
1 Loewner Equations

1.1 Chordal Loewner equation

Let T ∈ (0,∞] and λ ∈ C([0, T )), the set of real valued continuous functions on [0, T ). The
chordal Loewner equation driven by λ is

∂tgt(z) =
2

gt(z)− λ(t)
, 0 ≤ t < T, g0(z) = z. (1.1)

For every z ∈ C, let τ(z) ≥ 0 be such that [0, τ(z)) is the maximal interval of the solution
t 7→ gt(z). So gt is defined on {z ∈ C : τ(z) > t}. We have the following facts.

1. If z ∈ R, then gt(z) ∈ R for 0 ≤ t < τ(z).

2. If z ∈ H = {Im z > 0}, then gt(z) stays inside H because it can not reach R; and
t 7→ Im gt(z) is decreasing because Im 2

gt(z)−λ(t) < 0 if gt(z) ∈ H.

3. Each gt commutes with the conjugate map z 7→ z because gt(z) satisfies the same ODE.

4. If τ(z) < T , then limt→τ(z) gt(z)−λ(t) = 0. In fact, there are only two cases for the solution
t 7→ gt(z) to blow up before T : either limt→τ(z) gt(z)− λ(t) = 0 or limt→τ(z) |gt(z)| =∞.

If the second case happens, then |∂tgt(z)| = | 2
gt(z)−λ(t) | is bounded on [0, τ(z)). Since

τ(z) <∞, we get a contradiction.

5. For each t, {z ∈ C : τ(z) > t} is open, and gt is analytic on {z ∈ C : τ(z) > t}. The proof
uses some standard arguments in the theory of ordinary differential equations, which says
that the solution of the ODE has differentiable dependence on the parameter. Here to
prove that gt is complex differentiable at z0, we define

At(z) =
gt(z)− gt(z0)

z − z0
− ht(z0),

where ht(z) is the solution of ∂tht(z) = −2ht(z)
(gt(z)−λ(t))2

, h0(z0) = 1. Here ht(z) is expected to

be equal to g′t(z), and the ODE for ht is obtained by differentiating (1.1) w.r.t. z. Then
A0(z) = 0 and At(z) satisfies an equation like ∂tAt(z) = F (t, z, z0)At(z) + G(t, z, z0).
When z → z0, F and G both tend to 0. Then Gronwall’s inequality can be applied to show
that At(z) → 0. This shows that gt is complex differentiable at z0, and g′t(z0) = ht(z0).
This argument also shows that the complex derivative of gt commutes with the partial
derivative ∂t, and we have

∂tg
′
t(z) = − 2g′t(z)

(gt(z)− λ(t))2
, g′0(z) = 1.

6. Each gt is conformal (i.e., univalent analytic) on {z ∈ C : τ(z) > t}. This follows from
the uniqueness of the solution of ODE.
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7. Each gt maps {z ∈ H : τ(z) > t} onto H. Let t0 ∈ [0, T ). First, we know that gt0({z ∈
H : τ(z) > t0}) ⊂ H. Second, fix any z0 ∈ H, consider the ODE

h′(t) =
2

h(t)− λ(t)
, 0 ≤ t ≤ t0, h(t0) = z0.

As t decreases from t0 to 0, Imh(t) increases, so the solution will not hit the singularity,
which implies that it does not blow up on [0, t0]. Then we have h(0) ∈ H and gt0(h(0)) =
h(t0) = z0.

Lemma 1.1 Let t0 ∈ [0, T ). Suppose that |λ(t)| ≤M on [0, t0]. Then

(i) {τ(z) ≤ t0} ⊂ {|z| ≤M + 2
√

2t0}.

(ii) If |z| > M + 2
√

2t0, then |gt0(z)| ≥ |z| −M −
√

2t0.

Proof. Let |z| > M + 2
√

2t0. Then |g0(z)− λ(0)| ≥ |z| −M > 2
√

2t0. Let s0 be the maximal
number on [0, t0] such that the solution gt(z) exists on [0, s0) and |gt(z) − λ(t)| ≥

√
2t0 on

[0, s0). Then we get |∂tgt(z)| ≤
√

2/t0 for 0 ≤ t < s0, which implies that |gt(z)| ≥ |z|−
√

2t0 for
0 ≤ t < s0. So we have |gt(z)−λ(t)| ≥ |gt(z)|−M > |z|−

√
2t0−M >

√
2t0 for 0 ≤ t < s0. First,

this means that gt(z) does not blow up at s0. Second, we have s0 = t0 because if s0 < t0 then
limt→s0 |gt(z)−λ(t)| =

√
2t0, which is a contradiction. So we conclude that, if |z| > M+2

√
2t0,

then τ(z) > t0. This finishes the proof of (i). Since |gt(z)−λ(t)| ≥ |z|−
√

2t0 for 0 ≤ t < s0 = t0,
we get |gt0(z)− λ(t0)| ≥ |z| −

√
2t0. The proof of (ii) is finished since |λ(t0)| ≤M . 2

This lemma implies that gt has a pole at ∞. The pole has order 1 because gt is conformal
near ∞. We write the power series expansion of gt at ∞ as

gt(z) = a1(t)z + a0(t) +
a−1(t)

z

−1

+O(z−2).

We have

∂tgt(z) =
2

gt(z)− λ(t)
=

2

a1z +O(1)
=

2

a1z
· 1

1 +O(z−1)
=

2

a1
z−1 +O(z−2), z →∞.

Thus, a′1(t) = a′0(t) = 0 and a′2(t) = 2
a1(t) . Since g0(z) = z, a1 ≡ 1, a0 ≡ 0, and a2(t) = 2t.

Let Kt = {z ∈ H : τ(z) ≤ t}, 0 ≤ t < T . Then K0 = ∅; Kt1 ⊂ Kt2 if t1 < t2; each Kt is a

relatively closed bounded subset of H, gt : (H \Kt;∞)
Conf
� (H;∞), and satisfies

gt(z) = z +
2t

z
+O(z−2), z →∞. (1.2)

The gt is uniquely determined by Kt. If t1 < t2, then gt1 6= gt2 , so Kt1 $ Kt2 .

Definition 1.1 We call gt and Kt the chordal Loewner maps and hulls driven by λ.
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Lemma 1.2 (Linearity) Suppose gt and Kt are chordal Loewner maps and hulls driven by
λ(t). Let a > 0 and b ∈ R. Then agt/a2((· − b)/a) + b and aKt/a2 + b are chordal Loewner maps
and hulls driven by aλ(t/a2) + b.

Proof. The proof is straightforward. We leave it as an exercise. 2

Exercise. Let λ(t) = c
√
t, t ≥ 0. Let gt be the chordal Loewner maps driven by λ. Since

aλ(t/a2) = λ(t) for any a > 0, we have agt/a2(z/a) = gt(z). Letting a =
√
t, we get gt(z) =√

tg1(z/
√
t). We may derive an ODE for g1 using the chordal Loewner equation. We can solve

this ODE to get g1.

Corollary 1.1 If Kt are chordal Loewner maps driven by λ(t), then
⋂
t∈(0,T )Kt = {λ(0)}.

Proof. For t ∈ (0, T ), Kt is a nonempty compact set because Kt is a nonempty and bounded.
Since Kt is increasing in t, we conclude that

⋂
t∈(0,T )Kt is nonempty. Let z0 lie in the inter-

section. From Lemma 1.2, Kt − λ(0) are chordal Loewner hulls driven by λ(t) − λ(0). Let
Mt = sups∈[0,t] |λ(s)−λ(0)|. Then limt→0Mt = 0. From Lemma 1.1, we get Kt−λ(0) ⊂ {|z| ≤
Mt + 2

√
2t}. Thus, |z0 − λ(0)| ≤Mt + 2

√
2t for any t ∈ (0, T ). So z0 must be λ(0). 2

Lemma 1.3 Suppose gt and Kt are chordal Loewner maps and hulls driven by λ ∈ C([0, T )).
Let t0 ∈ [0, T ). Then gt0+t ◦ g−1

t0
and gt0(Kt0+t \ Kt0), 0 ≤ t < T − t0, are chordal Loewner

maps and hulls driven by λ(t0 + t).

Proof. The proof is straightforward. We leave it as an exercise. 2

Lemma 1.4 Suppose gt and Kt are chordal Loewner maps and hulls driven by λ ∈ C([0, T )).
Then for any t ∈ [0, T ),

{λ(t)} =
⋂

ε∈(0,T−t)

gt(Kt+ε \Kt). (1.3)

Proof. This follows from Corollary 1.1 and Lemma 1.3. 2

Remark. This corollary says that we may recover the driving function using the maps and
hulls. Since the maps are also determined by the hulls, the driving function is completely
determined by the hulls.

Definition 1.2 We say that λ generates a chordal Loewner trace β if for every t,

β(t) := lim
H3z→λ(t)

g−1
t (z)

exists, and β is a continuous curve. Such β lies on H ∪ R with β(0) = λ(0) ∈ R. We call the
trace β simple if it has no self intersection and intersects R only at β(0).
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Example. If λ(t) = 0, 0 ≤ t < ∞, then ∂tgt(z) = 2/gt(z). So gt(z) =
√
z2 + 4t. If gt(z)

blows up at some finite time t0, then
√
z2 + 4t0 = 0, which implies that z = ±2i

√
t0. So

{τ(z) ≤ t} = [−2i
√
t0, 2i

√
t] and Kt = (0, i

√
4t], 0 ≤ t < ∞. We have g−1

t (z) =
√
z2 − 4t. We

have β(t) := limH3z→0 g
−1
t (z) = i

√
4t, 0 ≤ t < ∞, is continuous, has no self-intersection, and

stays in H for t > 0. So λ generates a simple trace. Note that Kt = β((0, t]) for each t.

Proposition 1.1 If λ generates a chordal Loewner trace β, then for each t, H \ Kt is the
unbounded connected component of H\β((0, t]). In particular, if β is simple, then Kt = β((0, t]).
Moreover, for each t, g−1

t extends continuously to H ∪ R.

Remark. This proposition says that if the trace exists, then it determines the hulls, which in
turn determine the driving function. The proof will be given later.

Lemma 1.5 Let a > 0 and b ∈ R. If λ(t) generates a chordal Loewner trace β(t), then
aλ(t/a2) + b generates the chordal Loewner trace aβ(·/a2) + b.

Proof. This follows from Lemma 1.2 and some straightforward argument. 2

Lemma 1.6 Let λ ∈ C([0, T )), t0 ∈ [0, T ), and λt0(t) = λ(t0 + t), 0 ≤ t < T − t0. Let gt
be the chordal Loewner maps driven by λ. Suppose λ generates a chordal Loewner trace β and
λt0 generates a chordal Loewner trace βt0. Extend g−1

t0
continuously from H to H ∪ R. Then

β(t0 + t) = g−1
t0

(βt0(t) + λ(t0)) for 0 ≤ t < T − t0.

Proof. Let gt0,t be the chordal Loewner maps driven by λt0 . From Lemma 1.2 and Lemma 1.3
we get gt0,t(z) = gt0+t ◦ g−1

t0
(z + λ(t0))− λ(t0). So we get

g−1
t0+t(z) = g−1

t0
(g−1
t0,t

(z − λ(t0)) + λ(t0)), z ∈ H.

This equality still holds for z ∈ H ∪ R if g−1
t0+t, g

−1
t0

, and g−1
t0,t

extend continuously to H ∪ R.
Letting z = λ(t0 + t), we get the desired result. 2

Odes Schramm introduced SLE (shorthand for stochastic Loewner evolution or Schramm-
Loewner evolution) by combining Loewner equation with stochastic processes.

Definition 1.3 For κ > 0, a standard chordal SLE(κ) is defined to be the chordal Loewner
process driven by λ(t) =

√
κB(t), 0 ≤ t <∞, where B(t) is a standard Brownian motion.

Note that the maps from the space of λ(t) to space of (gt) and the space of (Kt) are
continuous or measurable if these spaces are assigned some suitable topology or σ-algebra.
Here is one example. We consider the case T = ∞. Let the topology on the linear space
C([0,∞)) be generated by semi-norms: ‖λ‖a = sup0≤t≤a |λ(t)|. Let the topology on the space

of (gt) be generated by {(gt) : g−1
t0

(z0) ∈ U0} for t0 ∈ [0,∞), z0 ∈ H, and open set U0 ⊂ H. Let
the topology on the space of (Kt) be generated by {(Kt) : z0 6= Kt0} for t0 ∈ [0,∞) and z0 ∈ H.
Then the chordal Loewner maps are continuous.

This means that the distribution of SLE is a pushforward measures of the Wiener measure
(the distribution of Brownian motion) under the chordal Loewner map.
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Theorem 1.1 (Rohde-Schramm, Lawler-Schramm-Werner ) For any κ > 0, with prob-
ability 1 a standard chordal SLE(κ) trace exists; the trace tends to ∞ as t → ∞; is simple iff
κ ∈ (0, 4]; visits every point on H ∪ R iff κ ≥ 8.

Remark. Rohde and Schramm proved the case κ 6= 8 using Stochastic Analysis and Conformal
Geometry. Lawler, Schramm and Werner proved the case κ = 8 using a different method. They
showed that SLE(8) is the scaling limit of the uniform spanning tree Peano curve. We will
prove Rohde and Schramm’s result later.

Lemma 1.7 Let β(t) be a standard chordal SLE(κ) trace. Let a > 0. Then aβ(t/a2) has the
same distribution as β(t).

Proof. This follows from Lemma 1.5 with b = 0 and the fact that aB(t/a2) has the same
distribution as B(t). 2

Remark. The lemma states that if we dilate a standard chordal SLE(κ) trace β by a factor
a, then the new curve has the same distribution as β up to a linear time-change. If we do not
care about the parametrization, then aβ has the same distribution as β.

Since a standard chordal SLE(κ) trace lies on H, starts from λ(0) = 0, and ends at ∞, we
also view it as a chordal SLE(κ) trace in H from 0 to ∞.

We now define chordal SLE in a general simply connected domain. A domain in this
lecture will always be a connected open subset of the extended Complex plane Ĉ = C ∪ {∞}
with spherical metric. A simply connected domain is a domain whose complement in Ĉ is a
(nondegenerate) continuum, which is a connected compact subset with more than one point.
For example, half-planes and discs are simply connected domains, but C and Ĉ are not. When
we talk about the closure or boundary of a simply connected domain, we mean its closure or
boundary in Ĉ. For example, ∞ is a boundary point of H. Riemann’s mapping theorem says
that any two simply connected domains are conformally equivalent.

Definition 1.4 Let β be a standard chordal SLE(κ) trace. Let W : H
Conf
� D. Then we call

W ◦ β a chordal SLE(κ) trace in D from W (0) to W (∞).

Remarks.

1. Initially W is not defined at 0 and ∞. The values of W on ∂H = R̂ = R ∪ {∞} should
be understood as prime ends of D. If V is another conformal map from H onto D, then
W ◦ V −1 is a Möbius transformation, which extends continuously to H. For x ∈ ∂H, we
say W (x) = V (x) if the extension of W ◦ V −1 fixes x.

2. If D is bounded by a Jordan curve, then W extends continuously to H = H ∪ R ∪ {∞}
and induces a homeomorphism between R̂ = R ∪ {∞} and J . In this case, we may view
W (0) and W (∞) as two points on J .
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3. In general we do not view W (x) for x ∈ ∂H as boundary points of D even if W extends
continuously to H. For example, W (z) = z2 maps H onto C \ [0,∞), and its continuation
maps 1 and −1 to the same point 1. But we want to distinguish W (1) from W (−1).

4. If there is another V : H
Conf
� D such that V (0) = W (0) and V (∞) = W (∞). Then

V ◦W−1 : (H; 0,∞)
Conf
� (H; 0,∞), which implies that V ◦W−1(z) = az for some a > 0.

So V (z) = W (az). Thus, V (β(t)) = W (aβ(t)). From Lemma 1.7 we see that V (β(t/a2))
has the same distribution as W (β(t)). Thus, up to a linear time-change, the distribution
of a chordal SLE(κ) trace does not depend on the choice of W .

Proposition 1.2 (Domain Markov Property for Chordal SLE) Let Kt and β(t), 0 ≤
t < ∞, be the chordal Loewner hulls and trace driven by λ(t) =

√
κB(t). Let T0 be a finite

stopping time w.r.t. the filtration Ft generated by B(t). Then conditioned on FT0, β(T0 + t),
0 ≤ t <∞, is a chordal SLE(κ) trace in H \KT0 from β(T0) to ∞.

Proof. Let gt be the chordal Loewner maps driven by λ. Let λT0(t) = λ(T0 + t) − λ(T0).
From the properties of Brownian motion, we know that λT0(t) has the same distribution as
λ(t), and is independent of FT0 . So λT0 generates a standard chordal SLE(κ) trace, say βT0 ,
which is independent of FT0 . From Lemma 1.6, we see that β(T0 + t) = g−1

T0
(βT0(t) + λ(T0)).

The conclusion follows because z 7→ g−1
T0

(z + λ(T0)) is adapted to FT0 , and maps (H; 0,∞)
conformally onto (H \KT0 ;β(T0),∞). 2

1.2 Radial Loewner equation

The radial Loewner equation driven by λ ∈ C([0, T )) is

∂tgt(z) = gt(z)
eiλ(t) + gt(z)

eiλ(t) − gt(z)
, 0 ≤ t < T, g0(z) = z. (1.4)

For every z ∈ C, let τ(z) ≥ 0 be such that [0, τ(z)) is the maximal interval of the solution
t 7→ gt(z). So gt is defined on {z ∈ C : τ(z) > t}. We have the following facts.

1. gt(0) = 0 for all t ∈ [0, T ).

2. Each gt commutes with the map z 7→ 1
z , which is the reflection about T = {|z| = 1}. This

is because 1/gt(z) satisfies the same ODE as in (1.4).

3. Each gt is conformal on {z ∈ C : τ(z) > t}.

4.

∂t log(gt(z)/z) =
eiλ(t) + gt(z)

eiλ(t) − gt(z)
, z 6= 0.

Letting z → 0, we get ∂t log(g′t(0)) = 1. So g′t(0) = et.
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5. If z ∈ T then gt(z) stays on T before τ(z). This is because the real part of eiλ(t)+gt(z)

eiλ(t)−gt(z)
is 0

if gt(z) ∈ T.

6. If z ∈ D = {|z| < 1} then gt(z) stays inside D before τ(z), and t 7→ |gt(z)| is increasing.

This is because the real part of eiλ(t)+gt(z)

eiλ(t)−gt(z)
is positive if gt(z) ∈ D.

7. If τ(z) < T , then limt→τ(z) gt(z) − eiλ(t) = 0. If z ∈ D ∪ T, then gt(z) stays inside the
bounded set D ∪ T. If the solution blows up before T , it must hit the singularity. If
z ∈ {|z| > 1}, then the result follows from the mirror symmetry about T.

8. Each gt maps {z ∈ D : τ(z) > t} onto D. Let t0 ∈ [0, T ). First, we know that gt0({z ∈ D :
τ(z) > t0}) ⊂ H. Second, fix any z0 ∈ H, consider the ODE

h′(t) = h(t)
eiλ(t) + h(t)

eiλ(t) − h(t)
, 0 ≤ t ≤ t0, h(t0) = z0.

As t decreases from t0 to 0, |h(t)| decreases, so the solution will not hit the singularity
eiλ(t), which implies that it does not blow up on [0, t0]. Then we have h(0) ∈ D and
gt0(h(0)) = h(t0) = z0.

Remark. The radial Loewner equation is the original Loewner equation introduced by Charles
Loewner. The chordal Loewner equation is in fact introduced by Oded Schramm.

Let Kt = {z ∈ D : τ(z) ≤ t}, 0 ≤ t < T . Then K0 = ∅; Kt1 ⊂ Kt2 if t1 < t2; each Kt is

a relatively closed subset of H, gt : (D \ Kt; 0)
Conf
� (D; 0), and satisfies g′t(0) = et. The gt is

uniquely determined by Kt. If t1 < t2, then g′t1(0) 6= g′t2(0), so Kt1 $ Kt2 .

Definition 1.5 We call gt and Kt the radial Loewner maps and hulls driven by λ.

Lemma 1.8 Suppose gt and Kt are radial Loewner maps and hulls driven by λ(t). Let b ∈ R.
Then eibgt(·/eib) and eibKt are radial Loewner maps and hulls driven by λ(t) + b.

Note that for any n ∈ Z, λ+ 2nπ generate the same radial Loewner maps and hulls as λ.

Lemma 1.9 Suppose gt and Kt are radial Loewner maps and hulls driven by λ ∈ C([0, T )).
Let t0 ∈ [0, T ). Then gt0+t ◦ g−1

t0
and gt0(Kt0+t \Kt0), 0 ≤ t < T − t0, are radial Loewner maps

and hulls driven by λ(t0 + t).

Lemma 1.10 Suppose gt and Kt are radial Loewner maps and hulls driven by λ ∈ C([0, T )).
Then for any t ∈ [0, T ),

{eiλ(t)} =
⋂

ε∈(0,T−t)

gt(Kt+ε \Kt). (1.5)
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This lemma asserts that the radial Loewner hulls determine the driving function up to an
integer multiple of 2π.

Definition 1.6 We say that λ generates a radial Loewner trace β if

β(t) = lim
D3z→eiλ(t)

g−1
t (z)

exists for 0 ≤ t < T and is a continuous curve. Such β lies on D ∪ T and β(0) = eiλ(0) ∈ T.
We call the trace β simple if it has no self intersection and intersects T only at β(0).

Proposition 1.3 If λ generates a radial Loewner trace β, then for each t, D\Kt is the connected
component of D \ β((0, t]) that contains 0. In particular, if β is simple, then Kt = β((0, t]).
Moreover, for each t, g−1

t extends continuously to D ∪ T.

Definition 1.7 For κ > 0, a standard radial SLE(κ) is defined to be the radial Loewner process
driven by λ(t) =

√
κB(t), 0 ≤ t <∞.

The distribution of radial SLE is the pushforward measures of the Wiener measure under
the radial Loewner maps.

Theorem 1.2 For any κ > 0, with probability 1 a standard radial SLE(κ) trace exists; tends
to 0 as t→∞; is simple iff κ ∈ (0, 4]; visits every point on D ∪ T \ {0} iff κ ≥ 8.

Remark. This theorem follows Theorem 1.1 and the weak equivalence between chordal SLE
and radial SLE.

Since a standard radial SLE(κ) trace lies on D, starts from eiλ(0) = 1, and ends at 0, we
also view it as a radial SLE(κ) trace in D from 1 to 0.

Definition 1.8 Let β be a standard radial SLE(κ) trace. Let W : D
Conf
� D. Then we call

W ◦ β a radial SLE(κ) trace in D from W (1) to W (0).

Remark. Since W is defined on D, W (0) is well defined; while W (1) should be understood as
a prime end of D as in the definition of chordal SLE in a general simply connected domain.

Lemma 1.11 (Domain Markov Property of radial SLE) Let Kt and β(t), 0 ≤ t < ∞,
be the radial Loewner hulls and trace driven by λ(t) =

√
κB(t). Let T be a finite stopping time

w.r.t. the filtration Ft generated by B(t). Then conditioned on FT , β(T + t), 0 ≤ t < ∞, is a
radial SLE(κ) trace in D \Kt from β(T ) to 0.
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2 Conformal Mappings

2.1 Koebe’s 1/4 theorem and distortion theorem

Let S denote the set of maps f that maps D conformally into C with f(0) = 0 and f ′(0) = 1.
Any f ∈ S has expansion

f(z) = z +
∞∑
n=2

anz
n.

Given f ∈ S, let F (z) = 1/f(1/z). Then F maps Ĉ \ (D∪T) conformally into Ĉ \ {0} with
F (∞) =∞. The Laurent expansion of F at ∞ is

F (z) = z +
∞∑
n=0

bnz
−n.

We have b0 = −a2 and b1 = a2
2 − a3. Let K = Ĉ \ F (Ĉ). Then K is a compact subset of C.

Proposition 2.1 (Area Theorem)

area(K) = π(1−
∞∑
n=1

n|bn|2).

In particular, we have
∑∞

n=1 n|bn|2 ≤ 1.

Proof. For r > 1, let Kr denote the region bounded by γr := FK({|z| = r}). Then area(K) =
limr→1+ area(Kr). We may calculate area(Kr) using Green’s Theorem. We have

2i area(Kr) =

∫
γr

zdz =

∫
|z|=r

FK(z)F ′K(z)dz =

∫ 2π

0
FK(reiθ)F ′K(reiθ)ireiθdθ

=

∫ 2π

0
(re−iθ + b0 +

∞∑
n=1

bnr
−neinθ)(1−

∞∑
n=1

nbnr
−n−1e−i(n+1)θ)ireiθdθ

= 2πi(r2 −
∞∑
n=1

r−2n|bn|2).

Thus, area(Kr) = π(r2 −
∑∞

n=1 r
−2n|bn|2). The conclusion follows by letting r → 1. 2

Lemma 2.1 If f ∈ S, then there exists h ∈ S such that h(z)2 = f(z2) for z ∈ D.

Proof. First, f(z)/z extends to a non-zero analytic function on D. Second, there is an analytic
function g on D such that g(z)2 = f(z)/z. Let h(z) = zg(z2). Then h is analytic, h(0) = 0,
h′(0) = g(0) = 1, and h(z)2 = f(z2). If h(z1) = h(z2), then f(z2

1) = f(z2
2), which implies that

z1 = z2 or z2 = −z2. If z1 = −z2, then g(z2
1) = −g(z2

2), which is a contradiction. So h is
conformal. Thus, h ∈ S. 2
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Proposition 2.2 If f ∈ S, then |a2| ≤ 2.

Proof. Suppose f(z) = z + a2z
2 + · · · ∈ S and let h be as in the previous lemma. Then

h(z) = z+ a2
2 z

3 + · · · . Let g(z) = 1/h(1/z). The g has an expansion at∞: g(z) = z− a2/2
z + · · · .

The Area Theorem implies that |a2| ≤ 2. 2

Remark. Charles Loewner introduced (radial) Loewner equation to prove |a3| ≤ 3. Now it is
known that |an| ≤ n for all n ∈ N.

Theorem 2.1 (Koebe’s 1/4 Theorem) 1. If f ∈ S, then dist(0, ∂f(D)) ≥ 1/4.

2. If f : (D1; z1)
Conf
� (D2; z2), then

|f ′(z1)|
4

≤ dist(z2, ∂D2)

dist(z1, ∂D1)
≤ 4|f ′(z1)|.

Proof. 1. Let r = dist(0, ∂f(D)). Suppose z0 ∈ C \ f(D). Define h(z) = f(z)
1−f(z)/z0

. Then h ∈ S
and has expansion

h(z) = z + (a2 +
1

z0
)z2 + · · · .

From Proposition 2.2, we have |a2| ≤ 2 and |a2 + 1/z0| ≤ 2. This implies |z0| ≥ 1/4. Since this
is true for all z0 ∈ C \ f(D), we get r ≥ 1/4.

2. Let rj = dist(zj , ∂Dj), j = 1, 2. Define h(z) = f(r1(z1+z))−z2
r1f ′(z1) . Then h ∈ S and

dist(0, ∂h(D)) ≤ r2
r1|f ′(z1)| . From Part 1, we get r2

r1
≥ |f

′(z1)|
4 . Let g = f−1. Then g : (D2; z2)

Conf
�

(D1; z1). So r1
r2
≥ |g

′(z2)|
4 = 1

4|f ′(z1)| . 2

Examples.

1. 1/4 is the best possible number. The Koebe’s function is f(z) = z
(1−z)2 =

∑∞
n=1 nz

n. We

have

f(z) =
1

4

(1 + z

1− z

)2
− 1

4
.

Since z 7→ 1+z
1−z maps D conformally onto {Re z > 0} and z 7→ z2 maps {Re z > 0}

conformally onto C \ (−∞, 0], we see that f maps D conformally onto C \ (−∞,−1/4].
Thus, f ∈ S and dist(0, ∂f(D)) = 1/4.

