Lecture Notes on Brownian Motion, Continuous Martingale and
Stochastic Analysis (It6’s Calculus)

This lecture notes mainly follows Chapter 11, 15, 16 of the book Foundations of Modern
Probability by Olav Kallenberg.
Recall a normal distribution N (u,0?), o > 0, is a probability measure on R with a density

function: ) )
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If X ~ N(u,0?), then E[X] = p and var(X) = E[(X — EX)?] = ¢%. This distribution has a
characteristic function:

ﬁ

o'2t2

o(t) = E[e"™] = =72

We also think of the point mass §,, as a normal distribution N (g, 0). It has no density function,
but has characteristic function e®*!. A random variable with normal distribution is called a
Gaussian random variable.

Recall that for a R%valued random vector X = (X1,...,Xy) with law v, the characteristic
function for X or v is defined by

(1) = E[¢Z=15%], t=(t,...,ts) € R

It is known that ¢ determines p. This implies Gramér and Wold Theorem (Corollary 4.5): for
two random vectors X and Y in R, if for any ¢ € RY, 3" ¢; X; 4 >-¢;Yj, then X 4y, This
holds because the assumption implies that X and Y have the same characteristic function.

A probability measure on R? is called a normal distribution N(u, A), where u € R? and
A € R? if its characteristic function is

o) = ¢ S it =5 X1 Yy Ajtit
The density function exists whenever A is strictly positive. If A is singular, the measure is

supported by a lower dimensional space. A random vector with normal distribution is called a
Gaussian random vector.



1 Gaussian Processes and Brownian Motion

A family of random variables (X;):cs is said to be jointly Gaussian if for any ¢q,...,¢, € I
and any cq,...,¢, € R, 2?21 cjXy; is Gaussian, and is said to be centered if E[X;] = 0 for
all t. This property holds, for example, if X; are independent Gaussian random variables. In
fact, if X; ~ N(ay,0?) and are independent, then D1 Xy, ~ NQIT g cjar;, y 35—y cjzatzj). A
random process (X;) is called a Gaussian process if the random variables are jointly Gaussian.

Lemma 11.1. (Covariance function)

(i) Suppose (Xi)ier and (Yi)ier are both jointly Gaussian. If for any t € T, E[X;] = E[Y];
and for any s,t € T, cov(Xs, Xy) = cov(Ys,Yy). Then (Xy)ier and (Yy)ier have the same
distribution.

(ii) If the family (Xi)ier is jointly Gaussian, then the family is independent if and only if
cov(Xs, X¢) =0 forany s £t e€T.

(1it) If X = (X1,...,Xq) are jointly Gaussian, then the law of X is N (u, A), where p; = E[X}]
and Aj = cov(Xj, Xi), 1 < j,k < d.

Proof. (i) For any ti,...,t, € T and ¢y, ..., c,, we have

ED Xy =Y ¢E[X,];
=1 j=1

n n n n
var[Y ¢ Xy | = B[O ¢ (Xe, —EX, 1)) =D ) cjoncov(Xy, Xy,).
j=1 j=1 j=1k=1
The same computation holds for 2?21 ¢;Yt;. From the assumption we know that 2?21 ¢ Xt
and Z?Zl ¢;Yy; have the same expectation and variance. Since they are both Gaussian random
variables, they must have the same distribution. By Gramér and Wold Theorem (Corollary
4.5), (X¢y, .-, X4,) 4 (Y, ..., Ys,) for any t1,...,t, € T. So by Proposition 2.2, X dy.

(ii) The only if part is trivial. The if part follows from (i) since if we set Y;, t € T, to be
independent Gaussian random variables such that Y; 4 X; for every t € T', then by (i), X 4y,
So X;, t € T, must also be independent.

(iii) For any t1,...,tq € R, >~ t;X; is a Gaussian variable with E[>¢;X;] = > ¢;E[X;] and
V&I‘(Z thj) = Zj Zk tjtk COV(XJ', Xk) Thus,

Ele!2tXi] = ¢ 2 HEXG] =5 51 ey cov(X5, Xkt th

This implies that the characteristic function of X agrees with that of N(u, A) with p; = E[X}]
and A;j, = cov(X;, X;). So X has the law of N(u, A). O



Suppose (X;)ier is jointly centered Gaussian. Let HY be the linear space spanned by
(Xt)ter. By definition, every element in H° is a Gaussian random variable centered at 0.
Assign the L? norm to H%: || X| = E[X?]'/2. Let H be the completion of H’. Then H is
a Hilbert space. Every element of H is a Gaussian random variable. To see this, note that
if X,, € H® tends to X € H, then ¢x,(t) — ¢x(t), which implies that ¢x(¢) has the form

of 67# for some 0 > 0. We call H a Gaussian Hilbert space. From the lemma we know
that, for X,Y € H, X and Y are independent iff cov(X,Y) = 0. We may construct an infinite
dimensional separable Gaussian Hilbert space H as follows. Let (,, n € N, be i.i.d. N(0,1)
random variables, and let H be the L?-closed linear space spanned by (,’s.

Proposition 11.2. Let (1,...,{y be i.i.d. random variables with d > 2. Then the distribution
of (C1,...,Cq) is spherically symmetric iff they are jointly centered Gaussian.

Proof. 1f (1,...,(4 4 N(0,0?) with o > 0, then each (; has a density function

1 =2

J) = 2o "

So the random vector ((i, ..., () has a density function
d 1 P
f(z) :jl_llf(xj) = We 207

which is spherically symmetric. So the distribution of ((1,...,(s) is spherically symmetric. If
o =0, then ((1,...,¢q) is a point mass at (0, ...,0), which is still spherically symmetric.
Now suppose the distribution of ((1,...,(y) is spherically symmetric. Let ¢ be the charac-

teristic function of any (j, i.e., ¢(t) = E[e®%]. Then by symmetry, ¢(t) = ¢(—t) = ¢(t), t € R.
So ¢ takes real values on R. For any s,t € R, by spherical symmetry, s¢; + t(o 4 Vs +t2(;.

Thus,
9(s)(t) = Ele™ 1] = B[V 0] = 6(v/s? 4 7).

Then we get ¢(v/2t) = ¢(t)%. This shows that ¢ is non-negative. By induction, ¢(y/nt) = ¢(t)™.

Thus, for any ¢ = n/m € Q4, ¢(,/qt) = ¢(t)?. By continuity, we get ¢(\/z) = ¢(1) for any

x>0, ie., ¢(z) = ¢(1)* for z > 0. Since ¢(—t) = ¢(t), we have ¢(z) = ¢(1)*" for any z € R.
0_2 02 2

Since |¢| < 1, ¢(1) = e~z for some o > 0. So ¢(t) = e~ 2, which means that each ¢ is a

centered Gaussian random variable with variance o2. O

‘We omit Theorems 11.3 and 11.4.

Theorem 11.5, part 1 (Existence of Brownian motion). There exists a Gaussian process B
with independent increments such that By = 0 and for any t > s, B — Bs ~ N(0,t — s).



Proof. There are several ways to prove the existence. One way is to show that the transition
kernels
pst(z,) = N(z,t—s), t>s>0,

satisfy the Chapman-Kolmogorov relation, and apply Kolmogorov extension theorem to con-
struct a Markov process with this transition kernel.

We now give another proof. First, we construct an infinite dimensional separable Gaussian
Hilbert space H. Such H is isomorphic to L?(R, \), where A is the Lebesgue measure on R.
Let f: L?(R.,\) — H be an isomorphism. Define

By = f(1py) € H.

Then B is a centered Guassian process, and from f(0) = 0 we get a.s. By = 0. For t > s,
var(B; — Bs) = Hl[O,t] — 1[075]”2 =t—s,s0 By — Bs ~ N(0,t —s). Finally, if to <1 <--- <tp,
then By, — By, ..., By, — By, , are f-images of 1( 4], -+, L(t,_,t,], Which are orthogonal in
L*(Ry,\). So By, — By, ..., By, — By, _, are orthogonal in H. Thus, they are independent. [

Theorem 11.5, part 2 (Continuity of Brownian motion). The B in the previous theorem has
a continuous version, which is locally Holder continuous of any exponent a € (0,1/2).

Recall that B’ is called a version of B if for every ¢ > 0, a.s. B, = B;. It is weaker
than the condition that, a.s. for every t > 0, B = By, in which case we say that B’ and
B are indistinguishable. If B has two continuous versions B’ and B”, then B’ and B’ are
indistinguishable because first, for every t € Q4, a.s. B = BY; second a.s. for every t € Q4,
Bj = B} because Q. is countable; and finally a.s. B = B” by continuity of B’ and B”, and
the denseness of Q4 in R...

A function f is said to be Hélder continuous of exponent a if there is a constant C' > 0
such that for any z,y in the domain of f, |f(z) — f(y)| < Clx — y|®. If it called locally Holder
continuous of exponent a if for any x in the domain of f, there is a neighborhood U of =
such that f|y is Holder continuous of exponent a. To prove the theorem, we use the following
theorem.

Theorem 2.23. Let X;, t > 0, be a real valued process. Assume that there are a,b,C > 0 such
that for any s,t € Ry,
E[|X; — X% < C|t — s|*T0.

Then X has a continuous version, which is a.s. locally Holder continuous with exponent ¢ for
any ¢ € (0,b/a).

Proof. 1t suffices to consider X|j ). Fix ¢ € (0,b/a). For n € N, let D, be the set of binary

points of level n in [0, 1], i.e., 2%, 0 <k < 2" We first consider the Holder property of X|p, .

Let
Cn :max{|XL —Xk—1| 01 < ]CSQ”}
omn PIg



Then we have

2n
1 a L\
PlCn > (57) < D PlIX 2 — Xuct [ > (5)]
k=1
2n
< 9can - . |a] < 9cangn n(1+b) _ n(ca— b)
<2 ;EHX; Xy |7 < 200m2n 270 = 2

Since ca < b,
Zpgn Z C2"e17P) < oo,

By Borel-Cantelli lemma, a.s. there is a random N such that for any n > N, ¢, < (5)°. So
there a.s. exists a random C' > 0 such that for any n € N, and t,s € D,, with |t — s| 2,”
| X — Xs| < C|t — s|°. Let E denote the event that the inequality holds, which has probability
1. Let D =J,, Dy,. Then D is dense in [0, 1].

