) > —Imz = —§ on id + R. Since Imh(c0) = 0 > —0, from the Maximum principle, we
have Im h(z) > —4 for any z € H with Im z > 4. Since this holds for any J, we have Im h(z) > 0
for any z € H. If there is zp € H with Im h(zp) = 0, then Imh = 0 on H, which implies that

h is a real valued constant, say C. This implies that gi'(2) = z + C, which contradicts that

1 Conf . -1
g H — H\ K and K # (. Thus, Imh > 0 on H. This means that Im g, (2) —Imz > 0

for z € H, and Imgx(z) < Imz for z € H\ K. Since h(z) = —h#p(l() + O(1/2%) near oo and
+Imh(z) > 0if £Imz > 0, we get hcap(K) > 0. So we conclude the following lemma.

Lemma 3.2 For any nonempty H-hull K, Im g5 (z) > Im 2 for z € H, and hcap(K) > 0.

Definition 3.6 Let K1, Ko be two H-hulls. If K1 C Ko, we say that Ky is a sub-hull of Ks.
In this case, let Ko/ K1 = g, (K2 \ K1). We say K2/ K1 is a quotient-hull of K.
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Lemma 3.3 If K1 C Ko are two H-hulls, then Ky/K; is also an H-hull, and we have

9Ks = 9K,/K, © 9k, on H\ Ka. (3.1)

hcap(K2) = heap(K1) + heap(K2/Kq). (3.2)

In particular, if L is a sub-hull or quotient-hull of K, then hcap(L) < hcap(K), and the equality
holds iff L = K.

Proof. Since gx, maps H\ K; onto H, we get Ko/K; C H. Since K3\ K; is bounded and the

Conf
conformal map g, fixes co, we see that Ks/K; is bounded. Since gk, : H\ K> 2 H\ Ko/ K,

we see that H\ K3/K7 is simply connected. Thus, K3/K; is an H-hull. We have g, /k, © 9K, :

Conf
H\Kg — ]HI and gg, /i, © 9k, (2) = 2z + hcap(K?/Kl) + hcap(Kl) + O(1/2?%) near co. So we get

and . Note that K/L = K implies that L = 0, and K/L = () implies that L = K.
Usmg Lemma we obtain the remaining results. O

Remark. Using the notation of quotient hulls we may rewrite (|1.3]) as

{A(t)} = m Kire/ Ky (3.3)

e€(0,7—t)

Definition 3.7 A simple curve v in H is called a crosscut if its two ends approach to two
different points on R. The closure of the bounded component of H \ v in H is called the bubble
bounded by .

Remarks.

1. If K is the bubble bounded by a crosscut ~, then H '\ K is a Jordan domain. Thus, gx

extends to a homeomorphism from H \ K to H. Moreover, the continuation of gx maps
v onto (cx,dr).

2. For any H-hull K, there is a family of bubbles K,, such that K,,;; C K,, for all n € N,
and K = (1, cy K. We say that K is approximated by the sequence (Kp).

Lemma 3.4 Let K be a nonempty H-hull. Then there is a (positive) measure pg supported by
[, dg] with |pk| = hcap(K) such that

dg _ ~
G () — = = / dux(a), 2 € C\lex dx] (3.4)

If K is a bubble, then duyx = %Im gl}l (x)dz, where dx is the Lebesque measure.
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Proof. We know that h(z) := Im(gy'(z) — 2) is a positive harmonic function in H and vanishes
on R\ [cx,dk]. In the case that K is a bubble, h is continuous on H and h(z) = Im g5 () on
R. Using the fact that % Im % is the Poisson kernel in H with the pole at x, we conclude that
there is a (positive) measure ux supported by [cx, dk] such that

dx B R
h(z) = / I ~ _1xduK(x), 2 € C\ fex, did), (3.5)

and duy = 2 Imgy' (z)dz if K is a bubble.
Then we conclude that the LHS of (3.4)) equals to the RHS of (3.4)) plus a constant C' € R.
When z is near oo, the RHS of 1' equals to — heap(K) 4 O(z7?), and the RHS of 1) equals

z

to —w +0O(272). Thus, C = 0 and |ux| = hcap(K). So holds. O
Remarks.
1. |D says that g[_(l(z) — z is the Stieltjes transform of ug.
2. If K is a D-hull, then there is a measure px supported by T with |ux| = dcap(K) such

that
zZ+w

log (g7 (2)/2) = / dpugc ().

TR — W

Lemma 3.5 Let v be a crosscut in H. Let h = supIm~. If K is the bubble bounded by -y, then
h
heap(K) < 2 (dx — cxc).
T
Proof. This follows from Lemma [3.4] immediately. O

Lemma 3.6 For any nonempty H-hull K, [ax,bk| C [ck,dk]. If K1 g Ky are two nonempty
H-hulls, then [ck,,dk,] C [ck,, dK,] and [ck, /K, di, /x| C [Cryy dicy]-
Proof. Let K be a nonempty H-hull. From (3.4]) we conclude that

-1

9r () <z, € (dg,00); gI_{l(x) >z, x€(—00,cCK). (3.6)

Since 91_(1 maps (—oo,cx) onto (—oo,ax), we have cx < ag. Similarly, dx > bx. Hence
[CLK,bK] - [CK,CZK].

Let K7 C Ky be two nonempty H-hulls. Let b € (bg,,00). Then dist(Ks \ K7, [b,o0]) > 0
So Ko/K1 = gk, (K2 \ K1) is bounded away from [g, (b), 00), which implies bg, /x, < gk, (b).
Since this holds for any b > bg,, we have (bg, /k,,0) D gr, ((bx,,00)). Thus,

dKQ/Kl = inf.gKg/Kl((bKQ/Kla o0)) < inf 9Ks/K1 © 9x;, ((bky, 00)) = gk, ((brcy, 00)) = dic,-

Simﬂarly, CKy /K, > CKy- So [CKQ/K17dK2/K1] C [CKQ,dKQ].
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If # € (00, ar,), then gr,(x) € (—00, cx,) C (=00, ¢k, K, ). Using (B.6) we get gr, (v) =
gf_(l/Kl ° gk, (T) > gr,(x). Thus,

CK, = SupgKl((_oo7aK1)) > SupgKl((—OO,CLKQ)) > supgK2((—oo,aK2)) = CKy-

Similarly, we have dg, < dg,. Hence [ck,,dk,] C [ck,,dK,]. O

Lemma 3.7 Let xg € R, 7 > 0. If a nonempty H-hull K is contained in {|z — zo| <1}, then
|95+ (2) — 2| < 15r for any z € C\ [ck, dk], and |gk(2) — 2| < 157 for any z € C\ K.

Proof. Let K, = {z € H : |z — 20| < r}. Then |ux| = hcap(K) < hcap(K,) = r? and
[cr,dKk] C [ck,,dk,| = [to — 2r,xo + 2r]. Let a« = {z € C: |z — 0| < 3r}. Then « is a Jordan
curve that encloses [ck, dk], and dist(«, [cx, dk]) > 7. If z lies on or outside «a, from equation
, we get |5 (2) — 2| < |ux|/r < r. Since diam(a) = 67, we have diam(gx' (o)) < 8r. If
z € C\ [ek, dg] lies inside a, then gy (z) lies inside g (a). Choose w € a, then

95 (2) — 2| < |z —w| + |w — g (w)| + g (w) — g (2)]

< diam(a) + r + diam(gy' (@) < 157

~ Conf ~
Since gx : C\ K 5 C\ [ck,dK], we see that |gr(2) — 2| < 15r for any z € C\ K. O

Lemma 3.8 Let K,, n € N, be a sequence of H-hulls with K11 C K, for all n. Suppose
Nory K, = K is an H-hull. Then hcap(K) = limy,_,o hcap(Ky,).

Proof. Let L, = K,/K. Then (2, L, = 0. From Lemma hcap(Ly,) = hcap(K,) —
heap(K). We suffice to show that hcap(Ly) — 0. The sequence of L,, is decreasing. If any L,
is empty, the result is immediate. We now suppose all L, are nonempty. Let h,, denote the
height of L,,. Then h, — 0. If L,, are all bubbles, then we have

hn hn

heap(Ly,) < (dr, —cr,) < (dr, —cr,) — 0.

a ka
In the general case, we may find a decreasing sequence of bubbles (L/,) such that L, C L] and
(L., = 0. For example, we may choose L), = {|z| < R,0 < y < h,,}, where R = sup |Re L1|. O

Remarks.

1. For any nonempty H-hull K, we have hcap(K) < diam(K)2. Proof. Let R = diam(K)
and zg € K NR. Then K C {z € H : |z — 29| < R} =: Kg, which implies that
heap(K) < heap(Kr) = R2.

2. For any M,e > 0, there is an H-hull K with diam(K) > M and hcap(K) < e. Proof.
For n € N, let K,, be the rectangle: [0, M] x (0, %] Then each K, is an H-hull with
diam(K,) > M. Since (K,,) is decreasing and (,—; K, = (), we have hcap(K,) — 0. So
there is ng such that hcap(K,,) < ¢.
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Let #H.(H) denote the set of all nonempty H-hulls. Let H;(H) denote the set of all bubbles.

Proposition 3.1 Suppose xg € R, I is an open real interval, 2 is a domain, and xo C I C 2.
Suppose that W is a conformal map on Q such that W(I) C R and W'(xg) > 0. Then

b heap(V(R)

= W'(z0)* 3.7
H.(H)>3K—zo hcap(K) (z0)", (37)

where K — x¢ means that diam(K U {zo}) — 0.

Proof. Suppose diam(K U {zo}) is small enough such that K C Q and K "R C I. Let
Qrx = g (2 \ I?) and Wx = 9w (K) © W o gI_{l. Then Qg N [CK,ClK] =0, Qg U [CK,dK] is
open, and Wx is a conformal map on Q. As z — [ck,dk] in Q, gl_(l(z) — K in Q \ K,
Wogil(z) — W(K) = 1/7(?), hence Wi (2) — [ew k), dw (k). Thus, Wi extends to a
conformal map defined on Qx U [ck, dk], and maps [ck, dk] onto [ew k), dw (k))-

Since every H-hull can be approximated by a decreasing sequence of bubbles, from Lemma
3.8 we suffice to prove the proposition with . (H) replaced by H;,(H). Let K € H.(H). Then
W(K) € H«(H). From Lemma [3.4] we have

A L
heap(K) = Im gp (z)dz.
T

CK

1 [dw ) .
hecap(W(K)) = / Tm gy g (x)dx.
CW(K)

™

1 K / -1 1 dx / —1
= - . Wi () Im gy ey © Wk (z)dx = - . Wi (z) Im W o g (x)da.

We suffice to show that, as K — g, the following are true.

(L1) mW) _, W'(z0) uniformly on z € 0K N H;

Im z

(L2) Wi (xz) — W'(xo) uniformly on x € [ck, dk].

Since W is analytic and takes real value on the open interval I 3 xg, (L1) is clearly true. Now
we prove (L2). If K C K, := {z € H : |z — 29| < 7}, then |ux| = hcap(K) < hcap(K,) = 72
and [cx,dg] C [ck,,dk,] = [zo — 2r,z0 + 2r]. Let K — 9. Then Q\ K G 0 \ {zo}
and inf{r > 0 : K C K,} — 0, which implies that |ux| — 0 and [ck,dx] — z¢. From
1) we have gy' % id in C \ {zo}, which implies that Qg RN \ {zo} by Lemma [2.4

Similarly, since W(K) — W (xg), we have 91;/1( K) 1% id in W(Q\ {zo}), which implies that

Iw(K) L8iq in W(Q\ {zo}). Since Wk = gy (xyo W o g5, we have Wy L T Y) \ {zo}.
From Qg car ) \ {zo} we have Qg U [ck, dk] “art ). Since Wi and W are analytic on Qg
and €, respectively, using the Maximum principle, we conclude that W L 7 in Q. Thus,

Wi 1 W7 in Q. Since [k, dk] — xo, we conclude that (L2) is true. O
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Proposition 3.2 Suppose xg € R, I is an open real interval,  is a domain, and xo C I C Q.
Suppose that W is a conformal map on Q0 such that W(I) CT and W(QNH) C D. Then

deap(W (K))

1
= Z|W'(x0)|%
H.(H)3K—z, heap(K) 2| (o)l

Proposition 3.3 Suppose zy € T, I is an open arc on T, Q is a domain, and zg C I C .
Suppose that W is a conformal map on Q2 such that W(I) CT and W(QNH) C D. Then

o deap(V(K))

— W/ 2’
H.(D)3K—z dcap(K) W (20l

where H.(D) denotes the space of nonempty D-hulls.

We leave the proofs of these two propositions as exercise. Hint: First prove Proposition
in the case that W is a Mobius transform, then prove Proposition [3.2]in the general case using
Proposition and finally use Proposition [3.2] to prove Proposition

2
chordal Loewner equations. This will be explained in more details later.

Remarks. The factor 4 in Proposition somehow explains the the enumerator 2 in the

3.2 Deterministic Loewner Evolution

Definition 3.8 Let D be a simply connected domain and T € (0,00]. A Loewner chain in D
is a family of hulls Ky, 0 <t < T, in D that satisfy the following conditions.

1. Ky = (Z),' and Kt1 g Kt2 iftl < to.

2. for any to € [0,T) and any continuum F C D \ Ky, lim,_,o+ d*D\Kt(E K s\ K) =0
uniformly int € [0,t0]. In other words, for any e > 0, there is § > 0 such that if s € (0,0),
then for any t € [0, 1], the conjugate extremal distance between F and K45\ K; in D\ K,
is less than €.

Remarks. Suppose Ki, 0 <t < T, is a Loewner chain in D. Then we have the followings.
1. If W is a conformal map on D, then W(K};), 0 <t < T, is a Loewner chain in W (D).

2. If u is a continuous and (strictly) increasing function on [0, T") with u(0) = 0, then K1),
0 <t < u(T), is also a Loewner chain in D, and is called a time-changes of K;, 0 <t < T.

Examples.

1. Suppose B(t), 0 < t < T, is a simple curve with 5(0) € R and B((0,7)) C H, then
Ky := 3((0,t]), 0 <t < T, is a Loewner chain in H. We leave this as an exercise.
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2. Suppose 3(t), 0 <t < T, is a simple curve with 5(0),5(a) € R and £((0,a)),B((a,T)) C
H. Let Q be the bounded component of H \ 5((0,a)). Let Ky = £((0,t]), 0 < t < q;
K; = 5((0,a)) UQUB((a,t]), a <t <T. Then K;, 0 <t < T, is a Loewner chain in H.

Proposition 3.4 [Lawler-Schramm-Werner]|

(i) If K¢, 0 <t < T, are chordal Loewner hulls driven by some A € C([0,T)), then the family
is a Loewner chain in H such that each Ky is an H-hull and hcap(K;) = 2t.

(i) If K¢, 0 < t < T, is a Loewner chain such that each K; is an H-hull, then u(t) =
heap(Ky) is a continuous and increasing function on [0,T) with u(0) = 0. Moreover, if
heap(Ky) = 2t for each t, then Ky, 0 <t < T, are chordal Loewner hulls driven by some

X € C([0,u(T))), which is given by (3.5).

Proof. (i) We already know that each K; is an H-hull and hcap(K;) = 2¢t. Now we show
that Ky, 0 <t < T, is a Loewner chain in H. Fix ¢y € (0,7") and a continuum F C H\ Ky,.
Let g¢’s be the chordal Loewner maps driven by A. Then for 0 < t < tg, g¢ is well defined
on F. Let h = infIm g4 (F). Then h > 0 because g, (F') is a compact subset of H. Since
t — Img(z) is decreasing, we have Im g;(z) > h for any z € F and t € [0,to]. Fix t € [0,to].
Then g;(Ki45s\ K¢)—A(t), 0 < s < T —t, are chordal Loewner hulls driven by s — A(t+s) — A(%).
Let My = /85 4 supg<i<so.0<r<s [ANt + 1) — A(t)]. From Lemma we have gi(Kiis \ K¢) C
{z €H:|z—A(ty)| < My}. Since X is continuous, we have My — 0 as s — 0. If M is smaller

than h, then ¢;(Ki1s\ K;) can be separated from g,(F') by the annulus { M < |z — A(zg)| < h},

Conf
which implies that dj;(g¢(F), g: (K45 \ K¢)) < 2w/ log(h/Ms). Since g; : H\ K 2 H, we have

d]’fﬂ\Kt(F, Kiis\ Kt) < 27m/log(h/Ms). Since M does not depend on ¢ and lim,_,o+ Ms = 0, we
finish the proof of (i).

(ii) Fix o € (0,T) and a continuum F' in H\ Ky,. Let d(s) = supg<;<s, dp\ g, (F, Kigs \ Ki)
for 0 < s < T'—tg. From the definition we have lim,_,o+ d(s) = 0. From now on, ¢ always ranges

Conf
in [0, to], and s ranges in (0,7 —%() or some smaller interval (0, ¢). Since gg, : H\ K; ° H, from
the conformal invariance of extremal length, we get djy(g¢(F'), Kiys/K:) < d(s). Choose p to

be the spherical metric ﬁ Then A,(H) = 27. Thus, there is a curve 7; ¢ in H disconnecting

gi(F) from K;s/K; with spherical length less than /7d(s). We may then conclude that the
Euclidean length of ;s tends to 0 as s — 0T, uniformly in ¢ € [0,%o]. If s is small enough, 7
generates a bubble with diameter tends to 0 as s — 07, which contains g;(Kys \ K:). Thus,
u(t + s) — u(t) = heap(Kyys) — heap(K;) = heap(Ky4s/K) — 07 as s — 0T, uniformly in
t € [0,t0]. This shows that u is continuous on [0,tg]. Since the family K increases strictly an
Ko =0, u(t) is strictly increasing with w(0) = 0. So we finish the proof of the first statement.