2. Suppose gt and Kt, 0 ≤ t < ∞, are radial Loewner maps and hulls driven by λ ∈
C([0,∞)). Since gt : (D \ Kt; 0)

Conf
� (D; 0) and g′t(0) = et, from Koebe’s 1/4 theorem,

dist(0,Kt) ≤ 4e−t → 0 as t→∞.

3. Suppose gt and Kt, 0 ≤ t < ∞, are chordal Loewner maps and hulls driven by λ. Since

gt : H\Kt
Conf
� H, we have min{Im z0, dist(z0,Kt)} � Im gt(z0)/|g′t(z0)| for any z0 ∈ H\Kt.
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This property could be used to study the phase change of SLE. Using Stochastic Analysis
we can prove that for any fixed z0 ∈ H, almost surely 1) τ(z0) =∞ for κ ≤ 4 and τ(z0) <
∞ for κ > 4; 2) limt→τ(z0) Im gt(z0)/|g′t(z0)| = 0 for κ ≥ 8, and > 0 for κ < 8. Assume
that we have proved the existence of the chordal SLE(κ) trace β. Suppose κ ∈ (4, 8). The
above result implies that a.s. limt→τ(z0)− dist(z0, β((0, t])) = limt→τ(z0)− dist(z0,Kt) = 0.
Thus, z0 6= β((0, τ(z0)]) but z0 ∈ Kτ(z0), which means that z0 lies in the interior of Kτ(z0).

After τ(z0), β grows in H \Kτ(z0). So z0 is almost surely not visited by the trace β.
Suppose κ ≥ 8, then we have a.s. limt→τ(z0)− dist(z0, β((0, t])) = 0, which implies that
z0 = β(τ(z0)). This can be used to show that β visits every point on H.

Suppose f ∈ S and w ∈ D. Let Tw(z) = w+z
1+wz . Then Tw : (D; 0)

Conf
� (D;w), T ′w(0) = 1−|w|2

and T ′′w(0) = −2w(1− |w|2). We may construct another function h ∈ S by

h(z) =
f(Tw(z))− f(w)

f ′(w)T ′w(0)
=
f(Tw(z))− f(w)

f ′(w)(1− |w|2)
.

Then

h′′(z) =
f ′(Tw(z))T ′′w(z) + f ′′(Tw(z))T ′w(z)2

f ′(w)(1− |w|2)
.

In particular, we get

h′′(0) =
f ′(w)T ′′w(0) + f ′′(w)T ′w(0)2

f ′(w)(1− |w|2)
=
f ′(w)(−2w(1− |w|2) + f ′′(w)(1− |w|2)2

f ′(w)(1− |w|2)

= −2w +
f ′′(w)

f ′(w)
(1− |w|2).

From Proposition 2.2 we get |h′′(0)| ≤ 4. So∣∣∣ w|w| f ′′(w)

f ′(w)
− 2|w|

1− |w|2
∣∣∣ ≤ 4

1− |w|2
. (2.1)

Theorem 2.2 (Distortion Theorem) If f ∈ S and z ∈ D, then

1− |z|
(1 + |z|)3

≤ |f ′(z)| ≤ 1 + |z|
(1− |z|)3

.

Proof. Let h(z) = log(f ′(z)). Then h is analytic on D with h(0) = 0, and h′ = f ′′/f ′. Suppose
z = reiθ, 0 ≤ r < 1 and θ ∈ R. Then

log(f ′(z)) = h(z) =

∫
[0,z]

h′(z)dz =

∫ r

0
h′(seiθ)eiθds =

∫ r

0

f ′′(seiθ)

f ′(seiθ)
eiθds.
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From (2.1) we get ∣∣∣ log(f ′(z))−
∫ r

0

2s

1− s2
ds
∣∣∣ ≤ ∫ r

0

4

1− s2
ds,

which is | log(f ′(z)) + log(1− r2)| ≤ 2 log(1 + r)− 2 log(1− r). Taking real part, we get

−3 log(1 + r) + log(1− r) ≤ log |f ′(z)| ≤ log(1 + r)− 3 log(1− r).

The proof is complete by exponentiating this inequality. 2

Remark. Integrating the estimation for |f ′(z)| along a radial line, we can show

|z|
(1 + |z|)2

≤ |f(z)| ≤ |z|
(1− |z|)2

.

Corollary 2.1 There is a constant C > 1 such that the following is true. Suppose D is a
domain, f is conformal on D, and z0, w0 ∈ D. Suppose there is a piecewise C1 curve γ
connecting z and w. Let l be the length of γ and r = dist(γ, ∂D). Then |f ′(w0)| ≤ |f ′(z0)|C l/r.

Proof. Let n = d2l/re. We may find z1, z2, . . . , zn on γ such that zn = w0 and |zj−zj−1| ≤ r/2,
1 ≤ j ≤ n. Construct fj ∈ S by fj(z) = f(zj−1 + rz)/(rf ′(zj−1)). Then f ′j(z) = f ′(zj−1 +
rz)/f ′(zj−1). Letting z = (zj − zj−1)/r and applying Distortion Theorem, we get

|f ′(zj)|
|f ′(zj−1)|

≤ 1 + |z|
(1− |z|)3

≤ 1 + 1/2

(1− 1/2)3
= 12.

Thus, |f ′(w0)| = |f ′(zn)| ≤ 12n|f ′(z0)| ≤ 122l/r+1|f ′(z0)|. If l ≥ r/2, then 2l/r + 1 ≤ 4l/r, so
|f ′(w0)| ≤ (124)l/r|f ′(z0)|. Now suppose l ≤ r/2. Then n = 1 and |z0 − w0| ≤ l ≤ r/2. The
above computation gives

|f ′(w0)|
|f ′(z0)|

≤ 1 + l/r

(1− l/r)3
≤ C l/r0 ,

where C0 = e7. Then C := max{124, C0} is the constant we want. 2

2.2 Extremal length

Extremal length is about some measurement of a family of curves. The value is a nonnegative
real number. It is important for this course because it is conformally invariant. Let D be a
domain. Let ρ be a nonnegative Borel function on D. The ρ-area of D is

Aρ(D) =

∫
D
ρ(z)2dA(z).

Let γ be a piecewise C1 curve in D, the ρ-length of γ is

Lρ(γ) =

∫
γ
ρ(z)ds(z).

12



Let Γ be a family of piecewise C1 curves in D, the ρ-length of Γ is

Lρ(Γ) = inf
γ∈Γ

Lρ(γ).

The extremal length of Γ in D is

L(Γ;D) = sup
ρ

Lρ(Γ)2

Aρ(D)
.

For two sets A and B, we say a curve γ connects A and B if one end of γ approaches to a point
on A and the other end of γ approaches to a point on B. We say a curve γ separates A and B
in D if γ lies in D and any curve in D connecting A and B must intersects γ. Let ΓD(A,B)
denote the set of piecewise C1 curves in D connecting A and B. Let Γ∗D(A,B) denote the set of
piecewise C1 curves in D separating A and B. Then the extremal length of ΓD(A,B) is called
the extremal distance between A and B in D, and is denoted by dD(A,B); and the extremal
length of Γ∗D(A,B) is called the conjugate extremal distance between A and B in D, and is
denoted by d∗D(A,B)

Remark The D in L(Γ;D) is unnecessary. In fact, if D′ ⊃ D, then L(Γ;D′) = L(Γ;D). Since
Γ lie in D, to maximize Lρ(Γ) while keeping Aρ(D

′) unchanged, ρ must concentrate on D.

Examples.

1. Let D be a rectangle {0 < x < a, 0 < y < b}. Let Γ be the set of piecewise C1 curves
in D connecting the two vertical sides (of length b). Let ρ = 1. Then Aρ(D) = ab and
Lρ(Γ) = a. So L(Γ;D) ≥ a

b . Now suppose ρ is any nonnegative Borel function on D.
From Hölder’s inequality, we have

Aρ(D) =

∫ b

0

∫ a

0
ρ(x, y)2dxdy ≥

∫ b

0

1

a

(∫ a

0
ρ(x, y)dx

)2
dy

≥
∫ b

0

1

a

(
Lρ(Γ)

)2
dy =

b

a
Lρ(Γ)2,

which gives
Lρ(Γ)2

Aρ(D) ≤
a
b . Thus, dD([0, ib], [a, a+ib]) = a

b . Similarly, dD([0, a], [a, a+ib]) = b
a .

We also have d∗D([0, ib], [a, a+ ib]) = b
a . Similarly, d∗D([0, a], [a, a+ ib]) = a

b .

2. Let D be an annulus {r1 < |z| < r2}. Let Cj = {|z| = rj}, j = 1, 2, be its two boundary
circles. Let Γ be the set of piecewise C1 curves in D connecting the two boundary
circles. Let ρ(z) = 1

|z| . Then Aρ(D) = 2π log(r2/r1) and Lρ(Γ) = log(r2/r1). Thus,

L(Γ;D) ≥ log(r2/r1)
2π . Using Hölder’s inequality, we can show that L(Γ) = log(r2/r1)

2π . Thus,

dD(C1, C2) = log(r2/r1)
2π . Similarly, d∗D(C1, C2) = 2π

log(r2/r1) .
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Theorem 2.3 Let Γ1 be a family of piecewise C1 curves in D1. Suppose f : D1
Conf
� D2. Let

Γ2 = f(Γ1) := {f ◦ γ : γ ∈ Γ1}. Then L(Γ1;D1) = L(Γ2;D2).

Proof. This is because there is a one-to-one correspondence between the set of nonnegative
Borel functions on D1 and the set of nonnegative Borel functions on D2: ρ1 ↔ ρ2 such that
Aρ1(D1) = Aρ2(D2) and Lρ1(γ) = Lρ2(f◦γ) for each γ ∈ Γ1. In fact, given ρ2, the corresponding
ρ1 is defined by ρ1(z) = |f ′(z)|ρ2(f(z)). Then

Aρ1(D1) =

∫
D1

|f ′(z)|2ρ2(f(z))2dA(z) =

∫
D2

ρ2(w)2dA(w) = Aρ2(D2);

Lρ1(γ) =

∫
γ
|f ′(z)|ρ2(f(z))ds(z) =

∫
f◦γ

ρ2(w)ds(w) = Lρ2(f ◦ γ). 2

Remark. Two rectangles or two annuli are conformally equivalent iff they have similar shapes.

Lemma 2.2 (Comparison Principle) Let Γ1 and Γ2 be two families of piecewise C1 curves.
If every curve in Γ2 contains a subcurve in Γ1, then L(Γ2) ≥ L(Γ2).

Proof. This is because Lρ(Γ2) ≥ Lρ(Γ1) for every ρ. 2

Example. Suppose diam(A) = r < R = dist(A,B). Let Ω be the annulus {r < |z − z0| < R},
and CR and Cr be its boundary circles. Any curve connecting A and B must cross the annulus,
so it contains a subcurve in Ω connecting CR and Cr. Thus, for any domain D, dD(A,B) ≥
dΩ(CR, Cr) = log(R/r)/(2π).

2.3 Boundary behaviors of conformal maps

Definition 2.1 A topological space X is called locally connected if for every x ∈ X and open
set U 3 x, there exists a connected neighborhood N of x that is contained in U . A subset of a
topological space X is a locally connected set if it is a locally connected space when viewed as a
subspace of X.

Remark. If X is a metric space, then X is locally connected iff for every x ∈ X and ε > 0,
there is δ > 0 such that if dist(x, y) < δ then x and y lie in a connected subset of X with
diameter less than ε. In addition, if X is compact, the δ can be chosen to be independent of x.

Examples.

1. Any convex set in C is locally connected.

2. An relatively open subset of a locally connected set is locally connected.

3. {x+ i sin(1/x) : x > 0} ∪ [−i, i] is connected but not locally connected.
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Lemma 2.3 If f : X → Y is continuous and X is compact and locally connected and Y is
Hausdorff, then f(X) is locally connected.

Proof. We may assume that Y = f(X). Let y ∈ Y and V be an open subset of Y with
y ∈ V . Let S be a connected component of V that contains y. Let w ∈ f−1(S) ⊂ f−1(V ).
Since X is locally connected and f−1(V ) is open, there is a connected neighborhood N of w
which is contained in f−1(V ). Then f(N) is a connected subset of V which contains f(w) ∈ S.
Since S is a connected component and f(N) ∩ S 6= ∅, we have f(N) ⊂ S, which implies that
N ⊂ f−1(S). Now for every w ∈ f−1(S), we find a neighborhood N of w which is contained in
f−1(S). So f−1(S) is open. Since X is compact and Y is Hausdorff, we conclude that S is an
open subset of Y . So S is a connected neighborhood of y in Y that is contained in V . 2

Theorem 2.4 Let D be a simply connected set. The followings are equivalent.

(i) Any conformal map from D onto D extends continuously to D.

(ii) ∂D is locally connected.

(iii) There is a locally connected set K in Ĉ such that D is a connected component of Ĉ \K.

Proof. (i) implies (ii). Riemann’s mapping theorem assures the existence of a conformal map
from D onto D. Since it extends continuously to D, we get a continuous map from T onto ∂D.
Since T is locally connected, from Lemma 2.3, ∂D is locally connected.

(ii) implies (iii). We may simply let K = ∂D.
(iii) implies (i). We use extremal length in the argument. We also use the fact that if

the diameter of a closed set S ⊂ Ĉ has diameter d < π/4, then at most one component of

Ĉ \ E has diameter greater than 2d. Suppose W : D
Conf
� D. Let z0 ∈ T. For r > 0, let

Sr = {z ∈ D : |z−z0| < r}. We suffice to show that the diameter of W (Sr) tends to 0 as r → 0.
Let E be a continuum in D and R = dist(z0, E) > 0. For r ∈ (0, R), let Γr denote the family of
curves in D that disconnect E from Sr. Note that any curve in the annulus {r < |z − z0| < R}
that disconnects the two boundary circle contains a subcurve which belongs to Γr. Thus,
L(Γr) ≤ 2π/ log(R/r), which tends to 0 as r → 0. From the conformal invariance of extremal
length, L(W (Γr))→ 0 as r → 0. Note that W (Γr) is the family of curves that separate W (Sr)
from W (E). Let ρ(z) = 2

1+|z|2 . Then we get the spherical metric. So Aρ(D) ≤ Aρ(Ĉ) = 4π.

Thus, Lρ(W (Γr)) → 0 as r → 0. In particular, this means that we may choose γr ∈ W (Γr)
such that the spherical length of γr tends to 0 as r → 0. Since γr has finite spherical length, its
closure has at most two points more than itself. There are three cases. Case 1. γr intersects
∂D at no more than one point. Then W (E) and W (Sr) lie in two components of Ĉ \ γr. Since
the diameter of γr tends to 0 and the diameter of W (E) is positive, the diameter of W (Sr)
should also tends to 0. Case 2. γr intersects ∂D at two points, say ar and br. Then ar, br ∈ K
and dist(a, b) ≤ diam(γr). Since K is locally connected and diam(γr)→ 0 as r → 0, K contains
a connected subset Lr 3 ar, br with diameter tends to 0 as r → 0. Now γr ∪ Lr has diameter
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tends to 0 as r → 0, and separates W (E) from W (Sr). Again we conclude that the diameter
of W (Sr) tends to 0. 2

Remarks.

1. The lemma is still true if D is replaced by a Jordan domain. This implies that a conformal
map from D onto a Jordan domain extends to a homeomorphism between the closures.

2. Suppose J is a Jordan curve. There is a conformal map W1 from D onto its interior, and a
conformal map W2 from {|z| > 1} to the exterior of J . Then we get two homeomorphism
induced by W1 and W2 from T onto J . Then W−1

1 ◦ W2 is an orientation preserving
automorphism of T. The conformal welding problem is: given the homeomorphism of T,
determine wether it is induced by the above conformal maps, and find the cuve J .

3. Suppose that λ generates a chordal Loewner trace β, and we have proved that H \Kt is
the unbounded component of H \ β([0, t]). From Lemma 2.3 we see that R̂ ∪ β([0, t]) is
locally connected. Since H \Kt is one connected component of Ĉ \ (R̂ ∪ β([0, t])), from
Theorem 2.4 the conformal map g−1

t from H onto H \Kt extends continuously to H. The
same argument works for the radial Loewner trace.

Theorem 2.5 Suppose W : D
Conf
� D. Let γ(t), 0 ≤ t ≤ 1, be a curve with γ(0) ∈ ∂D and

γ((0, 1]) ⊂ D. Then limt→0W (γ(t)) exits. Moreover, if β has the same property as γ, and
β(0) 6= γ(0), then limt→0W (γ(t)) 6= limt→0W (β(t)).

Proof. Let z0 = γ(0), E be a continuum in D, and R = dist(z0, E) > 0. For any r ∈ (0, R),
there is δ > 0 such that γ([0, δ]) ⊂ {|z − z0| < r}. Let ρ be a curve in {r < |z − z0| < R that
separates the two boundary circle. Let t0 be the biggest number such that γ(t) ∈ ρ. Then
ρ contains a subcurve ρ0 which contains γ(t0) and whose two ends approach two boundary
points. Then ρ0 disconnects E from γ((0, δ]) in D. Thus, d∗D(E, γ((0, δ]) ≤ 2π/ log(R/r). From
conformal invariance, d∗D(W (E),W ◦ γ((0, δ])) ≤ 2π/ log(R/r). Let ρ = 1 on D. Then we get
the Euclidean metric. Since Aρ(D) = area(D) = π, this implies that there is a curve αr with
length less than 2π

√
log(R/r) that separates W (E) from W ◦γ((0, δ]) in D. If r is close to 0, the

length of αr is also close to 0. If r is small enough, the length of αr is less than the diameter of
W (E) and the distance between W (E) and T. Then αr must touches T and does not intersect
W (E). Since W (γ((0, δ])) is disconnected from W (E) in D by αr, we see that the diameter of
W (γ((0, δ])) is no more than the length of αr. Thus, the the diameter of W (γ((0, δ])) tends
to 0 as δ → 0, which implies that limt→0W (γ(t)) exists. Suppose β has the same property
as γ, and β(0) 6= γ(0). Then limt→0W (β(t)) also exists. Since α(0) 6= β(0), we may choose
δ > 0 such that dD(α((0, δ]), β((0, δ])) > 0. Thus, dD(W (α((0, δ])),W (β((0, δ]))) > 0. If
limt→0W (γ(t)) = limt→0W (β(t)) := w0, then the extremal distance is 0 because there is r > 0
such that any curve in {0 < |z − w0| < r} that surrounds 0 contains a subcurve in D that
connects W (α((0, δ])) and W (β((0, δ])). 2

Remark.
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1. If β(0) = γ(0), we can not conclude that limt→0W (γ(t)) = limt→0W (β(t)).

2. From Theorem 2.4, if D is replaced by a simply connected domain with locally con-
nected boundary, the first statement is still true, but we may not have limt→0W (γ(t)) 6=
limt→0W (β(t)). The theorem still holds if D is replaced by a Jordan domain

2.4 Carathéodory convergence

Definition 2.2 Suppose Dn is a sequence of domains and D is a plane domain. We say that

(Dn) converges to D, denoted by Dn
Cara−→ D, if for every z ∈ D, dist(z, ∂Dn) → dist(z, ∂D).

This is equivalent to the followings:
(i) every compact subset of D is contained in all but finitely many Dn’s; and
(ii) for every point z0 ∈ ∂D, dist(z0, ∂Dn)→ 0 as n→∞.

Remarks.

1. The distance and boundary in the definition both refer to the spherical metric. If Dn and
D are all contained in C, then the Euclidean metric gives the same definition.

2. A sequence of domains may converge to two different domains. For example, let Dn =

C \ ((−∞, n]). Then Dn
Cara−→ H, and Dn

Cara−→ −H as well. But two different limit
domains of the same domain sequence must be disjoint from each other, because if they
have nonempty intersection, then one contains some boundary point of the other, which
implies a contradiction.

Definition 2.3 Suppose Dn
Cara−→ D, fn : Dn → Ĉ, n ∈ N, and f : D → Ĉ. We say that fn

converges to f locally uniformly in D, or fn
l.u.−→ f in D, if for each compact subset F of D, fn

converges to f uniformly on F in the spherical metric.

Lemma 2.4 Suppose Dn
Cara−→ D, fn : Dn

Conf
� En, n ∈ N, and fn

l.u.−→ f in D. Then either
f is constant on D, or f is a conformal map on D. In the latter case, let E = f(D). Then

En
Cara−→ E and f−1

n
l.u.−→ f−1 in E.

Proof. We first prove the case that Dn an D do not contain ∞, and fn and f do not take
value ∞. It is clear that f is analytic. Suppose that f is not constant.

Let z1 6= z2 ∈ D and wj = f(zj), j = 1, 2. Since f is not constant, we may choose two
Jordan curves J1 and J2 surrounding z1 and z2, respectively, such that the two curves together
with their interior, say Ωj , lie in D, (J1 ∪ Ω1) ∩ (J2 ∪ Ω2) = ∅, and f(z) = wj has no solution

on Jj , j = 1, 2. Since Dn
Cara−→ D and fn

l.u.−→ f in D, there is n0 ∈ N such that Jj ∪ Ωj ⊂ Dn0

and maxz∈Jj |fn0(z) − f(z)| < minz∈Jj |f(z) − wj |. From Rouché’s theorem, there is z′j ∈ Ωj

such that fn0(z′j) = wj . Since fn0 is conformal and Ω1 ∩ Ω2 = ∅, we have w1 6= w2. Thus, f is
conformal.
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We now prove that condition (i) in Definition 2.2 holds for En and E. Suppose a compact
ball B0 = {|z−z0| ≤ r0} is contained in E. We may choose r1 > r0 such that B1 = {|z−z0| ≤ r1}
is also contained in E. Let J = f−1({|z − z0| = r1}) and Ω = f−1({|z − z0| < r1}). For any
z ∈ J and w ∈ B0, we have |f(z) − w| ≥ r1 − r0 > 0. There is n0 ∈ N such that for n ≥ n0,
Ω ∪ J ⊂ Dn and |fn − f | < r1 − r0 on J . Rouché’s theorem implies that B0 ⊂ fn(Ω) if n ≥ n0.
Thus, B0 ⊂ En if n is big enough. This implies that for any compact set K ⊂ E, there is
nK ∈ N such that K ⊂ En if n ≥ nk.

Now we prove that f−1
n

l.u.−→ f−1 in E. If this is not true, then there is a compact set
K ⊂ E such that fn does not converge uniformly on K. By passing to a subsequence, we
may assume that there is a > 0 such that supw∈K |f−1

n (w) − f−1(w)| > a for all n ∈ N. So
there is a sequence (wn) in K such that |f−1

n (wn) − f−1(wn)| > a for all n ∈ N. By passing
to a subsequence again, we may assume that wn → w0 ∈ K. Since f−1(wn) → f−1(w0), by
removing finitely many terms we may assume that |f−1

n (wn) − f−1(w0)| > a for all n ∈ N.
Let z0 = f−1(w0). We may choose a > 0 small enough such that J := {|z − z0| = a} and
Ω := {|z− z0| < a} are all contained in D. Since f(z0) = w0 ∈ Ω and f is one-to-one, f(z)−w0

has no root on J . Let b = infz∈J |f(z) − w0| > 0. There is n0 ∈ N such that Ω ∪ J ⊂ Dn0

and supz∈J |fn0(z)− f(z)| < b/2 and |wn0 −w0| < b/2. Rouché’s theorem implies that there is
zn0 ∈ Ω such that fn0(zn0) = wn0 , which is a contradiction.

Now we prove that condition (ii) in Definition 2.2 holds for En and E. If this is not
true, there is w0 ∈ ∂E such that dist(w0, ∂En) 6→ 0. By passing to a subsequence, we
may assume that there is a > 0 such that dist(w0, En) > a for all n ∈ N. Since w0 ∈ ∂E,
there is w1 ∈ E with |w1 − w0| ≤ a/6. Then dist(w1, ∂En) > 5/6a ≥ 5 dist(w1, ∂E). Since

f−1
n

l.u.−→ f−1 in E, (f−1
n )′(w1)

l.u.−→ (f−1)′(w1). From Koebe 1/4 theorem, dist(f−1
n (w1), ∂Dn) >

5
4 dist(f−1(w1), ∂D) when n is big enough. Let z1 = f−1(w1) ∈ D. Since f−1

n (w1)→ f−1(w1) =
z1, we have dist(z1, ∂Dn) > 5

4 dist(z1, ∂D) when n is big enough, which contradicts that

Dn
Cara−→ D. So we conclude that En

Cara−→ E.
For the general case we may use conformal charts for the Riemann sphere Ĉ. We leave this

as an exercise. 2

Remarks.

1. The theorem holds if the underlying space Ĉ is replaced by other Riemann surfaces.

2. To apply the theorem, we often use another theorem, which says that if Dn
Cara−→ D, if

fn : Dn → C is analytic in Dn, n ∈ N, and if the family {fn} are uniformly bounded,
then (fn) contains a subsequence which converges locally uniformly in D. Using Möbius
transformation, we see that this is still true if fn : Dn → Ĉ and the images of fn all avoid
an open subset of D̂.

3. Let Kt and gt be chordal Loewner hulls and maps driven by λ ∈ C([0, T )). Let ft = g−1
t .

Then ft : H
Conf
� H \ Kt. Let (tn) be a sequence in [0, T ) that converges to t0 ∈ [0, T ).
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Then ftn
l.u.−→ ft0 in H. Applying the above lemma, we get H \Ktn

Cara−→ H \Kt0 . For the

radial case, we get D \Ktn
Cara−→ D \Kt0 .

4. For example, if β(t), 0 ≤ t ≤ a, is a simple curve with β((0, a)) ⊂ H and β(0) 6= β(a) ∈ R,
and if the chordal Loewner hulls Kt = β((0, t]) for 0 ≤ t < a, then Ka equals the union of
β((0, a)) with the region bounded by β and [β(0), β(a)]. From the view of Carathéodory
topology, there is no jump from Kt, t < a, to Ka.

5. If λn → λ in the semi-norm ‖ · ‖a, then g−1
n,t

l.u.−→ g−1
t for 0 ≤ t ≤ a. We then conclude that

H \Kn,t
Cara−→ H \Kt or D \Kn,t

Cara−→ D \Kt for 0 ≤ t ≤ a.

3 Hulls and Loewner Chains

3.1 Hulls

Definition 3.1 A hull K in C is a continuum in C such that Ĉ \K is connected. Then Ĉ \K
is a simply connected domain. There is a unique fK : (Ĉ\D;∞)

Conf
� (Ĉ\K;∞), which satisfies

fK(z) = a1z + a0 +
−1∑

n=−∞
anz

n, z →∞,

with a1 > 0. The number a1 is called the capacity of K, and is denoted by cap(K).

We have the following results.

1. cap(D) = 1.

2. cap(aK + b) = |a| cap(K) if a, b ∈ C and a 6= 0.

3. The capacity of any closed disc is its radius.

4. cap([−2, 2]) = 1, where fK(z) = z + 1
z .

5. The capacity of a line segment equals to one quarter of its length.

6. If K1 ⊂ K2, then cap(K1) ≤ cap(K2). The equality holds only if K1 = K2. The proof
uses Schwarz lemma.

7. cap(K) ≤ diam(K) ≤ 4 cap(K). The second inequality follows from Koebe’s 1/4 theorem,
and the equality holds for line segments.

Definition 3.2 A hull K in a simply connected domain D is a relatively closed subset of D
such that D \K is also simply connected.
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Definition 3.3 A D-hull is a hull in D that does not contain 0. If K is a D-hull, there is

a unique gK : (D \ K; 0)
Conf
� (D; 0) which satisfies g′K(0) > 0. Then log(g′K(0)) is called the

D-capacity of K, and is denoted by dcap(K).

We have the following results.

1. The empty set is a D-hull, g∅ = id, and dcap(∅) = 0.

2. If K1 $ K2, then cap(K1) < cap(K2). The proof uses Schwarz lemma.

3. 1
4e
−dcap(K) ≤ dist(0,T∪K) ≤ e− dcap(K). The two inequalities follow from Schwarz lemma

and Koebe’s 1/4 theorem.