We now show that X|p is Holder continuous with exponent ¢ on the event E. Suppose
E occurs. Let # < y € D. Let ng be the smallest n € N such that D, N [z,y] # 0. Let
20 € DyyN[z,y]. Then |z—zp), |y—20| < zr5. We first estimate | X, — X, |. If z = 20, it is trivial.
Suppose x < zy. Then = € D,, for some m > ng. Then we can find ng < ny < --- < np=m
and ¢ =z, < T < -+ < g = %p such that z, € Dy, 0 < k < n and |z — z_1]| = 27",
Then we get

k
027cn1
Mo = X £ 301X, = X 1|<CZC < orm Y o= 2
j=1 s=0 B
On the other hand, |z — 29| > |x1 —mxg| = 27" So [ Xy — Xy | < 15= |z —z|° < <3 _c|;1:—y|c.

Symmetrically, | X, — X,| < |z — y|¢. Thus,

12C

[ Xo = Xy < [Xo — Xog| + [ Xy — Xap| < 2,C|93 -yl

Since X |p is Holder continuous on the event E, it extends to a continuous process Y on [0, 1]
by the denseness of D in [0, 1]. We now show that Y is a version of X, i.e., for any ¢ € [0, 1],
a.s. X; =Y. Fixte [0,1]. Let t, € D,, n € N, be such that ¢, — t. Then a.s. X;, — Y;.
Since E[| Xy, — X¢]?] < Clty, — t\Hb, we have Xy — X, in L% and so X, L X;. So we must
have a.s. X; = Y;. ]

Proof of Theorem 11.5, part 2. For any t > s, since Xy — X5 ~ N(0,t—s), (X — Xs)/\/t —s ~
N(0,1). For a > 2, we have

1 z2
E[|X; — X | = t—s“/Z/ ' ——e T dx = Ot — s|*2.
1 = Xl = ft = 5|2 | Jal—= £ sl



for some constant C' depending on a. Let b = a/2 — 1. By Theorem 2.23, X has a continuous
a/2—1
a

version, which is Holder continuous with any exponent in (0, ). By letting a — oo, we find
that the continuous version of X is Holder continuous with any exponent in (0,1/2). O

The continuous centered Gaussian process given by Theorem 11.5 is called a (standard)
Brownian motion (BM for short) or a Wiener process. For € R, x 4 B is called a Brownian
motion started from 2. A Brownian motion in R? is a process B; = (B}, ..., B{) such that B/,
1 < j < d, are independent 1d Brownian motions. For z € R%, z + B is called a Brownian
motion in RY started from z.

Recall that the distribution of a centered Gaussian process X is determined by its covariance
function, i.e., cov(Xy, Xs) for t,s € T. Let t,s > 0. If t > s, then

cov(By, Bs) = cov(B; — Bs, Bs) + var(Bs) =0+s=s=1tAs.
Symmetrically, if s > ¢, we also have cov(By, Bs) =t A s. For ¢ € R,
cov(eBy, cBs) = ¢ cov(By, Bs) = 2 (t A s) = (*t) A (c2s) = cov(By, Beg), t,s>0.

SocB & B2, i.e., scaling the space by a factor c is equivalent to scaling the time by a factor .

This is called the Brownian scaling. We call x + B.2; a Brownian motion started from z with

speed ¢?. Taking ¢ = —1, we find the symmetry of BM: —B 4 B. For any fixed tg, consider
the process By,4+ — By,, t > 0. Since for ¢,s > 0,

cov(Bty+t — By, Big+s — Bry) = cov(Bigtt, Bro+s) — cov(Big, Bigts) — cov(Big4+t, By ) + var(By,)

= (to+t) A\ (to+s) —to —to +to =t A s = cov(By, By),

d
(Big+t — Biy)t>0 = B.

We may use a similar idea to construct Brownian sheet, which is a Gaussian process with
two time variables: X(t1,t2), t1,t2 > 0. For the construction, consider a isomorphism f :
L2(R%r,)\2) — H, where H is a Gaussian Hilbert space. The Brownian sheet is defined by

X (t1,t2) = f(Lo,01)x[0,t))-
Exercise. Find the covariance function for Brownian sheet.

A Brownian motion is defined on R,. We may extend it to R as follows. Let BT and B~
be two independent BM on R.. Define Bf = B, if t > 0, Bf = B, if t < 0. This process
is not stationary because By is constant 0 but other Bf is not. But it has the following nice
properties.

Exercise. Prove that for any fixed ty € R, BE Gt B}%, t € R, has the same distribution as
BE.

Let 7Y be the natural filtration generated by B. This means that for every ¢t > 0, F_ is the
o-algebra generated by By, 0 < s < t. Let AN denote the family of subsets N of € such that



there exists some A € F with P[A] = 0 and N C A. We let F denote the completion of FV,
i.e., for every t > 0, F; is the o-algebra generated by F_ and N.

Fix tg > 0. Since for every ¢t > 0 and s € [0, o], Byy+t — By, is independent of By, we see
that the process By,++ — By, t > 0, is independent of .7-"2), and so is also independent of F3,.

Proposition . F is right-continuous.

Proof. Fix tg > 0 and let t; > t9 > --- = t9. For n € N, let G,, be the o-algebra generated by
By — By, ., t € [tpt1,t,). By independent increment property of B, G,,, n € N, are independent.
We also note that

F = 0(FL,Gn,Gns1s--.), mEN,
since if t € (to,tn), Bt — By, can be expressed as an infinite sum of random variables, each of

which is Gi-measurable for some k& > n. By Corollary 6.25, we then get a.s. [, .7-",81 = F

tor

which implies that (,, F¢, = Fi,- O

Proposition . B is a martingale and time-homogeneous and space-homogeneous Markov pro-
cess with transition kernel psi(z, A) = N(z,t — s)(A) w.r.t. FO or F.

Proof. We first work on F°. To check the martingale property, fix tg,t > 0. Since N(0,t) ~
Biytt — Btoil_ft(g], we have E[By, 1+ — By, ]]-'7%] = E[Byi,+t — B,] = 0. So B is an F-martingale.
The space-homogeneous Markov property of B follows from Proposition 7.5 and the fact that
B has F%independent increments, i.e., By, — BtOJJ_.FtOO for any tg,t > 0. The proposition
also tells us that the transition kernels are given by ps:(z,A4) = PX; — X; € A —z] =
N(0,t —s)(A—x) = N(z,t—s)(A). Since us; depends only on ¢t — s, B is time-homogeneous.
The above argument also works for F. O

We may use the Brownian motion B to define other continuous Gaussian processes. Let
Xi=B—tB;, 0<t<1.

Then Xy = X3 = 0. Such X is called a Brownian bridge (from 0 to 0 with time span 1). It is
a Guassian process with covariance function

cov(X¢, Xg) = cov(B; — tBy, Bs — sBy)
= cov(By, Bs) — tcov(By, Bs) — scov(By, By) + stcov(By, By)
=tAs—ts—ts+ts=tANs—ts=t(1l—s)As(l—1t).
We then immediately see that (X;_) 4 X because
cov(Xi—¢, X1-5) = (1 = t)s) A ((1 = s)t) = cov(Xy, Xs).

Lemma 11.6. If B is a Brownian motion, then tBy, is also a Brownian motion, and (1-—
t)Bt/(l,t) and tB(_y); are Brownian bridges. If X is a Brownian bridge, then (1+ ) X1 /(141)
and (1 +1t) X, /(14+) are Brownian motions.



Proof. All processes are centered Gaussian processes, whose distributions are determined by
their covariance functions. To prove that the process tB;/; has the same distribution as B, we
note that

cov(tBy 4, 8By /s) = tscov(Byyy, Byys) = ts((1/t) A (1/s)) = s A t.

Exercise. Prove other statements in Lemma 11.6.

Lemma . Let H be a Gaussian Hilbert space. Let ( € H. Let Fg be the o-algebra generated by
a set S C H, and let F be its completion. Let Hy be the closed linear space spanned by S. Let
Co be the orthogonal projection of ¢ onto Hy, and let o = dist((, Hy) = ||C — (o||z2. Then the
conditional law of ( given F, i.e., Law(¢|F) = N (o, 0?).

Proof. Since (p belongs to the closed linear space spanned by S, which generates Fy, we have
(o € F. In fact, there is a sequence (,, each of which belongs to the linear space spanned by
S, which converges a.s. to (5. Then each ¢, € F°, so {y € F. Since ¢ — (o L Hp, we have
¢ — ColLF. Since ¢ — ¢y € H and o = ||¢ — (ol|z2, Law (¢ — (o) = N(0,02). Since ¢ — (o ILF,
the conditional law Law(¢ — (g|F) is the same as the unconditional law, i.e., N(0,0?). Since
o € F, Law(¢|F) = ¢o + N(0,0%) = N(Co, 07). O

Proposition 11.7 (Gaussian Markov Processes). Let X, t € T', be a centered Gaussian process.
Define rs; = cov(Xs, Xt), s,t € T. Then X is Markov iff for any s <t <, if ry # 0, then
TsuTtt = TstTtus Zf Ttt 7é 07 then Tsu = 0.

Proof. Fix t < uw € T. We need to show that Law(X,|F;) = Law(X,|X;). Let H; be the
closed linear space spanned by X, s < t. Let Ly be the linear space spanned by X;. By the
previous lemma, it suffices to show that the orthogonal projection of X, to H; agrees with the
orthogonal projection of X,, to L;. If r,; = 0, then L; = {0}, and we need that X,, L Hy, i.e.,
rsu = 0 for any s < t. If r,; # 0, then the projection of X, to L; can be described as a Xy,

where a = % = % So we have X/ := X, — aX; |l X, for any s < ¢, which gives

0 = cov(X,, Xs) = cov(Xy — aXt, Xs) = Tsu — aTst = Tsu — TtuTst/Ttts
if .4 # 0. The above argument can be reversed. So we get the equivalence. O

We note that Brownian Bridge is Markov because for s <t < w, ry, = s—su, ryy = t(1—1),
Tt =8(1—1), rey =t(1 —u).
For a Brownian motion B, we define a centered Gaussian process

1
Y, = e*tB(ith), teR.
It is called a stationary Ornstein-Uhlenbeck process. It has covariance

1 1
COV(}/t, Ys) — eftefs§62t/\2$ — 567|t78\ )



Since for s < t < u, %eflt*ﬂ . %64“*” = %e*“‘*s' . %e*“*t', it is a Gaussian Markov process.
From the covariance function, we find that Y is stationary and time-reversible, i.e., for any

to €R, (YVigre) =Y and (Y_,) LY.