Now suppose that hcap(K;) = 2t, 0 < ¢t < T. Let t € [0,t9]. Since diam(K;s/K;) < r(s)
for s € (0,82), and lim,_,+ r(s) = 0, we see that ;o 7_s) Ki+s/K¢ contains only one point.
Let it be denoted by A(t). Suppose t1 < ta < t3 € [0, to] satisfy that t3 — t; < d3. Then A(t1) €
K, /Ky, and A(t2) € K, /Ky,. Choose any 21 € K;,/Ky,. Then |z1 — A(t2)| < r(ts — t2). Let
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z9 = g;(;/Ktl (z1). From Lemmawe have [22—21| < 15r(t2—t1). Since gk, = 9k, /K, °9K:,
we have
22 = 9Ky, © g;{; (Zl) € 9Ky, (Kt3 \Ktz) C 9K, (Kt;a \Kh) = Kt3/Kt1'

Thus, ‘ZQ — )\(tl)’ < T(tg — tl). Thus, ‘/\(tg) — )\(tl)’ < T(tg — tQ) + 15T<t2 — tl) + T(tg — tl).
Let r3 — r3, we conclude that |A(t2) — A(t1)| < 167(t2 — t1) if t1,t2 € [0,t0] and |2 — t1| < da.
Since lim,_,g+ 7(s) = 0, we have the continuity of A\ on [0, tp]. Since to € (0,T) is arbitrary, A
is continuous on [0, 7).

Conf
Let g = gk,, 0 <t <T. Then g, : H\ K, 2Y H. We suffice to show that 1’ holds. Let
t €[0,to] and s € (0,d2) such that ¢ — s > 0. From (3.4]), we have

— dKi/ths 1
T gK}/ths (2) = / dMKt/ths(x)v z € H.

CKt/ths S
Letting w = g; '(2), we get

gt(w) — gr—s(w) 1 /th/Kts 1
C

(@), weH\ K.
s e, gi(w) —z

We have |ug,/xk,_,| = heap(K¢) —hcap(K;—s) = 2s. As s — 0T, the interval [CK, /Ky K, K]
converges to a single point A(t). So we conclude that 0, g;(w) = m, w € H '\ K;. Since
A is continuous, we see that ((1.1]) holds for ¢ € [0,¢p). Since ¢y € (0,7") is arbitrary, (1.1)) holds
forallt €[0,7). O

Remark. Part (ii) of the proposition says that if Ky, 0 < ¢t < T, is a Loewner chain in
H composed of H-hulls, then it is a time-change of a family of chordal Loewner hulls. The
proposition mimics Pommerenke’s theorem below for radial Loewner hulls.

Proposition 3.5 [Pommerenke]

(i) If Ky, 0 <t <T, are radial Loewner hulls driven by some X\ € C([0,T)), then the family
is a Loewner chain in D such that each Ky is a D-hull and dcap(Ky) = t.

(ii) If K¢, 0 <t < T, is a Loewner chain such that each K is a D-hull, then u(t) := dcap(Ky)
is a continuous and increasing function on [0,T) with uw(0) = 0. Moreover, if dcap(K;) =t
for each t, then K, 0 <t < T, are radial Loewner hulls driven by some X € C([0,u(T))),

which s given by with gt = gk, .
4 Stochastic Analysis

4.1 Stochastic processes

Let (2, F) be a measurable space and S be an interval of the kind [0,00), [0,a) or [0,a]. A
filtration in (€2, F) is a family of o-algebras (F;)ies with F; C F for each t and F;, C F, when
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t1 < tp. The filtration is called right-continuous if for each t € S, F; = (1,5, Fs. For example,
Fi+ = NsstFs, t € S, is a right-continuous filtration. If P is a probability measure on (€2, F),
the filtration is called complete w.r.t. P if F{ contains all P-negligible sets. (9, F,P,{F;}tes)
is called a filtered probability space. From now on, we assume that the filtration is right-
continuous and complete.

A family of measurable functions (Xi)ics on (£2,F) is called adapted to (F:) if X; is
Fi-measurable for each ¢t. If we are given a family of measurable functions (X¢)ies and let
FX0(Xs, 8 < t), then (FfX)es is a filtration, and (X;) is (F;¥)-adapted. The (F;¥) is called
the natural filtration generated by (X;). It is easy to expand (F;*) so that it is right-continuous
and complete.

Definition 4.1 A function T : Q@ — S U {oo} is called an (Fy)-stopping time if for any t € S,
{weQ:T(w) <t} e F.
Given a stopping time T, the o-algebra Fr is defined by
Fr={AeF: An{T <t}eF, VteS}

Remarks. A constant function T" = tg, tg € S, is a stopping time. In that case, Fr agrees
with F;,. Let T1 and T be two stopping times. Then T} VT and 77 A T3 are stopping times.
This is also true for Vo2 T, and NS, T),. If Ty < T3, then Fp, C Fr,. If T'is a finite stopping
time, then we get a new filtration Fr¢, t > 0. Let (X;) be a right-continuous or left-continuous
(Fi)-adapted process. Then for any finite (F;)-stopping time 7', Xr is Fpr-measurable. If T
is any (F;)-stopping time, then we get another (F;)-adapted process: X[ := X7ps, t € S, the
process (X) stopped at time 7.

Example. Let (X}) is a right-continuous or left-continuous adapted process, and A be an open
or closed subset of R. Let T' = inf{t : X; € A} (inf ) = co0). Then T is a stopping time.

Definition 4.2 Let (Q, F,P) be a probability space with a filtration (Fi)ics. Let (Xi)ies be
an (Fi)-adapted process. If E[|X¢|] < oo for each t € S, and E[Xy,|F,] = Xi, a.s. for each
t1 <ty €8, we say that (X¢) is an (Fi)-martingale.

If 71 C F» are two sub-c-algebras of (Q,F,P), and if X € LY(Q, F2,P), then there is
Y € LY(Q, F1, P) such that E[1,Y] = E[14X] for any A € F;. Such Y is P-a.s. unique, and is
denoted by E[X|F;]. If Fy C Fi C Fy, then E[E[X|F]|Fo] = E[X|Fo].

Theorem 4.1 [Optional Stopping Theorem]| If (X;) is a right-continuous (F;)-martingale,
and T1, Ty are two bounded (Ft)-stopping times, then E[Xr,|Fr| = Xr,.

If (X¢) is an (F;)-martingale and 7' is an (F;)-stopping time, using Optional Stopping
Theorem we can show that (X[) is also an (F;)-martingale.
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4.2 Brownian motion

Definition 4.3 A standard Brownian motion is a continuous random processes By, 0 <t < oo,
such that

1. Bo =0 and t — Bi(w) is continuous for all w;

2. for any sequence 0 =tg < t; < --- < ty, the random variables By, — By, |, 1 =1,2,...,n
are independent, and B, — By, , ~ N(0,t; — t;_1), where N(0,t; — t;_1) is the normal
distribution with means 0 and variance t; — t;_1.

If (B;) is a standard Brownian motion, we call 9+ cBy, where zp € R and ¢ > 0, a Brownian
motion started from zg (rescaled by a factor c).

A standard Brownian motion grows slower than the linear function near 0 and faster than
the linear function near oco. In fact, we have

li Be 1, liminf Be 1
im su =1, limin =—1;
t_>0+p (2tloglog(1/t))/2 t—0+ (2tloglog(1/t))'/2
B B
lim sup ! =1, liminf t = -1

t—oo  (2tloglog(t))1/2
The second formula implies that B; is recurrent.
If B}, B?,..., B¢ are d independent Brownian motions, then (B}, ..., BY) is called a Brow-
nian motion in R?. We are mostly interested in the case d = 2. In this case (B}, B?) is called
a planar Brownian motion or complex Brownian motion.

t—oo  (2tloglog(t))!/2

Definition 4.4 Given a filtration (F:), an (Fi)-adapted process (Bi)i>o is called an (Fy)-
Brownian motion if it is a Brownian motion, and for any ty > 0, the process By,++ — By,
t >0, is (a Brownian motion) independent of Fy,.

Remarks.

1. Let (B;) be a Brownian motion. Let (F) be the filtration generated by (B;). Then (B;)
is an (F)-Brownian motion. Such (F7) is called a Brownian filtration.

2. Let (Bf“)), 1 < k < n, be n independent Brownian motions. Let F; be the filtration
generated by ng), 1<k<n,0<s<t Then every Bt(k) is an (F;)-Brownian motion.

3. An (F;)-Brownian motion is a continuous (F;)-martingale.

4. If (By) is an (F;)-Brownian motion and 7' is a finite (F;)-stopping time, then Bri; — Br,
t >0, is an (Fr4¢) Brownian motion (independent of Fr).
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4.3 Ito’s integration

Let (B¢) be an (F;)-Brownian motion. Let (X;) be a left-continuous (F;)-adapted process. Let
a > 0. We will define f[;l XdBy. First assume that X is a step process on [0, a], which means
that there are random variables 71, Zs, ..., Z,, and a partition 0 = tg < t; < ---t, = a such
that Z, € F, and X; = Z), when t), <t < tk+1, 0 <k <n-—1. Then we define

n—1

/ XydBy; =Y Zy(By,,, — By,).

k=0

The value of the integration is an F,-measurable random variable. If E|Z;|? < oo for all k.
then we have

a n—1 a
E [(/0 XtdBt> } 3 (tesr — t0)E|Z4?) = /0 E[X7)dt = || X 250,01
k=0

Now we do not assume that X; is a step function but assume that it is uniformly bounded

n [0,a]. Then X; can be a.s. approximated by bounded step processes (X['). For example,
X' = X, when %a <t< %a, 0 <k <n—1. Then (X}') converges to (X¢) in || [|12[0,q)- For
each n, we have an Fo measurable r.v. foa XPdB;. Then we get a Cauchy sequence in L?(F,).
We define the limit to be [i" X¢dB;, which is an element in L?(F,).

Now suppose that X; is bounded on [0, c0). For each a € [0, 00), we have an F,-measurable
random variable Y, = foa X:dBy, which is unique up to a negligible event. If a < b then Y, — Y,
is independent of F, E[Y, —Y,] = 0 and E[|Y; — Y,|] = ffIE[XtQ] So (Y;) is an (F;)-martingale.
It is known that we may choose Y;, ¢ > 0, such that (Y;) is a continuous. (The proof uses
Doob’s Martingale Inequality and Borel Cantelli lemma) From now on, we always assume that
t— fg X,dBs is a continuous martingale.

To extend the definition, we need the following fact. If X is a bounded left-continuous
adapted process, Y; = fg XsdBg, and T is a stopping time, then

t
/ 1o XsdBs = Yiar =Y,
0

Using this fact, we may now define fg XsdB; for a continuous adapted process X; which may
not be bounded. Let T, = inf{t : X; > n}. Then 11, X; is bounded. We have Yt(n) =
fg 1jo,1,,] X sdB; and have the facts that Yt(/?;l) = t("). Then we define Y; = fg X.dB; to be the

process such that Y; = Y;(n) on [0, T,]. We find that Y; is well defined and Y,’» = Yt(n) for each
n. The process Y; is in general not a martingale. Instead, it is a continuous local martingale.
The idea in the definition is called localization.

Definition 4.5 A process (X¢) is called a local martingale if there exists an increasing family
of finite stopping times T,,, n € N, with sup T}, = oo such that for each n, X;r" is a martingale.
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Remarks.
1. If (X;) is a local martingale, and T is a stopping time, then (X/) is also a local martingale.

2. The above (X;) may not be a martingale even if X, is integrable for each ¢. A theorem
states that if a local martingale is uniformly bounded, then it is a martingale.

3. If My, 0 < t < o0, is a continuous martingale, Doob’s inequality implies that a.s.
lim; oo My exists, which could be +o0o. We use My, to denote the limit. If in addi-
tion there is a deterministic R > 0 such that |M;| < R for all ¢, then |My| < R, and
from DCT we have M; = E[My|F;] for all t. If (X;) is a local martingale, and if T is
a stopping time such that X; is uniformly bounded on [0,T), then (X[) is a uniformly
bounded martingale. So lim; ,,, X/ exists and is bounded. In case T' < oo, the limit is
simply Xp. If T = oo, we also use Xp to denote the limit. So X7 has a well defined
meaning no matter 7' < oo or 7' = co. And we have E[X7|F;] = X! = Xpp for any t.

4. Using the idea of localization, we may also define fot XsdB; if X. is a continuous adapted
process defined for 0 <t < T, where T is a stopping time, and there exists an increasing
family of stopping times T},, n € N, with T}, < T and supT,, = T. The resulting process
Y; = fg XsdBs is a local martingale defined on [0, 7).

Definition 4.6 A continuous semimartingale is a continuous adapted process which can be
written X = M + A where M is a continuous local martingale and A a continuous adapted
process of finite variation.

Example Suppose (B;) is an (F;)-Brownian motion, a; and b; are continuous adapted processes,
and Xg € Fyp. Then

t t
X = X0+/ asdBg —|—/ bsds.
0 0
is an (F;)-continuous semimartingale. We often write
dXt = atdBt + btdt.

We may integrate along a semimartingale. Suppose that dX; = a;dB; + bidt, and (Y;) is a
continuous adapted process. Then

t t t
/ Yid X, :/ Ysa,dB; +/ Y,bsds.
0 0 0

4.4 Quadratic Variation

For a (F;)-local martingale M;, there is a unique adapted continuous non-decreasing process
(M, M) with (M, M) = 0 such that (M; — Mg)*— (M, M), is a local martingale. Such (M, M),
is called the quadratic variation of M. If a semimartingale X has decomposition M + A, then
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(X, X) := (M, M). For two semimartingale X and Y, the bracket between X and Y is defined
by

(X,Y) = i(X+KX+Y> - %(X—Y,X—Yy
We have the following facts.
1. For a Brownian motion By, (B, B); = t.
2. If X and Y are independent, then (X,Y) = 0.

3. Levy’s characterization Theorem states that, if a local martingale My, 0 < t < oo, satisfies
(M, M)y = t, then M, is a Brownian motion started from some z € R, and if two Brownian
motions By and Bj satisfy (B, B’) = 0, then they are independent.

4. For any stopping time T, (X7, Y1), = (X, Y)T.
5. If dXt == atdBt + btdt and d}/t == CtdBt + dtdt, then d<X, Y>t = atctdt.

6. If Bik), 1 < k < n, are independent Brownian motions, and

dX; = Za(k dB" +bdt; aY; =Y MaB + duat,
k=1

then d(X,Y); = 3", al®cMat.

Let (F;) be a filtration and 7" be a stopping time. An (F})-adapted process Xy, 0 <t < T,
is called a partial (F;)-Brownian motion if there is another filtration (F;) and an (F;)-Brownian
motion By such that F; C F} for each t and X; = By for 0 < ¢t < T. An adapted process X;,
0 <t < T is a partial Brownian motion iff it is a local martingale and (X, X ) =t for 0 <t < T.
The chordal or radial Loewner hulls driven by +/k times a partial Brownian motion are called
partial chordal or radial SLE, hulls.

4.5 Ito’s formula

Theorem 4.2 [It6’s formula, one-dimensional] Suppose X; is an (F;)-semimartingale with
dX; = aidB; + bydt. Let f(t,z) be a a CY? differentiable function such that f(t,-) is JF-
measurable for each t. Let Yy = f(t,X;). Then'Y; is also an (F;)-semimartingale, and satisfies
2

0 10
aY, = = f(t, X)dt + —f(t X)dX; + =

2 O zf(t Xt) <X7X>t-

Theorem 4.3 [It6’s formula, multiple-dimensional] Let (Bfk)), 1 <k <mn, ben indepen-

dent (Ft)-Brownian motions. Let (Xt(j)), 1 <j <m, be m semimartingales which satisfies

dxV Za?"’dB(’“)er( Ddt, 1<j<m.
k=1
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Let f(t,x1,...,m) be a a CY22 differentiable function such that f(t,-) is F;-measurable for
each t. Let Yy = f(t, Xt(l)7 e ,Xt(m)). Then Y; is also an (Fi)-semimartingale, and satisfies
82

0 "9 ) 1 &
Y = — X —_— X;)dX,’ - _—
dY; ft, Xp)dt + § %jf(t, )d X + > E o

Ft, Xp)d(X ), X 02)y,,
ot 5 0w 0w

j=1
Corollary 4.1 [Product formula] Let X; and Y; be two semimartingales. Let Z; = X;Y;.
Then Z; is a semimartingale that satisfies

dZ; = X4 dY; + Y d X + d<X, Y>t

4.6 Time-change

Let X;, 0 <t < T, be a continuous (F;)-adapted process, where T' is an (F;)-stopping time.
Suppose u(t) = u(t,w), 0 <t < T, is a continuous (strictly) increasing (F;)-adapted function,
which satisfies u(0) = 0. Define v(t) = v(t,w) for 0 < t < oo such that v(t) = u='(¢) if
t <supu[0,T); v(t) =T if t > supul0,T). Then for each t > 0, v(t) is an (F;)-stopping time.
In fact,
{v(t)<a} ={T'<a}U({T >a}n{u(a) >t}) e F,, 0<a< oo
Moreover, we have v(t1) < v(te) if t1 < ta. So we get a new filtration (J:U(t)>t20-
Let S =supu[0,T). Then S is an (F,))-stopping time because

{S<a}nfv@) <bt={S<a}n{T<b}={T<b}n (| (T>gtn{ulg) <a})€F.
q€[0,0)NQ

We call the process X, ), 0 <t < S, a time-change of X;, 0 <t < T. Since (X) is continuous,
(Xy(s)) is a continuous (F,()-adapted process.
We have the following facts.