4. Let K be a D-hull. Let K∗ = D ∪ {z ∈ C : 1/z ∈ K}. Then K∗ is a hull in C, and
cap(K̂) = exp(dcap(K)).

5. If Kt are radial Loewner hulls, then each Kt is a D-hull, and dcap(Kt) = t.

Definition 3.4 An H-hull is a bounded (from ∞) hull in H.

We will use IR to denote the complex conjugate map z 7→ z. If K is a nonempty H-hull,
then K ∩R is a nonempty compact set. Let aK and bK be the minimum and maximum of this
set. Define

K̂ = K ∪ [a, b] ∪ IR(K).

Then K̂ is a hull in C with IR(K̂) = K̂. Thus, there is a unique f
K̂

: (Ĉ\D;∞)
Conf
� (Ĉ\ K̂;∞)

such that in the power series expansion of f
K̂

at ∞, say f
K̂

(z) = a1z + a0 +O(1/z) as z →∞,

the first coefficient a1 is positive. Let f = IR ◦ fK̂ ◦ IR. Since IR(K̂) = K̂ is symmetric about

R and a1 > 0, we have f : (Ĉ \D;∞)
Conf
� (Ĉ \ K̂;∞) and f(z) = a1z + a0 +O(1/z) as z →∞.

The uniqueness of f
K̂

implies that f = f
K̂

. Thus, a0 ∈ R and f
K̂

commutes with IR. Let

g = W ◦ f−1

K̂
, where W (z) = z + 1

z . Then g : (Ĉ \ K̂;∞)
Conf
� (Ĉ \ [−2, 2];∞), and the power

series expansion of g at ∞ is g(z) = z
a1
− a0

a1
+ O(1/z). Since both f

K̂
and W commute with

IR, the same is true for g. Let gK(z) = a1g(z) + a0. Set cK = a0 − 2a1 and dK = a0 + 2a1.

Then gK : (Ĉ \ K̂;∞)
Conf
� (Ĉ \ [cK , dK ];∞) and satisfies gK(z) = z +O(1/z) as z →∞. Since

a0, a1 ∈ R, gK also commutes with IR. Thus, gK maps R̂ \ K̂ = R̂ \ [aK , bK ] onto R̂ \ [cK , dK ].
Since R̂ \ [aK , bK ] divides Ĉ \ K̂ into two components: H \K and IR(H \K), and R̂ \ [cK , dK ]
divides C \ [cK , dK ] into two components: H and IR(H), we conclude that gK maps H \K onto
H or IR(H). Since gK(z) = z + O(z−1) as z → ∞. The second case does not happen. So

gK : (H \ K;∞)
Conf
� (H;∞). If K = ∅, we let gK = id. Then gK : (H \ K;∞)

Conf
� (H;∞)

and gK(z) = z + O(1/z) as z → ∞ still hold. Note that such gK is unique because if hK also

satisfies the properties of gK , then hK ◦g−1
K : H

Conf
� H, and hK ◦g−1

K (z) = z+O(z−1) as z →∞,
which forces hK ◦ g−1

K = id.
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Definition 3.5 If K is an H-hull, let gK denote the unique conformal map from (H \K;∞)
onto (H;∞) that satisfies gK(z) = z + O(1/z) as z → ∞. If the expansion of gK at ∞ is
gK(z) = z +

∑−1
n=−∞ b−nz

n, we call the number b−1 the H-capacity of K, and let it be denoted

by hcap(K). In case K 6= ∅, we define K̂, aK , bK , cK , dK to be as in the above argument, and
gK will also be understood as a conformal map from Ĉ \ K̂ onto Ĉ \ [cK , dK ].

Examples.

1. If K = ∅, then gK(z) = z, and hcap(K) = 0.

2. If K = {z ∈ H : |z − x0| ≤ r} for some x0 ∈ R and r > 0, then aK = x0 − r, bK = x0 + r;

gK(z) = z + r2

z−x0 ; cK = x0 − 2r, dK = x0 + 2r; and hcap(K) = r2.

3. If K = (0, i], then aK = bK = 0; gK(z) =
√
z2 + 1 = z

√
1 + z−2, where the branch of

the square root is chosen such that
√

1 + z−2 → 1 as z → ∞; cK = −1, dK = 1. Since
gK(z) = z(1 + 1

2z
−2 + · · · ) as z →∞, hcap(K) = 1/2.

4. If Kt and gt, 0 ≤ t < T , are chordal Loewner hulls and maps driven by λ ∈ C([0, T )),

then each Kt is an H-hull, gt = gKt , and hcap(Kt) = 2t. Recall that gt : H \Kt
Conf
� H

and satisfies gt(z) = z + 2t
z +O(z−2) as z →∞.

Lemma 3.1 If K is an H-hull, and a > 0, b ∈ R, then aK + b is also an H-hull, gaK+b(z) =
agK((z − b)/a) + b, and hcap(aK + b) = a2 hcap(K).

Proof. The proof is straightforward. We leave it as an exercise. 2

Let K be a nonempty H-hull. Let h(z) = g−1
K (z)−z. Then h is a C-valued analytic function

defined on Ĉ\ K̂. In fact, h(z) = − hcap(K)
z +O(1/z2) near∞, so h(∞) = 0. Then Imh is a real

valued harmonic function on Ĉ \ K̂. Let δ > 0 be small. Since g−1
K maps iδ+R into H, we have

Imh(z) > − Im z = −δ on iδ + R. Since Imh(∞) = 0 > −δ, from the Maximum principle, we
have Imh(z) > −δ for any z ∈ H with Im z > δ. Since this holds for any δ, we have Imh(z) ≥ 0
for any z ∈ H. If there is z0 ∈ H with Imh(z0) = 0, then Imh ≡ 0 on H, which implies that
h is a real valued constant, say C. This implies that g−1

K (z) = z + C, which contradicts that

g−1
K : H

Conf
� H \K and K 6= ∅. Thus, Imh > 0 on H. This means that Im g−1

K (z) − Im z > 0

for z ∈ H, and Im gK(z) < Im z for z ∈ H \K. Since h(z) = −hcap(K)
z + O(1/z2) near ∞ and

± Imh(z) > 0 if ± Im z > 0, we get hcap(K) > 0. So we conclude the following lemma.

Lemma 3.2 For any nonempty H-hull K, Im g−1
K (z) > Im z for z ∈ H, and hcap(K) > 0.

Definition 3.6 Let K1,K2 be two H-hulls. If K1 ⊂ K2, we say that K1 is a sub-hull of K2.
In this case, let K2/K1 = gK1(K2 \K1). We say K2/K1 is a quotient-hull of K2.
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Lemma 3.3 If K1 ⊂ K2 are two H-hulls, then K2/K1 is also an H-hull, and we have

gK2 = gK2/K1
◦ gK1 on H \K2. (3.1)

hcap(K2) = hcap(K1) + hcap(K2/K1). (3.2)

In particular, if L is a sub-hull or quotient-hull of K, then hcap(L) ≤ hcap(K), and the equality
holds iff L = K.

Proof. Since gK1 maps H \K1 onto H, we get K2/K1 ⊂ H. Since K2 \K1 is bounded and the

conformal map gK1 fixes ∞, we see that K2/K1 is bounded. Since gK1 : H \K2
Conf
� H \K2/K1

we see that H \K2/K1 is simply connected. Thus, K2/K1 is an H-hull. We have gK2/K1
◦ gK1 :

H \K2
Conf
� H, and gK2/K1

◦ gK1(z) = z + hcap(K2/K1)
z + hcap(K1)

z +O(1/z2) near ∞. So we get
(3.1) and (3.2). Note that K/L = K implies that L = ∅, and K/L = ∅ implies that L = K.
Using Lemma 3.2 we obtain the remaining results. 2

Remark. Using the notation of quotient hulls we may rewrite (1.3) as

{λ(t)} =
⋂

ε∈(0,T−t)

Kt+ε/Kt. (3.3)

Definition 3.7 A simple curve γ in H is called a crosscut if its two ends approach to two
different points on R. The closure of the bounded component of H \ γ in H is called the bubble
bounded by γ.

Remarks.

1. If K is the bubble bounded by a crosscut γ, then H \K is a Jordan domain. Thus, gK
extends to a homeomorphism from H \K to H. Moreover, the continuation of gK maps
γ onto (cK , dK).

2. For any H-hull K, there is a family of bubbles Kn such that Kn+1 ⊂ Kn for all n ∈ N,
and K =

⋂
n∈NKn. We say that K is approximated by the sequence (Kn).

Lemma 3.4 Let K be a nonempty H-hull. Then there is a (positive) measure µK supported by
[cK , dK ] with |µK | = hcap(K) such that

g−1
K (z)− z =

∫ dK

cK

−1

z − x
dµK(x), z ∈ Ĉ \ [cK , dK ]. (3.4)

If K is a bubble, then dµK = 1
π Im g−1

K (x)dx, where dx is the Lebesgue measure.
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Proof. We know that h(z) := Im(g−1
K (z)−z) is a positive harmonic function in H and vanishes

on R̂ \ [cK , dK ]. In the case that K is a bubble, h is continuous on H and h(x) = Im g−1
K (x) on

R. Using the fact that 1
π Im −1

z−x is the Poisson kernel in H with the pole at x, we conclude that
there is a (positive) measure µK supported by [cK , dK ] such that

h(z) =

∫ dK

cK

Im
−1

z − x
dµK(x), z ∈ Ĉ \ [cK , dK ], (3.5)

and dµK = 1
π Im g−1

K (x)dx if K is a bubble.
Then we conclude that the LHS of (3.4) equals to the RHS of (3.4) plus a constant C ∈ R.

When z is near ∞, the RHS of (3.4) equals to −hcap(K)
z +O(z−2), and the RHS of (3.4) equals

to − |µ(K)|
z +O(z−2). Thus, C = 0 and |µK | = hcap(K). So (3.4) holds. 2

Remarks.

1. (3.4) says that g−1
K (z)− z is the Stieltjes transform of µK .

2. If K is a D-hull, then there is a measure µK supported by T with |µK | = dcap(K) such
that

log(g−1
K (z)/z) =

∫
T

z + w

z − w
dµK(w).

Lemma 3.5 Let γ be a crosscut in H. Let h = sup Im γ. If K is the bubble bounded by γ, then

hcap(K) ≤ h

π
(dK − cK).

Proof. This follows from Lemma 3.4 immediately. 2

Lemma 3.6 For any nonempty H-hull K, [aK , bK ] ⊂ [cK , dK ]. If K1 $ K2 are two nonempty
H-hulls, then [cK1 , dK1 ] ⊂ [cK2 , dK2 ] and [cK2/K1

, dK2/K1
] ⊂ [cK2 , dK2 ].

Proof. Let K be a nonempty H-hull. From (3.4) we conclude that

g−1
K (x) < x, x ∈ (dK ,∞); g−1

K (x) > x, x ∈ (−∞, cK). (3.6)

Since g−1
K maps (−∞, cK) onto (−∞, aK), we have cK ≤ aK . Similarly, dK ≥ bK . Hence

[aK , bK ] ⊂ [cK , dK ].
Let K1 ⊆ K2 be two nonempty H-hulls. Let b ∈ (bK2 ,∞). Then dist(K2 \K1, [b,∞]) > 0

So K2/K1 = gK1(K2 \K1) is bounded away from [gK1(b),∞), which implies bK2/K1
< gK1(b).

Since this holds for any b > bK2 , we have (bK2/K1
,∞) ⊃ gK1((bK2 ,∞)). Thus,

dK2/K1
= inf gK2/K1

((bK2/K1
,∞)) ≤ inf gK2/K1

◦ gK1((bK2 ,∞)) = gK2((bK2 ,∞)) = dK2 .

Similarly, cK2/K1
≥ cK2 . So [cK2/K1

, dK2/K1
] ⊂ [cK2 , dK2 ].
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If x ∈ (−∞, aK2), then gK2(x) ∈ (−∞, cK2) ⊂ (−∞, cK2/K1
). Using (3.6) we get gK1(x) =

g−1
K2/K1

◦ gK2(x) > gK2(x). Thus,

cK1 = sup gK1((−∞, aK1)) ≥ sup gK1((−∞, aK2)) ≥ sup gK2((−∞, aK2)) = cK2 .

Similarly, we have dK1 ≤ dK2 . Hence [cK1 , dK1 ] ⊂ [cK2 , dK2 ]. 2

Lemma 3.7 Let x0 ∈ R, r > 0. If a nonempty H-hull K is contained in {|z − x0| ≤ r}, then
|g−1
K (z)− z| ≤ 15r for any z ∈ C \ [cK , dK ], and |gK(z)− z| ≤ 15r for any z ∈ C \ K̂.

Proof. Let Kr = {z ∈ H : |z − x0| ≤ r}. Then |µK | = hcap(K) ≤ hcap(Kr) = r2 and
[cK , dK ] ⊂ [cKr , dKr ] = [x0 − 2r, x0 + 2r]. Let α = {z ∈ C : |z − x0| ≤ 3r}. Then α is a Jordan
curve that encloses [cK , dK ], and dist(α, [cK , dK ]) ≥ r. If z lies on or outside α, from equation
(3.4), we get |g−1

K (z) − z| ≤ |µK |/r ≤ r. Since diam(α) = 6r, we have diam(g−1
K (α)) ≤ 8r. If

z ∈ C \ [cK , dK ] lies inside α, then g−1
K (z) lies inside g−1

K (α). Choose w ∈ α, then

|g−1
K (z)− z| ≤ |z − w|+ |w − g−1

K (w)|+ |g−1
K (w)− g−1

K (z)|

≤ diam(α) + r + diam(g−1
K (α)) ≤ 15r.

Since gK : C \ K̂
Conf
� C \ [cK , dK ], we see that |gK(z)− z| ≤ 15r for any z ∈ C \ K̂. 2

Lemma 3.8 Let Kn, n ∈ N, be a sequence of H-hulls with Kn+1 ⊂ Kn for all n. Suppose⋂∞
n=1Kn = K is an H-hull. Then hcap(K) = limn→∞ hcap(Kn).

Proof. Let Ln = Kn/K. Then
⋂∞
n=1 Ln = ∅. From Lemma 3.3, hcap(Ln) = hcap(Kn) −

hcap(K). We suffice to show that hcap(Ln)→ 0. The sequence of Ln is decreasing. If any Ln
is empty, the result is immediate. We now suppose all Ln are nonempty. Let hn denote the
height of Ln. Then hn → 0. If Ln are all bubbles, then we have

hcap(Ln) ≤ hn
π

(dLn − cLn) ≤ hn
π

(dL1 − cL1)→ 0.

In the general case, we may find a decreasing sequence of bubbles (L′n) such that Ln ⊂ L′n and⋂
L′n = ∅. For example, we may choose L′n = {|x| ≤ R, 0 < y ≤ hn}, where R = sup |ReL1|. 2

Remarks.

1. For any nonempty H-hull K, we have hcap(K) ≤ diam(K)2. Proof. Let R = diam(K)
and x0 ∈ K ∩ R. Then K ⊂ {z ∈ H : |z − x0| ≤ R} =: KR, which implies that
hcap(K) ≤ hcap(KR) = R2.

2. For any M, ε > 0, there is an H-hull K with diam(K) > M and hcap(K) < ε. Proof.
For n ∈ N, let Kn be the rectangle: [0,M ] × (0, 1

n ]. Then each Kn is an H-hull with
diam(Kn) > M . Since (Kn) is decreasing and

⋂∞
n=1Kn = ∅, we have hcap(Kn)→ 0. So

there is n0 such that hcap(Kn0) < ε.
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Let H∗(H) denote the set of all nonempty H-hulls. Let Hb(H) denote the set of all bubbles.

Proposition 3.1 Suppose x0 ∈ R, I is an open real interval, Ω is a domain, and x0 ⊂ I ⊂ Ω.
Suppose that W is a conformal map on Ω such that W (I) ⊂ R and W ′(x0) > 0. Then

lim
H∗(H)3K→x0

hcap(W (K))

hcap(K)
= W ′(x0)2, (3.7)

where K → x0 means that diam(K ∪ {x0})→ 0.

Proof. Suppose diam(K ∪ {x0}) is small enough such that K̂ ⊂ Ω and K̂ ∩ R ⊂ I. Let
ΩK = gK(Ω \ K̂) and WK = gW (K) ◦ W ◦ g−1

K . Then ΩK ∩ [cK , dK ] = ∅, ΩK ∪ [cK , dK ] is

open, and WK is a conformal map on ΩK . As z → [cK , dK ] in ΩK , g−1
K (z) → K̂ in Ω \ K,

W ◦ g−1
K (z) → W (K̂) = Ŵ (K), hence WK(z) → [cW (K), dW (K)]. Thus, WK extends to a

conformal map defined on ΩK ∪ [cK , dK ], and maps [cK , dK ] onto [cW (K), dW (K)].
Since every H-hull can be approximated by a decreasing sequence of bubbles, from Lemma

3.8 we suffice to prove the proposition with H∗(H) replaced by Hb(H). Let K ∈ H∗(H). Then
W (K) ∈ H∗(H). From Lemma 3.4 we have

hcap(K) =
1

π

∫ dK

cK

Im g−1
K (x)dx.

hcap(W (K)) =
1

π

∫ dW (K)

cW (K)

Im g−1
W (K)(x)dx.

=
1

π

∫ dK

cK

W ′K(x) Im g−1
W (K) ◦WK(x)dx =

1

π

∫ dK

cK

W ′K(x) ImW ◦ g−1
K (x)dx.

We suffice to show that, as K → x0, the following are true.

(L1) ImW (z)
Im z →W ′(x0) uniformly on z ∈ ∂K ∩H;

(L2) W ′K(x)→W ′(x0) uniformly on x ∈ [cK , dK ].

Since W is analytic and takes real value on the open interval I 3 x0, (L1) is clearly true. Now
we prove (L2). If K ⊂ Kr := {z ∈ H : |z − x0| ≤ r}, then |µK | = hcap(K) ≤ hcap(Kr) = r2

and [cK , dK ] ⊂ [cKr , dKr ] = [x0 − 2r, x0 + 2r]. Let K → x0. Then Ω \ K̂ Cara−→ Ω \ {x0}
and inf{r > 0 : K ⊂ Kr} → 0, which implies that |µK | → 0 and [cK , dK ] → x0. From

(3.4) we have g−1
K

l.u.−→ id in C \ {x0}, which implies that ΩK
Cara−→ Ω \ {x0} by Lemma 2.4.

Similarly, since W (K) → W (x0), we have g−1
W (K)

l.u.−→ id in W (Ω \ {x0}), which implies that

gW (K)
l.u.−→ id in W (Ω \ {x0}). Since WK = gW (K) ◦W ◦ g−1

K , we have WK
l.u.−→ W in Ω \ {x0}.

From ΩK
Cara−→ Ω \ {x0} we have ΩK ∪ [cK , dK ]

Cara−→ Ω. Since Wk and W are analytic on ΩK

and Ω, respectively, using the Maximum principle, we conclude that WK
l.u.−→ W in Ω. Thus,

W ′K
l.u.−→W ′ in Ω. Since [cK , dK ]→ x0, we conclude that (L2) is true. 2
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Proposition 3.2 Suppose x0 ∈ R, I is an open real interval, Ω is a domain, and x0 ⊂ I ⊂ Ω.
Suppose that W is a conformal map on Ω such that W (I) ⊂ T and W (Ω ∩H) ⊂ D. Then

lim
H∗(H)3K→x0

dcap(W (K))

hcap(K)
=

1

2
|W ′(x0)|2.

Proposition 3.3 Suppose z0 ∈ T, I is an open arc on T, Ω is a domain, and z0 ⊂ I ⊂ Ω.
Suppose that W is a conformal map on Ω such that W (I) ⊂ T and W (Ω ∩H) ⊂ D. Then

lim
H∗(D)3K→z0

dcap(W (K))

dcap(K)
= |W ′(z0)|2,

where H∗(D) denotes the space of nonempty D-hulls.

We leave the proofs of these two propositions as exercise. Hint: First prove Proposition 3.2
in the case that W is a Möbius transform, then prove Proposition 3.2 in the general case using
Proposition 3.1, and finally use Proposition 3.2 to prove Proposition 3.3.

Remarks. The factor 1
2 in Proposition 3.2 somehow explains the the enumerator 2 in the

chordal Loewner equations. This will be explained in more details later.

3.2 Deterministic Loewner Evolution

Definition 3.8 Let D be a simply connected domain and T ∈ (0,∞]. A Loewner chain in D
is a family of hulls Kt, 0 ≤ t < T , in D that satisfy the following conditions.

1. K0 = ∅; and Kt1 $ Kt2 if t1 < t2.

2. for any t0 ∈ [0, T ) and any continuum F ⊂ D \ Kt0, lims→0+ d
∗
D\Kt(F,Kt+s \ Kt) = 0

uniformly in t ∈ [0, t0]. In other words, for any ε > 0, there is δ > 0 such that if s ∈ (0, δ),
then for any t ∈ [0, t0], the conjugate extremal distance between F and Kt+s \Kt in D\Kt

is less than ε.

Remarks. Suppose Kt, 0 ≤ t < T , is a Loewner chain in D. Then we have the followings.

1. If W is a conformal map on D, then W (Kt), 0 ≤ t < T , is a Loewner chain in W (D).

2. If u is a continuous and (strictly) increasing function on [0, T ) with u(0) = 0, then Ku−1(t),
0 ≤ t < u(T ), is also a Loewner chain in D, and is called a time-changes of Kt, 0 ≤ t < T .

Examples.

1. Suppose β(t), 0 ≤ t < T , is a simple curve with β(0) ∈ R and β((0, T )) ⊂ H, then
Kt := β((0, t]), 0 ≤ t < T , is a Loewner chain in H. We leave this as an exercise.
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2. Suppose β(t), 0 ≤ t < T , is a simple curve with β(0), β(a) ∈ R and β((0, a)), β((a, T )) ⊂
H. Let Ω be the bounded component of H \ β((0, a)). Let Kt = β((0, t]), 0 ≤ t < a;
Kt = β((0, a)) ∪ Ω ∪ β((a, t]), a ≤ t < T . Then Kt, 0 ≤ t < T , is a Loewner chain in H.

Proposition 3.4 [Lawler-Schramm-Werner]

(i) If Kt, 0 ≤ t < T , are chordal Loewner hulls driven by some λ ∈ C([0, T )), then the family
is a Loewner chain in H such that each Kt is an H-hull and hcap(Kt) = 2t.

(ii) If Kt, 0 ≤ t < T , is a Loewner chain such that each Kt is an H-hull, then u(t) :=
hcap(Kt) is a continuous and increasing function on [0, T ) with u(0) = 0. Moreover, if
hcap(Kt) = 2t for each t, then Kt, 0 ≤ t < T , are chordal Loewner hulls driven by some
λ ∈ C([0, u(T ))), which is given by (3.3).

Proof. (i) We already know that each Kt is an H-hull and hcap(Kt) = 2t. Now we show
that Kt, 0 ≤ t < T , is a Loewner chain in H. Fix t0 ∈ (0, T ) and a continuum F ⊂ H \Kt0 .
Let gt’s be the chordal Loewner maps driven by λ. Then for 0 ≤ t ≤ t0, gt is well defined
on F . Let h = inf Im gt0(F ). Then h > 0 because gt0(F ) is a compact subset of H. Since
t 7→ Im gt(z) is decreasing, we have Im gt(z) ≥ h for any z ∈ F and t ∈ [0, t0]. Fix t ∈ [0, t0].
Then gt(Kt+s\Kt)−λ(t), 0 ≤ s < T−t, are chordal Loewner hulls driven by s 7→ λ(t+s)−λ(t).
Let Ms =

√
8s + sup0≤t≤t0;0≤r≤s |λ(t + r) − λ(t)|. From Lemma 1.1, we have gt(Kt+s \Kt) ⊂

{z ∈ H : |z− λ(t0)| ≤Ms}. Since λ is continuous, we have Ms → 0 as s→ 0+. If Ms is smaller
than h, then gt(Kt+s \Kt) can be separated from gt(F ) by the annulus {Ms < |z−λ(x0)| < h},
which implies that d∗H(gt(F ), gt(Kt+s \Kt)) ≤ 2π/ log(h/Ms). Since gt : H \Kt

Conf
� H, we have

d∗H\Kt(F,Kt+s \Kt) ≤ 2π/ log(h/Ms). Since Ms does not depend on t and lims→0+ Ms = 0, we

finish the proof of (i).
(ii) Fix t0 ∈ (0, T ) and a continuum F in H \Kt0 . Let d(s) = sup0≤t≤t0 d

∗
D\Kt(F,Kt+s \Kt)

for 0 < s < T−t0. From the definition we have lims→0+ d(s) = 0. From now on, t always ranges

in [0, t0], and s ranges in (0, T−t0) or some smaller interval (0, c). Since gKt : H\Kt
Conf
� H, from

the conformal invariance of extremal length, we get d∗H(gt(F ),Kt+s/Kt) ≤ d(s). Choose ρ to
be the spherical metric 2

1+|z|2 . Then Aρ(H) = 2π. Thus, there is a curve γt,s in H disconnecting

gt(F ) from Kt+s/Kt with spherical length less than
√

7d(s). We may then conclude that the
Euclidean length of γt,s tends to 0 as s→ 0+, uniformly in t ∈ [0, t0]. If s is small enough, γt,s
generates a bubble with diameter tends to 0 as s → 0+, which contains gt(Kt+s \Kt). Thus,
u(t + s) − u(t) = hcap(Kt+s) − hcap(Kt) = hcap(Kt+s/Kt) → 0+ as s → 0+, uniformly in
t ∈ [0, t0]. This shows that u is continuous on [0, t0]. Since the family Kt increases strictly an
K0 = ∅, u(t) is strictly increasing with u(0) = 0. So we finish the proof of the first statement.

Now suppose that hcap(Kt) = 2t, 0 ≤ t < T . Let t ∈ [0, t0]. Since diam(Kt+s/Kt) ≤ r(s)
for s ∈ (0, δ2), and lims→0+ r(s) = 0, we see that

⋂
s∈(0,T−t)Kt+s/Kt contains only one point.

Let it be denoted by λ(t). Suppose t1 < t2 < t3 ∈ [0, t0] satisfy that t3 − t1 < δ2. Then λ(t1) ∈
Kt3/Kt1 and λ(t2) ∈ Kt3/Kt2 . Choose any z1 ∈ Kt3/Kt2 . Then |z1 − λ(t2)| ≤ r(t3 − t2). Let
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z2 = g−1
Kt2/Kt1

(z1). From Lemma 3.7 we have |z2−z1| ≤ 15r(t2−t1). Since gKt2 = gKt2/Kt1 ◦gKt1 ,

we have
z2 = gKt1 ◦ g

−1
Kt2

(z1) ∈ gKt1 (Kt3 \Kt2) ⊂ gKt1 (Kt3 \Kt1) = Kt3/Kt1 .

Thus, |z2 − λ(t1)| ≤ r(t3 − t1). Thus, |λ(t2) − λ(t1)| ≤ r(t3 − t2) + 15r(t2 − t1) + r(t3 − t1).
Let r3 → r+

2 , we conclude that |λ(t2)− λ(t1)| ≤ 16r(t2 − t1) if t1, t2 ∈ [0, t0] and |t2 − t1| < δ2.
Since lims→0+ r(s) = 0, we have the continuity of λ on [0, t0]. Since t0 ∈ (0, T ) is arbitrary, λ
is continuous on [0, T ).

Let gt = gKt , 0 ≤ t < T . Then gt : H \Kt
Conf
� H. We suffice to show that (1.1) holds. Let

t ∈ [0, t0] and s ∈ (0, δ2) such that t− s ≥ 0. From (3.4), we have

z − g−1
Kt/Kt−s

(z) =

∫ dKt/Kt−s

cKt/Kt−s

1

z − x
dµKt/Kt−s(x), z ∈ H.

Letting w = g−1
t (z), we get

gt(w)− gt−s(w)

s
=

1

s

∫ dKt/Kt−s

cKt/Kt−s

1

gt(w)− x
dµKt/Kt−s(x), w ∈ H \Kt.