Exercise. Find the Markov transition kernels of a Brownian bridge and a stationary Ornstein-
Uhlenbeck process.

There is another important Gaussian process, called fractional Brownian motion (fBM for
short). A fBM with Hurst index H € (0,1) is a centered Gaussian process B indexed by R
with the covariance function

1
cov(BE B = 5(]7&]2[{ + [s)?H — |t — 52T, t,s€R.
It may be constructed using an isomorphism from L?(R, \) to a Gaussian Hilbert space.

Exercise. Prove the following. (i) B'/2 agrees with BM on R. (ii) For any a > 0, (BH) 4
la|/" BH . (iii) For any fixed tg € R, (B, — Bf)ier 4 pH, (iv) BH has a continuous version,
which is locally Holder continuous with any exponent less than H.

We omit Lemma 11.8.
We will study sample path properties of Brownian motion.
Recall that for a function f defined on [s, ], the (total) variation of f is defined to be

sup Y | f(te) — f(tr-1)],
k=1

where the supremum is over all partitions {s =ty < t; < --- < t, =t} of [s,¢]. For Brownian
motion, we are not interested in its variation, but its quadratic variation.

Theorem 11.9 (quadratic variation). Let B be a Brownian motion. Fizt > 0. Let A = {0 =
to < -+ < t, =t} be a partition of [0,t]. Let ha := max{ty —tx—1 : 1 < k < n} be the mesh
size of A. Let

n

Ca = Z(‘Btk - Btk—l)Q'

k=1
Then as ha — 0, (A — t in L2. Moreover, if (Ap)nen is a nested sequence of partitions of
[0,t], i.e., Ay C A9 C -+, and ha, — 0, then a.s. (a, — t.
Proof. Since By, — By, ,, 1 < k < n, are independent, and By, — By, , ~ N(0,t) — tj—1) ~
(tk — tk,1)1/2Bl, we have

n

E[¢al =Y E[(By, — By )"l =D (tk — te—1) = tn —to = t;

k=1 k=1



I¢a = tl72 = El(Ca — 1)*] = var(¢a) = Y _ var((By, — By, ,)°)
k=1

n
= Z(tk — tp_1)?var(B?) < tvar(B})ha.
k=1
Thus, as ha — 0, (A — t in L2,

Now suppose Ay C Ay C ---, and ha, — 0. By inserting more partitions, we may assume
that A, 41 contains exactly one more point than A,. To prove that a.s. (a, — t, we will use
the martingale convergence theorem. We will show that (Ca,, ) is a reverse martingale w.r.t. the
filtration (F_,)nen, where F_,, is the o-algebra generated by (a,, & > n. This means that, for
any n € N,

El¢a,—1 = Canl€an: Capsas -1 =0.

Once this is proved, by martingale convergence theorem (Theorem 6.18), we know that ((a,,)
a.s. converges. Since we already know that it converges to t in L?, the a.s. limit is also ¢.
Suppose Ay, \ A1 = {b}, and the partition interval of A,_; that contains b is [a, ¢|. Then

Can oy — Can = (Be — Bo)* — ((Be — By)* + (By — Ba)?) = 2(B. — By)(By — By).

We now introduce another probability space ¥ = {1, —1} with P{1} = P{—1} = 1/2. Consider
the product space ' = ¥ x Q. On the product space ', we have a random variable 0(o,w) = o,
which is independent of €, and has distribution P[¢ = +1] = %. Define on €’ a new process
Bl = By, if s < b; B, = By +6(Bs — Bp) if s > b. Since By,s — By, s > 0, is a BM independent
of Bs, s < b, by the symmetry of BM and the independence between 6 and B, 0 - (Bpis — Bp)
is also a BM independent of Bs, s < b. Since B (resp. B’) can be recovered from Bg, s < b and
Bpis — By, s > 0 (resp. 8- (Byprs — Bp), s > 0) in the same way, we see that B’ has the same
distribution as B, and so is also a BM. We define ¢}y, for B’ in the same way as (a, for B.
Then the process ((j, ) has the same distribution as (Ca, ). Now it suffices to show that

E[C’Anfl - C’An|<,An’ C,An+1’ . ] = O

We observe that C/Ak = (a, for kE > n because each partition interval of Ay, k > n, lies either
in [0,0] or in [b,t]. But ¢y —Ch, , = 2(B.— By) (B, — B;) = 0-(Ca, —Ca,_,)- So the equality

becomes

E[H : (<An - CAn—l)’CAw gAn+17 . ] =0,
which follows from the independence of # and (;’s. This shows that (C’Ak) is a reversed martin-
gale, and so is ({a, ). The proof is now complete. O

If f is continuous and has bounded variation V on [s, t], and A, n € N, is a nested sequence
of partitions of [s,t] with ha, — 0, then for any partition of [s, t],

S I te) = fte—1)]* < sup f(@) = fW)IV =0, n—oc.
k=1

Y€ [Svt} ) |Ify§hAn

If f is Brownian motion, this convergence a.s. does not hold. So we have the corollary:

10



Corollary 11.10. Brownian motion a.s. has unbounded variation on every interval [s,t] with
s < t.

Suppose we have a filtration (F;):>0. We say that By, t > 0, is an F-Brownian motion if
(i) B is F-adapted,;
(ii) for any s > 0, Bs4¢ — Bs, t > 0, is a Brownian motion, and is independent of Fs.

For example, if B is a Brownian motion, and FV is the natural filtration generated by B,
and F is the completion of F°, then B is an Brownian motion w.r.t. 7 or F. Here we use
the property that B has time-homogeneous independent increments. If B is an F-Brownian
motion, and F' is the completion of F, then B is also an F'-Brownian motion. This holds
because the independence property does not care about null sets. If FT is the right-continuous
augmentation of F, then B is also an F-Brownian motion. To see this, fix s > 0. Then for
any § > 0, Bs 54t — Bsis is independent of Fy, s, which contains F;. So Bsys1¢ — Bsig, t >0,
is independent of F;". Letting § | 0, we see that Byy; — Bs, t > 0, is independent of F.".

If B is an F-Brownian motion, then it is a time-homogeneous F-Markov process because
it has F-independent increments. By Proposition 7.9 (strong Markov property), it 7 is a finite
stopping time taking countably many values, then conditional on F,, B;4¢, > 0, is a Brownian
motion started from B, which implies that B, ;— B, t > 0, is a Brownian motion independent
of F,. We now improve this result without assuming that 7 takes finitely many values.

Theorem 11.11 (Strong Markov Property). Let B be an F-Brownian motion. Let T be a
finite weak F-stopping time. Then Bryy— B, t > 0, is a Brownian motion independent of F. .
Thus, conditionally on F, Br1¢ is a Brownian motion started from B;.

Proof. By Lemma 6.4, we may take a decreasing sequence of finite F-stopping times 7, such
that each 7, takes values in %—I and 7, | 7. Then by Lemma 6.3, ;' =), Fr,,.

Since B is time-homogeneous and space-homogeneous Markov, and 7, takes countably many
values, by Proposition 7.9 (Strong Markov Property), B;, ++ — B, t > 0, is a Brownian motion
independent of F,, and so is also independent of FI. Letting 7, — 7, we conclude that

B+t — By, t > 0, is a Brownian motion independent of F . O

Omit Corollary 11.12.

Proposition 11.13. Let B be a Brownian motion, and define My = sup,<; Bs, t > 0. Then
for any t >0,
d d
My = My — By = |By|.

Here we remark that as processes, M and |B| do not have the same distribution because M is
increasing but |B| is not.

Lemma 11.14 (reflection principle). For any stopping time 7, a Brownian motion B has the
same distribution as the process

B; = Bipr — (Bi — Biar), t2>0.

11



Note that Et =B ift < §T+t — ET = —(Br4t — B7) for 7 < 0o and ¢ > 0. This means
that the increment of B after 7 is a reflection of the increment of B after 7.

Proof. We first assume that 7 is a bounded stopping time. By strong Markov property of BM,
B} := B,y — B; is a Brownian motion independent of F, and so is independent of the process
By, 0 <t < 7. By symmetry of BM, —BJ is also a BM independent of By, 0 < ¢ < 7. Thus,
(Bf, Biar) and (—BJ, Biar) have the same law. Since we may obtain B from B, 0 < ¢t < 7,
and BT, and obtain B from B, 0 <t < 7,and —B7 in the same way, we see that B has the
same law as B.

Now we do not assume that 7 is bounded. It suffices to show that, for any a > 0, Bt,
0 <t < a, has the same law as By, O < t<a. Fixa > 0. If we define Bt in the same way as Bt
but with 7 A a in place of 7, then Bt Bt, 0 <t <a. Since T A a is a bounded stopping time,
by the last paragraph, B has the same law as B. Thus, Et, 0 <t < a, has the same law as By,
0 <t < a. This completes the proof. O

Proof of Proposition 11.13. Since My = By = 0, the statement is trivial if ¢ = 0. Suppose
t > 0. We are going to find the joint distribution of (M, B;). Note that (M, By) takes values
in {(z,y) € R?: x >y Vv 0}. It suffices to know P[M; > z, B; < y] for any pair (z,y) such that
z>yVO.

Fix z,y € R such that + > y V0. Let 7 = inf{s : B = x}. Then 7 is a stopping
time, and My > z iff 7 < ¢. Define B as in Lemma 11.14. If M; > x and B; < y, then
Bt = 2x — By > 2z — y. On the other hand, if Bt > 2x —y > x, then we must have T <t
because if 7 > ¢, then M; > B; = Bt > x, which contradicts that 7 > t. Thus, B; = 2x— Bt <uy.

So we have P[M; >z, B; < y] = ]P’[Bt >2x—y| = f% yd)t s)ds, where ¢y (z) = \/ﬁe 2t is the
density function of B~ N (0,t). We may rewrite P[M; > z, B, < y] as

oo y y 00
[ loas = /_ ou(2a — by = /_ ) / 24! (20 — b)dadb.

So (Mg, By) has a joint density in R?, which is 1(z>yv0} (—20%(27 —y)). By changing variables,
we know that (M, My — By) has density 1¢, ,>01(—2¢}(x + y)). Thus, both M; and M; — B;
have the same density, which is 0 on (—o0, 0), and equals fooo —2¢}(x +y)dy = 2¢¢(x) at © > 0.
This is the density function for |By|. O

Omit Lemma 11.15, Theorem 11.16, Theorem 11.17.