L. If (X¢) is an (F)-local martingale (resp. semimartingale), then (X, ) is an (F,))-local
martingale (resp. semimartingale), and (X .y, Xy())t = (X, X)y(t)-

2. IfY; = a;dX;, then Y;)(t) = av(t)dXv(t).

3. Suppose X is a local martingale, and (X, X); is strictly increasing. Let u(t) = (X, X),
then (X,(), Xyy)¢ =t for 0 <t < S. This means that X,,), 0 <t < S, is a Brownian
motion stopped at time S, or X; is a time-change of a partial Brownian motion. This
Brownian motion is called the DDS Brownian motion for X.

4. Suppose that X is a semimartingale that satisfies dX; = a;dB; + bidt. Suppose ¢; is a
positive continuous adapted process, and u(t) = fg c2ds. Let M; = fg csdBs. Then M is
a local martingale, (M, M); = u(t), and dX; = a;/cid My + bidt. Let B; = My(4)- Then By
is an (F,(;))-Brownian motion. From dX; = a;dB; + bidt, we have dX; = Z—:th + bydt.
Thus,

0 0

- b,
dMyy + by do(t) = —LdB, + 2D,

dXo(r) c c c
v(t) o(t) o(t)
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4.7 Bessel process

Let (Bt(l), e ,Bt(n)) be an n-dimensional Brownian motion. Let X; = Z;"ZI(Bt(j))Q. Then we
find that X; satisfies the SDE

_ BB -1

2
dt.
Xy Xy

dX,

tzn_ ng)ngj) ~ . . .
Let By = |, =I=l———. Then B; is a local martingale with (B,B); = t. Thus, B; is a

(partial) Brownian motion. And we have

dx; = d,+ D2y (4.1)
Xi
We may allow n to be any real number. The solution of the above SDE is called an n-dimensional
Bessel process. The Bessel process starts from some positive number, and continues forever or
stops when it hits 0.

Let f(z) = 22~ for n # 2 and f(z) = log(z) for n = 2. It&’s formula implies that f(X;)
is a local martingale, i.e., a time-change of a partial Brownian motion. For n < 2, X; — 0 iff
f(Xt) = 0 and X; — oo iff f(X;) = c0. For n =2, Xy — 0 iff f(X;) - —o0 and X; — o0
iff f(X¢) = oo. Forn > 2, X; — 0iff f(X;) — oo and X; — oo iff f(X;) — 0. From the
properties of Brownian motion, we find that, for n < 2, X; hits 0 in a finite time; for n > 2,
Xy — 00 as t — oo; for n = 2, liminf X; = 0 and limsup Xy = co. For n > 2, an n-dimensional
Bessel process can be started from 0*. This is a process X; with Xo = 0, X; > 0 for ¢t > 0, and

satisfies (4.1) for ¢ > 0.

4.8 Complex valued Itd’s formula

Conf
Let D be a plane domain, and f : D 2 D Let B,@C = Bgl) + iB§2) be a planar Brownian
motion started from zy € D. Let 7 be the first time that Bftc leaves D. We consider the image
f(BF),0<t <. Let f = utiv. From Itd’s formula and the fact that Ugg +Uyy = Vg +Vyy = 0,
we get

du(BE) = uy(BE)dBY + u,(BE)dBY,  dv(BE) = v,(BE)dB" + v,(BL)dB.

Thus, (u(B),u(B)); = (v(B),v(B)); = fg\f’(B(SC)FdS, and (u(B),v(B)); = 0. Construct a
time-change using a(t) = fg |f(B%)|2ds. Let b(t) = a~'(t). Then we see that u(B;)C(t)) and
v(BgC(t)) are two independent Brownian motions. Thus, f(BF) is a time-change of a planar

Brownian motion started from f(zg) stopped on leaving D’. This phenomena is called the
conformal invariance of planar Brownian motion.
Let Z; be a complex valued semimartingale which satisfies

dZt == atdBt + btdt
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Here B; is a standard real valued Brownian motion, a; and b; are complex valued adapted
continuous process. Thus, if Z;, = X;+1Y}, then dX; = Rea;dB;+Rebidt and dY; = Im a;dB; +
Imbidt. Suppose f = u + iv is an analytic function defined in a domain which contains the
range of Z;. Let f(Z;) = Uy + iV;. Then

1 1
dUt = Um(Zt)dXt + Uy(Zt)dY;f + ium(Zt)d<X, X>t + §uyy(Zt)d<Y, Y>t + uxy(Zt)<X, Y>t

1 1
= Re f'(Z;)RedZ; — Im f'(Z;) Im dZ, + 5 Re f"(Z)(Re ay)?dt — 5 Re "(Zy)(Im ay)*dt

—TIm f"(Z;) Re ag Im aydt = Re[f'(Z:)dZ;] + Re[f”(Zt)%af}dt.

1 1
d‘/t = ’Ux(Zt)dXt + Uy(Zt)d% + §Uxx(Zt)d<X, X>t + i’l}yy(Zt)CKY, Y>t + ’ny(Zt)<X, Y>t
1 1
=Im f'(Z;) RedZ; + Re f'(Z;) Im dZ; + B Im f"(Z;)(Re a;)?dt — 5 Im f”(Z;)(Im a;)?dt

+Re f"(Z;) Reas Im azdt = Im([f'(Z;)dZ;] + Im| f”(Zt)%a?]dt.

So we have

df(Z,) = f'(Z,)dZ; + %f”(Zt)afdt = f(Z;)aidB; + f'(Z;)bydt + %f”(Zt)afdt.

4.9 Girsanov Theorem

In this subsection, we will change the underlying probability measure. Let the current proba-
bility distribution be denoted by P. Suppose that another probability distribution Py satisfies

P; < P on each F;. It is known that the quadratic variation of a dser‘nimartingale does not

P17
dpbftt
tingale. An (F:)-adapted process X; is a martingale (resp. local martingale) under Py if and
only if X;D; is a martingale (resp. local martingale) under P. We now consider the case that
Dy has an expression dD; = a;DydB; for an (F;)-Brownian motion B;. Let X; = By — fot asds.
Then (X, X); = t. From the product formula,

change if the probability measure is changed from P to P;. Let D; = . Then D, is a mar-

dX:D; = XydD; + DiydX; + <X, D>t = XydD; + DidB; — Dyadt + ap Dydt = (XtatDt + Dt)dBt

Thus, under Py, X; is a local martingale with (X, X); = t. So B; — fot asds is a Brownian
motion under P;.

On the other hand, given a continuous adapted process a;, we may construct a local mar-
tingale D; with dD; = a; D:dBy. It is defined by

t 1 t
D; = exp (/ asdBg — / a?ds).
0 2 Jo
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Suppose T' is a stopping time such that Dy, 0 <t < T, are uniformly bounded. Then DtT is a
bounded martingale, and D} = E[Dp|F;] for any t. Define P; such that dP; = DpdP. Then
dP1 |7, /dP|F7, = D] for each t. We then can conclude that B; — fg asds, 0 <t < T, is a partial
Brownian motion up to 7T under P;.

4.10 Some applications

Let g; be chordal Loewner maps driven by Ay = v/kB;. Fix xg > 0. Let Z; = gi(xo) — A,
0 <t < 7=y Recall that 7 < oo implies that Z; — 0 as ¢ — 7. Then Z; stays positive and
satisfies

2
dZy = —/kdBy; + 7dt. (4.2)
t

We see that Z;/+/k is a Bessel process of dimension 1 + %. Thus, if K > 4, then 7 < oo and
Zy > 0ast = 7;if Kk <4, then 7 = 0o and Z; — o0 as t — oo; if Kk = 4, then 7 = o0,
liminf; s Zy = 0 and limsup,_, . Z; = co. We have a similar result for zg < 0.

Now suppose zg € H. Let Z; = g1(20) — A¢. Then the complex valued process Z; also satisfies
. Let f(z) = 2'=%/* for k # 4 and f(z) = In(z) for k = 4. Since f is analytic, we find that

df (Z) = f'(Z)dZ + gf"(Zt)dt = —f'(Z)v/rdBy.

This means that f(Z;) is a local martingale. In other words, both Re f(Z;) and Im f(Z;) are
local martingales.

Note that Z; stays in H. If K = 4, f maps H conformally onto {0 < Imz < 7w}. So Im f(Z;)
is uniformly bounded, which implies that Im f(Z;) = ImIn(Z;) = arg(Z;) is a martingale. In
fact, Im f(Z;)/m is the probability that a planar Brownian motion started from g¢;(zp) hits
(—00, At) when exiting H. From conformal invariance of planar Brownian motion, this is equal
to the probability that a planar Brownian motion started from zg hits (—oo, 0] unions the “left
side” of the SLE,4 trace 8 up to time ¢ when it exits H \ 5(0,¢].

If k =2, f(2) = 1/2. Wesee that —1 Im f(Z;) = —1Im m is a Poisson kernel function
in H with pole at \; valued at g¢(zp). Since g maps the () to A\, this is also equal to a Poisson
kernel function in H \ £(0, t] with pole at () valued at zp. Here a Poisson kernel function in a
simply connected domain D is a positive harmonic function in D, whose continuation vanishes
on 0D except for one point (or prime end), which is called the pole. When the domain D and
the pole is given, the Poisson kernel function exists and is unique up to a positive factor.

We may also apply [t6’s formula to radial Loewner equations. Recall that the radial Loewner
equation driven by A is

e 4 9¢(2)

N gi(z) go(z) = 2.

gi(z) = gi(z)
Let cota(z) = cot(z/2). We now introduce the covering radial Loewner equation:
9egr(z) = cota(ge(z) — M), go(z) = 2.
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Note that

. _cosa(z — w) eilzmw)/2 4 o=ilz—w)/2 giw | iz
icote(z —w) =1 sing(z —w)  eilz—w)/2 — e=i(z—w)/2  giw _ giz’

So we have " _
At igt(z
() 68 coty(F,(2) — A) = @@ TET T
0" = eV coty(ge(2) — A\t) = ' eiMt _ pige(z) "
Thus, €9(*) satisfies the same ODE and initial value as g;(¢**). Let ¢’ denote the map z +— ¢**.

We then have e’ o §; = g; o ¢'. Let K, denote the set of z € H such that gs(z) blows up before

~ . - ~ Conf - =~
or at time ¢t. Then we have K; = (e!)"'(K;), and g; : H \ K; “ H. We call gt and K, the

covering radial Loewner maps and hulls driven by A.

For every z € R, g;(z) stays on R before blowing up. If z € H, then g;(z) stays in H, and
Im g:(z) decreases in t. If 7(z) < oo, then g:(z) — A\¢ hits a pole of coty as ¢ — 7(z), which
means that there is some n € Z such that g:(z) — Ay = 2nm as t — 7(2)".

Now suppose \; = /kB;. Fix zg € (0,27). Let Z; = gi(zo) — A\, 0 <t < 7 = 7(x0). Then
Zy stays in (0, 27) and satisfies

dZ; = —\/EBt + COtQ(Zt)dt. (43)

We may find f such that f(Z;) is a local martingale. We need that f satisfies f’(x) cota(z) +
5f"(x) = 0, which implies that f/(z) = Csing(z)~*. Let W; = f(Z;). Then dW; =
—f'(Zi)\/kdBs. Let u(t) = fot |f'(Zs)|ds. Suppose u maps [0, 7) onto [0,T). Let v(t),0 <t < T,
be the inverse of u. Then W), 0 <t < T, is a Brownian motion. If x > 4, then f maps (0, 27)
onto a bounded interval. So we have a.s. T < co. Since T = [/ C?|sing(Zs)|~8/%ds > C?,
we get 7 < oo and limy,, Z; = 0 or 27. Since Wv(t), 0 <t < T, is bounded, it is a bounded
martingale, and we have

F(w0) = Wo = E[W;] = F(O)P[lim Z; = 0] + f(2m)P[lim Z; = 2r].

If f has a simple formula, we may calculate the probability that Z; — 0 as t — 7. Now suppose
t < 4. Then f maps (0,27) onto R. As a Brownian motion, W, does not tend to +oo or
—o00 ast — T no matter T' = oo or T < 00. So Z; does not tend to 0 or 27 as t — 7. This
implies that 7 = co. Since T > C?7, we have T = oo. Thus, liminf; . Wy = —oc and
lim sup;_, o, W) = 400, which implies that liminf; ,o Z; = 0 and limsup,_,, Z; = 2.

Fix zg € H. Let Z; = gi(z0) — A¢. Then the complex valued process Z; also satisfies .
Thus, if f is an antiderivative of C'sing(x)~%/*, then f(Z;) is a local martingale. If k = 2, we
may choose f(z) = cota(z). This means that

,ei)\t + gt(eiZ())
et — gy(e'=0)
et +g¢ (wo)
N et —gt(wo)
Re ZMZ%%' Then f; is a Poisson kernel function in D\ £(0,t] with pole at 8(¢), normalized

by f:(0) = 1. Then for any z € D, ¢t — f;(2) is a local martingale.

COtg(gt(Zo) — )\t) =

is a local martingale. Thus, for any wg € D, Re is a local martingale. Let fi(z) =

38



4.11 Phase transition

Theorem 4.4 Let K; be chordal Loewner hulls driven by \y = /kB;. Fix zo € H. Let
T =1(20). Then

1. If k<4, as. T=o00. If k >4, a.5. T < 0.

2. If k <8, a.s. limy_, oo dist(29, K;) > 0. If K > 8, a.s. limy_, dist(zg, K¢) = 0.
Proof. Let g; be the chordal Loewner maps. Let Z; = g:(20) — A\, 0 <t < 7. Let X; = Re Z;
and Y; = Im Z;. Then X; and Y; satisfy

2Xy —-2Y;

= ————dt.
X2 Y2 ’ t XtZ + Y;Z

dX; = —\/EdBt +

Let W, = X,;/Y;. Then W, satisfies

_ 4X,/Y,
AW, = \/EdBtJr /i

———dkt.
Y, X2+Y2

Let u(t) = 1(In(Yp) — In(Y;)). Then u(0) = 0 and u/(t) = W' Let T' = supul0,7), and let
t t

v(t), 0 <t < T, be the inverse of u. Then there is another Brownian motion Et such that

de(t) =,/1+W? \/Edét + 4Wv(t)dta 0<t<T.

(t)

Let Uy = sinhfl(Wv(t)). Since (sinh™!)(z) = \/T and (sinh™!)"(z) = —W, we have
dU; = /rdBy + (4 — g) tanh(U)dt, 0<t<T. (4.4)

Choose f on R such that f/(z) = cosh(z)'~8/%. Let V; = f(U;). Then
dV; = cosh(Uy)' 8/%\/rdB,, 0<t<T.

So V, is a time-change of a partial Brownian motion.

First, suppose x < 8. Then f maps R onto a finite interval, which implies that lim; .7 V;
a.s. exists. Thus, lim;_.7 U; a.s. exists. So limt%T Wy a.s. exits. We first show that a.s. T = co.
If T' < oo, then lim;_,, Y; > 0, and from we see that lim;_,7 U; is finite, Which implies that
lim;_,, W4 is finite. Thus, lim;_,, X; also ex1sts and if finite. Since T' = fo X2 +Y2’ from T' < oo,
we have 7 < oo, which implies that lim;_,, Z; = 0 and lim; ., Y; = 0, so we get a contradiction.
Thus, a.s. T = oco. From (4.4) we see that limy_, ., Uy can not be a finite number. Thus, a.s.
lim; oo Uy = +00 or —o0.

From symmetry, we only need to consider the case that lim;_,, Uy = +00. Then tanh(U;) —
1. From we have limy_,oo U/t =4 — £/2. From T = fOT ngygds we get

T [e'e) o)
P [y vigas = [ YR 0 wE i =38 [T e teonUds (49
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Suppose « € (4,8). Choose ' € (4,k). There is some (random) N > 0 such that 0 < U; <
(4—~r'/2)t for t > N. So

oo [o@) [oe) ,
/ e~ s COSh2(Us)dS < / e s s < / ed=rs s < 00,
N N N

which implies that 7 < co. Suppose x € (0,4]. Then

o 1 o
/ e~ cosh?(Uy)ds > / e2Us=15 s,
0 4 Jo

From limy ;o U/t = 4 — /2 and (4.4) we see that there is some (random) C' > 0 such that
Ui > kB + (4 — k/2)t — C for all ¢, which implies that

x o ~ x ~
/ o2Us—4s g 2/ AVRBAU-R)—C g e‘C/ NG
0 0 0

Since By is recurrent, we have a.s. fooo e2ViBsds = 0o, Thus, a.s. 7 = oo if K € (4,8).

Next, suppose £ > 8. Then f maps R onto R. If V; is a time-change of an incomplete
Brownian motion, then we must have (i) fgncosh(Ut)l_g/“dt < oo; and (ii) limy7 Vi exists
and is finite, which implies that lim;_,7 U; and lim;_,, W exist and are finite. Then we must have
T < oo. We already see that a contradiction can be obtained from 7' < oo and lim;_,, Wy € R.
Thus, V; is a time-change of a complete Brownian motion. So we have liminf; ,7 Uy = —co and
lim sup;_,7 Uy = 0o. From we conclude that a.s. T' = oo.