We have |µKt/Kt−s | = hcap(Kt)−hcap(Kt−s) = 2s. As s→ 0+, the interval [cKt/Kt−s , dKt/Kt−s ]

converges to a single point λ(t). So we conclude that ∂−t gt(w) = 2
gt(w)−λ(t) , w ∈ H \Kt. Since

λ is continuous, we see that (1.1) holds for t ∈ [0, t0). Since t0 ∈ (0, T ) is arbitrary, (1.1) holds
for all t ∈ [0, T ). 2

Remark. Part (ii) of the proposition says that if Kt, 0 ≤ t < T , is a Loewner chain in
H composed of H-hulls, then it is a time-change of a family of chordal Loewner hulls. The
proposition mimics Pommerenke’s theorem below for radial Loewner hulls.

Proposition 3.5 [Pommerenke]

(i) If Kt, 0 ≤ t < T , are radial Loewner hulls driven by some λ ∈ C([0, T )), then the family
is a Loewner chain in D such that each Kt is a D-hull and dcap(Kt) = t.

(ii) If Kt, 0 ≤ t < T , is a Loewner chain such that each Kt is a D-hull, then u(t) := dcap(Kt)
is a continuous and increasing function on [0, T ) with u(0) = 0. Moreover, if dcap(Kt) = t
for each t, then Kt, 0 ≤ t < T , are radial Loewner hulls driven by some λ ∈ C([0, u(T ))),
which is given by (1.5) with gt = gKt.

4 Stochastic Analysis

4.1 Stochastic processes

Let (Ω,F) be a measurable space and S be an interval of the kind [0,∞), [0, a) or [0, a]. A
filtration in (Ω,F) is a family of σ-algebras (Ft)t∈S with Ft ⊂ F for each t and Ft1 ⊂ Ft2 when
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t1 ≤ t2. The filtration is called right-continuous if for each t ∈ S, Ft =
⋂
s>tFs. For example,

Ft+ = ∧s>tFs, t ∈ S, is a right-continuous filtration. If P is a probability measure on (Ω,F),
the filtration is called complete w.r.t. P if F0 contains all P-negligible sets. (Ω,F ,P, {Ft}t∈S)
is called a filtered probability space. From now on, we assume that the filtration is right-
continuous and complete.

A family of measurable functions (Xt)t∈S on (Ω,F) is called adapted to (Ft) if Xt is
Ft-measurable for each t. If we are given a family of measurable functions (Xt)t∈S and let
FX= σ(Xs, s ≤ t), then (FXt )t∈S is a filtration, and (Xt) is (FXt )-adapted. The (FXt ) is called
the natural filtration generated by (Xt). It is easy to expand (FXt ) so that it is right-continuous
and complete.

Definition 4.1 A function T : Ω→ S ∪ {∞} is called an (Ft)-stopping time if for any t ∈ S,

{ω ∈ Ω : T (ω) ≤ t} ∈ Ft.

Given a stopping time T , the σ-algebra FT is defined by

FT = {A ∈ F : A ∩ {T ≤ t} ∈ Ft, ∀t ∈ S}.

Remarks. A constant function T ≡ t0, t0 ∈ S, is a stopping time. In that case, FT agrees
with Ft0 . Let T1 and T2 be two stopping times. Then T1 ∨ T2 and T1 ∧ T2 are stopping times.
This is also true for ∨∞n=1Tn and ∧∞n=1Tn. If T1 ≤ T2, then FT1 ⊂ FT2 . If T is a finite stopping
time, then we get a new filtration FT+t, t ≥ 0. Let (Xt) be a right-continuous or left-continuous
(Ft)-adapted process. Then for any finite (Ft)-stopping time T , XT is FT -measurable. If T
is any (Ft)-stopping time, then we get another (Ft)-adapted process: XT

t := XT∧t, t ∈ S, the
process (X) stopped at time T .

Example. Let (Xt) is a right-continuous or left-continuous adapted process, and A be an open
or closed subset of R. Let T = inf{t : Xt ∈ A} (inf ∅ =∞). Then T is a stopping time.

Definition 4.2 Let (Ω,F ,P) be a probability space with a filtration (Ft)t∈S. Let (Xt)t∈S be
an (Ft)-adapted process. If E[|Xt|] < ∞ for each t ∈ S, and E[Xt2 |Ft1 ] = Xt1 a.s. for each
t1 ≤ t2 ∈ S, we say that (Xt) is an (Ft)-martingale.

If F1 ⊂ F2 are two sub-σ-algebras of (Ω,F , P ), and if X ∈ L1(Ω,F2,P), then there is
Y ∈ L1(Ω,F1, P ) such that E[1AY ] = E[1AX] for any A ∈ F1. Such Y is P-a.s. unique, and is
denoted by E[X|F1]. If F0 ⊂ F1 ⊂ F2, then E[E[X|F1]|F0] = E[X|F0].

Theorem 4.1 [Optional Stopping Theorem] If (Xt) is a right-continuous (Ft)-martingale,
and T1, T2 are two bounded (Ft)-stopping times, then E[XT2 |FT1 ] = XT1.

If (Xt) is an (Ft)-martingale and T is an (Ft)-stopping time, using Optional Stopping
Theorem we can show that (XT

t ) is also an (Ft)-martingale.
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4.2 Brownian motion

Definition 4.3 A standard Brownian motion is a continuous random processes Bt, 0 ≤ t <∞,
such that

1. B0 = 0 and t 7→ Bt(ω) is continuous for all ω;

2. for any sequence 0 = t0 < t1 < · · · < tn, the random variables Bti −Bti−1, i = 1, 2, . . . , n
are independent, and Bti − Bti−1 ∼ N(0, ti − ti−1), where N(0, ti − ti−1) is the normal
distribution with means 0 and variance ti − ti−1.

If (Bt) is a standard Brownian motion, we call x0+cBt, where x0 ∈ R and c > 0, a Brownian
motion started from x0 (rescaled by a factor c).

A standard Brownian motion grows slower than the linear function near 0 and faster than
the linear function near ∞. In fact, we have

lim sup
t→0+

Bt

(2t log log(1/t))1/2
= 1, lim inf

t→0+

Bt

(2t log log(1/t))1/2
= −1;

lim sup
t→∞

Bt

(2t log log(t))1/2
= 1, lim inf

t→∞

Bt

(2t log log(t))1/2
= −1.

The second formula implies that Bt is recurrent.
If B1

t , B
2
t , . . . , B

d
t are d independent Brownian motions, then (B1

t , . . . , B
d
t ) is called a Brow-

nian motion in Rd. We are mostly interested in the case d = 2. In this case (B1
t , B

2
t ) is called

a planar Brownian motion or complex Brownian motion.

Definition 4.4 Given a filtration (Ft), an (Ft)-adapted process (Bt)t≥0 is called an (Ft)-
Brownian motion if it is a Brownian motion, and for any t0 ≥ 0, the process Bt0+t − Bt0,
t ≥ 0, is (a Brownian motion) independent of Ft0.

Remarks.

1. Let (Bt) be a Brownian motion. Let (FBt ) be the filtration generated by (Bt). Then (Bt)
is an (FBt )-Brownian motion. Such (FBt ) is called a Brownian filtration.

2. Let (B
(k)
t ), 1 ≤ k ≤ n, be n independent Brownian motions. Let Ft be the filtration

generated by B
(k)
s , 1 ≤ k ≤ n, 0 ≤ s ≤ t. Then every B

(k)
t is an (Ft)-Brownian motion.

3. An (Ft)-Brownian motion is a continuous (Ft)-martingale.

4. If (Bt) is an (Ft)-Brownian motion and T is a finite (Ft)-stopping time, then BT+t−BT ,
t ≥ 0, is an (FT+t) Brownian motion (independent of FT ).
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4.3 Itô’s integration

Let (Bt) be an (Ft)-Brownian motion. Let (Xt) be a left-continuous (Ft)-adapted process. Let
a > 0. We will define

∫ a
0 XtdBt. First assume that Xt is a step process on [0, a], which means

that there are random variables Z1, Z2, . . . , Zn, and a partition 0 = t0 < t1 < · · · tn = a such
that Zk ∈ Ftk and Xt = Zk when tk < t ≤ tk+1, 0 ≤ k ≤ n− 1. Then we define∫ a

0
XtdBt =

n−1∑
k=0

Zk(Btk+1
−Btk).

The value of the integration is an Fa-measurable random variable. If E|Zk|2 < ∞ for all k.
then we have

E
[(∫ a

0
XtdBt

)2
]

=

n−1∑
k=0

(tk+1 − tk)E[|Zk|2] =

∫ a

0
E[X2

t ]dt =: ‖X‖2L2[0,a].

Now we do not assume that Xt is a step function but assume that it is uniformly bounded
on [0, a]. Then Xt can be a.s. approximated by bounded step processes (Xn

t ). For example,
Xn
t = X k

n
a when k

na < t ≤ k+1
n a, 0 ≤ k ≤ n−1. Then (Xn

t ) converges to (Xt) in ‖ · ‖L2[0,a]. For

each n, we have an Fa measurable r.v.
∫ a

0 X
n
t dBt. Then we get a Cauchy sequence in L2(Fa).

We define the limit to be
∫ a

0 XtdBt, which is an element in L2(Fa).
Now suppose that Xt is bounded on [0,∞). For each a ∈ [0,∞), we have an Fa-measurable

random variable Ya =
∫ a

0 XtdBt, which is unique up to a negligible event. If a < b then Yb−Ya
is independent of Fa, E[Yb−Ya] = 0 and E[|Yb−Ya|] =

∫ b
a E[X2

t ]. So (Yt) is an (Ft)-martingale.
It is known that we may choose Yt, t ≥ 0, such that (Yt) is a continuous. (The proof uses
Doob’s Martingale Inequality and Borel Cantelli lemma) From now on, we always assume that
t 7→

∫ t
0 XsdBs is a continuous martingale.

To extend the definition, we need the following fact. If X is a bounded left-continuous
adapted process, Yt =

∫ t
0 XsdBs, and T is a stopping time, then∫ t

0
1[0,T ]XsdBS = Yt∧T = Y T

t .

Using this fact, we may now define
∫ t

0 XsdBs for a continuous adapted process Xt which may

not be bounded. Let Tn = inf{t : Xt ≥ n}. Then 1[0,Tn]Xt is bounded. We have Y
(n)
t :=∫ t

0 1[0,Tn]XsdBs and have the facts that Y
(n+1)
t∧Tn = Y

(n)
t . Then we define Yt =

∫ t
0 XsdBs to be the

process such that Yt = Y
(n)
t on [0, Tn]. We find that Yt is well defined and Y Tn

t = Y
(n)
t for each

n. The process Yt is in general not a martingale. Instead, it is a continuous local martingale.
The idea in the definition is called localization.

Definition 4.5 A process (Xt) is called a local martingale if there exists an increasing family
of finite stopping times Tn, n ∈ N, with supTn =∞ such that for each n, XTn

t is a martingale.

31



Remarks.

1. If (Xt) is a local martingale, and T is a stopping time, then (XT
t ) is also a local martingale.

2. The above (Xt) may not be a martingale even if Xt is integrable for each t. A theorem
states that if a local martingale is uniformly bounded, then it is a martingale.

3. If Mt, 0 ≤ t < ∞, is a continuous martingale, Doob’s inequality implies that a.s.
limt→∞Mt exists, which could be ±∞. We use M∞ to denote the limit. If in addi-
tion there is a deterministic R > 0 such that |Mt| ≤ R for all t, then |M∞| ≤ R, and
from DCT we have Mt = E[M∞|Ft] for all t. If (Xt) is a local martingale, and if T is
a stopping time such that Xt is uniformly bounded on [0, T ), then (XT

t ) is a uniformly
bounded martingale. So limt→∞X

T
t exists and is bounded. In case T < ∞, the limit is

simply XT . If T = ∞, we also use XT to denote the limit. So XT has a well defined
meaning no matter T <∞ or T =∞. And we have E[XT |Ft] = XT

t = XT∧t for any t.

4. Using the idea of localization, we may also define
∫ t

0 XsdBs if X· is a continuous adapted
process defined for 0 ≤ t < T , where T is a stopping time, and there exists an increasing
family of stopping times Tn, n ∈ N, with Tn < T and supTn = T . The resulting process
Yt =

∫ t
0 XsdBs is a local martingale defined on [0, T ).

Definition 4.6 A continuous semimartingale is a continuous adapted process which can be
written X = M + A where M is a continuous local martingale and A a continuous adapted
process of finite variation.

Example Suppose (Bt) is an (Ft)-Brownian motion, at and bt are continuous adapted processes,
and X0 ∈ F0. Then

Xt := X0 +

∫ t

0
asdBs +

∫ t

0
bsds.

is an (Ft)-continuous semimartingale. We often write

dXt = atdBt + btdt.

We may integrate along a semimartingale. Suppose that dXt = atdBt + btdt, and (Yt) is a
continuous adapted process. Then∫ t

0
YtdXt =

∫ t

0
YsasdBs +

∫ t

0
Ysbsds.

4.4 Quadratic Variation

For a (Ft)-local martingale Mt, there is a unique adapted continuous non-decreasing process
〈M,M〉t with 〈M,M〉0 = 0 such that (Mt−M0)2−〈M,M〉t is a local martingale. Such 〈M,M〉t
is called the quadratic variation of M . If a semimartingale X has decomposition M +A, then
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〈X,X〉 := 〈M,M〉. For two semimartingale X and Y , the bracket between X and Y is defined
by

〈X,Y 〉 =
1

4
〈X + Y,X + Y 〉 − 1

4
〈X − Y,X − Y 〉.

We have the following facts.

1. For a Brownian motion Bt, 〈B,B〉t = t.

2. If X and Y are independent, then 〈X,Y 〉 ≡ 0.

3. Levy’s characterization Theorem states that, if a local martingale Mt, 0 ≤ t <∞, satisfies
〈M,M〉t = t, then Mt is a Brownian motion started from some x ∈ R, and if two Brownian
motions Bt and B′t satisfy 〈B,B′〉 = 0, then they are independent.

4. For any stopping time T , 〈XT , Y T 〉t = 〈X,Y 〉Tt .

5. If dXt = atdBt + btdt and dYt = ctdBt + dtdt, then d〈X,Y 〉t = atctdt.

6. If B
(k)
t , 1 ≤ k ≤ n, are independent Brownian motions, and

dXt =
n∑
k=1

a
(k)
t dB

(k)
t + btdt; dYt =

n∑
k=1

c
(k)
t dB

(k)
t + dtdt,

then d〈X,Y 〉t =
∑n

k=1 a
(k)
t c

(k)
t dt.

Let (Ft) be a filtration and T be a stopping time. An (Ft)-adapted process Xt, 0 ≤ t < T ,
is called a partial (Ft)-Brownian motion if there is another filtration (F̃t) and an (F̃t)-Brownian
motion Bt such that Ft ⊂ F̃t for each t and Xt = Bt for 0 ≤ t < T . An adapted process Xt,
0 ≤ t < T is a partial Brownian motion iff it is a local martingale and 〈X,X〉t = t for 0 ≤ t < T .
The chordal or radial Loewner hulls driven by

√
κ times a partial Brownian motion are called

partial chordal or radial SLEκ hulls.

4.5 Itô’s formula

Theorem 4.2 [Itô’s formula, one-dimensional] Suppose Xt is an (Ft)-semimartingale with
dXt = atdBt + btdt. Let f(t, x) be a a C1,2 differentiable function such that f(t, ·) is Ft-
measurable for each t. Let Yt = f(t,Xt). Then Yt is also an (Ft)-semimartingale, and satisfies

dYt =
∂

∂t
f(t,Xt)dt+

∂

∂x
f(t,Xt)dXt +

1

2

∂2

∂x2
f(t,Xt)d〈X,X〉t.

Theorem 4.3 [Itô’s formula, multiple-dimensional] Let (B
(k)
t ), 1 ≤ k ≤ n, be n indepen-

dent (Ft)-Brownian motions. Let (X
(j)
t ), 1 ≤ j ≤ m, be m semimartingales which satisfies

dX
(j)
t =

n∑
k=1

a
(j,k)
t dB

(k)
t + b

(j)
t dt, 1 ≤ j ≤ m.
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Let f(t, x1, . . . ,m) be a a C1,2,...,2 differentiable function such that f(t, ·) is Ft-measurable for

each t. Let Yt = f(t,X
(1)
t , . . . , X

(m)
t ). Then Yt is also an (Ft)-semimartingale, and satisfies

dYt =
∂

∂t
f(t,Xt)dt+

m∑
j=1

∂

∂xj
f(t,Xt)dX

(j)
t +

1

2

m∑
j1,j2=1

∂2

∂xj1∂xj2
f(t,Xt)d〈X(j1), X(j2)〉t.

Corollary 4.1 [Product formula] Let Xt and Yt be two semimartingales. Let Zt = XtYt.
Then Zt is a semimartingale that satisfies

dZt = XtdYt + YtdXt + d〈X,Y 〉t.

4.6 Time-change

Let Xt, 0 ≤ t < T , be a continuous (Ft)-adapted process, where T is an (Ft)-stopping time.
Suppose u(t) = u(t, ω), 0 ≤ t < T , is a continuous (strictly) increasing (Ft)-adapted function,
which satisfies u(0) = 0. Define v(t) = v(t, ω) for 0 ≤ t < ∞ such that v(t) = u−1(t) if
t < supu[0, T ); v(t) = T if t ≥ supu[0, T ). Then for each t ≥ 0, v(t) is an (Ft)-stopping time.
In fact,

{v(t) ≤ a} = {T ≤ a} ∪ ({T > a} ∩ {u(a) ≥ t}) ∈ Fa, 0 ≤ a <∞.
Moreover, we have v(t1) ≤ v(t2) if t1 ≤ t2. So we get a new filtration (Fv(t))t≥0.

Let S = supu[0, T ). Then S is an (Fv(t))-stopping time because

{S ≤ a} ∩ {v(a) ≤ b} = {S ≤ a} ∩ {T ≤ b} = {T ≤ b} ∩
⋂

q∈[0,b]∩Q

({T > q} ∩ {u(q) ≤ a}) ∈ Fb.

We call the process Xv(t), 0 ≤ t < S, a time-change of Xt, 0 ≤ t < T . Since (X) is continuous,
(Xv(t)) is a continuous (Fv(t))-adapted process.

We have the following facts.

1. If (Xt) is an (Ft)-local martingale (resp. semimartingale), then (Xv(t)) is an (Fv(t))-local
martingale (resp. semimartingale), and 〈Xv(·), Xv(·)〉t = 〈X,X〉v(t).

2. If Yt = atdXt, then Yv(t) = av(t)dXv(t).

3. Suppose X is a local martingale, and 〈X,X〉t is strictly increasing. Let u(t) = 〈X,X〉t,
then 〈Xv(·), Xv(·)〉t = t for 0 ≤ t < S. This means that Xv(t), 0 ≤ t < S, is a Brownian
motion stopped at time S, or Xt is a time-change of a partial Brownian motion. This
Brownian motion is called the DDS Brownian motion for X.

4. Suppose that X is a semimartingale that satisfies dXt = atdBt + btdt. Suppose ct is a
positive continuous adapted process, and u(t) =

∫ t
0 c

2
sds. Let Mt =

∫ t
0 csdBs. Then M is

a local martingale, 〈M,M〉t = u(t), and dXt = at/ctdMt+ btdt. Let B̃t = Mv(t). Then B̃t
is an (Fv(t))-Brownian motion. From dXt = atdBt + btdt, we have dXt = at

ct
dMt + btdt.

Thus,

dXv(t) =
av(t)

cv(t)
dMv(t) + bv(t)dv(t) =

av(t)

cv(t)
dB̃t +

bv(t)

c2
v(t)

dt.
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4.7 Bessel process

Let (B
(1)
t , . . . , B

(n)
t ) be an n-dimensional Brownian motion. Let Xt =

√∑n
j=1(B

(j)
t )2. Then we

find that Xt satisfies the SDE

dXt =

∑n
j=1B

(j)
t dB

(j)
t

Xt
+

(n− 1)/2

Xt
dt.

Let Bt =
∫ t

0

∑n
j=1B

(j)
s dB

(j)
s

Xs
. Then B̂t is a local martingale with 〈B,B〉t = t. Thus, Bt is a

(partial) Brownian motion. And we have

dXt = dBt +
(n− 1)/2

Xt
dt. (4.1)

We may allow n to be any real number. The solution of the above SDE is called an n-dimensional
Bessel process. The Bessel process starts from some positive number, and continues forever or
stops when it hits 0.

Let f(x) = x2−n for n 6= 2 and f(x) = log(x) for n = 2. Itô’s formula implies that f(Xt)
is a local martingale, i.e., a time-change of a partial Brownian motion. For n < 2, Xt → 0 iff
f(Xt) → 0 and Xt → ∞ iff f(Xt) → ∞. For n = 2, Xt → 0 iff f(Xt) → −∞ and Xt → ∞
iff f(Xt) → ∞. For n > 2, Xt → 0 iff f(Xt) → ∞ and Xt → ∞ iff f(Xt) → 0. From the
properties of Brownian motion, we find that, for n < 2, Xt hits 0 in a finite time; for n > 2,
Xt →∞ as t→∞; for n = 2, lim inf Xt = 0 and lim supXt =∞. For n > 2, an n-dimensional
Bessel process can be started from 0+. This is a process Xt with X0 = 0, Xt > 0 for t > 0, and
satisfies (4.1) for t > 0.

4.8 Complex valued Itô’s formula

Let D be a plane domain, and f : D
Conf
� D′. Let BC

t = B
(1)
t + iB

(2)
t be a planar Brownian

motion started from z0 ∈ D. Let τ be the first time that BC
t leaves D. We consider the image

f(BC
t ), 0 ≤ t < τ . Let f = u+iv. From Itô’s formula and the fact that uxx+uyy = vxx+vyy = 0,

we get

du(BC
t ) = ux(BC

t )dB
(1)
t + uy(B

C
t )dB

(2)
t , dv(BC

t ) = vx(BC
t )dB

(1)
t + vy(B

C
t )dB

(2)
t .

Thus, 〈u(B), u(B)〉t = 〈v(B), v(B)〉t =
∫ t

0 |f
′(BC

s )|2ds, and 〈u(B), v(B)〉t ≡ 0. Construct a

time-change using a(t) =
∫ t

0 |f
′(BC

s )|2ds. Let b(t) = a−1(t). Then we see that u(BC
b(t)) and

v(BC
b(t)) are two independent Brownian motions. Thus, f(BC

t ) is a time-change of a planar

Brownian motion started from f(z0) stopped on leaving D′. This phenomena is called the
conformal invariance of planar Brownian motion.

Let Zt be a complex valued semimartingale which satisfies

dZt = atdBt + btdt.
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Here Bt is a standard real valued Brownian motion, at and bt are complex valued adapted
continuous process. Thus, if Zt = Xt+iYt, then dXt = Re atdBt+Re btdt and dYt = Im atdBt+
Im btdt. Suppose f = u + iv is an analytic function defined in a domain which contains the
range of Zt. Let f(Zt) = Ut + iVt. Then

dUt = ux(Zt)dXt + uy(Zt)dYt +
1

2
uxx(Zt)d〈X,X〉t +

1

2
uyy(Zt)d〈Y, Y 〉t + uxy(Zt)〈X,Y 〉t

= Re f ′(Zt) Re dZt − Im f ′(Zt) Im dZt +
1

2
Re f ′′(Zt)(Re at)

2dt− 1

2
Re f ′′(Zt)(Im at)

2dt

− Im f ′′(Zt) Re at Im atdt = Re[f ′(Zt)dZt] + Re[f ′′(Zt)
1

2
a2
t ]dt.

dVt = vx(Zt)dXt + vy(Zt)dYt +
1

2
vxx(Zt)d〈X,X〉t +

1

2
vyy(Zt)d〈Y, Y 〉t + vxy(Zt)〈X,Y 〉t

= Im f ′(Zt) Re dZt + Re f ′(Zt) Im dZt +
1

2
Im f ′′(Zt)(Re at)

2dt− 1

2
Im f ′′(Zt)(Im at)

2dt

+ Re f ′′(Zt) Re at Im atdt = Im[f ′(Zt)dZt] + Im[f ′′(Zt)
1

2
a2
t ]dt.

So we have

df(Zt) = f ′(Zt)dZt +
1

2
f ′′(Zt)a

2
tdt = f ′(Zt)atdBt + f ′(Zt)btdt+

1

2
f ′′(Zt)a

2
tdt.

4.9 Girsanov Theorem

In this subsection, we will change the underlying probability measure. Let the current proba-
bility distribution be denoted by P. Suppose that another probability distribution P1 satisfies
P1 � P on each Ft. It is known that the quadratic variation of a semimartingale does not

change if the probability measure is changed from P to P1. Let Dt =
dP1|Ft
dP|Ft

. Then Dt is a mar-

tingale. An (Ft)-adapted process Xt is a martingale (resp. local martingale) under P1 if and
only if XtDt is a martingale (resp. local martingale) under P. We now consider the case that
Dt has an expression dDt = atDtdBt for an (Ft)-Brownian motion Bt. Let Xt = Bt −

∫ t
0 asds.

Then 〈X,X〉t = t. From the product formula,

dXtDt = XtdDt +DtdXt + 〈X,D〉t = XtdDt +DtdBt −Dtatdt+ atDtdt = (XtatDt +Dt)dBt.

Thus, under P1, Xt is a local martingale with 〈X,X〉t = t. So Bt −
∫ t

0 asds is a Brownian
motion under P1.

On the other hand, given a continuous adapted process at, we may construct a local mar-
tingale Dt with dDt = atDtdBt. It is defined by

Dt = exp
(∫ t

0
asdBs −

1

2

∫ t

0
a2
sds
)
.
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Suppose T is a stopping time such that Dt, 0 ≤ t ≤ T , are uniformly bounded. Then DT
t is a

bounded martingale, and DT
t = E[DT |Ft] for any t. Define P1 such that dP1 = DTdP. Then

dP1|Ft/dP|Ft = DT
t for each t. We then can conclude that Bt −

∫ t
0 asds, 0 ≤ t < T , is a partial

Brownian motion up to T under P1.

4.10 Some applications

Let gt be chordal Loewner maps driven by λt =
√
κBt. Fix x0 > 0. Let Zt = gt(x0) − λt,

0 ≤ t < τ = τx0 . Recall that τ <∞ implies that Zt → 0 as t→ τ . Then Zt stays positive and
satisfies

dZt = −
√
κdBt +

2

Zt
dt. (4.2)

We see that Zt/
√
κ is a Bessel process of dimension 1 + 4

κ . Thus, if κ > 4, then τ < ∞ and
Zt → 0 as t → τ ; if κ < 4, then τ = ∞ and Zt → ∞ as t → ∞; if κ = 4, then τ = ∞,
lim inft→∞ Zt = 0 and lim supt→∞ Zt =∞. We have a similar result for x0 < 0.

Now suppose z0 ∈ H. Let Zt = gt(z0)−λt. Then the complex valued process Zt also satisfies
(4.2). Let f(z) = z1−4/κ for κ 6= 4 and f(z) = ln(z) for κ = 4. Since f is analytic, we find that

df(Zt) = f ′(Zt)dZt +
κ

2
f ′′(Zt)dt = −f ′(Zt)

√
κdBt.

This means that f(Zt) is a local martingale. In other words, both Re f(Zt) and Im f(Zt) are
local martingales.

Note that Zt stays in H. If κ = 4, f maps H conformally onto {0 < Im z < π}. So Im f(Zt)
is uniformly bounded, which implies that Im f(Zt) = Im ln(Zt) = arg(Zt) is a martingale. In
fact, Im f(Zt)/π is the probability that a planar Brownian motion started from gt(z0) hits
(−∞, λt) when exiting H. From conformal invariance of planar Brownian motion, this is equal
to the probability that a planar Brownian motion started from z0 hits (−∞, 0] unions the “left
side” of the SLE4 trace β up to time t when it exits H \ β(0, t].