Theorem 11.18 (laws of iterated logarithm). For a Brownian motion B, we have a.s.

. B, , By
lim sup =limsup ——==1
t—0+ /2tloglog(1/t) t—oo 4/2tloglog(t)

Here loglog(t) = log(log(t)), which is positive when t > e.
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Lemma . For any x > 0,

1 a2 W2 T _a?
—e 2z > e 2du>-————e 2.
T > T

Proof. For the first inequality, note that

Observe that limy_,o f(z) = 0 and for z > 0,
/ __—x%)2 2 —x2%/2 > —u?/2 2 —x2/2
filx)=¢e —z%e — 2z e du+ (z“+1)e

= —21‘(/:0 e~ 2dy — 6:/2) > 0,

where we used the first inequality at the last step. So f < 0 on [0,00), and we get the second
inequality. O

Corollary . Almost surely, limsup,_,., By = oo, liminf;_ . By = —o00, and for any z € R, the
level set {t > 0: By = x} is unbounded. So we say that B is recurrent.

Proof. That a.s. limsup,_,., By = oo follows from a.s. limsup,_, m = 1. Since —B ~
B, we have a.s. limsup,_, ., (—B;) = oo, which implies that lim inf; ,o, B; = —oco. Then almost
surely both equalities hold, and when this happens, for any x € R, {t > 0 : B, = z} is
unbounded by intermediate value theorem for continuous functions. O

For example, if we define T to be the first time that B; visits some z € R. Then a.s. 7 is
finite. If I = [a,b] with a < 0 < b, and 7 is the first time that B exits I, then 7 is a finite
stopping time. We have B, = a if B visits a before b, and B, = b if otherwise. Since B is a
martingale, B] := Brx; is a bounded martingale. By Optional Stopping Theorem (Theorem
6.29), 0 = By = E[BI|Fo| = E[B;] = aP[B; = a]+bP[B; = b]. Since 1 = P[B; = a|+P[B, =],
we calculate P[B; = a] = ﬁ and P[B; = b] = =%.

Corollary . A Brownian motion B is a.s. NOT locally Hélder continuous of exponent 1/2.

Proof. If B is Holder continuous of exponent 1/2 in a neighborhood of 0, then limsup, g+ | B —

Bo|/Vt < 0o, which implies that lim sup,_,o+ |B; — Bo|/+/2tloglog(t) = 0, which almost surely
contradicts Theorem 11.18. O

13



Corollary . For any fized to > 0, B is a.s. not differentiable at tg.

Proof. We use the fact that By 1+ — By,, t > 0, has the same distribution as B, and B is a.s.
not differentiable at 0 by the law of iterated logarithm. O

Theorem (Nowhere differentiability). Almost surely B is not differentiable at any t > 0.

Proof. We may consider B|[ ;). In fact, if we have proved that a.s. B is nowhere differentiable
on [0, 1], then by scaling, we can conclude that for any N € N, B is a.s. nowhere differentiable
on [0, N]. Since there are countably such N, a.s. B is nowhere differentiable on any [0, N],
N € N, and so is nowhere differentiable on R . If B is differentiable at ¢ty € [0,1), then

B — B
lim sup —| toth tol

< 0
hl0 h

This means that there are constants 6 € (0,1) and C; > 0 such that if 0 < h < §, then
|Bty+n — Bty| < Cih. Let R > 0 be an upper bound of B on [0,2]. Let M € N be such
that M > Cy Vv (2R/0). Then for h € [4,1], |Byy+n — Biy| < 2R < M§ < Mh. So for any
0 < h <1, |Biy+nh — Bt,| < Mh. Suppose for a fixed M € N, there exists ¢y € [0, 1] such that
|Bty+h — Bty < Mh for all 0 < h < 1. Let n € N and n > 2. There is k € {1,2,...,2"} such
that to € [£3L, 1. Then for 1 < j < 3,

M(2j+1
Buss — Busys | < |Buss — Buy| + |Brsys — Byy| < 241 . ).
on P 2m 2n 2

Let E denote the event that B is differentiable at some ¢y € [0, 1], and define

B =By — Bigy| < =57, 1<j<3)
Then )
[e’<JNe"e) n
ec U NUES
M=1n=2k=1
We have ,
M(2j +1) ™ ™
PlEa] = [[PUB | < —5—1 <PBI| < 5P < C( )™

J=1

Here we used the fact that the density function of B; is bounded by \/% Hence

> ™
Pl J BN, < Q”C(W)3 = 73CM327"/2,

k=1
which then implies that P[>, Ui, ET]L”,C] = 0. So we get P[E] = 0. O
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Proof of Theorem 11.8. Since tBy; has the same law as B, the two equalities are equivalent to
each other. So it suffices to prove the case limsup,_, . Let M; = sup,<; Bs be the maximum
process. By the above lemma, for any = > 0,

1 6712/2 T 6712/2
— > P[B) > z] > . 1.1
PV e e R (1)
Since B 4 VtBi, and M, 4 | Bt|, we have
92 —u?/2
P[M, > ut'/?] = 2P[B, > ut'/?] < =5
2mu
Let h(t) = \/2tloglog(t). Fix R,p > 1. Then h(p") = \/2p"log(nlog(p)). Applying the above
formula tot = p™ and u = Ry/2log(log(p™)) (so e™* /2 = = (nlogp)~ RQ), we get
2(nlog p) &
P[Mn > Rh(p")] = P[Mn > /p"Ry/2log(log(p"))] < &0 n>2.

\/ 2w R\/2log(nlog p

Since R > 1, >, n 1 < oco. By Borel-Cantelli Lemma, the probability that there exist
infinitely many n such that M,» > Rh(p") is 0, i.e., a.s. there exist N such that for n > N,
My < Rh(p™). So a.s. limsup Myn/h(p") < R. Since this holds for any R > 1, we get a.s.
limsup M /h(p™) < 1. Since h(p™)/h(p""') — /p, we get a.s. limsup My /h(p""1) < \/p.
Since for any ¢ > 1 there exist n such that p"~1 <t < p", we get My/h(t) < My /h(p"1). So
a.s. limsup,_, ., Bi/h(t) < limsup,_,.o M;/h(t) < p. Since this holds for any p > 1, we have a.s.
lim sup,_,, Bi/h(t) <1

To prove the reverse inequality, let R > 1 and ¢ = /(R —1)/R < 1. Since Brn — Bpn-1 4

VR YR —1)By, by we have

P[Bgn — Bgn-1 > ch(R")] = P[\/R* (R — 1)B; > \/(R — 1)/R+\/2R" log log(R")]
1/v2
=P[B; > /2loglog(R")| Z [Vn .
log(R™)+/loglog(R™)

Since the sum of the RHS over n is infinity, and Brrn — Bpn-1, n > 1, are independent, By
Borel-Cantelli Lemma, the event that Brn — Bgn-1 > ch(R"™) will happen infinitely often. This
implies that a.s.

V(R —1)/R = c <limsup(B; — By/g)/h(t) < limsup By/h(t) + limsup(—By/g)/h(t).

By the upper bound, limsup(—By/gr)/h(t) < R~Y2. Thus, limsup B;/h(t) > /(R —1)/R —
R~Y2. Letting R — oo, we then get limsup B;/h(t) > 1. O

In contrast to the law of iterated logarithm, we have the following result.
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Theorem (Lévy’s modulus of continuity). Almost surely, we have

: |Biyn — Be|
limsup sup ——==1
hl0  0<t<i—h \/2hlog(1/h)

Proof. This is Theorem 1.14 of Brownian motion by Peter Moters and Yuval Peres. O

Omit the part of Chapter 11 after Theorem 11.18.

2 Stochastic Integrals and Quadratic Variation

We first introduce a new object: local martingale. Fix a filtration F = (F)¢>0, which is right-
continuous and complete. Recall that for an F-adapted process X and an F-stopping time T,
we may define a new process X7 by X/ = Xya,. This is X stopped at 7.

Definition . An F-adapted process X is called a local martingale if there is a sequence of
F-stopping times 7, with 7, T oo such that for each n, X™ — X is an F-martingale. The
sequence (7,) is called a localizing sequence. If in addition, X is sample-wise continuous, then
it is called a continuous local martingale.

Remark . We have the following facts. Recall that by Optional Stopping Theorem (Theorem
6.29), if M is a continuous martingale, and 7 is a stopping time, then the stopped process M ™
is also a martingale.

1. If Xy is integrable, X™ — Xy is an F-martingale iff X™ is an F-martingale.
2. A martingale is a local martingale. We may simply take all 7,, = cc.

3. A uniformly bounded local martingale is a martingale. This follows from Dominated
Convergence Theorem. To see this, suppose X is a uniformly bounded local martingale
with localizing sequence (7,,), then for any ¢t > s > 0 and n € N, E[X-, | Fs| = Xsar, -
Letting n — oo, we get E[X¢|F;] = X;.

4. A local martingale may not be a martingale. A concrete example will be given later.
Sometimes we call a martingale a true martingale to emphasize.

5. For a continuous process X, the condition that 7, 1 co can be slightly weakened to a.s.
Tn — 00. First, a null event does not affect the martingale property. Second, if 7, is
a sequence tending to oo, then we may define an increasing sequence of stopping times
tending to oo by 7,, = inf,;;>p, 7. Since F is right-continuous, each 7,, is a stopping time.
Whenever X™ is a martingale, X™ = (X™)™ is also a martingale. Here we use the
optional stopping theorem.

6. A continuous local martingale stopped at any stopping time is still a local martingale. In
fact, if X is a continuous local martingale with localizing sequence (7,), and if 7 is any
stopping time, then for any n, (X7)™ — XJ = (X™)” — X is a martingale. So (7,) is
localizing sequence for X7.
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7. If X is an F-adapted continuous process, and if there exists an increasing sequence of
F-stopping times 7, with 7, T co such that for each n, X™ is a local martingale, then
X is a local martingale. To see this, suppose Xy = 0. For each n, let (6}})r>1 be the
localizing sequence of X™. For each n, since o;' — oo, we may choose k;, such that
Plop <n] < 2% By Borel-Cantellie lemma, a.s. o} — oo. Let T = Tn N\ o, . Then a.s.