We will prove that a.s. limsup,_,,, Uy/t < 0. If this is not true, then there is § > 0 such
that lim sup,_, Ut/t > 4. Since limy_,so By/t = 0, there is some (random) N > 0 such that for
t> N, |VEB < 7t Since Uy is recurrent and limsup,_, ., Ut/t > 0, there exist tog > t; > N
such that U, =0, Ut2 = 0ty and Uy > 0 for ¢ € (t1,t2). From we have

~ ~ t2
(Stg = Ut2 - Ut1 == \/EBtQ - \/E.Bt1 + (4. - ;)/ tanhg(Us)ds

t1

~ ~ 1) )
< VEBy, — VKB, < §t2 + 5151 < Ota,

which is a contradiction. So a.s. limsup,_,., U/t < 0. Similarly, a.s. liminf; .o, U/t > 0. Thus,
limy—ye0 Ut/t = 0. Thus, a.s. foo —45%2Us Js < 00, which implies that fooo e~% cosh?(Uy)ds <
oo. From we get a.s. 7 < oo. This finishes the proof of (i).

Conf
Since gy : H\Kt = H, dist(zo, O(H\ K%)) = min{Im 2, dist(z0, K¢)} and dist(g:(z20), OH) =
Im g;(29), from Koebe’s 1/4 theorem, we suffice to show that lim;; |g;(20)|/Y: — oo when
k > 8 and limy,; [g;(20)]/Y: < oo when £ < 8. From chordal Loewner equation, we get

rgl(20) = QQt(ZO) M Since dY; = 524

, which 1mphes that 0, log \gt(zo)] =Re 7 o) peanel

we get O, log(|gt(z0)\/Y}) W Let S = [/ (X2+Y2)2 ds We suffice to show that a.s. S = oo
When1128and5'<oowhen/£<8
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By changing variable we get

0 Y2 0 d 0o
So [ g [ e,
0 Xv(s) + Yv(s) o L+ Wv(s) 0
If K < 8, then a.s. limy ;00 Up/t = 4 — § or limy_,oo Us/t = —(4 — £/2). In either case we get
S < oo. If kK > 8, then Uy is a recurrent process, which implies that S = co. O

5 Locality and Restriction

5.1 Locality property

In this section, we will prove that SLEg satisfies locality property, and other SLE, satisfies
weak locality property. The locality of SLEg means that the growth of SLEg does not feel the
boundary before it hits it. We have the following theorem.

Theorem 5.1 Suppose K;, 0 <t < 0o, are standard chordal SLEg hulls. Let A be an H-hull
such that dist(0, A) > 0. Let T be the biggest time such that Ky N A # () for 0 <t <T. Then
after a time-change, K¢, 0 < t < T, has the same distribution as the chordal SLEg hulls in
H\ A from 0 to oo, stopped when touches A.

Proof. Let \; = /kB; be the driving function, and g; be the chordal Loewner maps. We know
that K, 0 < t < 00, is a Loewner chain in H. Then we easily see that K;, 0 < t < o0, is a
Loewner chain in H\ A. Let W = g4 and Ly = W(K;), 0 <t <T. Then L;, 0 <t < T, is
a Loewner chain in H, and each L; is an H-hull. Let u(t) = hcap(L;)/2, 0 <t < T. Then u
is continuous and increasing with u(0) = 0. Let S = supu[0,T). Let v = u~'. Then Ly,
0 <t < S, isaLoewner chain in H with heap(L,)) = 2t for 0 <t < 5. Thus, L), 0 <t < S,
are chordal Loewner hulls driven by some n € C10,.5). We suffice to show that 7, 0 <t < S,

has the distribution as W (0) + /By stopped at S. Let h; be the chordal Loewner maps driven

Conf
by 1. Then hyq : H\ Ly — H.

For 0 <t <T,let Ay = g:(A) and
Wiy = hu(t) ° Wogt_l-

Then Wy @ H \ A, Cgr:f H, and A; is bounded away from A;. In fact, from the power series
expansion of Wy at oo, we see that W; = g4,. From Schwarz reflection principle, we may extend
W; analytically across R\ A;, and maps R \ A; into R. We have (¢, z) — W;(z) is continuous.
Fix t € [0,T) and s € (0,7 — t). we have

Lits/Lt = hy) (Ligs \ L) = Wi(ge(Kips \ Kt)) = Wi(Keqs/ Ky).

Since heap(Lits/Li) = 2u(t + s) — 2u(t) and heap(Kyqs/Ky¢) = 25, (o0 Kivs/EKr = { M}, and
W, is analytic at A, we get u/, (t) = W/(\)%, 0 < t < T. Since W/()\;) is continuous in ¢, we
have

() =Wi(\)?, 0<t<T. (5.1)
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Since

{M} = ﬂ Kivs/Ke, {nuwn} = ﬂ Ltts/ L,

s>0 s>0

we have

M) = Wi(he), 0t <T. (5.2)
From the definition of W, we get
Wiogi(z) = hu(t) oW(z), zeH\ (AUK,).
Differentiate this equality w.r.t. ¢, and using and ( we get

2 2W{ (M) _ 20 (M)
gi1(z) = Mt B hu(t)(W(Z)) — Nu(t) B Wi(g:(2)) — Wi(Ae)

Since ¢ maps H \ (AU K}) onto H \ A;, we conclude that

0:Wi(ge(2)) + Wi(ge(2))

2W/ ()2 2W/ (w)
Wiw) — We(N)  w— A

KW (w) =

Let aj = Wt(j)()\t), j€N. Let § = w — A¢. Then as 6 — 0,

2W/ (\e)? 2W/ (w) 2a? 2(ay + azd + O(6?))

Wi(w) = Wy(N)  w—XA a0+ %262+ 0(83) 5

2@1 2 —1 2(11
14+ 25 d —— =2 J).
T 261 0%) 7 = T~ 200+ 00)

S 5254 0) - 2% — %45 + 0(8) = —3as + O(5).

2(11
)

So we have
8tWt()\t) = —?)Wt//()\t), 0<t<T. (53)

Since A\t = /KB (k = 6), applying Itd’s formula to (5.2) we get

iy = W] (A)dA + (g - 3) W/O\)dt, 0<t<T. (5.4)

From 1' we see that there is another Brownian motion B; such that

v(t) v(t) '
B : <— N
d77t \/>d t <2 3) I/Vv(t)()w(t)) d » 0 <5

If K = 6, then 7, 0 < t < S, has the same distribution as \/kB; stopped at S. So the proof is
finished. O

Remarks.
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1. The locality property explains why the scaling limit of critical percolation is SLEg.

2. Lawler, Schramm and Werner uses the locality of SLEg to compute the intersection ex-
ponent of planar Brownian motion.

3. In case k # 6, from Girsanov theorem, we may find an increasing sequence stopping times
(T},) such that T'= VT, and for each n, the distribution of K;, 0 <t < T, is equivalent
to the distribution of a time-change of a chordal SLE,; hulls in H\ A from 0 to oo stopped
at some stopping time. We say that chordal SLE, satisfies weak locality for x # 6.

4. The locality property for k = 6 and weak locality property for x # 6 are also satisfied by
radial SLE. We leave this as an exercise.

5.2 Restriction property

In this subsection we will show that SLEg 3 satisfies restriction property. We have the following
theorem.

Theorem 5.2 Suppose K, 0 <t < oo, are standard chordal SLEg;3 hulls. Let A be an H-hull
such that dist(0, A) > 0. Then conditioned on the event that Ko = |J K; is disjoint from A,
K, 0 <t < oo, has the same distribution as the chordal SLEg/3 hulls in H\ A from 0 to oco.

Proof. The initial part of the proof is the same as the proof of Theorem Now we have

derived Wi )2 Wiw)
2 t 2 w

HWi(w) = L -
t t(w) Wt(w) — Wt()\t) w — )\t

Differentiating this equality w.r.t. w, we get

wEH\At.

2W] (\e)2 W/ (w) QW) (w)  2W/(w)
AW (w) = — t t . t + t )

Wi (w) We(w) = WeM))2 w—N  (w— A)2
If § =w— Ay — 0, we have

2W (M)W (w) 2W (w) | 2W/(w)
Wi(w) = W00 w—> | (0= N)?

_2@%(@ +ad + G0+ 0(5°))? _ 2(ag +a36 4 0(8%)) n 2(a1 + az8 + §6° + 0(8%))
(010 + 502 + G603+ 0(7))2 5 ”

2a1 1+ 20+ 524524053 P
R L kA N TR0
(1+32a30+ §a 9% +0(57))
2 1+ 925+ 398624+ 06 P
=-= T o + 5 — a3+ 0(9)
L+ @20+ (12 +352)02 +0(5)
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2a1 lag 1d3. 3 2a1 la2 4
= la+2 -2 s =% _Z _
52 ( +(6a1 4a%)5 +0(6°)) + 5 az + O(9) 5o 3a3+0(5)
Thus, we have ) . .
Wi () W{(/\t) 3 (N ) ' '
Since A\; = /KBy, we find that W/ (\;) satisfies the SDE:
WO _ WOy | LWz, (v 4y WO 5.6
Wix)  Wilh) 2\ Wi (M) 2 3/ Wi\ '

2K 2K
charge of SLE,. Then

WO _ (AT | ooy (WO

Let o = 6% and ¢ = 6=RC=8) \yhen = %, a= % and ¢ = 0. The c is known as the central

W0~ W) W)
WO, e W) W/ (\)
= o Pt G (Wt(At) ) dt. (5.7)

If k = §, then W/(A\)® is a local martingale. Recall that W; = g4,. Since

03l -2 = / L dia (@),

we get
@3l =1+ [ G ppnae).

Thus, for any z € R\[ca,,d4,], we have (g;tl)’(z) > 1, which implies that 0 < W/(\;) < 1. Thus,
W/(At)® is a bounded martingale. Then X := lim; oo W/(A)® exists a.s. and lies between 0
and 1. And we have E[X] = Wj(A\)® = ¢/4(0)*. Now we define a new probability measure P
such that dIP’l/dIP’ X/g'4(0)*. Let Dt E[dP; /dP|F:] = W{(A)*/¢’4(0)*. From we see
that, under Py, B, = B; — av/k fo W (/\ is a Brownian motion. We have

(M)

dt.
Wt (Ar)

d\ = \/kdB; = \/kdB; + o

Formula (j5.4]) still holds here. So we get
diy(t) = Wt/(/\t)\/gdét

From we see that, under Py, there is a Brownian motion Et such that dn, = \/Edﬁt,
0 <t < S. This shows that, under Py, a time-change of L; = W(K;), 0 <t < T, are partial
chordal SLEg,3 hulls in H from ny = W(X) to co. Thus, under P;, after a time-change, K,
0 <t < T, are partial chordal SLEg/3 hulls in H \ A from 0 to co.
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We now use the existence and properties of the chordal SLE, trace. We have a simple curve
B(t) such that Ky = 5(0,t] for 0 < ¢ < T. Under P;, a time-change of §(¢), 0 <t < T, is a
partial chordal SLEg/3 trace in H \ A from 0 to co. If such trace does not finish its journey,
then it ends at some interior point of H \ A. From the definition of 7', this is a P-null event. So
it is also a Py-null event. So the word “partial” can be removed.

Thus, modulo a time-change, the distribution of chordal SLEg/3 process in H \ A from 0
to oo is absolutely continuous w.r.t. that of chordal SLEg/3 process in H from 0 to oo, and
the Radon-Nikodym derivative is X/E[X]. Since the trace in H '\ A does not hit A, we have
P[T < oo] = 0. Thus, X =0 on {T < co}. We claim that X =1 on {T = oco}. If this is true,
then Py = P[-|T" = oo] = P[-| Koo N A = 0], and we are done.

Now we prove the claim in the case that A N R lies to the right of 0. Suppose T' = o0, i.e.,
the whole trace § avoids A. Ast — oo, (t) — 00, so the extremal distance between AU[a4,b4]
and (—oo,0] unions the “left side” of £(0,¢] in H \ 5(0,t] tends to oo, which implies that the
extremal distance between A;U[a4,,b4,] and (—oo, A] in H tends to co. This then implies that

the extremal distance between [c4,,d4,] and (—o00, g4, ()] in H tends to oo as t — co. So we
da,—ca,

m—)()ast—)oo.

have

~ o~ Conf
Recall that for any nonempty H-hull K, g : (C\ K;00) 5 (C\ ek, dKk]; 00) and g (00)

1. So Q(I?) = N([ck, dKk]) = (dx — ck)/4. Let h(K) denote the height of K, then 2h(K) <

diam(K) < 4N (K) =dg — ckx. So h(K) < (dxg — ck)/2. If K is a bubble, then hcap(K) <
2

@(d K —Ci) < %. By approximation, this is true for any nonempty H-hull.

Recall that Wi = g4, and

da,
(63)(2) =1+ /

CAt

1
mdﬂAt ().

(dAt —CA, )2

Let z = ga,(A). Since |p4,| = heap(A4;) < o

and ga,(\t) < ca, < da,, we have

1< (g5 (ga () < 14 L da—ea)”

2m (CAt — g4, ()‘t))2 ‘

. da,—
Slnce%f‘_tgi:t?gt)%(),weget W{(\) = 1last—o00. So X =1on {T = oo}

So far, we prove the theorem in the case that inf(ANR) > 0. Similarly, the result is true if
sup(ANR) < 0. If inf(ANR) < 0 < sup(ANR), we may divide A into the disjoint union of two
H-hulls Ay and A_ such that sup(A_ NR) < 0 and inf(A; NR) > 0. The result we obtained
says that, if we condition a chordal SLEg/3 trace in H from 0 to oo to avoid A4, then we get a
chordal SLEg/3 trace in H \ Ay from 0 to oo. If we further condition this trace to avoid A_,
then we get a chordal SLEg/3 trace in H \ (A4 UA_) = H\ A from 0 to co. Note that the
combined effect of the two conditionings is a single conditioning: to avoid A = Ay U A_. So
the proof is finished. O

Remarks.
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1. The restriction property is also satisfied by radial SLEg/3. In fact, if A is a D-hull with
1 € A, then the probability that A is disjoint from a complete radial SLEg /3 trace is equal
to |g'y(1)[/%|¢’(0)|/48. We leave this as an exercise.

2. For k # 8/3, from ([5.7) we may construct a local martingale M; by
t
My = Wi () exp ( - ;/ SW,(As)ds),
0

where SW, = W' /W/—2(W/ /W/)? is the Schwarzian derivative of W. Such M; satisfies

the SDE
dM; W/ (\t)

=«
M, W/ (M)
Recall that Wy = g4,. From the following lemma, we see that SWs(As) < 0 for all s.

. (5.8)

Lemma 5.1 Let K be an H-hull and x € R\ [ax,bk]|. Then Sgk(x) < 0.

Proof. We may assume that K is a bubble. We may find chordal Loewner hulls K, 0 <t < T,
such that K = Ky, for some ty € [0,T). Let A\; be the driving function. Let z € R\ [ax, bk].

Then g4(x) is well defined for 0 < t < ¢3. We have digi(x) = m, which implies that
gy (x) = _(m?xg%i(jv/\)m' Thus, d;log g;(x) = —m. This then implies that
ggl(x) / / 4gi ()
0, = 0,0, lo ) = 0,0 1o T) = 5.9
tgé(x) t ggt( ) t ggt( ) (gt(x) *)\t)?) ( )
Thus,
atl(g,’:’(x)>2 _ 49/ (=)
2\ gi(z) (g¢(x) — Ae)?
Differentiating (5.9) w.r.t. z, we get
o) @) gl 12(w)°
gi(x) " gi(x) (ge(x) = A)* (@) — M)

Combining the above two displayed formulas, we get

12g;(z)?
OE

Since go = id, Sgo(z) = 0. So we get Sgs,(x) < 0. O

6tht(:L‘) = —

Remark. If x < 8/3, then ¢ < 0. So —%fg SWs(As)ds < 0. This means that 0 < M; < 1
and a.s. X := limy_, o, M; exists and 0 < X < 1. If we define a new probability distribution Py
by dP;/dP = X/E[X], then from (5.8) and Girsanov theorem, we see that, under Py, after a
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time-change, K; are chordal SLE,; hulls in H\ A from 0 to co. Thus, for k < 8/3, modulo a time-
change, the distribution of chordal SLE, hulls in H\ A from 0 to oo is absolutely continuous
w.r.t. that of chordal SLE, hulls in H from 0 to oo, and the Radon-Nikodym derivative is
X/E[X]. A similar argument as before shows that

c [
X = 1{KooﬁA=®} exp < - 6/0 SWS()\S)dS).

Lawler and Werner proved that the quantity —% OOO SWs(As)ds can be characterized by the
Brownian loop measure of the set of loops in H that intersect both K, and A, and the quantity

exp (— 5 fooo S WS()\S)ds> can be described by the probability that, in a Brownian loop soup of

density — ¢ in H (a Poisson point process of Brownian loop measure), there exist no loops that
intersect both K., and A. If we attach all loops in a Brownian loops soup of density — ¢ in H
that intersect Ko, to Koo, we get a fat set, say F. If we condition that F' avoids A, then K,
0 <t < 00, has the distribution of chordal SLE, hulls in H\ A from 0 to oo, after a time-change.

5.3 Equivalence between chordal SLE and radial SLE

Theorem 5.3 Let K;, 0 <t < oo, be standard radial SLEg hulls. Let wo € T\ {1}. Let T' be
the biggest number such that wy € K; for 0 <t <T. After a time-change, Ky, 0 <t < T, has
the same distribution as chordal SLE, hulls in D from 1 to wy, stopped at some stopping time.

Proof. Let k = 6. Let \; = \/kB; be the driving function for Ky, let Let g; and g; be the

Conf
radial Loewner maps and covering radial Loewner maps. Let W : (ID; 1, wyp) 2 (H; 0, 00).