If κ = 2, f(z) = 1/z. We see that − 1
π Im f(Zt) = − 1

π Im 1
gt(z0)−λt is a Poisson kernel function

in H with pole at λt valued at gt(z0). Since gt maps the β(t) to λt, this is also equal to a Poisson
kernel function in H \ β(0, t] with pole at β(t) valued at z0. Here a Poisson kernel function in a
simply connected domain D is a positive harmonic function in D, whose continuation vanishes
on ∂D except for one point (or prime end), which is called the pole. When the domain D and
the pole is given, the Poisson kernel function exists and is unique up to a positive factor.

We may also apply Itô’s formula to radial Loewner equations. Recall that the radial Loewner
equation driven by λ is

∂tgt(z) = gt(z)
eiλt + gt(z)

eiλt − gt(z)
, g0(z) = z.

Let cot2(z) = cot(z/2). We now introduce the covering radial Loewner equation:

∂tg̃t(z) = cot2(g̃t(z)− λt), g0(z) = z.
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Note that

i cot2(z − w) = i
cos2(z − w)

sin2(z − w)
= −e

i(z−w)/2 + e−i(z−w)/2

ei(z−w)/2 − e−i(z−w)/2
=
eiw + eiz

eiw − eiz
.

So we have

∂te
ig̃t(z) = ieig̃t(z) cot2(g̃t(z)− λt) = eig̃t(z)

eiλt + eig̃t(z)

eiλt − eig̃t(z)
.

Thus, eig̃t(z) satisfies the same ODE and initial value as gt(e
iz). Let ei denote the map z 7→ eiz.

We then have ei ◦ g̃t = gt ◦ ei. Let K̃t denote the set of z ∈ H such that g̃s(z) blows up before

or at time t. Then we have K̃t = (ei)−1(Kt), and g̃t : H \ K̃t
Conf
� H. We call g̃t and K̃t the

covering radial Loewner maps and hulls driven by λ.
For every z ∈ R, g̃t(z) stays on R before blowing up. If z ∈ H, then g̃t(z) stays in H, and

Im g̃t(z) decreases in t. If τ(z) < ∞, then g̃t(z) − λt hits a pole of cot2 as t → τ(z), which
means that there is some n ∈ Z such that g̃t(z)− λt → 2nπ as t→ τ(z)−.

Now suppose λt =
√
κBt. Fix x0 ∈ (0, 2π). Let Zt = g̃t(x0)− λt, 0 ≤ t < τ = τ(x0). Then

Zt stays in (0, 2π) and satisfies

dZt = −
√
κBt + cot2(Zt)dt. (4.3)

We may find f such that f(Zt) is a local martingale. We need that f satisfies f ′(x) cot2(x) +
κ
2f
′′(x) = 0, which implies that f ′(x) = C sin2(x)−4/κ. Let Wt = f(Zt). Then dWt =

−f ′(Zt)
√
κdBt. Let u(t) =

∫ t
0 |f

′(Zs)|ds. Suppose u maps [0, τ) onto [0, T ). Let v(t), 0 ≤ t < T ,
be the inverse of u. Then Wv(t), 0 ≤ t < T , is a Brownian motion. If κ > 4, then f maps (0, 2π)

onto a bounded interval. So we have a.s. T < ∞. Since T =
∫ τ

0 C
2| sin2(Zs)|−8/κds ≥ C2τ ,

we get τ < ∞ and limt→τ Zt = 0 or 2π. Since Wv(t), 0 ≤ t < T , is bounded, it is a bounded
martingale, and we have

f(x0) = W0 = E[Wτ ] = f(0)P[lim
t→τ

Zt = 0] + f(2π)P[lim
t→τ

Zt = 2π].

If f has a simple formula, we may calculate the probability that Zt → 0 as t→ τ . Now suppose
κ ≤ 4. Then f maps (0, 2π) onto R. As a Brownian motion, Wv(t) does not tend to +∞ or
−∞ as t → T no matter T = ∞ or T < ∞. So Zt does not tend to 0 or 2π as t → τ . This
implies that τ = ∞. Since T ≥ C2τ , we have T = ∞. Thus, lim inft→∞Wv(t) = −∞ and
lim supt→∞Wv(t) = +∞, which implies that lim inft→∞ Zt = 0 and lim supt→∞ Zt = 2π.

Fix z0 ∈ H. Let Zt = g̃t(z0) − λt. Then the complex valued process Zt also satisfies (4.3).
Thus, if f is an antiderivative of C sin2(x)−4/κ, then f(Zt) is a local martingale. If κ = 2, we
may choose f(z) = cot2(z). This means that

cot2(g̃t(z0)− λt) = −ie
iλt + gt(e

iz0)

eiλt − gt(eiz0)

is a local martingale. Thus, for any w0 ∈ D, Re eiλt+gt(w0)
eiλt−gt(w0)

is a local martingale. Let ft(z) =

Re eiλt+gt(z)
eiλt−gt(z)

. Then ft is a Poisson kernel function in D \ β(0, t] with pole at β(t), normalized

by ft(0) = 1. Then for any z ∈ D, t 7→ ft(z) is a local martingale.
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4.11 Phase transition

Theorem 4.4 Let Kt be chordal Loewner hulls driven by λt =
√
κBt. Fix z0 ∈ H. Let

τ = τ(z0). Then

1. If κ ≤ 4, a.s. τ =∞. If κ > 4, a.s. τ <∞.

2. If κ < 8, a.s. limt→∞ dist(z0,Kt) > 0. If κ ≥ 8, a.s. limt→∞ dist(z0,Kt) = 0.

Proof. Let gt be the chordal Loewner maps. Let Zt = gt(z0)− λt, 0 ≤ t < τ . Let Xt = ReZt
and Yt = ImZt. Then Xt and Yt satisfy

dXt = −
√
κdBt +

2Xt

X2
t + Y 2

t

, dYt =
−2Yt

X2
t + Y 2

t

dt.

Let Wt = Xt/Yt. Then Wt satisfies

dWt =
−
√
κ

Yt
dBt +

4Xt/Yt
X2
t + Y 2

t

dt.

Let u(t) = 1
2(ln(Y0) − ln(Yt)). Then u(0) = 0 and u′(t) = 1

X2
t +Y 2

t
. Let T = supu[0, τ), and let

v(t), 0 ≤ t < T , be the inverse of u. Then there is another Brownian motion B̃t such that

dWv(t) =
√

1 +W 2
v(t)

√
κdB̃t + 4Wv(t)dt, 0 ≤ t < T.

Let Ut = sinh−1(Wv(t)). Since (sinh−1)′(x) = 1√
1+x2

and (sinh−1)′′(x) = − x
(1+x2)3/2

, we have

dUt =
√
κdB̃t + (4− κ

2
) tanh(Ut)dt, 0 ≤ t < T. (4.4)

Choose f on R such that f ′(x) = cosh(x)1−8/κ. Let Vt = f(Ut). Then

dVt = cosh(Ut)
1−8/κ√κdB̃t, 0 ≤ t < T.

So Vt is a time-change of a partial Brownian motion.
First, suppose κ < 8. Then f maps R onto a finite interval, which implies that limt→T Vt

a.s. exists. Thus, limt→T Ut a.s. exists. So limt→τ Wt a.s. exits. We first show that a.s. T =∞.
If T <∞, then limt→τ Yt > 0, and from (4.4) we see that limt→T Ut is finite, which implies that
limt→τ Wt is finite. Thus, limt→τ Xt also exists and if finite. Since T =

∫ τ
0

ds
X2
s+Y 2

s
, from T <∞,

we have τ <∞, which implies that limt→τ Zt = 0 and limt→τ Yt = 0, so we get a contradiction.
Thus, a.s. T = ∞. From (4.4) we see that limt→∞ Ut can not be a finite number. Thus, a.s.
limt→∞ Ut = +∞ or −∞.

From symmetry, we only need to consider the case that limt→∞ Ut = +∞. Then tanh(Ut)→
1. From (4.4) we have limt→∞ Ut/t = 4− κ/2. From T =

∫ τ
0

1
X2
s+Y 2

s
ds we get

τ =

∫ T

0
(X2

v(s) + Y 2
v(s))ds =

∫ ∞
0

Y 2
v(s)(1 +W 2

v(s))ds = Y 2
0

∫ ∞
0

e−4s cosh2(Us)ds. (4.5)
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Suppose κ ∈ (4, 8). Choose κ′ ∈ (4, κ). There is some (random) N > 0 such that 0 < Ut <
(4− κ′/2)t for t ≥ N . So∫ ∞

N
e−4s cosh2(Us)ds ≤

∫ ∞
N

e−4se2Usds ≤
∫ ∞
N

e(4−κ′)sds <∞,

which implies that τ <∞. Suppose κ ∈ (0, 4]. Then∫ ∞
0

e−4s cosh2(Us)ds ≥
1

4

∫ ∞
0

e2Us−4sds.

From limt→∞ Ut/t = 4 − κ/2 and (4.4) we see that there is some (random) C > 0 such that
Ut >

√
κB̃t + (4− κ/2)t− C for all t, which implies that∫ ∞

0
e2Us−4sds ≥

∫ ∞
0

e2
√
κB̃s+(4−κ)s−Cds ≥ e−C

∫ ∞
0

e2
√
κB̃sds.

Since B̃s is recurrent, we have a.s.
∫∞

0 e2
√
κB̃sds =∞. Thus, a.s. τ =∞ if κ ∈ (4, 8).

Next, suppose κ ≥ 8. Then f maps R onto R. If Vt is a time-change of an incomplete
Brownian motion, then we must have (i)

∫ T
0 κ cosh(Ut)

1−8/κdt < ∞; and (ii) limt→T Vt exists
and is finite, which implies that limt→T Ut and limt→τ Wt exist and are finite. Then we must have
T <∞. We already see that a contradiction can be obtained from T <∞ and limt→τ Wt ∈ R.
Thus, Vt is a time-change of a complete Brownian motion. So we have lim inft→T Ut = −∞ and
lim supt→T Ut =∞. From (4.4) we conclude that a.s. T =∞.

We will prove that a.s. lim supt→∞ Ut/t ≤ 0. If this is not true, then there is δ > 0 such
that lim supt→∞ Ut/t > δ. Since limt→∞ B̃t/t = 0, there is some (random) N > 0 such that for
t ≥ N , |

√
κB̃t| < δ

2 t. Since Ut is recurrent and lim supt→∞ Ut/t > δ, there exist t2 > t1 > N
such that Ut1 = 0, Ut2 = δt2 and Ut > 0 for t ∈ (t1, t2). From (4.4) we have

δt2 = Ut2 − Ut1 =
√
κB̃t2 −

√
κB̃t1 + (4− κ

2
)

∫ t2

t1

tanh2(Us)ds

≤
√
κB̃t2 −

√
κB̃t1 ≤

δ

2
t2 +

δ

2
t1 < δt2,

which is a contradiction. So a.s. lim supt→∞ Ut/t ≤ 0. Similarly, a.s. lim inft→∞ Ut/t ≥ 0. Thus,
limt→∞ Ut/t = 0. Thus, a.s.

∫∞
0 e−4se±2Usds < ∞, which implies that

∫∞
0 e−4s cosh2(Us)ds <

∞. From (4.5) we get a.s. τ <∞. This finishes the proof of (i).

Since gt : H\Kt
Conf
� H, dist(z0, ∂(H\Kt)) = min{Im z0, dist(z0,Kt)} and dist(gt(z0), ∂H) =

Im gt(z0), from Koebe’s 1/4 theorem, we suffice to show that limt→τ |g′t(z0)|/Yt → ∞ when
κ ≥ 8 and limt→τ |g′t(z0)|/Yt < ∞ when κ < 8. From chordal Loewner equation, we get

∂tg
′
t(z0) =

−2g′t(z0)

Z2
t

, which implies that ∂t log |g′t(z0)| = Re −2
Z2
t

=
−2(X2

t−Y 2
t )

(X2
t +Y 2

t )
. Since dYt = −2Yt

X2
t +Y 2

t
,

we get ∂t log(|g′t(z0)|/Yt) =
4Y 2
t

X2
t +Y 2

t
. Let S =

∫ τ
0

Y 2
s

(X2
s+Y 2

s )2
ds. We suffice to show that a.s. S =∞

when κ ≥ 8 and S <∞ when κ < 8.
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By changing variable we get

S =

∫ ∞
0

Y 2
v(s)

X2
v(s) + Y 2

v(s)

ds =

∫ ∞
0

ds

1 +W 2
v(s)

=

∫ ∞
0

cosh−2(Us)ds.

If κ < 8, then a.s. limt→∞ Ut/t = 4 − κ
2 or limt→∞ Ut/t = −(4 − κ/2). In either case we get

S <∞. If κ ≥ 8, then Ut is a recurrent process, which implies that S =∞. 2

5 Locality and Restriction

5.1 Locality property

In this section, we will prove that SLE6 satisfies locality property, and other SLEκ satisfies
weak locality property. The locality of SLE6 means that the growth of SLE6 does not feel the
boundary before it hits it. We have the following theorem.

Theorem 5.1 Suppose Kt, 0 ≤ t < ∞, are standard chordal SLE6 hulls. Let A be an H-hull
such that dist(0, A) > 0. Let T be the biggest time such that Kt ∩ A 6= ∅ for 0 ≤ t < T . Then
after a time-change, Kt, 0 ≤ t < T , has the same distribution as the chordal SLE6 hulls in
H \A from 0 to ∞, stopped when touches A.

Proof. Let λt =
√
κBt be the driving function, and gt be the chordal Loewner maps. We know

that Kt, 0 ≤ t < ∞, is a Loewner chain in H. Then we easily see that Kt, 0 ≤ t < ∞, is a
Loewner chain in H \ A. Let W = gA and Lt = W (Kt), 0 ≤ t < T . Then Lt, 0 ≤ t < T , is
a Loewner chain in H, and each Lt is an H-hull. Let u(t) = hcap(Lt)/2, 0 ≤ t < T . Then u
is continuous and increasing with u(0) = 0. Let S = supu[0, T ). Let v = u−1. Then Lv(t),
0 ≤ t < S, is a Loewner chain in H with hcap(Lv(t)) = 2t for 0 ≤ t < S. Thus, Lv(t), 0 ≤ t < S,
are chordal Loewner hulls driven by some η ∈ C[0, S). We suffice to show that ηt, 0 ≤ t < S,
has the distribution as W (0) +

√
κBt stopped at S. Let ht be the chordal Loewner maps driven

by η. Then hu(t) : H \ Lt
Conf
� H.

For 0 ≤ t < T , let At = gt(A) and

Wt = hu(t) ◦W ◦ g−1
t .

Then Wt : H \ At
Conf
� H, and λt is bounded away from At. In fact, from the power series

expansion of Wt at∞, we see that Wt = gAt . From Schwarz reflection principle, we may extend
Wt analytically across R \ At, and maps R \ At into R. We have (t, z) 7→ Wt(z) is continuous.
Fix t ∈ [0, T ) and s ∈ (0, T − t). we have

Lt+s/Lt = hu(t)(Lt+s \ Lt) = Wt(gt(Kt+s \Kt)) = Wt(Kt+s/Kt).

Since hcap(Lt+s/Lt) = 2u(t+ s)− 2u(t) and hcap(Kt+s/Kt) = 2s,
⋂
s>0Kt+s/Kt = {λt}, and

Wt is analytic at λt, we get u′+(t) = W ′t(λt)
2, 0 ≤ t < T . Since W ′t(λt) is continuous in t, we

have
u′(t) = W ′t(λt)

2, 0 ≤ t < T. (5.1)
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Since
{λt} =

⋂
s>0

Kt+s/Kt, {ηu(t)} =
⋂
s>0

Lt+s/Lt,

we have
ηu(t) = Wt(λt), 0 ≤ t < T. (5.2)

From the definition of Wt, we get

Wt ◦ gt(z) = hu(t) ◦W (z), z ∈ H \ (A ∪Kt).

Differentiate this equality w.r.t. t, and using (5.1) and (5.2) we get

∂tWt(gt(z)) +W ′t(gt(z))
2

gt(z)− λt
=

2W ′t(λt)
2

hu(t)(W (z))− ηu(t)
=

2W ′t(λt)
2

Wt(gt(z))−Wt(λt)
.

Since gt maps H \ (A ∪Kt) onto H \At, we conclude that

∂tWt(w) =
2W ′t(λt)

2

Wt(w)−Wt(λt)
− 2W ′t(w)

w − λt
.

Let aj = W
(j)
t (λt), j ∈ N. Let δ = w − λt. Then as δ → 0,

2W ′t(λt)
2

Wt(w)−Wt(λt)
− 2W ′t(w)

w − λt
=

2a2
1

a1δ + a2
2 δ

2 +O(δ3)
− 2(a1 + a2δ +O(δ2))

δ

=
2a1

δ
(1 +

a2

2a1
δ +O(δ2))−1 − 2a1

δ
− 2a2 +O(δ).

=
2a1

δ
(1− a2

2a1
δ +O(δ2))− 2a1

δ
− 2a2 +O(δ) = −3a2 +O(δ).

So we have
∂tWt(λt) = −3W ′′t (λt), 0 ≤ t < T. (5.3)

Since λt =
√
κBt (κ = 6), applying Itô’s formula to (5.2) we get

dηu(t) = W ′t(λt)dλt +
(κ

2
− 3
)
W ′′t (λt)dt, 0 ≤ t < T. (5.4)

From (5.1) we see that there is another Brownian motion B̃t such that

dηt =
√
κdB̃t +

(κ
2
− 3
) W ′′v(t)(λv(t))

W ′v(t)(λv(t))2
dt, 0 ≤ t < S.

If κ = 6, then ηt, 0 ≤ t < S, has the same distribution as
√
κBt stopped at S. So the proof is

finished. 2

Remarks.
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1. The locality property explains why the scaling limit of critical percolation is SLE6.

2. Lawler, Schramm and Werner uses the locality of SLE6 to compute the intersection ex-
ponent of planar Brownian motion.

3. In case κ 6= 6, from Girsanov theorem, we may find an increasing sequence stopping times
(Tn) such that T = ∨Tn, and for each n, the distribution of Kt, 0 ≤ t ≤ Tn, is equivalent
to the distribution of a time-change of a chordal SLEκ hulls in H\A from 0 to∞ stopped
at some stopping time. We say that chordal SLEκ satisfies weak locality for κ 6= 6.

4. The locality property for κ = 6 and weak locality property for κ 6= 6 are also satisfied by
radial SLE. We leave this as an exercise.

5.2 Restriction property

In this subsection we will show that SLE8/3 satisfies restriction property. We have the following
theorem.

Theorem 5.2 Suppose Kt, 0 ≤ t <∞, are standard chordal SLE8/3 hulls. Let A be an H-hull
such that dist(0, A) > 0. Then conditioned on the event that K∞ :=

⋃
Kt is disjoint from A,

Kt, 0 ≤ t <∞, has the same distribution as the chordal SLE8/3 hulls in H \A from 0 to ∞.

Proof. The initial part of the proof is the same as the proof of Theorem 5.1. Now we have
derived

∂tWt(w) =
2W ′t(λt)

2

Wt(w)−Wt(λt)
− 2W ′t(w)

w − λt
, w ∈ H \At.

Differentiating this equality w.r.t. w, we get

∂tW
′
t(w) = − 2W ′t(λt)

2W ′t(w)

(Wt(w)−Wt(λt))2
− 2W ′′t (w)

w − λt
+

2W ′t(w)

(w − λt)2
.

If δ = w − λt → 0, we have

− 2W ′t(λt)
2W ′t(w)

(Wt(w)−Wt(λt))2
− 2W ′′t (w)

w − λt
+

2W ′t(w)

(w − λt)2

= −
2a2

1(a1 + a2δ + a3
2 δ

2 +O(δ3))2

(a1δ + a2
2 δ

2 + a3
6 δ

3 +O(δ4))2
− 2(a2 + a3δ +O(δ2))

δ
+

2(a1 + a2δ + a3
2 δ

2 +O(δ3))

δ2

= −2a1

δ2

1 + a2
a1
δ + 1

2
a3
a1
δ2 +O(δ3)

(1 + 1
2
a2
a1
δ + 1

6
a3
a1
δ2 +O(δ3))2

+
2a1

δ2
− a3 +O(δ)

= −2a1

δ2

1 + a2
a1
δ + 1

2
a3
a1
δ2 +O(δ3)

1 + a2
a1
δ + (1

4
a22
a21

+ 1
3
a3
a1

)δ2 +O(δ3)
+

2a1

δ2
− a3 +O(δ)
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= −2a1

δ2
(1 + (

1

6

a3

a1
− 1

4

a2
2

a2
1

)δ2 +O(δ3)) +
2a1

δ2
− a3 +O(δ) =

1

2

a2
2

a1
− 4

3
a3 +O(δ).

Thus, we have
∂tW

′
t(λt)

W ′t(λt)
=

1

2

(W ′′t (λt)

W ′t(λt)

)2
− 4

3

W ′′′t (λt)

W ′t(λt)
. (5.5)

Since λt =
√
κBt, we find that W ′t(λt) satisfies the SDE:

dW ′t(λt)

W ′t(λt)
=
W ′′t (λt)

W ′t(λt)
dλt +

1

2

(W ′′t (λt)

W ′t(λt)

)2
dt+

(κ
2
− 4

3

)W ′′′t (λt)

W ′t(λt)
dt. (5.6)

Let α = 6−κ
2κ and c = (6−κ)(3κ−8)

2κ . When κ = 8
3 , α = 5

8 and c = 0. The c is known as the central
charge of SLEκ. Then

dW ′t(λt)
α

W ′t(λt)
α

= α
dW ′t(λt)

W ′t(λt)
+
κ

2
α(α− 1)

(W ′′t (λt)

W ′t(λt)

)2
dt

= α
W ′′t (λt)

W ′t(λt)
dλt +

c

6

W ′′′t (λt)

W ′t(λt)
dt− c

4

(W ′′t (λt)

W ′t(λt)

)2
dt. (5.7)

If κ = 8
3 , then W ′t(λt)

α is a local martingale. Recall that Wt = gAt . Since

g−1
At

(z)− z =

∫
1

x− z
dµAt(x),

we get

(g−1
At

)′(z) = 1 +

∫
1

(x− z)2
dµAt(x).

Thus, for any z ∈ R\[cAt , dAt ], we have (g−1
At

)′(z) > 1, which implies that 0 < W ′t(λt) < 1. Thus,
W ′t(λt)

α is a bounded martingale. Then X := limt→∞W
′
t(λt)

α exists a.s. and lies between 0
and 1. And we have E[X] = W ′0(λ0)α = g′A(0)α. Now we define a new probability measure P1

such that dP1/dP = X/g′A(0)α. Let Dt = E[dP1/dP|Ft] = W ′t(λt)
α/g′A(0)α. From (5.7) we see

that, under P1, B̃t = Bt − α
√
κ
∫ t

0
W ′′s (λs)
W ′s(λs)

is a Brownian motion. We have

dλt =
√
κdBt =

√
κdB̃t + ακ

W ′′t (λt)

W ′t(λt)
dt.

Formula (5.4) still holds here. So we get

dηu(t) = W ′t(λt)
√
κdB̃t.

From (5.1) we see that, under P1, there is a Brownian motion B̂t such that dηt =
√
κdB̂t,

0 ≤ t < S. This shows that, under P1, a time-change of Lt = W (Kt), 0 ≤ t < T , are partial
chordal SLE8/3 hulls in H from η0 = W (λ0) to ∞. Thus, under P1, after a time-change, Kt,
0 ≤ t < T , are partial chordal SLE8/3 hulls in H \A from 0 to ∞.
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We now use the existence and properties of the chordal SLEκ trace. We have a simple curve
β(t) such that Kt = β(0, t] for 0 ≤ t < T . Under P1, a time-change of β(t), 0 ≤ t < T , is a
partial chordal SLE8/3 trace in H \ A from 0 to ∞. If such trace does not finish its journey,
then it ends at some interior point of H \A. From the definition of T , this is a P-null event. So
it is also a P1-null event. So the word “partial” can be removed.

Thus, modulo a time-change, the distribution of chordal SLE8/3 process in H \ A from 0
to ∞ is absolutely continuous w.r.t. that of chordal SLE8/3 process in H from 0 to ∞, and
the Radon-Nikodym derivative is X/E[X]. Since the trace in H \ A does not hit A, we have
P1[T <∞] = 0. Thus, X = 0 on {T <∞}. We claim that X = 1 on {T =∞}. If this is true,
then P1 = P[·|T =∞] = P[·|K∞ ∩A = ∅], and we are done.

Now we prove the claim in the case that A ∩ R lies to the right of 0. Suppose T =∞, i.e.,
the whole trace β avoids A. As t→∞, β(t)→∞, so the extremal distance between A∪ [aA, bA]
and (−∞, 0] unions the “left side” of β(0, t] in H \ β(0, t] tends to ∞, which implies that the
extremal distance between At∪ [aAt , bAt ] and (−∞, λt] in H tends to∞. This then implies that
the extremal distance between [cAt , dAt ] and (−∞, gAt(λt)] in H tends to ∞ as t → ∞. So we

have
dAt−cAt

cAt−gAt (λt)
→ 0 as t→∞.

Recall that for any nonempty H-hull K, gK : (Ĉ\K̂;∞)
Conf
� (C\ [cK , dK ];∞) and g′K(∞) =

1. So ∩(K̂) = ∩([cK , dK ]) = (dK − cK)/4. Let h(K) denote the height of K, then 2h(K) ≤
diam(K̂) ≤ 4 ∩ (K̂) = dK − cK . So h(K) ≤ (dK − cK)/2. If K is a bubble, then hcap(K) ≤
h(K)
π (dK − cK) ≤ (dK−cK)2

2π . By approximation, this is true for any nonempty H-hull.
Recall that Wt = gAt and

(g−1
At

)′(z) = 1 +

∫ dAt

cAt

1

(z − x)2
dµAt(x).

Let z = gAt(λt). Since |µAt | = hcap(At) ≤
(dAt−cAt )

2

2π and gAt(λt) < cAt < dAt , we have

1 ≤ (g−1
At

)′(gAt(λt)) ≤ 1 +
1

2π

(dAt − cAt)2

(cAt − gAt(λt))2
.

Since
dAt−cAt

cAt−gAt (λt)
→ 0, we get W ′t(λt)→ 1 as t→∞. So X = 1 on {T =∞}.

So far, we prove the theorem in the case that inf(A∩R) > 0. Similarly, the result is true if
sup(A∩R) < 0. If inf(A∩R) < 0 < sup(A∩R), we may divide A into the disjoint union of two
H-hulls A+ and A− such that sup(A− ∩ R) < 0 and inf(A+ ∩ R) > 0. The result we obtained
says that, if we condition a chordal SLE8/3 trace in H from 0 to ∞ to avoid A+, then we get a
chordal SLE8/3 trace in H \ A+ from 0 to ∞. If we further condition this trace to avoid A−,
then we get a chordal SLE8/3 trace in H \ (A+ ∪ A−) = H \ A from 0 to ∞. Note that the
combined effect of the two conditionings is a single conditioning: to avoid A = A+ ∪ A−. So
the proof is finished. 2

Remarks.
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1. The restriction property is also satisfied by radial SLE8/3. In fact, if A is a D-hull with

1 6∈ A, then the probability that A is disjoint from a complete radial SLE8/3 trace is equal

to |g′A(1)|5/8|g′A(0)|5/48. We leave this as an exercise.

2. For κ 6= 8/3, from (5.7) we may construct a local martingale Mt by

Mt = W ′t(λt)
α exp

(
− c

6

∫ t

0
SWs(λs)ds

)
,

where SWs = W ′′′s /W
′
s− 3

2(W ′′s /W
′
s)

2 is the Schwarzian derivative of Ws. Such Mt satisfies
the SDE

dMt

Mt
= α

W ′′t (λt)

W ′t(λt)
dλt. (5.8)

Recall that Ws = gAs . From the following lemma, we see that SWs(λs) ≤ 0 for all s.

Lemma 5.1 Let K be an H-hull and x ∈ R \ [aK , bK ]. Then SgK(x) ≤ 0.