/ noo, .
7/, — oo and for each n, X™» = (X™)%nx is a true martingale.

8. The sum of two continuous local martingales is a local martingale. If X and Y are both
continuous local martingales with localizing sequences (7;,) and (oy,), then 7, A oy, T 00,
and each 7, A 7, localizes both X and Y, and so also localizes X + Y. Thus, X + Y is
also a local martingale.

9. Suppose X is a continuous local martingale with Xg = 0. Then we have a natural choice
of localizing sequence: 7, := inf{t > 0 : |Xy| > n}. By convention, we set inf() = oo.
Then 7, T 00, and for each n, | X™| is bounded by n, and so X™ is a true martingale.

Proposition 15.2. If X is a continuous local martingale with locally finite variation, then a.s.
X: = Xo for allt > 0.

Proof. By considering X — X, we may assume Xg = 0. We first prove the proposition assuming
that X has finite total variation on [0, c0), which is uniformly bounded by V. Then X itself
is bounded in absolute value by V. So X is a true martingale. Fix ¢t > 0 and a partition
A={0=ty< - <ty,=t}of [0,¢]. Then

n

Xz€2 = Z(th - th—1)2 +2 Z (th o thfl)(th a th—l)'
k=1 1<j<k<n

By the martingale property of X, for each 1 < j < k < n,
E[(th B th—l)(th - th—l)‘ftk—l] =0
because E[X;, — Xy, |Ft,_, ] =0and Xy, — Xy, € Fy,_,. So we get E[X?] = E[QA], where

n

Qa = Z(th - th—1)2 <V sup ’Xs1 o XSQ"

1 51,52€[0,t]:[s1—s2|<|A|

where |A| = maxj<g<n, |tk — tk—1| is the mesh size of A. Since X is continuous, if the mesh size
of A tends to 0, then the RHS of the above formula tends to 0. By Dominated Convergence
Theorem, E[QA] — 0 as |A] — 0. Since E[X?] = E[QAa] holds for any partition A on [0,], we
get a.s. Xy = 0. Thus, a.s. for every t € Q, X; = 0. By continuity of X, we get a.s. X =0.
For the general case, let V; be the total variation of X on [0,¢]. Then V is continuous,
nondecreasing, and adapted. For each n € N, let 7, be the first time that V; > n. If such time
does not exist, then 7,, = co. This is a stopping time. Then X™ has total variation on [0, c0)
bounded by n, and so itself is also bounded by n, and so is a true martingale. From the last
paragraph, we know that a.s. X]] = 0. Since 7,, — 0o, we then get a.s. X = 0. ]
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Definition . A predictable step process has the form

ZC] T],OO) anl Tk,Tk+1] t> 07 (21)

where (73) is a sequence of stopping times with 79 = 0 and 74, 1 0o, and (g, 7 is Fr, -measurable
for each k. Note that n, = Z?:o ¢;. Also note that V' is adapted. To see this, fix any ¢ > 0.
For every k, the event {7, <t < 741} is Fi-measurable. It suffices to show that V; restricted to
this event is Fy-measurable, which follows from the facts that n, € F;, and Fr, N{m, < t} C F.

Definition . Given a predictable step process with the form (2.1)) and an adapted process X,
we define the elementary integral process V - X as in Chapter 6 by

(V : X)t E/ VdX = Zﬁk Xt/\’Tk+1 Xt/\Tk = ZCj(Xt - Xt/\fj)-
=0

k=0

Note that (V - X)o = 0. To see that the last equality holds, and this is a finite sum, note that
if t € (T, Tn1), then

o
> ok (Xinrper — Xinry) = > me(Xrey — Xr) + 10Xy — Xo,);
k=0

n

o0
Z G (Xt — Xinry) Z G X — X)) = mn X — 2(771' —nj-1) X7,
j=0

7j=1

= (Xt — Xr,) + Z i (Xry — X7y)-

Moreover, V - X is adapted because the RHS of the above formulas restricted to the event 7, < ¢
is Fy-measurable. Also note that if X is continuous, then so is V' - X because by definition and
the continuity of X, V - X is continuous on [7,,, 7y, 41] for each n.

Lemma . If M is a martingale, and (7,) is an increasing sequence of stopping times with
70 =0 and 1, T 00, then for for any t > 0,

E[M{] =) E[(Minr, — Miar,)’l.
k=0

Proof. We may write

n—1

Mt/\Tn - Z(Mt/\Tk+1 - Mt/\m)-
k=0
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So

n—1

Mt2/\7'n = Z(MtATk+1 - ]\4t/\7',9)2 + 2 Z (Mt/\Tj+1 - Mt/\Tj)(Mt/\TkJrl - Mt/\Tk)'
k=0 0<j<k<n—1

For each j < k,
E[(Mt/\Tj+1 - Mt/\Tj>(Mt/\Tk+1 - Mt/\’T‘k)|ka] = 07

which follows from Optional Stopping Theorem and the fact that (Mt/\Tj o Mt/\fj) € Frp.
Here we used the fact that Minr,, , — Mipnr, and Mips, ., — Miar, are in L?. So we get

n—1

IE‘Z\41€2/\‘rn = ZE[(Mt/\Tk+1 - Mt/\‘f'k)2]'
k=0

Since as n — 00, Miar, — My, by Corollary 6.22 and Proposition 3.12,
oo
EM? = lim EM},, = El(Minn,, — Minn,)’]
k=0

O]

Lemma 15.3. Let V be a predictable process with |V| < C. Let M be a continuous L>-
martingale (i.e., E[M?] < oo for every t > 0) with My = 0. Then V - M s still a continuous
L? martingale; and for any t > 0, E[(V - M)?] < C*E[M?)].

Proof. The continuity of V - M follows from the definition and the continuity of M. Recall
Corollary 6.14: if M is a martingale, 7 is a stopping time that takes countably many values,
and 7 is a bounded F,-measurable random variable, then the process Ny := n(My — Mp;) is
again a martingale. For a continuous martingale M, we can remove the assumption that 7 takes
countably many values because we may find a sequence of stopping times 7" | 7 such that each
7™ takes countably many values. Then E[n(M;— M )| Fs] = n(Mg— Mgp.m) for any t > s > 0.
Letting n — oo we get E[n(M; — Miar)] = n(Ms — Msa-) using the continuity of M and the
uniform integrability of {nM : n € N}. Here we use the fact that Mian = E[M;|Fipm].
Suppose V has the form of . Suppose there are only finitely many k such that ( # 0, then
V' - M is a martingale since it is a finite sum of (;(M; — Mixr,), each of which is a martingale.
Fix any t > 0, by the above lemma, we have

E[(V - M)] =) E[((V - M)irry,, — (V- M)iar,)’]
3=0

0o 0o
= ZE[T]‘JZ(Mt/\Tj+1 - Mt/\Tj)Q] < 02 ZE[(Mt/\Tj+1 - Mt/\‘f'j)2] = CQE[ME}
j=0 =0
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Thus, V - M is also an L?>-martingale. Finally, we consider the general case, i.e., there may
be infinitely many k such that ¢ # 0. We write V;* = Y70 [ (e1(7, 00)(t). Then each V"
is a predictable process with finitely many nonzero (x. So E[(V"™ - M)?] < E[M?]. Since
(V. M)y — (V- M), by Fatou’s lemma, E[(V - M)?] < C?E[M?]. Fix t > s > 0. For each
n €N, V™. M is a martingale, so E[(V"™- M):|F,] = (V™ - M),. Since the sequence (V" - M), is
L?-bounded, it is uniformly integrable. So the a.s. convergence implies L'-convergence. Letting
n — oo, we get E[(V - M )| Fs] = (V- M)s. So V- M is a martingale. O

Recall the following facts from Theorem 6.18, Theorem 6.21, Corollary 6.22, and Theorem
6.29. If M is a uniformly integrable martingale (i.e., (M)s>0 is uniformly integrable), then
Moo :=limy_,o My converges a.s. and in L', and for any stopping time 7, E[My|F,] = M;. In
particular, we have | M;||rr < ||[Msl|z» for any p > 1, and E[My] = E[My]. Also recall that
for any p > 1, if M is LP-bounded, i.e., sup;sq || M;[|z» < oo, then M is uniformly integrable.
In that case, we have M; — M, in LP as t — oo. In particular, if M is uniformly bounded, it
is uniformly integrable, and My — M, in LP for every p > 1.

Let M? denote the space of all L2-bounded continuous martingale M with My = 0. Equip
M? with the norm |[|[M||ye = ||[Msollzz = [|lim¢ oo Myl|z2. Then M? is clearly an inner
product space with (M, N) = E[MsNy]. Recall that by Proposition 6.16, for any ¢ > 0,
| suPoc e Ml < 2| Myl 2. Since [Myllzz T | Maollzz = M|, we get Mz < 2] M | pee,
where M7, = sup;>q | M.

Lemma 15.4. M? is a Hilbert space.

Proof. Let (M™) be a Cauchy sequence in M2. Since |[(M"™ — M™)* |12 < 2|M2 — M|, by
choosing a subsequence, we may assume that

E[sup |M;* — M1?) < 2737
>0

which implies that
Plsup |M}* — M"Y > 27" < 27,
t>0

By Borel-Cantelli lemma, a.s. there is (a random) N such that for n > N, sup,~q |M— M| <
27" Let E denote the event that such N exists. Then P[E] = 1, and (M™) is uniformly
Cauchy on Ry on the event E. Let M = lim;,_,o,o M™ on E, and M = 0 on E°. Then M is
continuous on Ry . Since a.s. M;* — M, for all t > 0, each M" is adapted, and F is complete,
M is also adapted. The martingale property of M follows from the martingale property of
each M™, and the uniform integrability of (M]"),en for every fixed ¢. In fact, for any fixed
t > s >0, E[M}|Fs] = M. The sequence M} is uniformly integrable because their L? norms
are uniformly bounded. Letting n — oo, we then get E[M;|F;] = M,. The L?-boundedness
of M follows from Fatou’s lemma: E[M?] < liminf E[(M}*)?] < liminf E[(M2)?] for all ¢ > 0.
Finally, in the formula lim, m—co E[sup;sq |[M}* — M{*|?] — 0, if we fix n, let m — oo, and use
Fatou’s lemma, we then get limy, ;o0 E[sup;~q |M}* — M;|?] — 0, and so M"™ — M. O
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Theorem 15.5. For any continuous local martingales M and N, there a.s. exists a unique
continuous process [M, N| of locally finite variation and with [M,N]y = 0 such that NM —
[N, M] is a local martingale. The form [M, N| is a.s. symmetric and bilinear with [M — My, N —
No| = [M, N]. Furthermore, for any stopping time 7, a.s. [M,N]|" = [M7,N7] = [M", N].
The process [M] = [M,M] is a.s. nondecreasing; and if M is bounded with My = 0, then
M? — [M] € M2

We call [M] the quadratic variation of M, and [M, N] the quadratic covariation of M and
N. The name comes from the following fact (Proposition 15.18): Fix ¢ > 0. For any partition
A={0=ty<t; <---<t,=t}of [0,t], define

NE

TA(M,N) = (My — My, )(Ny, = Ny, _,)-

b
I

1

Then for any sequence of partitions (A,,) of [0, ] with mesh size |A,,| — 0, we have T2 (M, N) 5
[M, N];. For example, if M is the Brownian motion B, then [B]; = ¢ for any ¢ > 0.