Let Ly = W(K;). Then Ly, 0 < t < T, is a Leowner chain in H such that each L; is an
H-hull. Let u(t) = hcap(L¢)/2, 0 <t < T. Then u is continuous and increasing with u(0) = 0.
Let S = supu[0,T). Let v = u~!. Then Lywy, 0 <t < 5, is a Loewner chain in H with
heap(Ly ) = 2t for 0 <t < S. Thus, Ly, 0 <t < S, are chordal Loewner hulls driven by

some 71 € C[0,5). We suffice to show that 7, 0 < ¢ < S, has the distribution as W (1) + /kB;

Conf
stopped at S. Let h; be the chordal Loewner maps driven by 1. Then A,y : H\ L; o H.

Conf
For 0 <t < T, let W, :hu(t)oWogt_l. Then Wy : D 2V H Fixt ¢ [0,T) and

s € (0,7 —t). we have Lyys/Ly = Wi (Kyys/Ky). Since heap(Liys/Lt) = 2u(t + s) — 2u(t) and
deap(Kiis/Kt) = 5, (g0 Kits/ K = {€}, and W, is analytic at Ay, we get /() = [W/(e")|?.
Let W=Woe and W, = Wyo0el = P oWogt_l. So we have

W (t) = W ()2 (5.10)
From (oo Kits/Ki = {€™} and ;2 Lits/Le = 1Ny} we get
Nu(t) = We(Me). (5.11)

We have - . A
Wi 0Gi(2) = hy@py o W(2), z€H\ () (k).
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Differentiate this equality w.r.t. ¢, and using (5.10]) and (5.11)) we get
W/ (N\)2 2 (\)?
huyW(2)) = nuy  Wi(Ge(2)) — Wi(hr)

O Wi(Ge(2)) + Wi (Gi(2)) cota(Gi(2) — \r) =

We conclude that
2W/ ()
Wi(w) — Wi( )

W, (w) = — W} (w) cota(w — Ap).

Letting w — A, we find that
AWi(\) = =3W/'(\), 0<t<T. (5.12)

Since Ay = /KBy, applying It6’s formula to (5.11]) we get
dnuy = Wi (\)dN: + (g - 3) W/(\)dt, 0<t<T. (5.13)
From lb we see that there is another Brownian motion B; such that

K Wzl)/(t) (Av(t))

diy = /kdB; + <2

; dt, 0<t<S.
Wv(t)()\v(t))Q

If K = 6, then 7, 0 < t < S, has the same distribution as \/kBy stopped at S. So the proof is
finished. O

5.4 Critical percolation and Cardy’s formula

Smirnov proved that the critical site percolation on a triangular lattice contains an explorer
curve which converges to SLEg. The critical site percolation on a triangular lattice is equivalent
to the critical face percolation on a hexagonal lattice. We consider a simply connected domain
D. Use a hexagon lattice with small mesh to approximate D. Color all hexagon faces contained
in D independently yellow or green with equal probability. Mark two points a,b on 9D, which
divide 9D into two arcs. We assign a boundary condition to this percolation by adding a coat
of hexagon faces to the above percolation, and coloring these faces such that the faces on one
arc are all green and the faces on the other arc are all yellow. Then we can observe an interface
curve connecting the two marked points.

Before Smirnov’s work, statistical physicists observed that the explorer curve has a scaling
limit when the mesh of the lattice tends to 0; and the scaling limit is invariant under conformal
maps. Moreover, from the construction, the explorer curve satisfies the Domain Markov Prop-
erty at the discrete level. So the scaling limit, if exists, has to be SLE with some parameter.
Also note that the explorer curve does not feel the boundary before hitting it, its scaling limit
must satisfies the locality property. This implies that the scaling limit should be SLEg.
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Note that the time-reversal of the explorer curve is still an explorer curve. Thus, the
convergence implies that chordal SLEg satisfies reversibility, which means that, if 5(¢), 0 <t <
00, is a chordal SLEg trace in D from a to b, then there is a continuously decreasing function
u, which maps [0, co] onto [0, 00|, such that S(u(t)), 0 < ¢ < oo, is a chordal SLEg trace in D
from b to a.

Smirnov proved the convergence of the explorer curve by showing that Cardy’s formula holds
true. Cardy’s formula says that, if D is a simply connected domain with four boundary points
a, b, c,d lie in the ccw direction. Then the probability that there is a yellow path connecting
the arc ab and the arc cd in the critical percolation on a hexagonal lattice that approximates
D has a limit as the mesh tends to 0, and the limit probability depends only on the conformal
type of (D;a,b,c,d). It has a simple expression when D is an equilateral triangle with three
vertices a, b, c. In that case, the limit probability is |cd|/|ac].

We now explain the Cardy’s formula by showing that chordal SLEg satisfies Cardy’s formula.
We color the faces on the arc abe yellow, and color the faces on the arc cda green. Then we
study the explorer curve from a to c. If there is a yellow crossing connecting ab with cd, then
the explorer curve visits cd before be. If there is a green crossing connecting da with bc, then the
explorer curve visits bc before cd. Since the explorer curve converges to chordal SLEg in D from
a to ¢, the limit probability of the existence of a yellow crossing connecting ab with cd is equal
to the probability that a SLEg(D;a — ¢) trace visits cd before be. From conformal invariance,
we may assume that D =H, a =0, ¢ = 00, b > 0, and d < 0. The time that the trace visits
bc = (b, 00) is the time that g;(b) blows up. The time that the trace visits ¢d = (—o0, d) is the
time that g;(d) blows up. All we need is to compute Pty < 7).

Let k = 6 and \; = /KBy be the driving function, and g; be the chordal Loewner maps.
Since k > 4, T, 7g < 00. Let Uy = gi(b) — A\, 0 <t < 7p; and V; = g4(d) — Ay, 0 <t < 74. Then
U, stays positive and tends to 0" as ¢t — 75, and V; stays negative and tends to 0~ as t — 74.

Since 9 5
Oy(Uy — Vi) = Oge(b) — Opge(d) = — — — >0
i (Ut +) 19t (D) 19t (d) AT >0,
we have U, — V; > Ug—Vp = b—d > 0 for 0 < t < 7. Thus, it is not possible that
Ty = 74. Let 7 =1y A7qg and Wy =V, /Uy, 0 < t < 7. Then W; stays negative. If 7, < 74, then
limy_,, Wy = —o0. If 7y < 71, then lim;_,, W; = 0. Since U; and V; satisfy dU; = —\/EdBﬁ—U%dt

and dV; = —\/kdBy + %dt. We find that W; satisfies

Ve . R 2 (k—2)V;
AW, = dB, — Y aB dt dit— Ldt, 0<t<r
I R VA I 7 U2 =tsT

Let u(t fo )2ds and T = supu[0, 7). Let v(t), 0 <t < T, be the inverse of u(t), 0 <t < T.
Then Zt = W,U(t) satisfies the SDE

dZ; = (% — V)\/RrdBi + (2/Z + (k — 2)Z; — k)dt, 0<t<T.
We now find f defined on (—o0,0) such that f (Zt) is a local martingale. We need that

KR

5" (@)(@ — 12+ f'(x )( +(k=2)r —r) =0
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We find ]}lll((j)) S/H 2 + _i/ﬁ So f'(z) = Clz|~**(1 — )8/%~2. Note that when z is close to

0, f'(x) ~ |x|_4/” and —4/k > —1; when z is close to —oo, f/(z) ~ |z[*/*2 and 4/k —2 < —1.
Thus, f maps (—o0,0) onto a bounded interval. So f(Z;) is a bounded martingale.

We may choose f such that f is increasing and f((—o00,0)) = (0,1). If 7, < 74, then
limy_,, W; = —o0, which implies that lim;_,p f(Z;) = 0; if 74 < 7, then limy_,, W; = 0, which
implies that lim; 7 f(Z;) = 1. Thus,

F(d/b) = f(Zo) = E[lim, f(Z¢)] = Plra < 7).

So we have
fd/b |x‘—4//1( )82

)

f |$‘ 4/&(1 _x)S/n de
() _
)

Now we give an geometric explanation. Recall that f Plo S/H 2+ i/'{. Let g(x) = f(z/b).
//((;y)) _ 8/,‘1 2 + —4/1%‘
g’ (x T
P[rg < 1] = g(d). Now suppose h maps H conformally onto the interior of AABC with angles
pam,ppm,pem such that h(a) = h(0) = A, h(b) = B, and h( ) = h(oo) = C. From the

SchwarzChristoffel mapping theorem, h satisfies h,(( )) = L4 o 1. If pgo =1-—4/k and

Plry < )] =

Then g maps (—o0,0) onto (0,1), and satisfies Moreover, we have

pp=8/k—1(pc =1—4/k = py), then 2 W = %l,, on (— oo,O). Thus, there are a, 8 € C such
that h = ag + 8. Let D = h(d) € [A,C]. Then
DC| _D=C _ h(d) = h(e) _ g(d) - g(c
|[ACl A—=C  h(a) = h(c) g(a)—g(c)
Finally, note that when x = 6, AABC' is an equilateral triangle.

= g(d) = P[Td < Tb].

Another percolation model that is expected to converge to SLEg is the critical bond per-
colation on square lattices. Let D be a simply connected domain. We use a subgraph G of
872 to approximate D, where § > 0 is small. We also look at the dual graph G, which is
a subgraph of §(Z + 1/2)2. Every edge of G intersects an edge of GT, and vice versa. Let P
denote a random subgraph of G such that P contains all vertices of G and every edge of G is
contained in P with probability 1/2 independent of each other. We may then construct a dual
graph PT such that an edge of G is contained in P if and only if its dual edge is not contained
in Pf. Now we mark two points a,b on 9D, which divide D into two arcs, say I; and Io.
Assign boundary conditions by adding all edges in 6Z? near I; to P, and adding all edges in
§(Z +1/2)? near I to PT. Then there is an explorer curve connecting a and b. This curve is
conjectured to converge to SLEg. The conjecture is based on Computer simulation, the Domain
Markov Property and the locality property. Smirnov’s work can not be easily extended to this
model because his proof essentially depends on the structure of the triangle lattice.

5.5 Self-avoiding walk and reversibility of SLEg/;

In this subsection we talk about the scaling limits of self-avoiding walk (SAW). Most of the
statements here are still conjectures. There are two meanings of SAW. The first meaning of
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SAW is a simple lattice path (Xo,...,X,). We will focus on square lattice Z? or §Z. The
points Xj, are vertices. We have Xj_; ~ X, 1 <k < n; and X; # Xj, if j # k. The number
n is called the length of this path. The second meaning of SAW is a positive measure on the
space of simple lattice paths.

We first consider SAW started from 0. Let C,, denote the number of SAW on Z? of length
n started from 0. For example, we have Cy = 1, Cy, = 4, Cy = 12, C3 = 36, C4 = 100. One
may easily see that Cp1. < C,Chp,. This implies that lim, % log(C),) exists. The limit 3 is
estimated to be 2.628..., which depends on the lattice. It is conjectured that

Cp ~ en? 1",

where « is a critical exponent independent of the lattice. It is predicted by Nienhuis that
v = 43/32.

Now we define vgaw to be a measure on the space of simple lattice paths on §Z2 such that
each path is assigned a measure =", where n is the length of the path. Suppose D is a simply
connected domain with two boundary points zy and wp. Let D° be an approximation of D by
a subgraph of §Z2. Let zg and wg be two vertices closest to zg and wg, respectively. Consider
the set of all SAW connecting zyp with wg, which stay inside D. Let I'(D, zp, wg, §) denote the
set of these SAW. It is conjectured that for some constant b > 0,

HSAW [F(Da 20, Wo, 5)] ~ 6_21)7

as § — 0. Define the probability measure ,ugéAW 5 to be the restriction of pugaw to I'(D, 2o, wo, )

divided by the mass. It is conjectured that quW has a conformal invariant scaling limit. Note
that SAW satisfies Domain Markov Property and restriction property, so the limit should be
chordal SLEg,3. There is a similar conjecture about the convergence of SAW to radial SLEg)3,
where z is an interior point, wy is still a boundary point, and ugaw |[I'(D, 20, wo, 8)] ~ 6~ (@+0),
for some positive constants a,b > 0.

If the convergence of SAW to SLEg /3 is true, then we immediately have the reversibility of
SLEg/3. In fact, we may prove the reversibility using the restriction property. We only need to
show that, if 3 is a chordal SLEg,3 trace in H from 0 to oo, and if W (z) = —1/z, then the image
of B has the same distribution as the image of W (). Let P; and Py denote the distributions of
the image of § and W (f), respectively. Let S denote the set of all simple curves, which connect
0 and oo, and stay inside H except for the two endpoints. Let Fg denote the o-algebra on S
generated by the sets {8 € S: N F = (0}, where F could be any relatively closed subset of H.
We need to show that P; = Py on Fg.

Let A" denote the family {8 € S : SN A = 0}, where A is any H-hull bounded away
from 0. Let A = A" U {0}. First, we show that A is a m-system, which means that it is
closed under intersection. Suppose A; and Ay are two H-hulls bounded away from 0 such that
{BeS:BNA =0}nN{Be€S:BNAy =0} #D. Then there is § € S disjoint from A; and As,
which implies that the unbounded component of H\ (A; U Ay), say H, contains a neighborhood
of 0. Let A=H\ H. Then A is an H-hull bounded away from 0, and

{BeS:BNA=0IN{BeS:fNA=0}={BeS:8nA=10}.
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So A is a m-system.

Second, we show that Fg is the o-algebra generated by A. First, it is clear that A C Fg.
We suffice to show that, for every relatively closed subset F of H, {8 € S : 3N F = 0} can be
expressed as a union of countably many elements in A. Let A% (resp. A*) denote the family
of bubbles bounded by polygonal crosscuts in H with the following properties: (i) every line
segment is parallel to either x or y axis; (ii) every vertex has rational coordinates; (iii) the two
points on R are positive. (resp. negative). Let A* denote the family of sets A, U A_, where
Ay € AY and AL NA_ = (. Then A* is a countable set. Let F' be a relatively closed subset of
H. Let A% denote the set of all A € A* which contain F'. We claim that

{(BeS:pnF=0= |J {BeS:BnA=0}. (5.14)

Ae Ay,

It is clear that the set on the right is contained in the set on the left. Now suppose 3 is contained
in the set on the left. We may easily find A € A* such that FF C A and AN S = (). This means
that A€ A}, and e {f e S:BNA=0} Sowe proved (5.14).

From Dynkin’s # — A theorem, if Py = Py on A, then Py = Py on Fg. Let A € A.
Then Pi[S N A = 0] = ¢4(0)°% and Po[3 N A = 0] = Pi[B N W(A) = 0] = giy(0)°/.
Note that W(A) € A and gy (a)(2) = —m + C for some C € R. Then we have
g{/V(A) (0) = ¢/4(0). Thus, Pi[fN A = 0] =P3[8 N A = 0], which finishes the proof.

6 Loop-erased Random Walk and Uniform Spanning Tree

6.1 Simple random walk

Let G = (V, E) be a finite connected graph without self-loops and multiple edges. For a function
f:V = R and any vg € V, the discrete Laplacian of f at vg is defined by

Af(vo) = > (f(v) = f(v0)).

V~VQ

If Af(vg) =0, we say that f is harmonic at vy. Since

0= (f() = f(w)) + (flw) = fF) =D Y (f(w)— f(v)),

vw veV weV:iw~v

we have 3 oy Af(v) =0. Thus, if f is harmonic on A C V, then }° oy 4 Af(v) = 0.
Let vg € V. A random walk on G started from vy is a sequence of random vertices (X,,)5°

n=0
such that Xg = 0 and

1,
]P)[X"+1 = U’Xov'--aXn] - ﬁiﬂ).
n

We use P and E" to denote the probability and expectation w.r.t. a random walk started
from vg. Let A C V be nonempty. Let 74 be the first n such that X,, € A. Then 7 is a stopping
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time and for any v € V, PY-a.s. 74 < oco. We call the finite random path X,, 0 < n < 7, the
random walk on G from vg to A, and let it be denoted by RW(vg — A). We use P04 and
Ev0—4 to denote the probability and expectation w.r.t. this stopped random walk.

If f is harmonic on V' \ A, and X,,, 0 < n < 74, is RW(vg — A), then f(X,), 0 <n < 74,
is a (discrete) martingale. This means that, for any n,

E[lTA>nf(XTL+1)’XO7 cee 7Xn] = 17'A>nf(Xn)-

This is true because 74 > n implies that X, € V'\ A and Af(X,,) =0. So

]E[]-TA>TLf(Xn+1)|X07 e 7Xn] = 17'A>n Z deg(lX)f(v) = 1TA>TLf(XTL)'
v~ Xp n

Thus, for every v € V,

F) =E[f(Xr))] = D fw)P[Xp, = w). (6.1)

weVy

This means that, given a function g on A, there exists a unique f on V, which agrees with ¢
on A, and is harmonic on V' \ A.

Let A, B C V be such that ANB = () and AU B # (). Let h 4 denote the unique function
which equals 1 on A, equals 0 on B, and is harmonic on V' \ (AU B). This is called a discrete
harmonic measure function. In fact, we have hypv) = P'[X;, ,, = A]. So the values of hyp lie
between 0 and 1. Moreover, we have hpjy =1 — hyp. Let G(A,B) = > g Ahyp(v). Since
h 41 is harmonic on V'\ (AU B), we have G(A, B) = — > c 1 Ahp(v). Since hpjq = 1—hyp,
we have

G(B,A) =) Ahpja(x) ==Y Ahyp(x) = G(A,B).
veEA vEA
Such G(A, B) is called the electrical conductance between A and B. It is clear that G(A, B) =0
if either A or B is empty. On the other hand, if both A and B are nonempty, then G(A, B) > 0.
In fact, there is a path (Zp, ..., Z,) with Zy € A, Z,, € B, and Z € V\(AUB) for 1 < k <n-—1.
So hap(Z1) =P#[X,, , € Al >0, which implies that G(A, B) > Ahyp(Z0) > Z1 — Zo > 0.