Proof. We may assume that K is a bubble. We may find chordal Loewner hulls Kt, 0 ≤ t < T ,
such that K = Kt0 for some t0 ∈ [0, T ). Let λt be the driving function. Let x ∈ R \ [aK , bK ].
Then gt(x) is well defined for 0 ≤ t ≤ t0. We have ∂tgt(x) = 2

gt(x)−λt , which implies that

∂tg
′
t(x) = − 2g′t(x)

(gt(x)−λt)2 . Thus, ∂t log g′t(x) = − 2
(gt(x)−λt)2 . This then implies that

∂t
g′′t (x)

g′t(x)
= ∂t∂x log g′t(x) = ∂x∂t log g′t(x) =

4g′t(x)

(gt(x)− λt)3
. (5.9)

Thus,

∂t
1

2

(g′′t (x)

g′t(x)

)2
=

4g′′t (x)

(gt(x)− λt)3
.

Differentiating (5.9) w.r.t. x, we get

∂t(
g′′′t (x)

g′t(x)
− (

g′′t (x)

g′t(x)
)2) =

4g′′t (x)

(gt(x)− λt)3
− 12g′t(x)2

(gt(x)− λt)4
.

Combining the above two displayed formulas, we get

∂tSgt(x) = − 12g′t(x)2

(gt(x)− λt)4
≤ 0.

Since g0 = id, Sg0(x) = 0. So we get Sgt0(x) ≤ 0. 2

Remark. If κ < 8/3, then c < 0. So − c
6

∫ t
0 SWs(λs)ds ≤ 0. This means that 0 ≤ Mt ≤ 1

and a.s. X := limt→∞Mt exists and 0 ≤ X ≤ 1. If we define a new probability distribution P1

by dP1/dP = X/E[X], then from (5.8) and Girsanov theorem, we see that, under P1, after a
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time-change, Kt are chordal SLEκ hulls in H\A from 0 to∞. Thus, for κ < 8/3, modulo a time-
change, the distribution of chordal SLEκ hulls in H \ A from 0 to ∞ is absolutely continuous
w.r.t. that of chordal SLEκ hulls in H from 0 to ∞, and the Radon-Nikodym derivative is
X/E[X]. A similar argument as before shows that

X = 1{K∞∩A=∅} exp
(
− c

6

∫ ∞
0

SWs(λs)ds
)
.

Lawler and Werner proved that the quantity −1
6

∫∞
0 SWs(λs)ds can be characterized by the

Brownian loop measure of the set of loops in H that intersect both K∞ and A, and the quantity

exp
(
− c

6

∫∞
0 SWs(λs)ds

)
can be described by the probability that, in a Brownian loop soup of

density − c in H (a Poisson point process of Brownian loop measure), there exist no loops that
intersect both K∞ and A. If we attach all loops in a Brownian loops soup of density − c in H
that intersect K∞ to K∞, we get a fat set, say F . If we condition that F avoids A, then Kt,
0 ≤ t <∞, has the distribution of chordal SLEκ hulls in H\A from 0 to∞, after a time-change.

5.3 Equivalence between chordal SLE and radial SLE

Theorem 5.3 Let Kt, 0 ≤ t < ∞, be standard radial SLE6 hulls. Let w0 ∈ T \ {1}. Let T be
the biggest number such that w0 6∈ Kt for 0 ≤ t < T . After a time-change, Kt, 0 ≤ t < T , has
the same distribution as chordal SLEκ hulls in D from 1 to w0, stopped at some stopping time.

Proof. Let κ = 6. Let λt =
√
κBt be the driving function for Kt, let Let gt and g̃t be the

radial Loewner maps and covering radial Loewner maps. Let W : (D; 1, w0)
Conf
� (H; 0,∞).

Let Lt = W (Kt). Then Lt, 0 ≤ t < T , is a Leowner chain in H such that each Lt is an
H-hull. Let u(t) = hcap(Lt)/2, 0 ≤ t < T . Then u is continuous and increasing with u(0) = 0.
Let S = supu[0, T ). Let v = u−1. Then Lv(t), 0 ≤ t < S, is a Loewner chain in H with
hcap(Lv(t)) = 2t for 0 ≤ t < S. Thus, Lv(t), 0 ≤ t < S, are chordal Loewner hulls driven by
some η ∈ C[0, S). We suffice to show that ηt, 0 ≤ t < S, has the distribution as W (1) +

√
κBt

stopped at S. Let ht be the chordal Loewner maps driven by η. Then hu(t) : H \ Lt
Conf
� H.

For 0 ≤ t < T , let Wt = hu(t) ◦ W ◦ g−1
t . Then Wt : D

Conf
� H. Fix t ∈ [0, T ) and

s ∈ (0, T − t). we have Lt+s/Lt = Wt(Kt+s/Kt). Since hcap(Lt+s/Lt) = 2u(t+ s)− 2u(t) and
dcap(Kt+s/Kt) = s,

⋂
s>0Kt+s/Kt = {eiλt}, andWt is analytic at λt, we get u′(t) = |W ′t(eiλt)|2.

Let W̃ = W ◦ ei and W̃t = Wt ◦ ei = hu(t) ◦ W̃ ◦ g̃−1
t . So we have

u′(t) = W̃ ′t(λt)
2. (5.10)

From
⋂
s>0Kt+s/Kt = {eiλt} and

⋂
s>0 Lt+s/Lt = {ηu(t)} we get

ηu(t) = W̃t(λt). (5.11)

We have
W̃t ◦ g̃t(z) = hu(t) ◦ W̃ (z), z ∈ H \ (ei)−1(Kt).
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Differentiate this equality w.r.t. t, and using (5.10) and (5.11) we get

∂tW̃t(g̃t(z)) + W̃ ′t(g̃t(z)) cot2(g̃t(z)− λt) =
2W̃ ′t(λt)

2

hu(t)(W̃ (z))− ηu(t)

=
2W̃ ′t(λt)

2

W̃t(g̃t(z))− W̃t(λt)
.

We conclude that

∂tW̃t(w) =
2W̃ ′t(λt)

2

W̃t(w)− W̃t(λt)
− W̃ ′t(w) cot2(w − λt).

Letting w → λt, we find that

∂tW̃t(λt) = −3W̃ ′′t (λt), 0 ≤ t < T. (5.12)

Since λt =
√
κBt, applying Itô’s formula to (5.11) we get

dηu(t) = W̃ ′t(λt)dλt +
(κ

2
− 3
)
W̃ ′′t (λt)dt, 0 ≤ t < T. (5.13)

From (5.1) we see that there is another Brownian motion B̃t such that

dηt =
√
κdB̃t +

(κ
2
− 3
) W̃ ′′v(t)(λv(t))

W̃ ′v(t)(λv(t))2
dt, 0 ≤ t < S.

If κ = 6, then ηt, 0 ≤ t < S, has the same distribution as
√
κBt stopped at S. So the proof is

finished. 2

5.4 Critical percolation and Cardy’s formula

Smirnov proved that the critical site percolation on a triangular lattice contains an explorer
curve which converges to SLE6. The critical site percolation on a triangular lattice is equivalent
to the critical face percolation on a hexagonal lattice. We consider a simply connected domain
D. Use a hexagon lattice with small mesh to approximate D. Color all hexagon faces contained
in D independently yellow or green with equal probability. Mark two points a, b on ∂D, which
divide ∂D into two arcs. We assign a boundary condition to this percolation by adding a coat
of hexagon faces to the above percolation, and coloring these faces such that the faces on one
arc are all green and the faces on the other arc are all yellow. Then we can observe an interface
curve connecting the two marked points.

Before Smirnov’s work, statistical physicists observed that the explorer curve has a scaling
limit when the mesh of the lattice tends to 0; and the scaling limit is invariant under conformal
maps. Moreover, from the construction, the explorer curve satisfies the Domain Markov Prop-
erty at the discrete level. So the scaling limit, if exists, has to be SLE with some parameter.
Also note that the explorer curve does not feel the boundary before hitting it, its scaling limit
must satisfies the locality property. This implies that the scaling limit should be SLE6.
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Note that the time-reversal of the explorer curve is still an explorer curve. Thus, the
convergence implies that chordal SLE6 satisfies reversibility, which means that, if β(t), 0 ≤ t ≤
∞, is a chordal SLE6 trace in D from a to b, then there is a continuously decreasing function
u, which maps [0,∞] onto [0,∞], such that β(u(t)), 0 ≤ t ≤ ∞, is a chordal SLE6 trace in D
from b to a.

Smirnov proved the convergence of the explorer curve by showing that Cardy’s formula holds
true. Cardy’s formula says that, if D is a simply connected domain with four boundary points
a, b, c, d lie in the ccw direction. Then the probability that there is a yellow path connecting
the arc ab and the arc cd in the critical percolation on a hexagonal lattice that approximates
D has a limit as the mesh tends to 0, and the limit probability depends only on the conformal
type of (D; a, b, c, d). It has a simple expression when D is an equilateral triangle with three
vertices a, b, c. In that case, the limit probability is |cd|/|ac|.

We now explain the Cardy’s formula by showing that chordal SLE6 satisfies Cardy’s formula.
We color the faces on the arc abc yellow, and color the faces on the arc cda green. Then we
study the explorer curve from a to c. If there is a yellow crossing connecting ab with cd, then
the explorer curve visits cd before bc. If there is a green crossing connecting da with bc, then the
explorer curve visits bc before cd. Since the explorer curve converges to chordal SLE6 in D from
a to c, the limit probability of the existence of a yellow crossing connecting ab with cd is equal
to the probability that a SLE6(D; a→ c) trace visits cd before bc. From conformal invariance,
we may assume that D = H, a = 0, c = ∞, b > 0, and d < 0. The time that the trace visits
bc = (b,∞) is the time that gt(b) blows up. The time that the trace visits cd = (−∞, d) is the
time that gt(d) blows up. All we need is to compute P[τd < τb].

Let κ = 6 and λt =
√
κBt be the driving function, and gt be the chordal Loewner maps.

Since κ > 4, τb, τd <∞. Let Ut = gt(b)− λt, 0 ≤ t < τb; and Vt = gt(d)− λt, 0 ≤ t < τd. Then
Ut stays positive and tends to 0+ as t → τb, and Vt stays negative and tends to 0− as t → τd.
Since

∂t(Ut − Vt) = ∂tgt(b)− ∂tgt(d) =
2

Ut
− 2

Vt
> 0,

we have Ut − Vt ≥ U0 − V0 = b − d > 0 for 0 ≤ t < τ . Thus, it is not possible that
τb = τd. Let τ = τb ∧ τd and Wt = Vt/Ut, 0 ≤ t < τ . Then Wt stays negative. If τb < τd, then
limt→τ Wt = −∞. If τd < τb, then limt→τ Wt = 0. Since Ut and Vt satisfy dUt = −

√
κdBt+

2
Ut
dt

and dVt = −
√
κdBt + 2

Vt
dt. We find that Wt satisfies

dWt =
Vt
√
κ

U2
t

dBt −
√
κ

Ut
dBt +

2

VtUt
dt+

(κ− 2)Vt
U3
t

dt− κ

U2
t

dt, 0 ≤ t < τ.

Let u(t) =
∫ t

0 ( 1
Us

)2ds and T = supu[0, τ). Let v(t), 0 ≤ t < T , be the inverse of u(t), 0 ≤ t < T .
Then Zt := Wv(t) satisfies the SDE

dZt = (Zt − 1)
√
κdB̃t + (2/Zt + (κ− 2)Zt − κ)dt, 0 ≤ t < T.

We now find f defined on (−∞, 0) such that f(Zt) is a local martingale. We need that

κ

2
f ′′(x)(x− 1)2 + f ′(x)(

2

x
+ (κ− 2)x− κ) = 0.
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We find f ′′(x)
f ′(x) = 8/κ−2

x−1 + −4/κ
x . So f ′(x) = C|x|−4/κ(1 − x)8/κ−2. Note that when x is close to

0−, f ′(x) ∼ |x|−4/κ and −4/κ > −1; when x is close to −∞, f ′(x) ∼ |x|4/κ−2 and 4/κ−2 < −1.
Thus, f maps (−∞, 0) onto a bounded interval. So f(Zt) is a bounded martingale.

We may choose f such that f is increasing and f((−∞, 0)) = (0, 1). If τb < τd, then
limt→τ Wt = −∞, which implies that limt→T f(Zt) = 0; if τd < τb, then limt→τ Wt = 0, which
implies that limt→T f(Zt) = 1. Thus,

f(d/b) = f(Z0) = E[ lim
t→T

f(Zt)] = P[τd < τb].

So we have

P[τd < τb] =

∫ d/b
−∞ |x|

−4/κ(1− x)8/κ−2dx∫ 0
−∞ |x|−4/κ(1− x)8/κ−2dx

.

Now we give an geometric explanation. Recall that f ′′(x)
f ′(x) = 8/κ−2

x−1 +−4/κ
x . Let g(x) = f(x/b).

Then g maps (−∞, 0) onto (0, 1), and satisfies g′′(x)
g′(x) = 8/κ−2

x−b + −4/κ
x . Moreover, we have

P[τd < τb] = g(d). Now suppose h maps H conformally onto the interior of ∆ABC with angles
pAπ, pBπ, pCπ such that h(a) = h(0) = A, h(b) = B, and h(c) = h(∞) = C. From the

SchwarzChristoffel mapping theorem, h satisfies h′′(z)
h′(z) = pA−1

z + pB−1
z−b . If pA = 1 − 4/κ and

pB = 8/κ − 1 (pC = 1 − 4/κ = pA), then h′′

h′ = g′′

g′ on (−∞, 0). Thus, there are α, β ∈ C such
that h = αg + β. Let D = h(d) ∈ [A,C]. Then

|DC|
|AC|

=
D − C
A− C

=
h(d)− h(c)

h(a)− h(c)
=
g(d)− g(c)

g(a)− g(c)
= g(d) = P[τd < τb].

Finally, note that when κ = 6, ∆ABC is an equilateral triangle.

Another percolation model that is expected to converge to SLE6 is the critical bond per-
colation on square lattices. Let D be a simply connected domain. We use a subgraph G of
δZ2 to approximate D, where δ > 0 is small. We also look at the dual graph G†, which is
a subgraph of δ(Z + 1/2)2. Every edge of G intersects an edge of G†, and vice versa. Let P
denote a random subgraph of G such that P contains all vertices of G and every edge of G is
contained in P with probability 1/2 independent of each other. We may then construct a dual
graph P † such that an edge of G is contained in P if and only if its dual edge is not contained
in P †. Now we mark two points a, b on ∂D, which divide ∂D into two arcs, say I1 and I2.
Assign boundary conditions by adding all edges in δZ2 near I1 to P , and adding all edges in
δ(Z + 1/2)2 near I2 to P †. Then there is an explorer curve connecting a and b. This curve is
conjectured to converge to SLE6. The conjecture is based on Computer simulation, the Domain
Markov Property and the locality property. Smirnov’s work can not be easily extended to this
model because his proof essentially depends on the structure of the triangle lattice.

5.5 Self-avoiding walk and reversibility of SLE8/3

In this subsection we talk about the scaling limits of self-avoiding walk (SAW). Most of the
statements here are still conjectures. There are two meanings of SAW. The first meaning of
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SAW is a simple lattice path (X0, . . . , Xn). We will focus on square lattice Z2 or δZ2. The
points Xk are vertices. We have Xk−1 ∼ Xk, 1 ≤ k ≤ n; and Xj 6= Xk if j 6= k. The number
n is called the length of this path. The second meaning of SAW is a positive measure on the
space of simple lattice paths.

We first consider SAW started from 0. Let Cn denote the number of SAW on Z2 of length
n started from 0. For example, we have C0 = 1, C1 = 4, C2 = 12, C3 = 36, C4 = 100. One
may easily see that Cn+m ≤ CnCm. This implies that limn→∞

1
n log(Cn) exists. The limit β is

estimated to be 2.628..., which depends on the lattice. It is conjectured that

Cn ∼ cnγ−1βn,

where γ is a critical exponent independent of the lattice. It is predicted by Nienhuis that
γ = 43/32.

Now we define νSAW to be a measure on the space of simple lattice paths on δZ2 such that
each path is assigned a measure β−n, where n is the length of the path. Suppose D is a simply
connected domain with two boundary points z0 and w0. Let Dδ be an approximation of D by
a subgraph of δZ2. Let zδ0 and wδ0 be two vertices closest to z0 and w0, respectively. Consider
the set of all SAW connecting z0 with w0, which stay inside D. Let Γ(D, z0, w0, δ) denote the
set of these SAW. It is conjectured that for some constant b > 0,

µSAW[Γ(D, z0, w0, δ)] ∼ δ−2b,

as δ → 0. Define the probability measure µ#
SAW,δ to be the restriction of µSAW to Γ(D, z0, w0, δ)

divided by the mass. It is conjectured that µ#
SAW has a conformal invariant scaling limit. Note

that SAW satisfies Domain Markov Property and restriction property, so the limit should be
chordal SLE8/3. There is a similar conjecture about the convergence of SAW to radial SLE8/3,

where z0 is an interior point, w0 is still a boundary point, and µSAW[Γ(D, z0, w0, δ)] ∼ δ−(a+b),
for some positive constants a, b > 0.

If the convergence of SAW to SLE8/3 is true, then we immediately have the reversibility of
SLE8/3. In fact, we may prove the reversibility using the restriction property. We only need to
show that, if β is a chordal SLE8/3 trace in H from 0 to∞, and if W (z) = −1/z, then the image
of β has the same distribution as the image of W (β). Let P1 and P2 denote the distributions of
the image of β and W (β), respectively. Let S denote the set of all simple curves, which connect
0 and ∞, and stay inside H except for the two endpoints. Let FS denote the σ-algebra on S
generated by the sets {β ∈ S : β ∩ F = ∅}, where F could be any relatively closed subset of H.
We need to show that P1 = P2 on FS .

Let A′ denote the family {β ∈ S : β ∩ A = ∅}, where A is any H-hull bounded away
from 0. Let A = A′ ∪ {∅}. First, we show that A is a π-system, which means that it is
closed under intersection. Suppose A1 and A2 are two H-hulls bounded away from 0 such that
{β ∈ S : β ∩A1 = ∅} ∩ {β ∈ S : β ∩A2 = ∅} 6= ∅. Then there is β ∈ S disjoint from A1 and A2,
which implies that the unbounded component of H\ (A1∪A2), say H, contains a neighborhood
of 0. Let A = H \H. Then A is an H-hull bounded away from 0, and

{β ∈ S : β ∩A1 = ∅} ∩ {β ∈ S : β ∩A2 = ∅} = {β ∈ S : β ∩A = ∅}.
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So A is a π-system.
Second, we show that FS is the σ-algebra generated by A. First, it is clear that A ⊂ FS .

We suffice to show that, for every relatively closed subset F of H, {β ∈ S : β ∩ F = ∅} can be
expressed as a union of countably many elements in A. Let A∗+ (resp. A∗−) denote the family
of bubbles bounded by polygonal crosscuts in H with the following properties: (i) every line
segment is parallel to either x or y axis; (ii) every vertex has rational coordinates; (iii) the two
points on R are positive. (resp. negative). Let A∗ denote the family of sets A+ ∪ A−, where
A± ∈ A∗± and A+ ∩A− = ∅. Then A∗ is a countable set. Let F be a relatively closed subset of
H. Let A∗F denote the set of all A ∈ A∗ which contain F . We claim that

{β ∈ S : β ∩ F = ∅} =
⋃

A∈A∗F

{β ∈ S : β ∩A = ∅}. (5.14)

It is clear that the set on the right is contained in the set on the left. Now suppose β is contained
in the set on the left. We may easily find A ∈ A∗ such that F ⊂ A and A∩ β = ∅. This means
that A ∈ A∗F and β ∈ {β ∈ S : β ∩A = ∅}. So we proved (5.14).

From Dynkin’s π − λ theorem, if P1 = P2 on A, then P1 = P2 on FS . Let A ∈ A.
Then P1[β ∩ A = ∅] = g′A(0)5/8 and P2[β ∩ A = ∅] = P1[β ∩ W (A) = ∅] = g′W (A)(0)5/8.

Note that W (A) ∈ A and gW (A)(z) = − g′A(0)

gA(W (z))−gA(0) + C for some C ∈ R. Then we have

g′W (A)(0) = g′A(0). Thus, P1[β ∩A = ∅] = P2[β ∩A = ∅], which finishes the proof.

6 Loop-erased Random Walk and Uniform Spanning Tree

6.1 Simple random walk

Let G = (V,E) be a finite connected graph without self-loops and multiple edges. For a function
f : V → R and any v0 ∈ V , the discrete Laplacian of f at v0 is defined by

∆f(v0) =
∑
v∼v0

(f(v)− f(v0)).

If ∆f(v0) = 0, we say that f is harmonic at v0. Since

0 =
∑
v∼w

(f(v)− f(w)) + (f(w)− f(v)) =
∑
v∈V

∑
w∈V :w∼v

(f(w)− f(v)),

we have
∑

v∈V ∆f(v) = 0. Thus, if f is harmonic on A ⊂ V , then
∑

v∈V \A ∆f(v) = 0.
Let v0 ∈ V . A random walk on G started from v0 is a sequence of random vertices (Xn)∞n=0

such that X0 = 0 and

P[Xn+1 = v|X0, . . . , Xn] =
1v∼Xn

deg(Xn)
.

We use Pv0 and Ev0 to denote the probability and expectation w.r.t. a random walk started
from v0. Let A ⊂ V be nonempty. Let τA be the first n such that Xn ∈ A. Then τ is a stopping
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time and for any v ∈ V , Pv-a.s. τA < ∞. We call the finite random path Xn, 0 ≤ n ≤ τ , the
random walk on G from v0 to A, and let it be denoted by RW(v0 → A). We use Pv0→A and
Ev0→A to denote the probability and expectation w.r.t. this stopped random walk.

If f is harmonic on V \ A, and Xn, 0 ≤ n ≤ τA, is RW(v0 → A), then f(Xn), 0 ≤ n ≤ τA,
is a (discrete) martingale. This means that, for any n,

E[1τA>nf(Xn+1)|X0, . . . , Xn] = 1τA>nf(Xn).

This is true because τA > n implies that Xn ∈ V \A and ∆f(Xn) = 0. So

E[1τA>nf(Xn+1)|X0, . . . , Xn] = 1τA>n
∑
v∼Xn

1

deg(Xn)
f(v) = 1τA>nf(Xn).

Thus, for every v ∈ V ,

f(v) = Ev[f(XτA)] =
∑
w∈V∂

f(w)Pv[XτA = w]. (6.1)

This means that, given a function g on A, there exists a unique f on V , which agrees with g
on A, and is harmonic on V \A.

Let A,B ⊂ V be such that A∩B = ∅ and A∪B 6= ∅. Let hA|B denote the unique function
which equals 1 on A, equals 0 on B, and is harmonic on V \ (A ∪B). This is called a discrete
harmonic measure function. In fact, we have hA|Bv) = Pv[XτA∪B = A]. So the values of hA|B lie
between 0 and 1. Moreover, we have hB|A = 1− hA|B. Let G(A,B) =

∑
v∈B ∆hA|B(v). Since

hA|B is harmonic on V \ (A∪B), we have G(A,B) = −
∑

v∈A ∆hA|B(v). Since hB|A = 1−hA|B,
we have

G(B,A) =
∑
v∈A

∆hB|A(x) = −
∑
v∈A

∆hA|B(x) = G(A,B).

Such G(A,B) is called the electrical conductance between A and B. It is clear that G(A,B) = 0
if either A or B is empty. On the other hand, if both A and B are nonempty, then G(A,B) > 0.
In fact, there is a path (Z0, . . . , Zn) with Z0 ∈ A, Zn ∈ B, and Zk ∈ V \(A∪B) for 1 ≤ k ≤ n−1.
So hA|B(Z1) = PZ1 [XτA∪B ∈ A] > 0, which implies that G(A,B) ≥ ∆hA|B(Z0) ≥ Z1 − Z0 > 0.

Suppose Pv0 [XτA∪B ∈ A] = hA|B(v0) > 0. The RW(v0 → A ∪ B) conditioned on the event
{XτA∪B ∈ A} is called the random walk on G from v0 to A ∪ B conditioned to end at A, and
is denoted by RW(v0 → A|B). We use Pv0→A|B and Ev0→A|B to denote the probability and
expectation w.r.t. this conditional stopped random walk.

6.2 Loop-erased random walk

Let X = (Xk)
ν
k=0 be a finite lattice path. The loop-erasure of X is defied as follows. Let j = 0

and n0 = max{m : Xm = X0}. Define the sequence (nj) inductively by nj+1 = max{m : Xm =
Xnj+1} if nj is defined and nj < ν. Let τ be the first j such that nj = n. Let Yj = Xnj ,
0 ≤ j ≤ τ . Then Y = (Yj)

τ
j=0 is a path because Yj+1 = Xnj+1 = Xnj+1 ∼ Xnj = Yj . From the
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definition of nj , we see that Xn 6= Xnj if n > nj . Thus, {Xn : n > nj}∩{Y0, . . . , Yj} = ∅. Since
{Yj+1, . . . , Yτ} ⊂ {Xn : n > nj}, we have {Y0, . . . , Yj} ∩ {Yj+1, . . . , Yτ} = ∅. So Y is a simple
path. We call Y the loop-erasure of X, or Y = LE(X).

If two paths X = (X0, . . . , Xn) and Y = (Y0, . . . , Ym) satisfy Xn = Y0, then we define
Z = XY to be a new path Z = (X0, . . . , Xn = Y0, . . . , Ym), and we write X ≺ Z.

Lemma 6.1 Let X = (Xj)
ν
j=0 and Z = (Zj)

m
j=0 be two paths. Then Z ≺ LE(X) if and only if

there are paths X(1) and X(2) such that X = X(1)X(2), Z = LE(X(1)), and X
(2)
k 6∈ {Z0, . . . , Zm}

for k > 0. Moreover, such X(1) and X(w) are determined by these properties.

Proof. Let nj , 0 ≤ j ≤ τ , be defined as above. Since Z ≺ LE(X), we have Zj = Xnj ,

0 ≤ j ≤ m. Let X(1) = (X0, . . . , Xnm) and X(2) = (Xnm , . . . , Xν). Then X = X(1)X(2) and

X
(2)
k 6∈ {Z0, . . . , Zm} for k > 0, which implies that the path X(2) has no effect on the first m+1

vertices of LE(X). Thus, Z = LE(X(1)). On the other hand, if X = X(1)X(2), Z = LE(X(1)),

and X
(2)
k 6∈ {Z0, . . . , Zm} for k > 0, then the first m+ 1 vertices of LE(X) agrees with those of

LE(X(1)), i.e., Z ≺ LE(X).
Now we show the uniqueness of X(1) and X(2). Suppose X(1) = (X0, . . . , Xr) and X(2) =

(Xr, . . . , Xν). Since X
(2)
k 6∈ {Xn0 , . . . , Xnm} for k > 0, we have r ≥ nm. Since Z = LE(X(1)),

we have Xnm = Zm = Xr. From the definition of nm, we have r ≤ nm. So r = nm. 2

The loop-erasure of a (stopped) random walk or conditional random walk is called a loop-
erased random walk or LERW. The loop-erasure of RW(v0 → A) or RW(v0 → A|B) is denoted
by LERW(v0 → A) or LERW(v0 → A|B), respectively.

Greg Lawler introduced LERW as an alternative to study SAW. Now it turns out that the
two models are different. Right now, LERW has been proved to converge to SLE2; while SAW
is conjectured to converge to SLE8/3.

For S1, S2, S3 ⊂ V , let ΓS3
S1,S2

denote the finite lattice path (X0, . . . , Xn) such that X0 ∈ S1,
Xn ∈ S2, and Sk ∈ S3 for 1 ≤ k ≤ n− 1. For each finite lattice path X = (X0, . . . , Xn), let

P[·](X) =

n∏
j=0

1

deg(Xj)
, P[·)(X) =

n−1∏
j=0

1

deg(Xj)
, P(·)(X) =

n−1∏
j=1

1

deg(Xj)
.