Lemma . For a continuous local martingale M, a stopping time 7, and an Fr-measurable
random variable ¢, ((M — MT) is a continuous local martingale.

Proof. The continuity is obvious. We know that M — M7 is a local martingale. We construct
localizing sequence oy, for ((M — M7™) as follows. If |(| > n, then o, = 7; if |[(| < n, then
op = inf{t > 7 : |My — M;| > n}. Then o, T o0, and each o, is a stopping time because for
any t > 0,

{on<t}={r<t}n{lK|>nhu |J {r<atn{IM,— M| >n})eF
q€[0,H)NQ

Since (M — M7)?" is a local martingale bounded by n, it is a true martingale, which vanishes
on [0,7]. If [{| > n, o, =T, and so (((M — M7))?" = ((M™ — M7) = 0. Thus,

(C(M = MT7))7 = (Lj¢j<nC) (M — MT)7"
is a martingale by Corollary 6.14 because 1/¢|<,( is bounded and F;-measurable. O

Proof of Theorem 15.5. If there are two continuous processes V1 and V? with locally finite
variation such that Vy =0 and NM — V7 is a local martingale. Then V! — V2 is a continuous
local martingale with locally finite variation and (V! — V?2)q = 0. By Proposition 15.2, a.s.
V1 - V2 =0. So we get the uniqueness.

If [M, N] exists, then for any stopping time 7,

(MN —[M,N])” = M"N™ — [M, N]" (2.2)

is a local martingale. By the uniqueness, we get [M™, N7] = [M, N|". By the lemma, M™N —
MTNT =M"(N — N7) = M;(N — N7) is a local martingale. Combining it with (2.2)), we see
that M™N — [M, N]|™ is a local martingale, which implies that [M7, N] = [M, N]|".
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We may assume that My = Ny = 0. In fact, if we know that [M, N] exists whenever
My = Ny = 0, then for general M, N, [M — My, N — Np| exists, i.e., (M — Mp)(N — No) — [M —
My, N — Ny is a local martingale. By the lemma applied to 7 = 0, we see that My(/N — Ny) and
No(M — My) are local martingales, which then implies that M N — MoNy — [M — My, N — No|
is a local martingale. Thus, [M, N]| exists and a.s. equals [M — My, N — Ny].

To prove the existence and properties of [M, N|, by polarization, it suffices to prove the
existence, continuity, and monotonicity of [M]. In fact, if (M + N)?> — [M + N] and (M —
N)% — [M — NJ are local martingales, then 4M N — ([M + N] — [M — N]) is a local martingale,
and so [M,N] = ([M + N] — [M — NJ])/4. Since [M + N] and [M — N]| are continuous and
nondecreasing, [M, N| is continuous and has locally finite total variation. The symmetry and
bilinear property of [M, N] is obvious.

We first assume that |M| is bounded by C' < oco. Then M is a true martingale. Fix n € N.
Define a sequence of stopping times (7]')>0 such that 75' = 0 and for each k € N,

7 =inf{t > 7y |[My — Myp| > 27"}

As usual, if such time does not exist, then 7' = oo, and so are all T2 k. We have 7" 1 oc.
Introduce two processes

e )
V=D Mepdip e 10, QF =D (Minsr,, = Minsp)?. (2.3)
k=0 k=0

This means that if t € (77, 7', 1], then V;* = M;» and QF = Z?‘;S(MT]L —MT;_L)z—I-(Mt—MTI?)Q.
Note that V™ is a bounded predictable step process. We have

M} =2(V"-M); +Qf, t>0.
To see this, note that if t € (77, 7", ],
M{ — MZn = 2Mn (My — Mrp) + (My — Mop)%;

2
M2,

J+1

_ MEJ,L = 2Mn (Myp, | — Mor) + (Myp, | — MT;)Q, 0<j<k-1.

By Lemma 15.3, each V" - M is a continuous L?-martingale. Since |V" — M| < 27" by the
definition of (77'), we have for n > m,

V- M —=V™ M|pe = |[(VE=V™) - M| p2 <27 M| g2 = 0, asn,m — oo.
By the completeness of M2, there is N € M? such that V™. M — N. So we get
[V M = NYill 2 < 2V M = N||pgz =0,
The process [M] := M? — 2N is continuous, M? — [M] = 2N € M?, and by L?-convergence we
have b
(Q" — [M]);y =2(N -V"™-M)5, — 0.

o0
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Thus, there is a subsequence (Q™) of (Q™), which a.s. converges uniformly to [M]. We claim
that [M] is a.s. nondecreasing. Since [M] is continuous, it suffices to show that for any p < ¢ €
Q4, a.s. [M], < [M],. There are two cases: Case (i) M is constant on [p,¢g]. In this case, for
any n > 1, [p, g] lies in one interval 7,7, ], and Q™ is constant on [p,q]. By the a.s. uniform
convergence of (Q"*) to [M], we conclude that a.s. [M] is constant on [p, q|. Case (ii) M is not
constant on [p,g]. When n is big enough, we have 27" < max M ([p, q]) — min M ([p, q]). Then
there exists k such that 7' € [p,q]. From the definition of Q", we see that Q) < Qﬁg <@y By
the a.s. uniform convergence of (Q™*) to [M], we conclude that a.s. [M], < [M], in Case (ii).
So we get a.s. [M], < [M], as desired. So [M] is a.s. nondecreasing.

Now we do not assume that M is bounded. Recall that My = 0. Let 7,, be the first time
such that |M;| > n. Then 7, T oo, and for each n, M™ is a bounded martingale. So there
exists a continuous nondecreasing process [M™] starting from 0 such that (M™)2 — [M™] is a
martingale. For n < m, since M™ = (M7 )™ we have a.s. [M™] = [M™™]™. So we may define
a process [M] such that for any n, a.s. [M]|™ = [M™]. In fact, we may define [M]; = [M™], if
t < 7, on the event that [M™] = [M™™]™ for any n < m, which has probability 1. Then for
any n, (M? — [M])™ = (M™)% — [M™] is a martingale. So M? —[M] is a local martingale. [

The quadratic covariation will be used to define the stochastic integral V - M, where M is a
continuous local martingale, and V' is an adapted process satisfying some properties. The V - M
is a continuous local martingale that satisfies [V - M, N] = V - [M, N], where N is any other
continuous local martingale, and V - [M, N] is the Stieltjes integral of V against the measure
generated by [M, N], i.e., (V- [M,N]); = fg Vsd[M, N]s, t > 0.

One equality we will often use is: if ¢ < 7 are two stopping times, then
[M7™ = M?] = [M"] + [M?] = 2[M?, M"] = [M]" + [M]7 — [M, M]*"" = [M]" — [M"].

Since [M] is nondecreasing, we define [M] = limy—oo[M];. From Theorem 15.5, we know
that if M is uniformly bounded with My = 0, then M?—[M] € M?. So we get E[M2, —[M]s] =
E[Mg — [M]o] = 0, and

1M |32 = E[MZ) = E[M]oo = [[[M]ool 11 (2.4)
We now extend this result to more general case.

Lemma . For a continuous local martingale M with My = 0, we have M € M? iff [M]s € L1,
and then HM||3V(2 = [|[[M]ool|11-

Proof. For n € N, let 7, be the first time such that |M;| > n. Then 7, T oo, and M™ is
bounded by n. From (2.4)), we get

E[M?] =E[(M™)%] = E[M™]sx = E[M]y,. (2.5)

First, suppose M € M?. Then E[M?] < E[MZ2] = |[M|3,.. So E[M],, < |M]|3,. for any
n € N. Since [M], 1 [M]s, we get [M]o € L', and [|[M]oo|[11 < [[M|3 2.
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Second, suppose [M]o € L. Let C = ||[M]xo|;1. Then for any n, by , [M™ |32 < C,
which implies that for any ¢t > 0, E[Mt%\m] < C. Letting n — oo and using Fatou’s lemma,
we get E[M?] < C for any t > 0. To prove the martingale property of M, we fix t > s > 0.
For any n € N, since M™ is a true martingale, E[Myx., |Fs] = Msnr,. Note that as n — oo,
Mipr, — M. Since the family (M, ) is L2-bounded, by letting n — oo, we get a.s. E[My|Fs] =
M;. From E[M?] < C for any t > 0 we get M € M? and [[M|3,, = limy,o E[M7?] < C =
1Mool 0

Corollary . For a continuous local martingale M with My =0, M is a.s. constant 0 iff [M] is
a.s. constant 0.

Proposition (Interval of Constancy). For a continuous local martingale M, a.s. M and [M]
have the same interval of constancy. This means that, for almost every w € Q, for any open
interval I C Ry such that M is constant, [M] is also constant, and vice versa.

Proof. Since [M — M| = [M], we may assume that My = 0. It suffices to show that, for any
fixed p < g € Q4, on the event that M is constant on [p, q], a.s. [M] is constant on [p, ], and
vice versa.

We first show that, one the event Ey that M is constant 0, [M] is a.s. also constant 0, and
vice versa. Define the stopping time 7 = inf{t > 0: M; # 0}. Then M7 is constant 0. By the
last corollary, [M7] = [M]" is a.s. constant 0. So [M] is a.s. constant on [0, 7). Since 7 = oo on
the event Ey, [M] is a.s. 0 on Ry on the event Ey. The reverse direction can be proved similarly
by defining the stopping time o = inf{t > 0 : [M]; # 0}.