Suppose P [X., , € A] = hqp(vo) > 0. The RW(vg — AU B) conditioned on the event
{Xr,5 € A} is called the random walk on G from vy to AU B conditioned to end at A, and
is denoted by RW(vg — A|B). We use P45 and E~4IB to denote the probability and

expectation w.r.t. this conditional stopped random walk.

6.2 Loop-erased random walk

Let X = (Xx)j_, be a finite lattice path. The loop-erasure of X is defied as follows. Let j =0
and ng = max{m : X,, = Xo}. Define the sequence (n;) inductively by nj;1 = max{m : X,,, =
Xn;41} if nj is defined and n; < v. Let 7 be the first j such that n; = n. Let Y; = X,,,

0<j<r7. ThenY = (YJ-)]T-:O is a path because Yj1 = Xy, , = Xp; 11 ~ Xy, = Yj. From the
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definition of n;, we see that X,, # Xy, if n > n;. Thus, {X,, : n > n;} N{Yp,...,Y;} = 0. Since
{Yig1,.... Y2} C {X,, : n > n;}, we have {Yp,...,Y;} N{Yjq1,...,Y;} = 0. SoY is a simple
path. We call Y the loop-erasure of X, or Y = LE(X).

If two paths X = (Xp,...,X,) and Y = (Yp,...,Y,,) satisfy X,, = Yp, then we define
Z = XY to be a new path Z = (Xo,..., X, =Yp,...,Y,,), and we write X < Z.

Lemma 6.1 Let X = (X;)"_ and Z = (Z;)7" be two paths. Then Z < LE( ) if and only if

there are paths XV and X® such that X = XWX® | 7z = LE(XM), andX ¢ {Zo,..., Zm}
for k > 0. Moreover, such XD and X®) gre determined by these propertzes

Proof. Let n;, 0 < j < 7, be defined as above. Since Z < LE(X), we have Z; = X,,_,
0<j<m. Let X = (Xq,...,X,,,)and X® = (X, ,...,X,). Then X = XWX and

2) Z{Zo,...,Zm} for k > 0, which implies that the path X has no effect on the first m+ 1
vertices of LE(X). Thus, Z = LE(X™). On the other hand, if X = XWX®) 7 = LE(XM),
and X Z{Z,...,Zn} for k > 0, then the first m 4 1 vertices of LE(X) agrees with those of
LE X?U ,ie., Z < LE(X).

NOW we show the uniqueness of X1 and X®). Suppose X(I) = (X,,...,X,) and X2 =
(Xp,...,X,). Since X & {X,,..., Xp,.} for k > 0, we have 7 > n,,. Since Z = LE(X®),
we have X, = Z,, = X,. From the definition of n,,, we have r < n,,. So r =n,,. O

The loop-erasure of a (stopped) random walk or conditional random walk is called a loop-
erased random walk or LERW. The loop-erasure of RW(vy — A) or RW(vg — A|B) is denoted
by LERW (vg — A) or LERW (vg — A|B), respectively.

Greg Lawler introduced LERW as an alternative to study SAW. Now it turns out that the
two models are different. Right now, LERW has been proved to converge to SLE; while SAW
is conjectured to converge to SLEg /3.

For S1,.5,53 C V, let FS s, denote the finite lattice path (Xo,...,Xp) such that Xy € Sy,
Xy, €S2, and Si € S5 for 1 < k <n — 1. For each finite lattice path X = (Xo,..., X,), let

n 1 n—1 1 n-l 1
0=y M=o 009 = 1 g

If Z = XY, then P[)(Z) Py(X)Py(Y). The distribution of RW(vg — A) is supported by
Y\ and P2 2A(X) = Py (X) for each X € T} V4. If AN B = 0, the distribution of RW (vg —
V\(AUB)

A|B) is supported by FUO\AA B) and Pro—AlB (X ) = Py(X)/hap(vo) for each X € ') )

Lemma 6.2 Let A and B be disjoint subsets of V.. Suppose h 4 g(vo) > 0. LetY = (Yo,...,Y7)
be LERW(vg — A|B). Let B, = BU{Yp,..., Y} for 0 <n < 7. Then for any n > 0,

]‘UNYn hA‘Bn (U)

P[Yn—l-l = U|}/E)) cnY,n < T] = Z hA|B (’UJ)
’LUNYn n

(6.2)
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Proof. Let W = (Wy,..., Wy, Wpt1) € FZ)\‘(,’L{%B) and W' = (Wy,...,W,,). From the previous
lemma, we have

. 1
P[YJZWJ'»OSJSTL<T]:W Z P[,)(U)
ver, "0 w<LEW)
1
- My (2)y.
 hap(vo) 2 Py > P U);
uMery OB wi=LE(UM) U@ erp, A=)
1
PlY, =W;,0<j< ]=— P(UD).
Yy=Ws0<j<n+l has(vo) 2. 1 (U)
O e )
2
> Py(UP).
Thus,
>APH(U):U € F;\(,AQUBU{W].}?:O), Ui = Wit}
PVt = Wona[V; = W50 < j <n < 7] = T N AUBUW, 1)
APHWU) U Ty, 4 =}
V\(AUBU{W;}"_)
Z{P[)(U/) = FWn-H,A 31j=0 } B hA|BU{Wj}?:O(Wn+1)
2wy, 24P (U) 2 U € TZ>,§AUBU{Wj}? =y D, oy, (0)

So we get the desired result. O

Remarks.

1. The Laplacian random walk is defined using (6.2)). So LERW is the same as the Laplacian
random walk. For p > 0, the p-Laplacian random walk is defined using (6.2) with h g,
replaced by hil B, The p-Laplacian random walk is much harder to analyze.

2. From the lemma, we see that the LERW satisfies Markov property. This means that, con-
ditioned onn < 7 and Yy, ..., Yy, the path (Y, ..., Y;) has the distribution of LERW(Y,, —
A|Bn 1), where B,_1 = BU{Y;}I—.

6.3 Observables for LERW

Lemma 6.3 Let A and B be disjoint subsets of V' such that AUB # (. Let C =V \ (AU B)
and x € C. Then

> Ahgaup(v) = Gz, AU B)h ().

vEA
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Proof. We have

haple)= > PyX)= > PyY)- > Py(2Z)= > Py¥)- ) Ahyaup(),

XEF:?,A YEF%:I Zerfgz} YEF%:I veEA

and

1= > PyX)= > PyY) > Py2)= > Py(Y) -G AUB).

XeTg aup Yerg, zerg\eh Yerg,

So we proved this lemma. O

Lemma 6.4 Let A, B,C,x be as in the previous lemma. Suppose hA|B(a:) > 0. Then the
function f defined by
f(’l)) _ hz\AUB(U)
G(x, AU B)hap(x)’

is the unique function on'V that satisfies f =0 on AUB, Af =0 on C\{z}, and ) ., Af(v) =
1. Moreover, such f is nonnegative and satisfies Af(x) = —1/h (7).

vevV,

Proof. This follows immediately from the previous lemma. O

Lemma 6.5 Let A, B,C,z be as in the previous lemma. Then the function f defined by

- G(A, B)hyaup(v)
f(v) = hap(v) + G(z,AUB)hap(x)’

veV,

is the unique function on V that satisfies f =1 on A, f =0 on B, Af =0 on C\ {z}, and
> vea Af(v) = 0. Moreover, such f is nonnegative and Af(x) = —G(A, B)/hyp().

Proof. It is clear that f =1on A, f=0on B,and Af =0on C\{«z}. That }° 4 Af(v) =0
follows from the Lemma Since h 4 p and h,4up are nonnegative functions, G(4, B) > 0,
and G(z, AU B) > 0, f is also nonnegative. And we compute

G(A’ B)Ahm\AUB(x) _ _G(A, B)
G(x, AU B)hyp(z) hap(x)

Af(z) = Ahap(z) +

Now we prove the uniqueness. Suppose g satisfies the same properties as f. Let I = g—hyp.
Then I =0on AUB and AI =0 on C\ {z}. Thus, I = I(z)hyaup- From Lemmawe have

0=> Ag(v)=> AI(w)+> Ahyp)=I(z)hsyp(z)G(z, AUB) — G(A,B).

vEA vEA vEA

Thus, I(z) = G(A, B)/(hap(r)G(z, AUB)). Sog=f. O
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Proposition 6.1 Let A and B be disjoint subsets of V with A # 0. Let C =V \ (AU B) and
vo € C be such that hyp(vo) > 0. Let Y = (Yo,...,Ys) be LERW(vg — A|B). Let By = B
and B, = BU{Yy,...,Y,}, 0<n <7 —1. Then for each 0 <n <, hA|Bn_1(Yn) > 0. For
n < 7, define M,, and Ny, on'V by

M(l)(v _ hYn|AUBn_1 (U) :
hA|Bn71 (Yn)

G(4, B)hy, auB,_, (v)
M(Q) V) = h, v) + - — ’
(v) AIanl( ) G(Y,,AU anl)hA|Bn_1(Y”)

Let 0A = {v € V\A:v ~ A}. Fiz z € V. Let T, be the first n such that Y, € 0A
or hap,(z) = 0, which ever comes first. Then for every z € V, Mfll)(z) and M7(L2)(z) are
martingales up to T,.

veV;

veV.

Proof. Since for every 0 <n <7, (Y,,...,Y;) € I’V\(AUB" 1)

the rest of the proof, we need to show that, for any n > 0, ]E[M7(L+1( NYo,..., Yo,n < T.] =
MT(L])( ), j = 1,2. Suppose n < T,. Let S, = {w ~ Y, : hyp,(w) > 0}. For each w € S,
define

q D () = M 9(2) (v) = hap, (v) + G (A, Bn)hwjaus, (v) ‘
i haB, (w) T I n G(w, AU Bp)hag, (w)

From Lemma [6.2] we have

, we have hyp, ,(Yn) > 0. For

E[MT(L]—FI( )|Yba s 7Yn7n < Tz] -

h ),
> wes, Pas, (v )9(, (v ), =12

ZwES A|Bnp ’LU)

Let g(j )( ) denote the righthand side of the above formula. From Lemma for each w € S,,,
g,(”)U =0on AU B, Ag,(ﬁq)u =0on V\(AUB,U{w}), > ca Ag(l) (v) =1, and Ag,(iz)u(w) =
—1/hyp, (w). Thus, gg) =0on AU B,, Ag,(ll) =0on V\(AUBL,USL), > 1ca Agg)(v) =1,
and Agg)(v) =—1/3 es, hap, (w) for every v € Sy,.

IfS, ={w~Y,:weV\B,}, wedefine gﬁf) on V such that Zyg)(Yn) = ¢V, +
1/ ZweSn hA\Bn( w), and g( )( ) = g,(ll)(v) forv#Y,. Since Y,, & A, Y,, # A, and B, \ {Y,,} =
B,,_1, from the previous paragraph, we have §£L1) =0on AUB,_1, Aﬁg) =0on V\ (AUB,),
and ) o4 A'gv,(Ll)(v) = 1. This shows that ﬁél) = Mfll_)l Now since hyjp,(2) > 0, we have
z# Yy, so gﬁll)(z) = Zj,(@l)(z) = M(l_)l(z).

n

If S, G {w~Y,:weV\B,}, the situation is more complicated. We need to modify the
(1)

values of g5’ at more than one point. Let V,, denote the set of vertices v € V'\ B,,_1 such that
every X € FV\B" ' must pass through Y,,. Here Y;, € V;, by definition. Then we define

I () = 9 (0) + Luevi by B (v)/ D happ, (w)

wESn

o7



One may check that ’g“ﬁf) = Mrsljl Since hyp, (z) > 0, we have z ¢ V,, so gg)(z) = 5,(3)(2) =
Mle_)l(z) So the proof is done for j = 1.

The proof for the case 7 = 2 is similar. Define gg) similarly. Then gg) =1on A4; g,(?) =0
on By; Agg) =0on V\(AUB,US,);and > 4 Ag,(lz) (v) = 0. Moreover, we have Ag}f)(fu) =
—G(A,Bn)/ > wes, hajp, (w) for every v € Sy,. Define V,, as before. By modifying the values

of gg) on V,, we get a new function @(12), which is equal to Méz). Since hyp, () > 0, we find

that Mg)(z) = gf)(z). O

Remark. Note that hyp, (2) = 0 means that the path X, ..., X, disconnects z from A.

6.4 Observables for SLE,

Recall the following two statements which were proved earlier.

1. Let g; be the chordal Loewner maps driven by \; = v/2B;. Then for every fixed z € H,
M == —Im m, 0 <t < 1, is a local martingale.
2. Let g; be the radial Loewner maps driven by A\; = v/2B;. Then for every fixed z € D,
(2
M; := Re Zu%g;((j)), 0 <t < T,,is alocal martingale.

Suppose ¥(t), 0 < t < oo, is a radial SLEg trace in a domain D from a € 9D to b € D. Then

Conf
there is W : (D; 1,0) 23 (D;a,b) and a standard radial SLEy trace /8 such that v = Wo 3. For

each ¢ > 0, there is a unique Poisson kernel function in D \ (0, ¢] with the pole at ~(¢) which
is normalized by P;(b) = 1. Then Q; := P, o W is a Poisson kernel in D\ 5(0, ¢] with the pole

at B(t) which is normalized by Q:(0) = 1. So Q:(z) = Re 24012 From the above result, for

elrt —g(z)
any z € D, Py(z) is a local martingale up to the time that v visits z.

Suppose (t), 0 < t < oo, is a chordal SLEy trace in a domain D from a € 9D to b € 9D.

Conf
Then there is W : (D;0,00) 2 (D;a,b) and a standard chordal SLEs trace 8 such that

v = W o 8. Suppose that 0D is analytic near b. Then W may extends analytically to a
neighborhood of b. Suppose W(z) = b+ ¢ near co. Let n; denote the inward unit normal
vector at b. Then n, = —iﬁ. For each ¢t > 0, there is a unique Poisson kernel function in
D\ ~(0,t] with the pole at «(¢) which is normalized by %Pt(b) =1. Then Q; := P oW is a
Poisson kernel in D\ (0, ¢] with the pole at 5(¢). Moreover,

P(b+t — Pi(b
1 =1lim (b + tn) 1(0) = lim = lim
t—0 t t—0 t t—0

ile|
= lim @ t )
t—0 t

Qi o Wb+ tny) 5 Qt(ﬁ)
t

On the other hand, suppose A: is the driving function for 5, and ¢; are chordal Loewner
maps. Then Ry := —Im is a Poisson kernel in H \ 3(0,¢] with the pole at 5(t). Since

Rt(%) 1

t le®

1
gt(2)—Ae

gt(2) = 24+ O(1/z) as z — oo, we have lim;_,

Thus, Q¢ = |¢|R;. From the above
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comment we know that, for any z € H, R;(z), 0 <t < 7, is a local martingale. Thus, for any
z € D, Pi(2) = |¢|Q{(W~1(2)) is a local martingale up to the time when z is visited by 7.

6.5 Scaling limits

Now we study the convergence of LERW to SLEs. Let D be a simply connected domain. For
simplicity, suppose that D is a lattice domain in Z2, which means that D is a union of some
edges in Z2. Let 6 = 1/n for some n € N. Then D is also a lattice domain in 6Z2. Let D denote
the subgraph of 672 whose vertices and edges are those of 6Z2 that lie on D. The vertices of
D? that lie on 9D are called boundary vertices, other vertices of D? are called interior vertices.
Let D% and int D° denote the set of all boundary vertices and interior vertices, respectively,
of DY,

We first construct LERW that converges to radial SLEs. Let a € 0D NZ? and b € D N Z2.
Then for any § € {1/n : n € N}, a is a boundary vertex of D°, and b is an interior vertex of
D?. Suppose a is not a corner of D. Let X° = (Xy,...,X,) be LERW (D% a — b|0D° \ {a}).
Extend X to be a function defined on [0, 7] by linear interpolation. So X‘S(t), 0<t<rT,isa
random simple curve with X°(0) = a, X°(r) = b, and X%(t) € D for 0 < t < 7.

Theorem 6.1 [Lawler-Schramm-Werner| For every ¢ > 0, there is 69 > 0 such that if
d < do, there is a coupling of the LERW curve X (t), 0 <t <7, and the radial SLE, trace (8 in
D from a to b, such that for some continuous increasing function u : [0,7) — [0,00),

P[ngfoo B(t) = X (' (1) > ] <e.

A coupling of two random processes X and Y is a pair of random processes X’ and Y’ which
are defined in the same probability space such that X and X’ have the same distribution, and
Y and Y’ have the same distribution. When we say that distributions of two random processes
are close, we usually mean that there exists a coupling of the two processes such that the
two random processes in the coupling are close. Since the two processes in the coupling are
defined in the same probability space, we may compare them pointwise. In the statement of
the above theorem, we also use a time-change function w. This is because the LERW curve is
not parameterized by capacities.

One of the main idea in the proof of Theorem [6.1] is to compare an observable for LERW
with an observable for radial SLEs. For any 0 < n < 7, there is a positive function F,, defined
on the vertices of D®, which satisfies the following

1. P,=00n 0D’ U{Xy,...,Xn 1};
2. AP, =0onint D\ {Xo,..., X, };

3. Po(b) = 1.
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We have proved that, for any fixed vy € int D?, P, (vp) is a discrete martingale up to the time
that the LERW curve visits a neighbor of b or disconnects vy from b.