If Z = XY , then P[·)(Z) = P[·](X)P(·)(Y ). The distribution of RW(v0 → A) is supported by

Γ
V \A
v0,A

and Pv0→A(X) = P[·)(X) for each X ∈ Γ
V \A
v0,A

. If A ∩B = ∅, the distribution of RW(v0 →
A|B) is supported by Γ

V \(A∪B)
v0,A

and Pv0→A|B(X) = P[·)(X)/hA|B(v0) for each X ∈ Γ
V \(A∪B)
v0,A

.

Lemma 6.2 Let A and B be disjoint subsets of V . Suppose hA|B(v0) > 0. Let Y = (Y0, . . . , Yτ )
be LERW(v0 → A|B). Let Bn = B ∪ {Y0, . . . , Yn} for 0 ≤ n ≤ τ . Then for any n ≥ 0,

P[Yn+1 = v|Y0, . . . , Yn, n < τ ] =
1v∼YnhA|Bn(v)∑
w∼Yn hA|Bn(w)

. (6.2)
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Proof. Let W = (W0, . . . ,Wn,Wn+1) ∈ Γ
V \(A∪B)
v0,V \B and W ′ = (W0, . . . ,Wn). From the previous

lemma, we have

P[Yj = Wj , 0 ≤ j ≤ n < τ ] =
1

hA|B(v0)

∑
U∈Γ

V \(A∪B)
v0,A

,W ′≺LE(U)

P[·)(U)

=
1

hA|B(v0)

∑
U(1)∈Γ

V \(A∪B)
v0,Wn

,W ′=LE(U(1))

P[·](U
(1)) ·

∑
U(2)∈Γ

V \(A∪B∪{Wj}nj=0
)

Wn,A

P(·)(U
(2));

P[Yj = Wj , 0 ≤ j ≤ n+ 1] =
1

hA|B(v0)

∑
U(1)∈Γ

V \(A∪B)
v0,Wn

,W ′=LE(U(1))

P[·](U
(1))·

·
∑

U(2)∈Γ
V \(A∪B∪{Wj}nj=0

)

Wn,A
,U

(2)
1 =Wn+1

P(·)(U
(2)).

Thus,

P[Yn+1 = Wn+1|Yj = Wj , 0 ≤ j ≤ n < τ ] =

∑
{P(·)(U) : U ∈ Γ

V \(A∪B∪{Wj}nj=0)

Wn,A
, U1 = Wn+1}∑

{P(·)(U) : U ∈ Γ
V \(A∪B∪{Wj}nj=0)

Wn,A
}

=

∑
{P[·)(U

′) : U ′ ∈ Γ
V \(A∪B∪{Wj}nj=0)

Wn+1,A
}∑

w∼Wn

∑
{P[·)(U ′) : U ′ ∈ Γ

V \(A∪B∪{Wj}nj=0)

w,A }
=

hA|B∪{Wj}nj=0
(Wn+1)∑

w∼Wn
hA|B∪{Wj}nj=0

(w)
.

So we get the desired result. 2

Remarks.

1. The Laplacian random walk is defined using (6.2). So LERW is the same as the Laplacian
random walk. For p > 0, the p-Laplacian random walk is defined using (6.2) with hA|Bn
replaced by hpA|Bn . The p-Laplacian random walk is much harder to analyze.

2. From the lemma, we see that the LERW satisfies Markov property. This means that, con-
ditioned on n < τ and Y0, . . . , Yn, the path (Yn . . . , Yτ ) has the distribution of LERW(Yn →
A|Bn−1), where Bn−1 = B ∪ {Yj}n−1

j=0 .

6.3 Observables for LERW

Lemma 6.3 Let A and B be disjoint subsets of V such that A ∪B 6= ∅. Let C = V \ (A ∪B)
and x ∈ C. Then ∑

v∈A
∆hx|A∪B(v) = G(x,A ∪B)hA|B(x).
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Proof. We have

hA|B(x) =
∑

X∈ΓCx,A

P[·)(X) =
∑

Y ∈ΓCx,x

P[·](Y ) ·
∑

Z∈Γ
C\{x}
x,A

P(·)(Z) =
∑

Y ∈ΓCx,x

P[·](Y ) ·
∑
v∈A

∆hx|A∪B(v),

and

1 =
∑

X∈ΓCx,A∪B

P[·)(X) =
∑

Y ∈ΓCx,x

P[·](Y ) ·
∑

Z∈Γ
C\{x}
x,A∪B

P(·)(Z) =
∑

Y ∈ΓCx,x

P[·](Y ) ·G(x,A ∪B).

So we proved this lemma. 2

Lemma 6.4 Let A,B,C, x be as in the previous lemma. Suppose hA|B(x) > 0. Then the
function f defined by

f(v) =
hx|A∪B(v)

G(x,A ∪B)hA|B(x)
, v ∈ V,

is the unique function on V that satisfies f ≡ 0 on A∪B, ∆f ≡ 0 on C\{x}, and
∑

v∈A ∆f(v) =
1. Moreover, such f is nonnegative and satisfies ∆f(x) = −1/hA|B(x).

Proof. This follows immediately from the previous lemma. 2

Lemma 6.5 Let A,B,C, x be as in the previous lemma. Then the function f defined by

f(v) = hA|B(v) +
G(A,B)hx|A∪B(v)

G(x,A ∪B)hA|B(x)
, v ∈ V,

is the unique function on V that satisfies f ≡ 1 on A, f ≡ 0 on B, ∆f ≡ 0 on C \ {x}, and∑
v∈A ∆f(v) = 0. Moreover, such f is nonnegative and ∆f(x) = −G(A,B)/hA|B(x).

Proof. It is clear that f ≡ 1 on A, f ≡ 0 on B, and ∆f ≡ 0 on C \{x}. That
∑

v∈A ∆f(v) = 0
follows from the Lemma 6.3. Since hA|B and hx|A∪B are nonnegative functions, G(A,B) ≥ 0,
and G(x,A ∪B) > 0, f is also nonnegative. And we compute

∆f(x) = ∆hA|B(x) +
G(A,B)∆hx|A∪B(x)

G(x,A ∪B)hA|B(x)
= −G(A,B)

hA|B(x)
.

Now we prove the uniqueness. Suppose g satisfies the same properties as f . Let I = g−hA|B.
Then I ≡ 0 on A∪B and ∆I ≡ 0 on C \{x}. Thus, I = I(x)hx|A∪B. From Lemma 6.3 we have

0 =
∑
v∈A

∆g(v) =
∑
v∈A

∆I(v) +
∑
v∈A

∆hA|B(v) = I(x)hA|B(x)G(x,A ∪B)−G(A,B).

Thus, I(x) = G(A,B)/(hA|B(x)G(x,A ∪B)). So g = f . 2
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Proposition 6.1 Let A and B be disjoint subsets of V with A 6= ∅. Let C = V \ (A ∪B) and
v0 ∈ C be such that hA|B(v0) > 0. Let Y = (Y0, . . . , Yτ ) be LERW(v0 → A|B). Let B−1 = B
and Bn = B ∪ {Y0, . . . , Yn}, 0 ≤ n ≤ τ − 1. Then for each 0 ≤ n ≤ τ , hA|Bn−1

(Yn) > 0. For
n < τ , define Mn and Nn on V by

M (1)
n (v) =

hYn|A∪Bn−1
(v)

hA|Bn−1
(Yn)

, v ∈ V ;

M (2)(v) = hA|Bn−1
(v) +

G(A,B)hYn|A∪Bn−1
(v)

G(Yn, A ∪Bn−1)hA|Bn−1
(Yn)

, v ∈ V.

Let ∂A = {v ∈ V \ A : v ∼ A}. Fix z ∈ V . Let Tz be the first n such that Yn ∈ ∂A

or hA|Bn(z) = 0, which ever comes first. Then for every z ∈ V , M
(1)
n (z) and M

(2)
n (z) are

martingales up to Tz.

Proof. Since for every 0 ≤ n ≤ τ , (Yn, . . . , Yτ ) ∈ Γ
V \(A∪Bn−1)
Yn,A

, we have hA|Bn−1
(Yn) > 0. For

the rest of the proof, we need to show that, for any n ≥ 0, E[M
(j)
n+1(z)|Y0, . . . , Yn, n < Tz] =

M
(j)
n (z), j = 1, 2. Suppose n < Tz. Let Sn = {w ∼ Yn : hA|Bn(w) > 0}. For each w ∈ Sn,

define

g(1)
n,w(v) =

hw|A∪Bn(v)

hA|Bn(w)
, g(2)

n,w(v) = hA|Bn(v) +
G(A,Bn)hw|A∪Bn(v)

G(w,A ∪Bn)hA|Bn(w)
.

From Lemma 6.2 we have

E[M
(j)
n+1(v)|Y0, . . . , Yn, n < Tz] =

∑
w∈Sn hA|Bn(v)g

(j)
n,w(v)∑

w∈Sn hA|Bn(w)
, j = 1, 2.

Let g
(j)
n (v) denote the righthand side of the above formula. From Lemma 6.4, for each w ∈ Sn,

g
(1)
n,w ≡ 0 on A ∪ Bn, ∆g

(1)
n,w ≡ 0 on V \ (A ∪ Bn ∪ {w}),

∑
v∈A ∆g

(1)
n,w(v) = 1, and ∆g

(1)
n,w(w) =

−1/hA|Bn(w). Thus, g
(1)
n ≡ 0 on A ∪Bn, ∆g

(1)
n ≡ 0 on V \ (A ∪Bn ∪ Sn),

∑
v∈A ∆g

(1)
n (v) = 1,

and ∆g
(1)
n (v) = −1/

∑
w∈Sn hA|Bn(w) for every v ∈ Sn.

If Sn = {w ∼ Yn : w ∈ V \ Bn}, we define g̃
(1)
n on V such that g̃

(1)
n (Yn) = g(1)(Yn) +

1/
∑

w∈Sn hA|Bn(w), and g̃
(1)
n (v) = g

(1)
n (v) for v 6= Yn. Since Yn 6∈ A, Yn 6∼ A, and Bn \ {Yn} =

Bn−1, from the previous paragraph, we have g̃
(1)
n ≡ 0 on A ∪Bn−1, ∆g̃

(1)
n ≡ 0 on V \ (A∪Bn),

and
∑

v∈A ∆g̃
(1)
n (v) = 1. This shows that g̃

(1)
n = M

(1)
n−1. Now since hA|Bn(z) > 0, we have

z 6= Yn, so g
(1)
n (z) = g̃

(1)
n (z) = M

(1)
n−1(z).

If Sn $ {w ∼ Yn : w ∈ V \ Bn}, the situation is more complicated. We need to modify the

values of g
(1)
n at more than one point. Let Vn denote the set of vertices v ∈ V \Bn−1 such that

every X ∈ Γ
V \Bn−1

v,A must pass through Yn. Here Yn ∈ Vn by definition. Then we define

g̃(1)
n (v) = g(1)

n (v) + 1v∈YnhYn,Bn−1(v)/
∑
w∈Sn

hA|Bn(w).
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One may check that g̃
(1)
n = M

(1)
n−1. Since hA|Bn(z) > 0, we have z 6∈ Vn, so g

(1)
n (z) = g̃

(1)
n (z) =

M
(1)
n−1(z). So the proof is done for j = 1.

The proof for the case j = 2 is similar. Define g
(2)
n similarly. Then g

(2)
n ≡ 1 on A; g

(2)
n ≡ 0

on Bn; ∆g
(2)
n ≡ 0 on V \ (A∪Bn ∪Sn); and

∑
v∈A ∆g

(2)
n (v) = 0. Moreover, we have ∆g

(2)
n (v) =

−G(A,Bn)/
∑

w∈Sn hA|Bn(w) for every v ∈ Sn. Define Vn as before. By modifying the values

of g
(2)
n on Vn, we get a new function g̃

(2)
n , which is equal to M

(2)
n . Since hA|Bn(z) > 0, we find

that M
(2)
n (z) = g

(2)
n (z). 2

Remark. Note that hA|Bn(z) = 0 means that the path X0, . . . , Xn disconnects z from A.

6.4 Observables for SLE2

Recall the following two statements which were proved earlier.

1. Let gt be the chordal Loewner maps driven by λt =
√

2Bt. Then for every fixed z ∈ H,
Mt := − Im 1

gt(z)−λt , 0 ≤ t < τz, is a local martingale.

2. Let gt be the radial Loewner maps driven by λt =
√

2Bt. Then for every fixed z ∈ D,

Mt := Re eiλt+gt(z)
eiλt−g(z)

, 0 ≤ t < τz, is a local martingale.

Suppose γ(t), 0 ≤ t <∞, is a radial SLE2 trace in a domain D from a ∈ ∂D to b ∈ D. Then

there is W : (D; 1, 0)
Conf
� (D; a, b) and a standard radial SLE2 trace β such that γ = W ◦β. For

each t ≥ 0, there is a unique Poisson kernel function in D \ γ(0, t] with the pole at γ(t) which
is normalized by Pt(b) = 1. Then Qt := Pt ◦W is a Poisson kernel in D \ β(0, t] with the pole

at β(t) which is normalized by Qt(0) = 1. So Qt(z) = Re eiλt+gt(z)
eiλt−g(z)

. From the above result, for

any z ∈ D, Pt(z) is a local martingale up to the time that γ visits z.
Suppose γ(t), 0 ≤ t < ∞, is a chordal SLE2 trace in a domain D from a ∈ ∂D to b ∈ ∂D.

Then there is W : (D; 0,∞)
Conf
� (D; a, b) and a standard chordal SLE2 trace β such that

γ = W ◦ β. Suppose that ∂D is analytic near b. Then W may extends analytically to a
neighborhood of b. Suppose W (z) = b + c

z near ∞. Let nb denote the inward unit normal
vector at b. Then nb = −i c|c| . For each t ≥ 0, there is a unique Poisson kernel function in

D \ γ(0, t] with the pole at γ(t) which is normalized by ∂
∂nb

Pt(b) = 1. Then Qt := Pt ◦W is a
Poisson kernel in D \ β(0, t] with the pole at β(t). Moreover,

1 = lim
t→0

Pt(b+ tnb)− Pt(b)
t

= lim
t→0

Qt ◦W−1(b+ tnb)

t
= lim

t→0

Qt(
c
tnb

)

t
= lim

t→0

Qt(
i|c|
t )

t
.

On the other hand, suppose λt is the driving function for β, and gt are chordal Loewner
maps. Then Rt := − Im 1

gt(z)−λt is a Poisson kernel in H \ β(0, t] with the pole at β(t). Since

gt(z) = z +O(1/z) as z →∞, we have limt→0
Rt(

i|c|
t

)

t = 1
|c| . Thus, Qt = |c|Rt. From the above
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comment we know that, for any z ∈ H, Rt(z), 0 ≤ t < τz, is a local martingale. Thus, for any
z ∈ D, Pt(z) = |c|Qt(W−1(z)) is a local martingale up to the time when z is visited by γ.

6.5 Scaling limits

Now we study the convergence of LERW to SLE2. Let D be a simply connected domain. For
simplicity, suppose that D is a lattice domain in Z2, which means that ∂D is a union of some
edges in Z2. Let δ = 1/n for some n ∈ N. Then D is also a lattice domain in δZ2. Let Dδ denote
the subgraph of δZ2 whose vertices and edges are those of δZ2 that lie on D. The vertices of
Dδ that lie on ∂D are called boundary vertices, other vertices of Dδ are called interior vertices.
Let ∂Dδ and intDδ denote the set of all boundary vertices and interior vertices, respectively,
of Dδ.

We first construct LERW that converges to radial SLE2. Let a ∈ ∂D ∩ Z2 and b ∈ D ∩ Z2.
Then for any δ ∈ {1/n : n ∈ N}, a is a boundary vertex of Dδ, and b is an interior vertex of
Dδ. Suppose a is not a corner of D. Let Xδ = (X0, . . . , Xτ ) be LERW(Dδ; a → b|∂Dδ \ {a}).
Extend X to be a function defined on [0, τ ] by linear interpolation. So Xδ(t), 0 ≤ t ≤ τ , is a
random simple curve with Xδ(0) = a, Xδ(τ) = b, and Xδ(t) ∈ D for 0 < t ≤ τ .

Theorem 6.1 [Lawler-Schramm-Werner] For every ε > 0, there is δ0 > 0 such that if
δ < δ0, there is a coupling of the LERW curve X(t), 0 ≤ t ≤ τ , and the radial SLE2 trace β in
D from a to b, such that for some continuous increasing function u : [0, τ)→ [0,∞),

P[ sup
0≤t<∞

|β(t)−X(u−1(t))| ≥ ε] < ε.

A coupling of two random processes X and Y is a pair of random processes X ′ and Y ′ which
are defined in the same probability space such that X and X ′ have the same distribution, and
Y and Y ′ have the same distribution. When we say that distributions of two random processes
are close, we usually mean that there exists a coupling of the two processes such that the
two random processes in the coupling are close. Since the two processes in the coupling are
defined in the same probability space, we may compare them pointwise. In the statement of
the above theorem, we also use a time-change function u. This is because the LERW curve is
not parameterized by capacities.

One of the main idea in the proof of Theorem 6.1 is to compare an observable for LERW
with an observable for radial SLE2. For any 0 ≤ n < τ , there is a positive function Pn defined
on the vertices of Dδ, which satisfies the following

1. Pn ≡ 0 on ∂Dδ ∪ {X0, . . . , Xn−1};

2. ∆Pn ≡ 0 on intDδ \ {X0, . . . , Xn};

3. Pn(b) = 1.
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We have proved that, for any fixed v0 ∈ intDδ, Pn(v0) is a discrete martingale up to the time
that the LERW curve visits a neighbor of b or disconnects v0 from b.

Then we observe that, when δ is small, Pn is close to the Poisson kernel function Qn
in D \ X[0, n] with the pole at Xn, normalized by Qn(b) = 1. In fact, the following lemma
describes the closeness between Pn and Qn. Let X δ be the family of paths on Dδ of the form X =
(X0, . . . , Xn) such that X0 = a and

⋃n
j=1(Xj−1, Xj ] ⊂ D. For each X = (X0, . . . , Xn) ∈ X δ, let

DX = D\
⋃n
j=1(Xj−1, Xj ], which is still a simply connected domain. Let PX denote the function

on Dδ, which vanishes on ∂Dδ ∪ {X0, . . . , Xn−1}, is discrete harmonic on intD \ {X0, . . . , Xn},
and satisfies PX(b) = 1. Let QX denote the Poisson kernel function in DX with the pole at Xn,
normalized by QX(b) = 1. For a Jordan curve J in C, we will use ΩJ to denote the bounded
component of C \ J .

Lemma 6.6 Let J be a Jordan curve in D\{b} such that b ∈ ΩJ . Let K be a compact subset of
ΩJ . Let X δJ be the family of X ∈ X δ such that ΩJ ⊂ DX . Then for every ε > 0 there is δ0 > 0
(depending on D,J,K) such that if δ < δ0, then for every X ∈ X δJ and every v ∈ intDδ ∩K,
|PX(v)−QX(v)| < ε.

The proof of the lemma is proceeded as follows.

1. First, assume that the conclusion is not true, then we get a sequence δn → 0, a sequence
of paths X(n) ∈ X δnJ , and a sequence of points vn ∈ intDδn ∩ K, such that |PXn(vn) −
QXn(vn)| ≥ ε0 for some fixed ε0 > 0.

2. By passing to a subsequence, we may assume that DXn converges to some domain E in
the Carathéodory topology. We must have ΩJ ⊂ E ⊂ D.

3. Extend each PXn to a Lipschitz continuous function on D whose constant in each square
face is bounded by a factor times the slope of PXn on the four corner vertices.

4. Some argument on discrete harmonic functions show that the Lipschitz constants of PXn
are uniformly bounded on each compact subset of E.

5. Applying the Ascoli-Arzela Theorem, we find that PXn converges locally uniformly to a
continuous function, say f , on E.

6. Since every PXn is discrete harmonic, we may show that f is harmonic on E.

7. Some tedious argument shows that QXn
l.u.−→ f in E, which gives a contradiction.

One intermediate step in the proof of the theorem is to show that the driving function for a
time-change of the LERW curve (via radial Loewner equation) is close to the driving function
for radial SLE2. We may find W that maps D conformally onto D such that a and b are mapped
to 1 and 0. Let γδ = W ◦X. Let u(t) = dcap γ(0, t], 0 ≤ t < τ . Then γδ(u−1(t)), 0 ≤ t <∞, is
a radial Loewner trace driven by some ηδ. Let gδt and g̃δt denote the radial and covering radial
Loewner maps driven by ηδ. The discrete observable for LERW can then be used to show that
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ηδ is close to
√

2Bt on a finite time interval. Lawler-Schramm-Werner proved the following
proposition.

Proposition 6.2 Let J be a Jordan curve in D \ {b} such that b ∈ ΩJ . Let TJ be the first n
such that [Xn−1, Xn] intersects J . For every ε > 0, there is δ0 > 0 such that if δ < δ0, then
there is a coupling of ηδt and

√
2Bt such that

P[ sup
0≤t≤u(TJ )

|ηδt −B2t| ≥ ε] < ε.

To prove this proposition, we need the lemma below. Fix a small d > 0. Let T0 = 0. After
Tn is defined, let Tn+1 be the smallest integer n ≥ Tn such that either |ηu(n) − ηu(Tn)| ≥ d,
or u(n) − u(Tn) ≥ d2, or n ≥ TJ , whichever comes first. Then (Tn) is an increasing sequence
of stopping times and are bounded above by TJ . Let ∆n(η) = ηu(Tn+1) − ηu(Tn) and ∆n(T ) =
u(Tn+1)− u(Tn).

Lemma 6.7 There is an absolute constant C > 0 and a constant δ(d) > 0 such that if δ < δ(d),
then for any n,

|E[∆n(η)|FTn ]| ≤ Cd3,

|E[∆n(η)2 − 2∆n(T )|FTn ]| ≤ Cd3.

The proof of the lemma is proceeded as follows.

1. Choose a Jordan curve J ′ ⊂ ΩJ \ {b} such that b ∈ ΩJ ′ . Observe that if δ < dist(J, J ′),
then XTJ ∈ X δJ ′ , where XTJ is the LERW X stopped at TJ .

2. One can show that, if δ is small enough (depending on d), then ∆n(T ) ≤ 2d2 and |∆n(η)| ≤
2d. So ∆n(T ) = O(d2) and ∆n(η) = O(d).

3. Choose a compact subset K of ΩJ ′ such that intK 6= ∅. The previous lemma shows that
Pn(v)−Qn(v)→ 0 as δ → 0 uniformly in n ≤ TJ and v ∈ K ∩Dδ.

4. Note thatQn(z) = Re
1+gu(n)◦W (z)/e

iηu(n)

1−gu(n)◦W (z)/e
iηu(n)

. SoQn◦W−1◦ei(z) = − Im cot2(g̃u(n)(z)−ηu(n)).

5. Let K be a compact subset of ΩJ ′ . Let L = (ei)−1(W (K)). From the previous lemma, we
find that, for any z ∈ L, (Im cot2(g̃u(Tn)(z) − ηu(Tn)))

∞
n=0, is close to a martingale. More

specifically, we have

E[Im cot2(g̃u(Tn+1)(z)− ηu(Tn+1))− Im cot2(g̃u(Tn)(z)− ηu(Tn))|FTn ] = oδ(1), (6.3)

where oδ(1) is some quantity which tends to 0 uniformly as δ → 0.
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Let Sn = u(Tn), n ≥ 0. We will estimate the quantity

I := cot2(g̃Sn+1(z)− ηSn+1)− cot2(g̃Sn(z)− ηSn)

We have I = I1 + I2 + I3, where S′n ∈ (Sn, Sn+1), and

I1 = cot′2(g̃Sn(z)− ηSn) · [(g̃Sn+1(z)− g̃Sn(z))− (ηSn+1 − ηSn)];

I2 =
1

2
cot′′2(g̃Sn(z)− ηSn) · [(g̃Sn+1(z)− g̃Sn(z))− (ηSn+1 − ηSn)]2;

I3 =
1

6
cot′′′2 (g̃S′n(z)− ηS′n) · [(g̃Sn+1(z)− g̃Sn(z))− (ηSn+1 − ηSn)]3.

There is an uniform upper bound for | cot′′′2 (g̃S′n(z) − ηS′n)|. From the ODE for g̃t, there is
S′′n ∈ (Sn, Sn+1) such that

g̃Sn+1(z)− g̃Sn(z) = cot2(g̃S′′n(z)− ηS′′n) ·∆n(T ).

There is an uniform upper bound for | cot2(g̃S′′n(z)− ηS′′n)|. Since ∆n(T ) = O(d2) and ∆n(η) =
O(d), we have I3 = O(d3). A similar argument gives

cot2(g̃S′′n(z)− ηS′′n) = cot2(g̃Sn(z)− ηSn) +O(d).

So we have
g̃Sn+1(z)− g̃Sn(z) = cot2(g̃Sn(z)− ηSn) ·∆n(T ) +O(d3).

Thus,
I1 = cot′2(g̃Sn(z)− ηSn) · [cot2(g̃Sn(z)− ηSn) ·∆n(T )−∆n(η)] +O(d3);

I2 =
1

2
cot′′2(g̃Sn(z)− ηSn) · [cot2(g̃Sn(z)− ηSn) ·∆n(T )−∆n(η)]2 +O(d3).

Since cot′′2 = − cot2 cot′2, we get

I = cot′′2(g̃Sn(z)− ηSn)[
1

2
∆n(η)2 −∆n(T )]− cot′2(g̃Sn(z)− ηSn) ·∆n(η) +O(d3).

From (6.3) we find that, for any z ∈ L, if δ is small enough (depending on d),

Im cot′′2(g̃Sn(z)− ηSn) · E[
1

2
∆n(η)2 −∆n(T )|FTn ]

− Im cot′2(g̃Sn(z)− ηSn) · E[∆n(η)|FTn ] = O(d3).

Since intK 6= ∅, we have intL 6= ∅, the above formula finishes the proof of Lemma 6.7. In fact,
one may prove and use the following facts:

1. Im cot′2(g̃Sn(z) − ηSn) and Im cot′′2(g̃Sn(z) − ηSn) are bounded in absolute value by an
absolute constant for any n and z ∈ L.
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2. There is an absolute positive constant C such that for every n, we may find z1, z2 ∈
L, such that the absolute value of the determinant of the 2 × 2 matrix composed of
Im cot′2(g̃Sn(zj)− ηSn) and Im cot′′2(g̃Sn(zj)− ηSn), j = 1, 2, is at least C.

The next step is to apply Skorokhod’s embedding theorem shown below.

Theorem 6.2 If (Mn) is a martingale with M0 = 0 and |Mn −Mn−1| ≤ d, then there is a
standard Brownian motion Bt, and an increasing sequence of stopping times 0 = τ0 ≤ τ1 ≤ τ2 ≤
· · · such that (M0,M1, . . . ,Mn, . . . ) has the same joint distribution as (Bτ0 , Bτ1 , . . . , Bτn , . . . ).
Moreover, one can impose that

E[τn − τn−1|B[0, τn−1]] = E[(Bτn −Bτn−1)2|B[0, τn−1]]. (6.4)

τn ≤ inf{t ≥ τn−1 : |Bt −Bτn−1 | ≥ d}. (6.5)

Proof of Proposition 6.2. Define a martingale (Mn) by M0 = 0 and

Mn = Mn−1 + ∆n−1(η)− E[∆n−1(η)|FTn−1 ], n ≥ 1.

Recall that ∆n−1(η) = ηSn − ηSn−1 . From Lemma 6.7, by choosing δ small enough, we can
ensure that |Mn −Mn−1| ≤ 2d. Applying Skorokhod’s embedding theorem, we find a standard
Brownian motion Bt and an increasing sequence of stopping times (τn)∞n=0 for Bt such that
(M0,M1, . . . ,Mn, . . . ) has the same joint distribution as (Bτ0 , Bτ1 , . . . , Bτn , . . . ). Moreover, we
have |Bt −Bτn−1 | ≤ 2d for t ∈ [τn−1, τn].

Let SJ = u(TJ) and N = d10SJ/d
2e. Then SJ is uniformly bounded above, and SJ � Nd2.