Fixe p < ¢ € Q4. Let E, 4 denote the event that M is constant on (p,g). On this event the
local martingale M? — MP is constant 0. From the last paragraph, we know that [M? — MP]
is a.s. constant 0 on the event E,,. Since [M? — MP] = [M]? — [M]P, by the last paragraph
[M]? — [M]P is a.s. constant 0 on Ej, 4, and so [M] is a.s. constant on [p,q] on E,,. On the
other hand, let F}, ; be the event that [M] is constant on [p, ¢]. Then [M9— MP] = [M]9—[M]P
is constant 0 on Fj, 4, which implies that M9 — MP is a.s. constant 0 on Fj, ;, and so M is a.s.
constant on [p, ¢ on the event Fj, ,. O

Exercise. For a continuous local martingale M, prove that on the event that [M]. < 0o, a.s.
lim; oo My converges.

Proposition 15.6. For any sequence of continuous local martingales (M™) with M = 0,
(M™%, 50 iff Moo 5 0, and for any t >0, (M™)F 50 iff [M"], 5 0.

Proof. First, let (M™)%, 5 0. Fix e > 0. Let 7" be the first time that |MJ*| > e. Then (M™)™"
is a bounded martingale. So ((M™)™")? — [(M™)7"] is an L%martingale. This implies that
E[(M™)?] = E[[M"];~]. Here if 7% = oo, M", is understood as lim;_,oo(M™)]" = lim;_, M},
which a.s. converges. In particular, we have E[[M"].] < &2 since |M%.| < e. So we get

P[[M")oo > €] < P[t" < 00] + P[[M"];» > €]
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< Plr"™ < oo] 4+ e TE[[M"]n] < P[r" < o0 + ¢,

where the second inequality follows from Chebyshev’s inequality. Since (M™)%, 5 0, P[r" <
oo] = 0 as n — oo. So for n big enough, P[[M"]w > €] < 2¢. Then we get [M"] 5o.
Second, let [M"]s 5 0. Now we define 7 to be the first time that [M™); > &3. Then
[(M™)™] = [M™]™" is bounded by &3.
By the previous lemma, (M™)™" € M with [[(M™)™"|]3 . = E[M"]Z, < &3, which implies
that [|(M™)7")5||2. < 4¢3, By Chebyshev’s inequality,

P|(M™)5] > €] < P[r" < oo] + P[|(M"))5[* > €]
S P[r" < oo] + e ((M™))5ll72 < Pl < oo] + 4e.

Here we use that ((M™)7")%, = (M™).. Since [M"]x Lo, P[r™ < o0] — 0 as n — oo. So for
n big enough, P[|(M™)%,| > €] < 5e. Then we get (M™)%, 5o.

The statement about (M™)} and [M™]; follows by considering the stopped process (M™)%.

O

Skip Proposition 15.7 (BDG inequalities) for now. Will come back later. Also skip Lemma
15.8 and Corollary 15.9.

A continuous adapted process A with locally finite total variation and Ag = 0 will be
simply called a finite variation process. For example, [M, N] is a finite variation process. Such
A determines a continuous, adapted, and non-decreasing process V such that V; is the total
variation of A over [0,¢]. Then (V + A) and 3(V — A) are continuous non-decreasing, and
determine two (positive) measures p4 and p— on Ry, which are locally finite and have no
point mass. Since A is the difference of the two processes, dA determines a signed measure
i = pt — p—. The py and p— are singular to each other. The Stieltjes integral against dA
and |dA| are the Lebesgue integral against the signed measure p and the (positive) measure
|u| := py + p—, respectively. From (V £ A) > 0 we easily see that |A;| < V; for all ¢ > 0.

Proposition 15.10. For any continuous local martingales M, N, we have a.s.
t
1/2( Ar11/2
(M, N} < /0 dIM, N| < [MIPINTE2, >0, (2.6)
and for any measurable processes U,V , a.s.

t t ) 1/2 t ) 1/2
/OIUVIId[M,N]g(/0 Ud[M]) (/0 Vd[N]) , t>0.

Proof. For every a,b € R, a.s.

0 < [aM + by]; = a®[M]; + b*[N]; + 2ab[M, N];, t> 0.
Thus, a.s. for every a,b € Q, the above formula holds, which then implies [M, N|? < [M];[N],
t>0.
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Fix t > s > 0. Since M — M* and N — N¥ are continuous local martingales, we have
[M — M?* N — N*|? < [M — M?®];[N — N¥);.

Recall that [M*, N°|; = [M,N°®]; = [M*®, N]; = [M,N|; = [M, N|s. The LHS equals ([M, N]; —
[M, N]s)?. Similarly, the RHS equals ([M]; — [M]s)([N]¢ — [N]s). Thus, a.s.

([M, N]; — [M, N]5)? < ([M] = [M]s)([N]: — [N]s)-

Then a.s. the above inequality holds for any ¢ > s € Q4. By continuity of [M, N], [M], [N],
the above inequality a.s. holds for any ¢t > s > 0. Thus, a.s. for any ¢ > 0 and any partition
0=ty <---<t, =1t, we have

n

S M, Ny, — (M, Nl < 3l — (Mo, )M2([Mly, — (M)

k=1 k=1
< (201, - 1)) (Ve - V) =
k=1 k=1

Taking supremum over all partitions of [0, ¢], we conclude that a.s. (2.6)) holds. A same argument
shows that, for any s <t € Q4, a.s.,

[ I, N < (1) - (1) 2N, — [N

Next, write du = d[M], dv = d[N], and dp = |d[M, N]|. The last displayed formula implies
that, a.s. for any interval I = (s,t), where s < t € Q, we have (pI)? < (uI)(vI). By continuity,
a.s. the inequality holds for any interval I C R;. Outside the exceptional event, we have the
following. Suppose G C R, is open. Then G is a disjoint union of open intervals I;. So by
Cauchy inequality

pG = prk < Z uly) P (vIp)? < <Zﬂfk)1/2<zl/fk)
k

1/2
"~ weyrwe) 2.

Since every Borel set B can be approximated by open sets, we get pB < (uB)l/Q(VB)l/Q.
Suppose U =, arlp, and V = >, by1p, are simple functions such that By’s are mutually
disjoint. Then

plUV| =" larbelpBe < larbi|(uBi)'/(vBy)'/?

k k
1/2 1/2
< (Z “lk\zﬂBk> (Z ]bk\%Bk) = (/LUQ)l/Q(sz)l/?_
k k
The inequality then extends to any measurable functions U,V on R.. O
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Corollary . If M and N are two local martingales that agree (throughout Ry ) on an event E,
then a.s. [M] and [N] also agree on the event E.

Proof. Since M — N is constant 0 on the event E, by the proposition on intervals of constancy,
[M — NJ is a.s. constant 0 on E. Since [M]| — [N] = [M + N, M — NJ, by Proposition 15.10,
[M] — [N] is a.s. constant 0 on the event E. O

For every finite variation process A, let L(A) denote the space of progressive processes V
such that the Stieltjes integrals fg |V'||dA] is finite for all ¢ > 0. Recall that a process V is called
progressive, if for any fixed ¢ > 0, the map [0,¢] X 2 > (s,w) — Vis(w) is B[0, t] x Fi-measurable.
A progressive process is adapted, but the converse is not true. An adapted right or left-
continuous process is progressive. Thus, L(A) contains all right-continuous or left-continuous
adapted processes, which are locally bounded. For every V' € L(A), we may define the process
V-Aby (V-A) = fg VdA. Such V- A is also a finite variation process. We use the assumption
that V' is progressive to guarantee that V - A is adapted. Moreover, d(V - A) is absolutely
continuous w.r.t. dA with Radon-Nikodym derivative being V', U € L(V - A) iff UV € L(A),
andU-(V-A)=(UV)-A.

For V € £, V- A defined in this way agrees with the elementary integral. Then V - A is also
a finite variation process, and d(V - A) is absolutely continuous w.r.t. dA with Radon-Nikodym
derivative being V. Thus, U € L(V - A) if UV € L(A),and U - (V- A) = (UV) - A.

Let £ denote the space of uniformly bounded predictable step processes, which may change
values only at finitely many fixed deterministic times. This means that each U € £ can be
expressed as

n—1 n—1
U = Z le(tj#X)) (t) = Z nkl(tkytkﬂ}(t)’ (2.7)
=0 k=0

where n € N, 0 =tg < t; < --- < tp, and for each k, (; and 7 are bounded F;, -measurable
random variables. For any finite variation process A, we have &€ C L(A), and the Stieltjes
integral V - A agrees with the elementary integral defined earlier.

Lemma 15.11. For any continuous local martingales M, N, and any U € &, the elementary
integral U - M is also a continuous local martingales, and a.s.

[U-M,N|=U-[M,N].
Here the dot on the left is an elementary integral, and the dot on the right is a Stieltjes integral.

Proof. We may take My = Ny = 0. The fact that U - M is a local martingale follows from
localization: we use a sequence of stopping times 7, 1 oo to make M™ bounded martingales.
Then Lemma 15.3 implies that (U - M)™ = U - M™ is a martingale. So U - M is a local
martingale. To prove [U - M, N] = U - [M, N|, we may assume by localization that M, N, and
[M, N] are uniformly bounded. Then M, N, MN — [M, N| are all bounded martingales.

27



To prove that a.s. [U - M, N] = U - [M, N], it suffices to prove that (U - M)N — U - [M, N|
is a martingale. Suppose U has the form of (2.7). Then

n—1
(U-M)Ny = Z G (M — Mt/\tj)Nt;
j=0

n—1
(U - [M,N]); = ZCJ([M> NJ — [M>N}Mtj)~
§=0
Then we have
n—1
(U - M)Ny = (U - [M,N])y = > G((MN, = [M, Nlp) — (M7 Ny — [M", N1,))
§=0

For each j, MN — [M,N] and M% N — [M, N]% are martingales, and so is their difference.
Since the two processes agree on [0,t;], there difference vanishes on [0,t;]. By Corollary 6.14,
tj

G ((MyNy — [M,N];) — (M’ Ny — [M',N];)) is a martingale. So (U - M)N — (U - [M, N]) is a

martingale. O

Given a continuous local martingale M, let L(M) denote the class of all progressive processes
V with (V2. [M]); < oo for all t > 0, i.e., V2 € L([M]).