Then we observe that, when ¢ is small, P, is close to the Poisson kernel function @,
in D\ X[0,n] with the pole at X,, normalized by @Q,(b) = 1. In fact, the following lemma
describes the closeness between P, and (),,. Let X % be the family of paths on D9 of the form X =
(Xo, ..., Xp) such that Xo = a and J;_; (X;-1, X;] C D. For each X = (Xo,...,X,) € X9 let
Dx = D\U?Zl(X j—1,X;], which is still a simply connected domain. Let Py denote the function
on D?, which vanishes on dD° U {Xy, ..., X,,_1}, is discrete harmonic on int D\ {Xj, ..., X,},
and satisfies Px(b) = 1. Let @ x denote the Poisson kernel function in Dx with the pole at X,
normalized by Qx(b) = 1. For a Jordan curve J in C, we will use € to denote the bounded
component of C\ J.

Lemma 6.6 Let J be a Jordan curve in D\ {b} such thatb € Q ;. Let K be a compact subset of
Qj. Let Xﬁ be the family of X € X° such that Qy C Dx. Then for every e > 0 there is 5o > 0
(depending on D, J, K ) such that if § < d¢, then for every X € X}s and every v € int D° N K,
|Px(v) — Qx(v)| <e.

The proof of the lemma is proceeded as follows.

1. First, assume that the conclusion is not true, then we get a sequence 9,, — 0, a sequence
of paths X(™ ¢ Xﬁ”, and a sequence of points v, € int D’» N K, such that |Px, (v,) —
Qx, (vn)| > o for some fixed g9 > 0.

2. By passing to a subsequence, we may assume that Dy, converges to some domain E in
the Carathéodory topology. We must have 0y C E C D.

3. Extend each Py, to a Lipschitz continuous function on D whose constant in each square
face is bounded by a factor times the slope of Px, on the four corner vertices.

4. Some argument on discrete harmonic functions show that the Lipschitz constants of Py,
are uniformly bounded on each compact subset of E.

5. Applying the Ascoli-Arzela Theorem, we find that Px, converges locally uniformly to a
continuous function, say f, on E.

6. Since every Py, is discrete harmonic, we may show that f is harmonic on E.

7. Some tedious argument shows that Qx,, LN f in E, which gives a contradiction.

One intermediate step in the proof of the theorem is to show that the driving function for a
time-change of the LERW curve (via radial Loewner equation) is close to the driving function
for radial SLE,. We may find W that maps D conformally onto D such that a and b are mapped
to 1 and 0. Let v° = W o X. Let u(t) = decapy(0,t], 0 <t < 7. Then 7°(u=1(t)), 0 < t < 00, is
a radial Loewner trace driven by some n°. Let g? and 5? denote the radial and covering radial
Loewner maps driven by 7°. The discrete observable for LERW can then be used to show that
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n® is close to v/2B; on a finite time interval. Lawler-Schramm-Werner proved the following

proposition.

Proposition 6.2 Let J be a Jordan curve in D \ {b} such that b € ;. Let T; be the first n
such that [X,—1,Xy,] intersects J. For every e > 0, there is g > 0 such that if 6 < &y, then
there is a coupling of 17%S and /2By such that

P[ sup \nf — By| > ¢] <e.
0<t<u(T))

To prove this proposition, we need the lemma below. Fix a small d > 0. Let Ty = 0. After
T, is defined, let T},;1 be the smallest integer n > T, such that either |1,¢,) — 7| > 4,
or u(n) — u(Ty) > d?, or n > T, whichever comes first. Then (7T},) is an increasing sequence
of stopping times and are bounded above by T;. Let An(n) = ny(1,,,) — Tu(r,) and Ap(T) =

U(Tn+1) — u(Tn)

Lemma 6.7 There is an absolute constant C' > 0 and a constant 6(d) > 0 such that if 6 < 6(d),
then for any n,
E[A ()| Fr,]| < Cd,

E[An(1)? = 28,(T)|Fr, ]| < Cd°.

The proof of the lemma is proceeded as follows.

1. Choose a Jordan curve J' C Q7 \ {b} such that b € Q. Observe that if 6 < dist(J, J'),
then X77 ¢ Xg,, where X7 is the LERW X stopped at T7.

2. One can show that, if ¢ is small enough (depending on d), then A, (T) < 2d? and |A,(n)| <
2d. So A, (T) = O(d?) and A, (n) = O(d).

3. Choose a compact subset K of € such that int K # (). The previous lemma shows that
P,(v) — Qn(v) — 0 as § — 0 uniformly in n < Ty and v € K N D°.

14, () oW (2) /" Tu(m)

4- NOte that Q'IZ(Z) = Re l—gu(n)OW(Z)/einu(n) .

So QoW ~loe!(z) = —Im c0t2(Gu(n) (2) =Nu(mn))-
5. Let K be a compact subset of Q. Let L = (¢/)"}(W(K)). From the previous lemma, we
find that, for any z € L, (Im cot2(gy(z,)(2) — Mu(z,)))neo; is close to a martingale. More

specifically, we have

E[Im cot2(gu(t,,1)(2) = Mu(Ti1)) — I cota(Gur,) (2) — Nur,)) | Fr,] = 05(1),  (6.3)

where 05(1) is some quantity which tends to 0 uniformly as § — 0.
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Let S, = u(T,), n > 0. We will estimate the quantity

1= cota(gs, 41 (2) = 1s,11) — cota(gs, (2) — ns,)

We have I = I + I + I3, where S), € (Sp, Sn+1), and

I = coty(gs, (2) = ns,) - (G541 (2) = 95,.(2)) = (NS,41 — 15,5

I = %C%’@sn(z) = 115,) (85,41 (2) = 85, () = (M50 = 05,)]%

I3 = écotg'@s;l(z) — 1) (G841 (2) — G5, (2)) = (08,41 — 15,1

There is an uniform upper bound for |coty'(gs: (2) — ns;)|. From the ODE for g;, there is
S/’ € (Sp, Sn+1) such that

GSn11(2) = gs, (2) = cota(gsy (2) — nsn) - An(T).

There is an uniform upper bound for | cota(gsr (z) — ngy)|. Since Ay (T) = O(d?) and Ay (n) =
O(d), we have I3 = O(d®). A similar argument gives

cota(gsr (2) — nsn) = cota (s, (2) — 1s,) + O(d).

So we have
G811 (2) — s, (2) = cota(Ts, (2) — ns,) - An(T) + O(d?).
Thus,
I = coty(gs, (2) —ns,) - [cota(Fs, (2) = 1s,) - An(T) = An(n)] + O(d*);

Iy = 3 coth(Gs, () — 1s,) - [eota(dis, () — 1s,) - An(T) — Ay ()] + O(d).

2
Since cotl = — cotg cotf, we get
- 1 -
I = cot}y(§s, (2) = ns,)[58n(0)* = An(T)] = coty(gs, (2) = ns,) - An(n) + O(d*).

From (6.3)) we find that, for any z € L, if § is small enough (depending on d),

1

n cot§ (G, (2) — ns,) - EL5 An(n)? = An(T)| 1,

—Im coth(gs, (2) — ns,,) - E[AL(0)| Fr,] = O(d®).

Since int K # ), we have int L # (), the above formula finishes the proof of Lemma In fact,
one may prove and use the following facts:

1. Imcoth(gs, (2) — ns,) and Imcot}(gs, (z) — ns,) are bounded in absolute value by an
absolute constant for any n and z € L.
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2. There is an absolute positive constant C' such that for every n, we may find 21,20 €
L, such that the absolute value of the determinant of the 2 x 2 matrix composed of
Im coth(gs, (2j) — ns,.) and Imcoty(gs, (2;) — ns,.), 7 = 1,2, is at least C.

The next step is to apply Skorokhod’s embedding theorem shown below.

Theorem 6.2 If (M,) is a martingale with My = 0 and |M,, — M,_1| < d, then there is a
standard Brownian motion By, and an increasing sequence of stopping times 0 =19 < 11 < 19 <

- such that (Mo, My, ..., M,,...) has the same joint distribution as (Bry,Br,...,Br,,...).
Moreover, one can impose that

E[rn — Tn_1|B[0, 7u_1]] = E[(By, — Br,_,)?|B[0, Tn_1]]- (6.4)
Tn < inf{t > 7,1 :|By — B, ,| > d}. (6.5)
Proof of Proposition Define a martingale (M,,) by My = 0 and
Mp = My—1+ An-1(n) — E[An—1(n)|Fr,_,], n>1.

Recall that A,_1(n) = ns, —7ns,_,- From Lemma by choosing ¢ small enough, we can
ensure that |M,, — M, _1| < 2d. Applying Skorokhod’s embedding theorem, we find a standard
Brownian motion B; and an increasing sequence of stopping times (7,)0%, for B; such that
(Mo, My, ..., M,,...) has the same joint distribution as (B, Br,,...,Bs,,...). Moreover, we
have |B; — B, _,| < 2d for t € [Tp—1, ]

Let S; = u(Ty) and N = [10S;/d?]. Then S; is uniformly bounded above, and S; < Nd>.
We first focus on M, 0 < n < N. From Lemmawe have M,, —ns, = O(nd®) = O(S;d) =
O(d) for 0 <n < N. Recall that |n; —ns, ,| < 2d for t € [S,,—1,5,]. Using the continuity of
Brownian motion, we suffice to show that when § and d are small, with probability close to 1,
Sup,<n |Tn — 25, is small and Ty = T);.

Define another martingale (N,,) by Ny = 0 and

N, =N,_1+ (Mn - Mn71)2 - E[(Mn - Mn71)2|]:Tn71]7 n > 1.

Since My, —M,,—1 = A,—1(n)+0(d?), and A,,_1(n) = O(d), we have (M,,—M,,_1)? = A,_1(n)*+
O(d*), which implies that

E[(My — My-1)*|Fr, ] = E2801(T)| Fr,,_,] + O(d).

Thus, Ny, — N1 = Ap1(n)? — E[2A,_1(T)|Fr,_,] + O(d®).
Define another martingale (O,,) by Oy = 0 and

Op = Op_1 +20,1(T) - ER2A,1(T)|Fr,, 4], m>1. (6.6)

Let P, = N,,—O,,. Then P,—P,_1 = A,_1(n)>—2A,_1(T)+0O(d®). Define another martingale
(Qn) by Qo = 0 and

Qn = anl + (B‘rn - B‘rn_l)2 - (Tn - Tnfl)a n > 1.
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Let R, = P, — Qn. Then R, — Ry,1 = (Tn — Tno1) — 28,1(T) + O(d®). Thus, R, =
T — 28, + O(Nd3), n < N. Since |B,, — B, _,| < 2d, we have E[7,, — 7,_1|B[0, 7,_1]] = O(d?).
Thus, E[(R, — R,_1)?|B[0, 7,_1]] = O(d*), which implies that,

N
E[R%] =Y E[E[(R, — Ru-1)?|B[0, 7-1]]] = O(Nd*).
n=1

Applying Doob’s inequality to the martingale P,, we get
Plmax |Ry| > d'/?] < CP[|Ry|? > d] = O(Nd®) = O(S;d) = O(d).

This means that, with probability greater than 1 — O(d), |7, — 2S,| = O(d"/?) for n < N.

Suppose Ty < Tj. Then for n < N, either A, _1(n)?> > d? or A,_1(T) > d?. Since
E[A,_1(n)? — 2A,1(T)|Fr,_,] = O(d?), we get E[2A,_1(T)|Fr,_,] > d?/2 for n < N if d is
small. From we have |Oy — 2Sy| > Nd? > 105, which implies that Ox > 9S;. On the
other hand, from we have O,, — O,,_1 = O(d?), which implies that

N
E[O%] =Y E[(On — On-1)’] = O(Nd') = O(S,d*) = O(d?).
n=1

Thus, P[Oy > 95;] = O(d?). So P[Ty =Ty] =1—0(d?). O

Proposition implies that, when § is small, for any ¢t < S := u(Ty), under some suitable
coupling, D\ 7*(u~1(0,1]) is close to D\ v(0,¢] in the Carathéodory topology, where ~(t) is a
standard radial SLEy curve. To finish the proof of Theorem [6.1 one needs to use some more
complicated properties of LERW. Roughly speaking, it says that LERW tends to not intersect
itself uniformly in the mesh size §. In more details, For z € D and R > r > 0, an L(z;7, R)
loop on the LERW X? is a subcurve of X9, whose two end points stay within distance r from z,
and which contains a point w which has distance > R from z. The fact is that, for any z € D
and R > 0, the probability that X° contains an £(z;7, R) loop tends to 0 as r — 0, uniformly
in . The proof uses relation between LERW and uniformly spanning tree, and this result can
then be used to finish the proof of Theorem Here we omit the details and refer the reader
to the paper by Lawler, Schramm, and Werner.

At the end of this subsection, we briefly discuss the LERW that converges to chordal SLE,.
Let the lattice domain D and a € 0D N Z? be as before. Now let b € 9D N Z? be such that
b # a and b is not a corner of dD. Consider the LERW(D?% a — b|0D° \ {a,b}): X° =
(Xo,...,X7). The conclusion is that Theorem still holds here if “radial” is replaced by
“chordal”. Let P, denote the function on D?, which vanishes on dD° U {Xy,..., X, 1}, is
harmonic on int D°\ { X, ..., X,,}, and is normalized by AP, (b) = 1. Then for any z € int D?,
(Pn(2)) is a martingale up to a stopping time. Let b’ be the unique neighbor of b in int D°.
Then AP, (b) = 1 means that P, (V) — P,(b) = 1. One can show that, when 0 is small, P, is
close to the Poisson kernel @, in D,, with the pole at X,,, normalized by 0n,Qn(b) = 1. The
rest of the proof follows the argument for the convergence to radial SLE,.
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6.6 Uniform spanning tree and Wilson’s algorithm

A tree is a connected graph without loops. For any two vertices on a tree, there is a unique
simple path connecting them. Let G = (V| E) be a finite connected graph. A subgraph H of G
is called a spanning tree on G if H is a tree and contains all vertices of G. The total number
of spanning trees on G is finite. A uniform spanning tree (UST for short) on G is a random
spanning tree chosen among all the possible spanning trees on G with equal probability. UST
is closely related with LERW via Wilson’s algorithm.

Theorem 6.3 [Wilson’s algorithm]
Let G = (V, E) be a finite connected graph.

(i) Let T be a UST on G. For any v,w € V, the only simple path from v to w on T has the
distribution of LERW(G;v — w).

(ii) Suppose V.= {vg,...,vn}. Let To = {vo}. When T} is constructed for some k < n, we
let Ti11 be the union of Ty, and all vertices and edges on LERW(G;vg11 — Ty). Then T,
has the distribution of a UST on G.

Note that Wilson’s algorithm immediately implies that the time-reversal of LERW (v — w)
has the same distribution as LERW (w — v). In fact, the following proposition is true.

Corollary 6.1 Let S CV anda # b e V' \S. Then the time-reversal of LERW(a — b|S) has
the same distribution as LERW(b — al|S).

Proof. First we define RW’(G;v — A|B) to be obtained from RW(G;v — A|B) by re-
moving the initial part of the path up to the last time the path visits v. So the distribu-
tion of RW'(G;v — A|B) is supported by FXI\L‘(AUBU{U}). It is clear that the loop-erasure of
RW’(G;v — A|B) is the same as LERW(G;v — A|B).

Divide S into the disjoint union of two subsets A" and B’. Let A = A'U{a} and B = B'U{b}.
Let G 4,p be obtained from G by identifying all vertices in A as a single vertex, say v4, and
identifying all vertices in B as a single vertex, say vg. Consider the UST on G4 p. There is a
unique simple curve, say Y, connecting v4 and vg. We order this path such that it starts from
v4 and ends at vp. From Wilson’s algorithm, Y is LERW(G 4 g;v4 — vp). Thus, Y = LE(X),
where X is an RW’(Ga p;va — vg). We may also view X as a random path on G, whose
distribution is supported by FX\éAUB). The probability that X follows any path W &€ FZ\E(;AUB)
is CPy(W) for some constant C' > 0. If we condition on X such that its initial vertex is a
and its end vertex is b, then the resulting random path, say X, 3, is an RW’(a — b]S). Thus,
LERW (a — b|S) can be obtained by erasing loops on Xg ;. This shows that LERW(a — b[S)
can be obtained by conditioning Y such that it starts from a and ends at b. Let Y® denote
the time-reversal of Y. Then Y is LERW(G A.B;UB — va). A similar argument shows that,
LERW (b — a|S) can be obtained by conditioning Y such that it starts from b and ends at a.
This finishes the proof. O
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The above result may be applied to the LERW we studied before. Recall that the LERW
that converges to chordal SLEg(D;a — b) is LERW(D?%;a — bl0D? \ {a,b}, where a # b €
0D NZ2. From the above proposition we immediately see that the time-reversal of this LERW
is LERW(D%;b — a|0D° \ {a,b}. From the convergence of LERW, we see that chordal SLE;
satisfies reversibility. Also recall that the LERW that converges to radial SLEs(D;a — b) is
LERW (D% a — b|0D° \ {a}, where a € 9D NZ? and b € D N Z2. This LERW is the time-
reversal of LERW (D% b — a|0D?\ {a}, which can be obtained by conditioning LERW(D%; b —
8D5) on the event that the path ends at a. Note that the distribution of the end point of
LERW (D?; b — 9D?) is the discrete harmonic measure on dD° viewed from b. As § — 0, this
distribution tends to the continuous harmonic measure on D viewed from b (the distribution of
the first hitting point on 0D of a planar Brownian motion started from b). Thus, we conclude
that the time-reversal of LERW(D%;b — 9D%) converges to radial SLEy(D;a@ — b) up to a
time-change, where @ is a random point on 9D, whose distribution is the harmonic measure on
0D viewed from b. This is the exact statement in the paper by Lawler, Schramm, and Werner.