We first focus on Mn, 0 ≤ n ≤ N . From Lemma 6.7 we have Mn − ηSn = O(nd3) = O(SJd) =
O(d) for 0 ≤ n ≤ N . Recall that |ηt − ηSn−1 | ≤ 2d for t ∈ [Sn−1, Sn]. Using the continuity of
Brownian motion, we suffice to show that when δ and d are small, with probability close to 1,
supn≤N |τn − 2Sn| is small and TN = TJ .

Define another martingale (Nn) by N0 = 0 and

Nn = Nn−1 + (Mn −Mn−1)2 − E[(Mn −Mn−1)2|FTn−1 ], n ≥ 1.

SinceMn−Mn−1 = ∆n−1(η)+O(d3), and ∆n−1(η) = O(d), we have (Mn−Mn−1)2 = ∆n−1(η)2+
O(d4), which implies that

E[(Mn −Mn−1)2|FTn−1 ] = E[2∆n−1(T )|FTn−1 ] +O(d3).

Thus, Nn −Nn−1 = ∆n−1(η)2 − E[2∆n−1(T )|FTn−1 ] +O(d3).
Define another martingale (On) by O0 = 0 and

On = On−1 + 2∆n−1(T )− E[2∆n−1(T )|FTn−1 ], n ≥ 1. (6.6)

Let Pn = Nn−On. Then Pn−Pn−1 = ∆n−1(η)2−2∆n−1(T )+O(d3). Define another martingale
(Qn) by Q0 = 0 and

Qn = Qn−1 + (Bτn −Bτn−1)2 − (τn − τn−1), n ≥ 1.
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Let Rn = Pn − Qn. Then Rn − Rn−1 = (τn − τn−1) − 2∆n−1(T ) + O(d3). Thus, Rn =
τn− 2Sn +O(Nd3), n ≤ N . Since |Bτn −Bτn−1 | ≤ 2d, we have E[τn− τn−1|B[0, τn−1]] = O(d2).
Thus, E[(Rn −Rn−1)2|B[0, τn−1]] = O(d4), which implies that,

E[R2
N ] =

N∑
n=1

E[E[(Rn −Rn−1)2|B[0, τn−1]]] = O(Nd4).

Applying Doob’s inequality to the martingale Pn, we get

P[max
n≤N
|Rn| > d1/2] ≤ CP[|RN |2 > d] = O(Nd3) = O(SJd) = O(d).

This means that, with probability greater than 1−O(d), |τn − 2Sn| = O(d1/2) for n ≤ N .
Suppose TN < TJ . Then for n ≤ N , either ∆n−1(η)2 ≥ d2 or ∆n−1(T ) ≥ d2. Since

E[∆n−1(η)2 − 2∆n−1(T )|FTn−1 ] = O(d3), we get E[2∆n−1(T )|FTn−1 ] > d2/2 for n ≤ N if d is
small. From (6.6) we have |ON − 2SN | ≥ Nd2 ≥ 10SJ , which implies that ON ≥ 9SJ . On the
other hand, from (6.6) we have On −On−1 = O(d2), which implies that

E[O2
N ] =

N∑
n=1

E[(On −On−1)2] = O(Nd4) = O(SJd
2) = O(d2).

Thus, P[ON > 9SJ ] = O(d2). So P[TN = TJ ] = 1−O(d2). 2

Proposition 6.2 implies that, when δ is small, for any t ≤ SJ := u(TJ), under some suitable
coupling, D \ γδ(u−1(0, t]) is close to D \ γ(0, t] in the Carathéodory topology, where γ(t) is a
standard radial SLE2 curve. To finish the proof of Theorem 6.1, one needs to use some more
complicated properties of LERW. Roughly speaking, it says that LERW tends to not intersect
itself uniformly in the mesh size δ. In more details, For z ∈ D and R > r > 0, an L(z; r,R)
loop on the LERW Xδ is a subcurve of Xδ, whose two end points stay within distance r from z,
and which contains a point w which has distance > R from z. The fact is that, for any z ∈ D
and R > 0, the probability that Xδ contains an L(z; r,R) loop tends to 0 as r → 0, uniformly
in δ. The proof uses relation between LERW and uniformly spanning tree, and this result can
then be used to finish the proof of Theorem 6.1. Here we omit the details and refer the reader
to the paper by Lawler, Schramm, and Werner.

At the end of this subsection, we briefly discuss the LERW that converges to chordal SLE2.
Let the lattice domain D and a ∈ ∂D ∩ Z2 be as before. Now let b ∈ ∂D ∩ Z2 be such that
b 6= a and b is not a corner of ∂D. Consider the LERW(Dδ; a → b|∂Dδ \ {a, b}): Xδ =
(X0, . . . , Xτ ). The conclusion is that Theorem 6.1 still holds here if “radial” is replaced by
“chordal”. Let Pn denote the function on Dδ, which vanishes on ∂Dδ ∪ {X0, . . . , Xn−1}, is
harmonic on intDδ \ {X0, . . . , Xn}, and is normalized by ∆Pn(b) = 1. Then for any z ∈ intDδ,
(Pn(z)) is a martingale up to a stopping time. Let b′ be the unique neighbor of b in intDδ.
Then ∆Pn(b) = 1 means that Pn(b′) − Pn(b) = 1. One can show that, when δ is small, δPn is
close to the Poisson kernel Qn in Dn with the pole at Xn, normalized by ∂nb

Qn(b) = 1. The
rest of the proof follows the argument for the convergence to radial SLE2.
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6.6 Uniform spanning tree and Wilson’s algorithm

A tree is a connected graph without loops. For any two vertices on a tree, there is a unique
simple path connecting them. Let G = (V,E) be a finite connected graph. A subgraph H of G
is called a spanning tree on G if H is a tree and contains all vertices of G. The total number
of spanning trees on G is finite. A uniform spanning tree (UST for short) on G is a random
spanning tree chosen among all the possible spanning trees on G with equal probability. UST
is closely related with LERW via Wilson’s algorithm.

Theorem 6.3 [Wilson’s algorithm]
Let G = (V,E) be a finite connected graph.

(i) Let T be a UST on G. For any v, w ∈ V , the only simple path from v to w on T has the
distribution of LERW(G; v → w).

(ii) Suppose V = {v0, . . . , vn}. Let T0 = {v0}. When Tk is constructed for some k < n, we
let Tk+1 be the union of Tk and all vertices and edges on LERW(G; vk+1 → Tk). Then Tn
has the distribution of a UST on G.

Note that Wilson’s algorithm immediately implies that the time-reversal of LERW(v → w)
has the same distribution as LERW(w → v). In fact, the following proposition is true.

Corollary 6.1 Let S ⊂ V and a 6= b ∈ V \ S. Then the time-reversal of LERW(a→ b|S) has
the same distribution as LERW(b→ a|S).

Proof. First we define RW’(G; v → A|B) to be obtained from RW(G; v → A|B) by re-
moving the initial part of the path up to the last time the path visits v. So the distribu-

tion of RW ′(G; v → A|B) is supported by Γ
V \(A∪B∪{v})
v,A . It is clear that the loop-erasure of

RW’(G; v → A|B) is the same as LERW(G; v → A|B).
Divide S into the disjoint union of two subsets A′ and B′. Let A = A′∪{a} and B = B′∪{b}.

Let GA,B be obtained from G by identifying all vertices in A as a single vertex, say vA, and
identifying all vertices in B as a single vertex, say vB. Consider the UST on GA,B. There is a
unique simple curve, say Y , connecting vA and vB. We order this path such that it starts from
vA and ends at vB. From Wilson’s algorithm, Y is LERW(GA,B; vA → vB). Thus, Y = LE(X),
where X is an RW’(GA,B; vA → vB). We may also view X as a random path on G, whose

distribution is supported by Γ
V \(A∪B)
A,B . The probability that X follows any path W ∈ Γ

V \(A∪B)
A,B

is CP(·)(W ) for some constant C > 0. If we condition on X such that its initial vertex is a
and its end vertex is b, then the resulting random path, say Xa,b, is an RW’(a → b|S). Thus,
LERW(a → b|S) can be obtained by erasing loops on Xa,b. This shows that LERW(a → b|S)
can be obtained by conditioning Y such that it starts from a and ends at b. Let Y R denote
the time-reversal of Y . Then Y R is LERW(GA,B; vB → vA). A similar argument shows that,
LERW(b→ a|S) can be obtained by conditioning Y R such that it starts from b and ends at a.
This finishes the proof. 2
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The above result may be applied to the LERW we studied before. Recall that the LERW
that converges to chordal SLE2(D; a → b) is LERW(Dδ; a → b|∂Dδ \ {a, b}, where a 6= b ∈
∂D ∩Z2. From the above proposition we immediately see that the time-reversal of this LERW
is LERW(Dδ; b → a|∂Dδ \ {a, b}. From the convergence of LERW, we see that chordal SLE2

satisfies reversibility. Also recall that the LERW that converges to radial SLE2(D; a → b) is
LERW(Dδ; a → b|∂Dδ \ {a}, where a ∈ ∂D ∩ Z2 and b ∈ D ∩ Z2. This LERW is the time-
reversal of LERW(Dδ; b→ a|∂Dδ \ {a}, which can be obtained by conditioning LERW(Dδ; b→
∂Dδ) on the event that the path ends at a. Note that the distribution of the end point of
LERW(Dδ; b → ∂Dδ) is the discrete harmonic measure on ∂Dδ viewed from b. As δ → 0, this
distribution tends to the continuous harmonic measure on ∂D viewed from b (the distribution of
the first hitting point on ∂D of a planar Brownian motion started from b). Thus, we conclude
that the time-reversal of LERW(Dδ; b → ∂Dδ) converges to radial SLE2(D; ã → b) up to a
time-change, where ã is a random point on ∂D, whose distribution is the harmonic measure on
∂D viewed from b. This is the exact statement in the paper by Lawler, Schramm, and Werner.

To prove Theorem 6.3, we introduce another algorithm to generate a UST on G. Fix v0 ∈ V .
Let X = (X0, X1, . . . , Xn, . . . ) be a simple random walk on G started from v0. Construct a
sequence of graphs (Tn) as follows. Let T0 = {X0}. Let Tn+1 be the union of Tn and the vertex
Xn+1 and the edge (Xn, Xn+1) if Xn+1 has not been visited by X0, . . . , Xn; let Tn+1 = Tn if
Xn+1 ∈ {X0, . . . , Xn}. Note that each Tn is a tree. Let N be the covering time for X, i.e., the
first n such that X visits all vertices on V . Note that a.s. N is finite. The following theorem
was discovered by A. Broder and D. J. Aldous independently.

Theorem 6.4 TN has the same distribution as the UST on G.

Proof of Wilson’s Algorithm using Theorem 6.4. (i) LetX be a random walk onG started
from w. Let τv be the first time that X reaches v. Construct the family (Tn) as before the above
theorem. From Theorem 6.4, Tτv is a subtree of the UST on G. Since v, w ∈ Tτv , the only simple
path on the UST connecting v and w is contained in Tτv . Let Y = (Xτv , Xτv−1, . . . , X1, X0) be
the reversal of the initial part of X up to τv. So Y starts from v and ends at w. Let Z be the
only simple path on Tτv from v to w. We claim that Z = LE(Y ).

Write Z = (Z0, . . . , Zν). For 0 ≤ m ≤ ν, let τm denote the first n such that Xn = Zm.
Then τ0 > τ1 > · · · > τν . In fact, if n < m ≤ ν, since the tree Tτn contains X0 = w = Zν and
Xτn = Zn, it contains the path (Zn, . . . , Zν), which implies that Zm ∈ Tn, i.e., τm < τn. Let
uk = τv − τm, 0 ≤ k ≤ ν. Then u0 < u1 < · · · < uν and Yu(k) = Zk, 0 ≤ k ≤ m. To prove that
Z = LE(Y ), we suffice to show that for any j, {Z0, . . . , Zj} ∩ {Yn : n > uj} = ∅. This is true
because {Yn : n > uj} = {Xn : n < τj} and X does not visit {Z0, . . . , Zj} before τj thanks to
the decreasing property of (τj).

It remains to show that Z = LE(Y ) has the distribution of LERW(v → w). We suffice to

show that Z is a Laplacian random walk. Note that the distribution of Y is supported by Γ
V \{v}
v,w ,

and for every W ∈ Γ
V \{v}
v,w , P[Y = W ] = P(·](W ). Let W = (W0, . . . ,Wn,Wn+1) ∈ Γ

V \{v,w}
v,V \{v} and
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W ′ = (W0, . . . ,Wn). From Lemma 6.1, we have

P[Zj = Wj , 0 ≤ j ≤ n+ 1] =
∑

U∈Γ
V \{v}
v,w ,W≺LE(U)

P(·](U)

=
∑

U(1)∈Γ
V \{v,w}
v,Wn

,W ′=LE(U(1))

P(·](U
(1)) ·

∑
U(2)∈Γ

V \{Wj}nj=0
Wn,w

,U
(2)
1 =Wn+1

P(·](U
(2))

= Cn
∑

U(2′)∈Γ
V \{Wj}nj=0
Wn+1,w

P[·](U
(2′))

= Cn
∑

A∈Γ
V \({Wj}nj=0

∪{w})
Wn+1,w

P[·)(A) ·
∑

B∈Γ
V \{Wj}nj=0
w,w

P[·](B)

= CnC
∑

A∈Γ
V \({Wj}nj=0

∪{w})
Wn+1,w

P[·)(A) = CnChw|{W0,...,Wn}(Wn+1),

where Cn =
∑
{P(·](U

(1)) : U (1) ∈ Γ
V \{v,w}
v,Wn

,W ′ = LE(U (1))} depends only on W0, . . . ,Wn,

and C =
∑
{P[·](B) : B ∈ Γ

V \{Wj}nj=0
w,w } is a constant. Thus, P[Zj = Wj , 1 ≤ j ≤ n] =∑

a∼Wn
CnChw|{W0,...,Wn}(a), which implies that

P[Zn+1 = Wn+1|Zj = Wj , 1 ≤ j ≤ n] =
hw|{W0,...,Wn}(Wn+1)∑
a∼Wn

hw|{W0,...,Wn}(a)
.

This shows that Z is a Laplacian random walk from v to w. So (i) is proved.
One may prove (ii) using the induction on the number of vertices. Recall that T0 = {v0}

and T1 is LERW(v1 → v0). Let G′ = G/T1, i.e., identifying all vertices on T1 as a single vertex.
Then the number of vertices of G′ is less than that of G. Note that the UST on G conditioned
to contain T1 agrees with the UST on G′, and the LERW on G whose target is S ⊃ T1 agrees
with the LERW on G′ whose target is S/T1. We leave the details to the interested readers. 2

Proof of Theorem 6.4. We introduce the notation of rooted spanning trees. A rooted
spanning tree on G is a spanning tree on G with a marked vertex called the root. A uniform
rooted spanning tree (URST) on G is a random rooted spanning tree chosen among all the
possible rooted spanning trees on G with probability proportional to the degree of the root. By
forgetting the root, we get a natural map from the set of rooted spanning trees to the set of
spanning trees, which maps a URST on G to a UST on G.

Let P denote the set of infinite paths X = (X0, X1, . . . ) on G. Let P∗ denote the set of
X ∈ P such that X visits all vertices on G. The construction before the statement of Theorem
6.4 gives a map FT from P∗ to the set of spanning trees on G. In fact, the construction also
gives a map FRT to the set of rooted spanning trees on G if we set the first vertex X0 to be
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the root. Also note two facts: every rooted spanning tree can be constructed in this way; the
construction depends only on (X0, . . . , XN ) if N is the covering time.

Now we construct a directed graph GRT whose vertices are rooted spanning trees on G. For
two rooted spanning trees (T1, v1) and (T2, v2) on G, we draw a directed edge from (T1, v1) to
(T2, v2), and write (T1, v1) ↓ (T2, v2) or (T2, v2) ↑ (T1, v1), if v1 ∼ v2 and T2 = T1 ∪ (v1, v2) \ e,
where e is the first edge on the simple path on T1 from v1 to v2. Every vertex (T, v) in GRT
has exactly deg(v) downward neighbors and deg(v) upward neighbors. It is easy to see that if
T1 = FRT (X) for X = (X0, X1, . . . ) ∈ P∗, then T2 = FRT (Xv2), where Xv2 = (v2, X0, X1, . . . ).
This shows that we may travel from any rooted spanning tree on G to another rooted spanning
tree on G along directed edges in GRT .

A time-homogeneous random walk on G is a random walk on G started from a random
vertex whose distribution is proportional to the degree of the vertex. Let X be such a random
walk. We claim that FRT (X) is a URST on G. Let Y = (v,X0, X1, . . . ), where v is chosen
among neighbors of X0 with probability 1/ deg(X0) each. Then Y has the same distribution
as X. So FRT (Y ) has the same distribution as FRT (X). The above paragraph shows that
FRT (X) ↓ FRT (Y ) and FRT (Y ) is chosen among all downward neighbors of FRT (X) in GRT
with equal probability 1/ deg(X0).

For each rooted spanning tree (T, v) on G, let p(T, v) = P[FRT (X) = (T, v)]. Since FRT (X)
has the same distribution as FRT (Y ), we have

p(T, v) =
∑

(S,w):(S,w)↓(T,v)

p(S,w)

deg(w)
.

Let q(T, v) = p(T, v)/ deg(v). Then q(T, v) = 1
deg(v)

∑
(S,w)↓(T,v) q(S,w). This means that the

value of q at every vertex in GRT is equal to the average of its upward neighbors. So q is
constant on GRT , which shows that p(T, v) is proportional to deg(v). Thus, FRT (X) is a URST
on G as claimed.

Finally, note that a time-homogeneous random walk conditioned to start from v ∈ V is just
a regular random walk started from v. Thus, if X is a random walk on G started from v, then
FRT (X) is URST on G conditioned to have root v. By forgetting the root, we find that FT (X)
is just a UST on G. 2

6.7 UST Peano curve

Let D be a rectangle with corners at (0, 0), (m1, 0), (m1,m2), (0,m2), where m1,m2 ∈ N. Let
δ ∈ {1/n : n ∈ N}. Let Dδ as before. Let Iδ be the set of edges of Dδ on the left side and upper
side. Define the dual Dδ

† to be a subgraph of (δ/2,−δ/2) + δZ2 by shifting Dδ by (δ/2,−δ/2).

Let Iδ† be the set of edges of Dδ
† on the right side and lower side. Note that every edge e of Dδ

not in Iδ intersects exactly one edge, called the dual of e, of Dδ
† not in Iδ† , and vice versa.

There is a one-to-one correspondence between the set of spanning trees on Dδ that contain
all edges in Iδ and the set of spanning trees on Dδ

† that contain all edges in Iδ† . If T is a
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spanning tree on Dδ that contains all edges in Iδ, the corresponding tree, called the dual of T ,
is composed of all edges in Iδ† and all edges in Dδ

† whose dual edge in Dδ does not lie on T .

Let T be a UST on Dδ conditioned to contain all edges in Iδ. Let T† be its dual. Then T†
is a UST on Dδ

† conditioned to contain all edges in Iδ† . Consider the graph (δ/4,−δ/4) +Dδ/2.

Let a = (δ/4,−δ/4) and b = (n+δ/4,m−δ/4) be two vertices of (δ/4,−δ/4)+Dδ/2. There is a
unique path, say X = (X0, . . . , Xk), on (δ/4,−δ/4)+Dδ/2 from a to b, which is disjoint from all
edges in T and T†. In fact, X visits every vertex of this graph. So k = (2m1 + 1)(2m2 + 1)− 1.
This path is called a UST Peano curve. As before, we extend this path to a continuous curve
defined on [0, k] by linear interpolation.

Theorem 6.5 [Lawler-Schramm-Werner]
For every ε > 0, there is δ0 > 0 such that if δ < δ0, there is a coupling of the UST Peano curve
X(t), 0 ≤ t ≤ k, and the chordal SLE8 trace β in D from a to b, such that for some continuous
increasing function u : [0, k)→ [0,∞),

P[ sup
0≤t<∞

|β(t)−X(u−1(t))| ≥ ε] < ε.

Remark. The theorem implies that chordal SLE8 satisfies reversibility. It together with
Wilson’s algorithm implies that the boundary of a chordal SLE8 hull stopped at swallowing a
given point is an SLE2-type curve. This is one example of the duality property of SLE, which
says that the boundary of an SLEκ (κ > 4) hull is an SLE16/κ curve.

Here we are not going to give details of the proof, but only introduce the observables that
are used. Let T be the UST in the setup. Let X be the Peano curve. Fix a vertex z0 of Dδ.
There is a unique simple path from z0 to Iδ on T . Let Ez0,u denote the event that the only
simple path on T joining z0 to Iδ has one end point that lies on the upper side of D. Then
Mn = E[1Ez0,u |X0, . . . , Xn] is a bounded martingale.

We will interpret Mn using discrete harmonic functions. Let V δ
u denote the set of vertices

of Dδ that lie on the upper side of D. Let V δ
l denote the set of vertices of Iδ minus V δ

u . From
Wilson’s algorithm, the simple path on T joining z0 to Iδ is LERW(Dδ; z0 → Iδ). Thus, the
end point of this path is the same as the end point of RW(Dδ; z0 → Iδ). Thus, M0 = P[Ez0,u] =
hDδ;V δu |V δl

(z0). When δ is small, M0 is close to the bounded harmonic function h on D, which

equals 1 on the upper side of D, equals to 0 on the left side of D, and whose normal derivative
vanishes on the lower side and right side of D.

Suppose X0, . . . , Xn are given. Let En denote the set of edges of Dδ that are intersected by
[Xj−1, Xj ], 1 ≤ j ≤ n. Let E†n denote the set of edges of Dδ

† that are intersected by [Xj−1, Xj ],

1 ≤ j ≤ n. Let E∗n denote the set of edges of Dδ that are dual of the edges in E†n. Then T
must not contain any edge in En, and T† must not contain any edge in E†n. So T must contain
every edge in E∗n. Let G0 = Dδ and Gn = G0 \En. Let Tn denote the union of the edges in E∗n
together with those on the upper side and left side. Then Tn is a subtree of Dδ. Conditioned
on X0, . . . , Xn, T is a UST on Gn conditioned to contain Tn. Thus, Mn = hGn;V δu |Tn\V δu (z0).
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We may construct a continuous harmonic function fn which is close to the discrete harmonic
function hGn;V δu |Tn\V δu (z0) when δ is small. First, let R be the open rectangle with vertices
(0,−δ/2), (m1 + δ/2,−δ/2), (m1 + δ/2,m2), (0,m2). Remove the closed triangle with vertices
(0, 0), (0,−δ/2), (δ/2,−δ/2) and the closed rectangle with vertices (m1,m2), (m1 + δ/2,m2),
(m1 + δ/2,m2 − δ/2), from R. Now X0 = a and b are two boundary points of D0.

Note that for every vertex v in (δ/4,−δ/4)+Dδ/2, there is a unique pair (v1, v2) such that v1

is a vertex in Dδ, v2 is a vertex in Dδ
† , and v = (v1+v2)/2. So the path (X0, . . . , Xk) corresponds

to a sequence of vertices (X1
0 , . . . , X

1
k) on Dδ and a sequence of vertices (X2

0 , . . . , X
2
k) on Dδ

† .

One may notice that for each 1 ≤ s ≤ k, either X1
s = X1

s−1 or X2
s = X2

s−1. So there is a
closed triangle with vertices X1

s , X1
s−1, X2

s−1, X2
s . Let ∆X,s denote this triangle. Let Dn =

D0 \
⋃n
s=1 ∆X,s. Then for n < k, Dn is a simply connected Jordan domain whose boundary

contains Xn and b. Let Iun denote the boundary arc of Dn from Xn to b in the clockwise
direction, and let Irn denote the other boundary arc of Dn between Xn and b.

Let Tz0 denote the first n such that z0 ∈ ∆X,n. Let Tu denote the first n such that ∆X,n

intersects the upper side of D0. Then for n < Tz0 ∧ Tu, z0 ∈ Dn and Iun contains the boundary
arc Iu of D0 from (0,m2) to b in the clockwise direction. Let hn denote the bounded harmonic
function in Dn which equals 1 on Iu, equals 0 on Iun \ Iu, and whose normal derivative vanishes
on Irn. Then the value of Mn = hGn;V δu |Tn\V δu (z0) is close to hn(z0) when δ is small.

We now compare the above result on UST with the following result on chordal SLE8.

Proposition 6.3 Let D be a simply connected domain with three distinct boundary points
a, b, c. Let β(t), 0 ≤ t < ∞, be chordal SLE8 in D from a to b. Let Dt = D \ β(0, t]. Let
Ic,b denote the boundary arc of D between c and b that does not contain a. Let T1 denote the
first t such that β(t) ∈ Ic,b. For t < T1, let I1

t denote the boundary arc of Dt between β(t) and
b that contains Ic,b, and let I2

t denote the other boundary arc of Dt between β(t) and b. For
0 ≤ t < T1, let ht be the bounded harmonic function in Dt, which equals 1 on Ic,b, equals 0 on
I1
t \ Ic,b, and whose normal derivative vanishes on I2

t . Fix z0 ∈ D and let Tz0 denote the first
time that β visits z0. Then ht(z0), 0 ≤ t < T1 ∧ Tz0 is a continuous martingale.

Proof. We may assume that D = H, a = 0, c =∞, and b > 0. Suppose the driving function is
λt =

√
κBt, and gt are the chordal Loewner maps driven by λ. Suppose W maps H conformally

onto the half strip {z ∈ C : Re z < 0, 0 < Im z < 1} and maps 0, 1,∞ to i,−∞, 0, respectively.

Then ht(z) = ImW (gt(z)−λtgt(b)−λt ). One can show that W (gt(z)−λtgt(b)−λt ) is a local martingale for any
z ∈ H. We leave the details to the reader. 2

Open problems.

1. Construct a lattice model which generates a curve that converges to radial SLE8.

2. Let T be a UST on Dδ (without conditioning). Describe the scaling limit of the Peano
curve surrounding T . Note that if we let Dδ

† to be the subgraph of (δ/2, δ/2) + δZ2

restricted in the rectangle {(x, y) : −δ/2 ≤ x ≤ m1 +δ/2,−δ/2 ≤ y ≤ m2 +δ/2}, then the
dual of T is a UST on Dδ

† with all vertices on the boundary identified as a single vertex.

70



3. Suppose D is a doubly connected lattice domain with boundary components C1 and C2.
Let T be the UST on Dδ/C1, i.e., all vertices of Dδ on C1 are identified as a single vertex.
Describe the scaling limit of the Peano curve surrounding T .

4. Let G = Dδ/(C1 ∪C2), i.e., all vertices of Dδ on C1 ∪C2 are identified as a single vertex.
Let T be the UST on G. Since C1 and C2 are identified as the same vertex, there is no
path on T connecting C1 with C2. So T has two connected components. Now the dual
of T is no longer a tree. Instead, it contains a unique simple loop separating C1 and C2.
Describe the scaling limit of this simple loop.

Remark. In the last problem, if the vertices on C1 and the vertices on C2 are identified as two
distinct vertices, then there is a unique simple path on T connecting C1 with C2. The scaling
limit of this path is now well understood, which is an annulus SLE2 curve.

Because of the limited time, the following interesting topics about SLE are not covered in
this course.

1. The existence and continuity of the SLE trace. S. Rhode and O. Schramm.

2. The Hausdorff dimension of the SLE trace. V. Beffara.

3. Intersection components of planar Brownian motions. G. Lawler, O. Schramm, and W.
Werner.

4. Convergence of critical site percolation on triangular lattices to SLE6. S. Smirnov.

5. Convergence of discrete Gaussian free field contour line to SLE4. S. Sheffield and O.
Schramm.

6. Convergence of critical Ising models to SLE3 and SLE16/3. S. Smirnov.

7. Natural parameterization of SLE. G. Lawler, S. Sheffield and W. Zhou.

8. Brownian loop soup. W. Werner and G. Lawler.

9. Conformal loop ensemble. W. Werner and S. Sheffield.

10. Extending SLE to multiply connected domains.

11. Reversibility of SLE (κ ≤ 4) and duality of SLE.
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