To prove Theorem [6.3] we introduce another algorithm to generate a UST on GG. Fix vy € V.
Let X = (Xo,X1,...,Xn,...) be a simple random walk on G started from vg. Construct a
sequence of graphs (7),) as follows. Let Ty = {Xo}. Let T},41 be the union of 7}, and the vertex
Xp+1 and the edge (X, Xp+1) if X,41 has not been visited by Xo, ..., Xp; let Tp,p1 = T, if
Xnt1 € {Xo,...,Xn}. Note that each T), is a tree. Let N be the covering time for X, i.e., the
first n such that X visits all vertices on V. Note that a.s. IV is finite. The following theorem
was discovered by A. Broder and D. J. Aldous independently.

Theorem 6.4 T has the same distribution as the UST on G.

Proof of Wilson’s Algorithm using Theorem 6.4} (i) Let X be a random walk on G started
from w. Let 7, be the first time that X reaches v. Construct the family (7},) as before the above
theorem. From Theorem[6.4] T7, is a subtree of the UST on G. Since v, w € T, , the only simple
path on the UST connecting v and w is contained in 7r,. Let Y = (X, X7, —1,..., X1, X0) be
the reversal of the initial part of X up to 7,. So Y starts from v and ends at w. Let Z be the
only simple path on T’ from v to w. We claim that Z = LE(Y').

Write Z = (Zy,...,Z,). For 0 < m < v, let 7,,, denote the first n such that X,, = Z,,.
Then 79 > 71 > --- > 7. In fact, if n < m < v, since the tree T, contains Xo = w = Z, and
X;, = Z,, it contains the path (Z,,...,Z,), which implies that Z,, € T,,, i.e., 7, < 7,,. Let
U =Ty — Tm, 0 < k <wv. Then ug < ug < -+ < uy andYu(k) = 7y, 0 <k <m. To prove that
Z = LE(Y), we suffice to show that for any j, {Zo,...,Z;} N{Y, : n > u;} = (. This is true
because {Y,, : n > u;} = {X, : n < 75} and X does not visit {Zp, ..., Z;} before 7; thanks to
the decreasing property of (7;).

It remains to show that Z = LE(Y") has the distribution of LERW (v — w). We suffice to

show that Z is a Laplacian random walk. Note that the distribution of Y is supported by FX 1\1,{1]},

and for every W € FKi\U{U}, PlY =W] = P(-}(W)- Let W = (Wo,..., Wy, Wnyi1) € FZ}/{(){?}} and

66



W' = (Wp,...,W,). From Lemma [6.1] we have

P[Z; =W;,0<j<n+1]= > Py(U)
very W w<LE®U)

_ 3 Py (UW). 3 Py(U®)

V\{v,w V\{w, " _
U(l)EFU,},‘{,n Lwri=LBWU®) U(2>€FW\n{7w]}J_O,U1(2)=Wn+1
2/
=Cu ), RU®)
V\{W;}7_
2/ J15=0
U( )GFWn+1,w
= Cn > o) > AyB)
VAW, gU{w)) Ber” \Witi=o
Wniy1w ww
= C,C > Piy(A) = CoChuiwe,... Wy Wat1),
VAEW; Y gu{w})
AeFWnHjU’

where C,, = Z{P(,}(U(l)) R IAON= FX;E:M},W’ = LE(UW)} depends only on Wy, ..., Wy,

and C = ) {Py(B) : Befgﬁwj}?:o} is a constant. Thus, P[Z; = W;,1 < j < n| =

> aw, CnChoy|fwy,...w,} (@), which implies that -

FlZnir = Wan|Z; =Wyl sjsn]=5— = (W W} (@)
a Wi, Tw|{Wo,... W,

This shows that Z is a Laplacian random walk from v to w. So (i) is proved.

One may prove (ii) using the induction on the number of vertices. Recall that Tp = {vo}
and T is LERW(v; — vg). Let G’ = G/T1, i.e., identifying all vertices on T7 as a single vertex.
Then the number of vertices of G’ is less than that of G. Note that the UST on G conditioned
to contain T agrees with the UST on G’, and the LERW on G whose target is S D T agrees
with the LERW on G’ whose target is S/T7. We leave the details to the interested readers. O

Proof of Theorem We introduce the notation of rooted spanning trees. A rooted
spanning tree on G is a spanning tree on G with a marked vertex called the root. A uniform
rooted spanning tree (URST) on G is a random rooted spanning tree chosen among all the
possible rooted spanning trees on G with probability proportional to the degree of the root. By
forgetting the root, we get a natural map from the set of rooted spanning trees to the set of
spanning trees, which maps a URST on G to a UST on G.

Let P denote the set of infinite paths X = (Xo, X1,...) on G. Let P* denote the set of
X € P such that X visits all vertices on G. The construction before the statement of Theorem
[6.4] gives a map Fr from P* to the set of spanning trees on G. In fact, the construction also
gives a map Frr to the set of rooted spanning trees on G if we set the first vertex Xy to be
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the root. Also note two facts: every rooted spanning tree can be constructed in this way; the
construction depends only on (Xj,...,Xy) if N is the covering time.

Now we construct a directed graph Grr whose vertices are rooted spanning trees on GG. For
two rooted spanning trees (71, v1) and (T%,v2) on G, we draw a directed edge from (77, v;1) to
(Ta,v2), and write (Th1,v1) | (T2, v2) or (T2, v2) T (T1,v1), if v1 ~ vy and T = T1 U (v1,v2) \ e,
where e is the first edge on the simple path on 77 from v; to vy. Every vertex (T,v) in Ggrr
has exactly deg(v) downward neighbors and deg(v) upward neighbors. It is easy to see that if
Ty = Frr(X) for X = (Xo, X1,...) € P*, then Ty = Frp(X"2), where X2 = (vg, Xo, X1,...).
This shows that we may travel from any rooted spanning tree on G to another rooted spanning
tree on G along directed edges in Ggr.

A time-homogeneous random walk on G is a random walk on G started from a random
vertex whose distribution is proportional to the degree of the vertex. Let X be such a random
walk. We claim that Frp(X) is a URST on G. Let Y = (v, X0, X1,...), where v is chosen
among neighbors of X with probability 1/deg(X) each. Then Y has the same distribution
as X. So Frr(Y) has the same distribution as Frr(X). The above paragraph shows that
Frr(X) | Frr(Y) and Frr(Y) is chosen among all downward neighbors of Frr(X) in Grr
with equal probability 1/ deg(X).

For each rooted spanning tree (T',v) on G, let p(T,v) = P[Frr(X) = (T,v)]. Since Frr(X)
has the same distribution as Frp(Y'), we have

p(T,v) = Z p(GS, w) :

(Syw):(S,w)d(Tw)

Let ¢(T,v) = p(T,v)/deg(v). Then ¢(T,v) = ﬁ(v) > (Sw)l(Tyw) 4(S,w). This means that the
value of ¢ at every vertex in Grr is equal to the average of its upward neighbors. So ¢ is
constant on G gy, which shows that p(7,v) is proportional to deg(v). Thus, Frp(X) is a URST
on G as claimed.

Finally, note that a time-homogeneous random walk conditioned to start from v € V is just
a regular random walk started from v. Thus, if X is a random walk on G started from v, then
Frr(X) is URST on G conditioned to have root v. By forgetting the root, we find that Fr(X)

is just a UST on G. O

6.7 UST Peano curve

Let D be a rectangle with corners at (0,0), (m1,0), (m1, m2), (0,ms2), where mi, my € N. Let
§ € {1/n:n € N}. Let D? as before. Let I° be the set of edges of D° on the left side and upper
side. Define the dual Dfrs to be a subgraph of (§/2, —/2) + 6Z? by shifting D° by (§/2, —6/2).
Let I? be the set of edges of DJ‘? on the right side and lower side. Note that every edge e of D?
not in I9 intersects exactly one edge, called the dual of e, of DJ‘E not in Lf, and vice versa.

There is a one-to-one correspondence between the set of spanning trees on D? that contain
all edges in I° and the set of spanning trees on D]‘E that contain all edges in If . IfTis a
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spanning tree on DY that contains all edges in I°, the corresponding tree, called the dual of T,

is composed of all edges in If and all edges in fos whose dual edge in D? does not lie on 7.

Let T be a UST on D° conditioned to contain all edges in I°. Let T} be its dual. Then T%
is a UST on D‘Ts conditioned to contain all edges in If. Consider the graph (6/4, —6/4) 4+ D/2.
Let a = (6/4,—6/4) and b = (n+6/4,m —6/4) be two vertices of (§/4, —5/4) + D%/2. There is a
unique path, say X = (X, ..., X}), on (6/4,—8/4)+D?? from a to b, which is disjoint from all
edges in T" and T}. In fact, X visits every vertex of this graph. So k = (2my +1)(2m2 +1) — 1.
This path is called a UST Peano curve. As before, we extend this path to a continuous curve
defined on [0, k] by linear interpolation.

Theorem 6.5 [Lawler-Schramm-Werner]

For every € > 0, there is dg > 0 such that if 6 < g, there is a coupling of the UST Peano curve
X(t), 0 <t <k, and the chordal SLEg trace 3 in D from a to b, such that for some continuous
increasing function u : [0, k) — [0, 00),

P[Ogipoo B(t) = X (' (1) > ] <e.

Remark. The theorem implies that chordal SLEg satisfies reversibility. It together with
Wilson’s algorithm implies that the boundary of a chordal SLEg hull stopped at swallowing a
given point is an SLEs-type curve. This is one example of the duality property of SLE, which
says that the boundary of an SLE, (x > 4) hull is an SLEg/,, curve.

Here we are not going to give details of the proof, but only introduce the observables that
are used. Let T be the UST in the setup. Let X be the Peano curve. Fix a vertex zy of D.
There is a unique simple path from zg to I% on T. Let &.y,u denote the event that the only
simple path on T joining zy to I’ has one end point that lies on the upper side of D. Then
M, =E[lg,, ,|Xo,...,Xp,] is a bounded martingale.

We will interpret M,, using discrete harmonic functions. Let Vf denote the set of vertices
of D that lie on the upper side of D. Let Vl‘s denote the set of vertices of I° minus Vf . From
Wilson’s algorithm, the simple path on T joining zo to I® is LERW(D?; zg — I°). Thus, the
end point of this path is the same as the end point of RW(D5; zZo — I‘s). Thus, My =P[&,, ] =
h DS V|V (20). When ¢ is small, M is close to the bounded harmonic function h on D, which
equals 1 on the upper side of D, equals to 0 on the left side of D, and whose normal derivative
vanishes on the lower side and right side of D.

Suppose Xo, ..., X, are given. Let E,, denote the set of edges of D? that are intersected by
[(Xj-1,X;], 1 <j<n. Let EIL denote the set of edges of D]‘f that are intersected by [X;_1, X;],

1 <j < n. Let E¥ denote the set of edges of D? that are dual of the edges in E}. Then T
must not contain any edge in Ej, and T} must not contain any edge in EJL So T' must contain
every edge in E}. Let Gog = D% and G,, = Gy \ Ey. Let T}, denote the union of the edges in E
together with those on the upper side and left side. Then T}, is a subtree of D?. Conditioned
on Xo,...,X,, T is a UST on G, conditioned to contain 7;,. Thus, M, = hGn;Vj\Tn\Vg('ZO)~
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We may construct a continuous harmonic function f,, which is close to the discrete harmonic
function hg,,.vsi7,\vs(20) when ¢ is small. First, let R be the open rectangle with vertices
(0,—6/2), (m1+9/2,-8/2), (m1 4+ 6/2,mz), (0, m2). Remove the closed triangle with vertices
(0,0), (0,—9/2), (6/2,—6/2) and the closed rectangle with vertices (mq,m2), (m1 + /2, ma),
(my1 +9/2,ma —6/2), from R. Now Xy = a and b are two boundary points of Dy.

Note that for every vertex v in (§/4, —30/4) 4 D?%/2, there is a unique pair (v',v?) such that v’
is a vertex in D%, v? is a vertex in D]‘f, and v = (v'4v?)/2. So the path (Xy,..., X}) corresponds
to a sequence of vertices (X{,... ,X,i) on D? and a sequence of vertices (X3,... ,X,%) on Dfrs.

One may notice that for each 1 < s < k, either X! = X! | or X2 = X2 ,. So there is a
closed triangle with vertices X}, X! |, X2 |, X2 Let Ax, denote this triangle. Let D,, =
Do\ U,_; Axs. Then for n < k, D,, is a simply connected Jordan domain whose boundary
contains X, and b. Let I} denote the boundary arc of D, from X, to b in the clockwise
direction, and let I] denote the other boundary arc of D,, between X,, and b.

Let T, denote the first n such that zp € Ax,. Let T}, denote the first n such that Ax,
intersects the upper side of Dy. Then for n < T,, ATy, 29 € Dy, and I}} contains the boundary
arc I of Dy from (0,m2) to b in the clockwise direction. Let h,, denote the bounded harmonic
function in D,, which equals 1 on I, equals 0 on I\ I, and whose normal derivative vanishes
on I,. Then the value of M,, = hg, .vs1,\vs(20) is close to hy(zp) when § is small.

We now compare the above result on UST with the following result on chordal SLEg.

Proposition 6.3 Let D be a simply connected domain with three distinct boundary points
a,b,c. Let B(t), 0 < t < oo, be chordal SLEg in D from a tob. Let Dy = D\ 3(0,t]. Let
I.;, denote the boundary arc of D between c and b that does not contain a. Let T denote the
first t such that B(t) € I.p. Fort <Ty, let I} denote the boundary arc of Dy between B(t) and
b that contains I.p, and let I? denote the other boundary arc of D; between B(t) and b. For
0 <t < T, let hy be the bounded harmonic function in Dy, which equals 1 on I.j, equals 0 on
Itl \ I.p, and whose normal derivative vanishes on If. Fixz z9 € D and let T,, denote the first
time that B wisits zg. Then hy(z0), 0 <t < Th ATy, is a continuous martingale.

Proof. We may assume that D = H, a = 0, ¢ = 0o, and b > 0. Suppose the driving function is
At = /KBy, and g; are the chordal Loewner maps driven by A. Suppose W maps H conformally
onto the half strip {z € C: Rez < 0,0 < Im z < 1} and maps 0,1, 00 to i, —00, 0, respectively.
Then hy(z) = Im W(gt(z)_kt). One can show that W(242=21) ig a local martingale for any

t(b) = At gt(b)—A¢
z € H. We leave the details to the reader. O

Open problems.
1. Construct a lattice model which generates a curve that converges to radial SLEg.

2. Let T be a UST on D? (without conditioning). Describe the scaling limit of the Peano
curve surrounding 7". Note that if we let D? to be the subgraph of (§/2,8/2) + §Z?
restricted in the rectangle {(x,y) : =0/2 < ax <m;+0/2,—/2 <y < ma+4/2}, then the
dual of T is a UST on D? with all vertices on the boundary identified as a single vertex.
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3.

Suppose D is a doubly connected lattice domain with boundary components Cy and Cs.
Let T be the UST on D?/CY, i.e., all vertices of D? on C} are identified as a single vertex.
Describe the scaling limit of the Peano curve surrounding 7.

. Let G = D?/(C1UCy), i.e., all vertices of D° on C; U Cy are identified as a single vertex.

Let T be the UST on G. Since C7 and (5 are identified as the same vertex, there is no
path on T connecting C7 with C5. So T has two connected components. Now the dual
of T is no longer a tree. Instead, it contains a unique simple loop separating C7 and Cs.
Describe the scaling limit of this simple loop.

Remark. In the last problem, if the vertices on C; and the vertices on Csy are identified as two
distinct vertices, then there is a unique simple path on T connecting C7 with C5. The scaling
limit of this path is now well understood, which is an annulus SLEy curve.

Because of the limited time, the following interesting topics about SLE are not covered in
this course.

1.

2.

10.

11.

The existence and continuity of the SLE trace. S. Rhode and O. Schramm.

The Hausdorfl dimension of the SLE trace. V. Beffara.

. Intersection components of planar Brownian motions. G. Lawler, O. Schramm, and W.

Werner.

. Convergence of critical site percolation on triangular lattices to SLEg. S. Smirnov.

. Convergence of discrete Gaussian free field contour line to SLE4. S. Sheffield and O.

Schramm.

. Convergence of critical Ising models to SLE3 and SLE;¢/3. S. Smirnov.

Natural parameterization of SLE. G. Lawler, S. Sheffield and W. Zhou.

. Brownian loop soup. W. Werner and G. Lawler.

. Conformal loop ensemble. W. Werner and S. Sheffield.

Extending SLE to multiply connected domains.

Reversibility of SLE (k < 4) and duality of SLE.

71



	Loewner Equations
	Chordal Loewner equation
	Radial Loewner equation

	Conformal Mappings
	Koebe's 1/4 theorem and distortion theorem
	Extremal length
	Boundary behaviors of conformal maps
	Carathéodory convergence

	Hulls and Loewner Chains
	Hulls
	Deterministic Loewner Evolution

	Stochastic Analysis
	Stochastic processes
	Brownian motion
	Itô's integration
	Quadratic Variation
	Itô's formula
	Time-change
	Bessel process
	Complex valued Itô's formula
	Girsanov Theorem
	Some applications
	Phase transition

	Locality and Restriction
	Locality property
	Restriction property
	Equivalence between chordal SLE and radial SLE
	Critical percolation and Cardy's formula
	Self-avoiding walk and reversibility of SLE8/3

	Loop-erased Random Walk and Uniform Spanning Tree
	Simple random walk
	Loop-erased random walk
	Observables for LERW
	Observables for SLE2
	Scaling limits
	Uniform spanning tree and Wilson's algorithm
	UST Peano curve