Theorem 15.12. For every continuous local martingale M and V € L(M), there exists an
a.s. unique continuous local martingale M' with M} = 0 such that for any continuous local
martingale N, a.s. [M',N] =V -[M, N].

Remark: If V € L(M), then V € L([M, N]) by Proposition 15.10. So V - [M, N] is well
defined.

We will use V- M or [ VdM to denote the process M’, and call it the stochastic integral of
V against dM. The equality then reads

[V-M,N|=V-[M,N].

By Lemma 15.11, this stochastic integral extends the elementary integral in the case that V' € £.
By iteration, we find that for two continuous local martingales M and N, and U € L(M),
V € L(N), as.

[U-M,V-N|=U-[M,V-N|=U-(V-[MN]) =UV-[M,N].
In particular, [U - M] = U? - [M].

Proof. To prove the uniqueness, suppose M’ and M" are two continuous local martingales
started from 0 such that for every continuous local martingale N, a.s. [M',N] = [M",N] =
V- [M, N]. Taking N = M’ — M", we get a.s. [M’' — M"] = 0, which implies that a.s. M’ = M".
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For the existence, first assume that [|[V||3, := E(V? - [M])e < oo. Consider the linear
function on M2: N + E(V - [M, N])s. By Proposition 15.10, (V - [M, N]) is a process with
finite total variation on [0,00). So (V - [M, N])eo := limy_oo(V - [M, N]); exists and is finite.
Also by Proposition 15.10,

[E(V - [M, N])oo| < E[(VZ - [MDLINIL < IVIME[N]c] 2 = IV |l N | gz

Thus, the linear function is bounded. Since M? is a Hilbert space, by Riesz representation
theorem, there is M’ € M? such that for any N € M?,

E(V - [M,N))oo = (M',N) = [M’, N]oo = EM No.
By replacing N by N7 for some stopping time 7, we get
E(V-[M,N])); =E(V - [M,N] )oo =E(V - [M,N"))oo = EM! NI, = EM! N, =EM.N,.

Since V' is progressive, V - [M, N] is adapted. Now E[(V - [M,N] — M'N),| = 0 for any
stopping time 7. By Lemma 6.13, V - [M, N] — M'N is a martingale. So we get a.s. [M’, N] =
V - [M, N] for any N € M?2. By localization, this extends to any continuous local martingale
N.

We may remove the assumption that ||V, < co by localization. More specifically, define
T, = inf{t > 0: (V2-[M]); > n}, n € N. Then for every n, ||V|/y; < n. By the previous argu-
ment, for each n, there exists a continuous local martingale M such that for any continuous
local martingale N, a.s.

[M™ N]=V-[M™ N]. (2.8)
For m < n, we have that for any continuous local martingale IV, a.s.
(M) N] = [M®™ N]™ =V . [M™ N =V -[M™, N]=[M™ N

Taking N = (M™)™ — M) we get a.s. (M) = M) So there exists a continuous
process M’ such that (M')™ = M for any n € N. Since 7, 1 oo, and (M’)™ is a local
martingale for every n, M’ is a continuous local martingale. Finally, for any continuous local
martingale N, and any n € N, a.s.

[M',N]™ = [M™ N] =V - [M™ N]= (V- [M,N])™
Since 7, 1 0o, we get a.s. [M,N] =V - [M, N]. O

Definition . A process X is called a continuous semimartingale if it can be written as X =
M 4+ A, where M is a continuous local martingale, and A is a finite variation process with
Ap = 0. An Re-valued process X = (X',..., X%) is called a continuous vector semimartingale
if every X/ is a continuous semimartingale.
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The local martingales and semimartingales considered in this course are all continuous. So
we will omit the words “continuous”.

We call M 4+ A a canonical decomposition of X. If a semimartingale X has two canonical
decompositions X = M + A = M' + A, then M — M’ = A’ — A is a local martingale with
locally finite variation starting from 0, which is a.s. 0 by Proposition 15.2. Thus, the canonical
decomposition is a.s. unique.

If X is a semimartingale with canonical decomposition M + A, then for any stopping time
7, X7 is a semimartingale with canonical decomposition M™ + A™. On the other hand, if there
is a sequence of stopping times 7, T oo such that for every n, X™ is a semimartingale, then
X is a semimartingale. In fact, if M™ + A™ is the canonical decomposition of X™, then for
n < m, (M"™)™ 4 (A™)™ is also a canonical decomposition of X™. By the uniqueness, we have
a.s. (M™)™ = M"™. Then we may define processes M and A such that on an event F with
probability 1, for any n, M™ = M™ A™ = A™ and on £, M = X and A =0. Then A is a
finite variation process, and for every n, a.s. M™ = M"™ and so M is a local martingale. Since
X =M+ A, X is a semimartingale.

For two semimartingales X and X’ with canonical decompositions X = M + A and X' =
M’ + A’, we define

X] = (M), [X,X') = [M, M),

For a semimartingale X with canonical decomposition M + A, let L(X) = L(M) N L(A).

For V € L(X), we define

V-Xz/VdXzV-M—i—V-A.
So V - X is a semimartingale with canonical decomposition V - M + V - A.

Exercise. Let X and Y be two continuous adapted process, and E € Fy. Suppose X =Y on
E,and Y is constant on E°. Show that if X is a martingale, local martingale, or semimartingale,
then Y is respectively a martingale, local martingale, or semimartingale.

Exercise. Let X and Y be semimartingales. Prove that (i) For any stopping time 7, [X7,Y7] =
[X7,Y]=[X,Y]". (ii) On any event such that X =Y, a.s. X and Y have the same decompo-
sition, and so [X] = [Y]. (iii) Almost surely on any interval such that X is constant, [X] is also
constant. To prove (ii), we need to improve Proposition 15.2: If M is a local martingale, then
on any event E such that M has locally finite variation, M is a.s. constant.

Corollary 15.14 (Stochastic Dominated Convergence). Fizx a semimartingale X. Let U, V,
VI V2 ... € L(X) satisfy a.s. |V{*| < U for alln € N and t > 0, and a.s. V;* — V; for all
t > 0 with at most countably many possible exceptions. Then for allt > 0,

(V" X =V X7 = sup [(V"X), = (V- X) 5o

Proof. Assume that X = M + A. Since U € L(X), U € L(A) and U% € L([M]). By DCT for
Stieltjes integral and the fact that dA and d[M] have no point mass, we have a.s. for all t > 0,
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fot |V —Vi||dA| — 0 and ((V™—V)2-[M]); — 0, where the former convergence further implies
that (V" -A—-V-A); L 0. Since a.s. (VP =V)2.[M)); = [(V*=V)- M];, by Proposition 15.6,
(VP = V) M) 50 for all t > 0. Thus, (V" — V) X)* 50 for all t > 0. O

Exercise. Prove that if two semimartingales X and Y agree on an event E, then for any
continuous adapted process V, a.s. V- X =V -Y on E. Hint: Use predictable step processes
to approximate V', and apply stochastic dominated convergence theorem.

Proposition 15.15 (Chain Rule). Let X be a semimartingale. Let U and V' be two progressive
processes such that V- € L(X). Then U € L(V - X) iff UV € L(X), in which case, a.s.
Uv-(Vv-X)=UV)-X.

Proof. Assume X = M+ A is the canonical decomposition of X. Then V- X =V -M+4+V-A, and
[V-M]=V2%[M]. NowU € L(V-X)iff U € L(V-A) and U? € L([V-M]) = L(V?-[M]), which
is further equivalent to UV € L(A) and U?V? € L([M]), which is equivalent to UV € L(X).
We know that U-(V-A) = (UV)-A. It remains to prove that a.s. U-(V-M) = (UV)-M. To see
this, note that for any local martingale, a.s. [U-(V-M),N|=U-[V-M,N]|=U-(V-[M,N]) =
(UV)-[M,N]=[(UV)-M,N]. O

Proposition 15.16 (Optional Stopping). Let X be a semimartingale. Let V € L(X). Let T
be a stopping time. Then a.s.

(V-X)" =V -X"=(1p, V) X

Proof. The statement is obvious if X is a finite variation process because in that case d X7 =
1jo,-jdX. It suffices to prove the statement in the case that X = M is a local martingale. Now
for any local martingale IV,

(V-M)",N]=[V-M,N"|=V-[M,N"|=V-[M",N|=[V-M",N]
=V [Mv N]T = (l[O,T]V) ’ [Ma N] = [(1[0,7]‘/) - M, N]
This then implies that (V- M)" =V - M" = (194 V) - M. O
We briefly recall some basic definition and results.
1. Local martingales are natural extensions of continuous martingales.

2. For local martingales M and N, [M, N] is the finite variation process such that M N —
[M, N] is a local martingale.

3. For a finite variation process A, we define U - A using Stieltjes integral for U € L(A).

4. For a local martingale M and U € L(M), i.e., U?> € L([M]), U - M is the local martingale
such that for any local martingale N, [U - M, N]| =U - [M, N|.
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5. A semimartingale X is the sum of a local martingale M with a finite variation process A.
We define [X]=[M]and U - X =U-M+U-Afor U e L(X)=L(M)NL(A).

6. We use localization to gain boundedness assumptions on local martingales.

We are going to prove the celebrated Ito’s formula, which says, if X = (X',..., X% is
a vector semimartingale, and if f : R? — R is C? differentiable, then Y := f(X) is also a
semimartingale, and a.s.

d d d
1 ‘
Y=Y+ ) 0if(X) X/ + 3 YO 0i0uf(X) - [XT, X,
j=1 j=1k=1
We will first prove a simple case: f(z,y) = zy. Note that 0,f =y, 0, f = z, I2f = sz =0,
and 0,0y f = 0,0, f = 1. Later we will use the special case to prove the general result.

Theorem 15.17 (Product Formula). For any two semi-martingales X,Y , their product XY
1s also a semi-martingale, and a.s.

XY =X)Yo+X - Y+Y -X+[X,Y]

Proof. By polarization, it suffices to consider the case that X = Y. First, suppose X = M € M?
and My = 0. Fix n € N. Define V" and Q" as in the proof of Theorem 15.5: We first define
a sequence of stopping times 7;' 1 0 by 7§ = 0 and 7! = inf{t > 7" | : |M; — My | = 27"
k € N. Then define V™ and Q™ by , ie.,

V;fn = Z MTgl(TIZL,T;L+1](t)7 Q? = Z(MtAT£+1 - Mt/\T]’J)Z-
k=0 k=0

Recall that we have
M? =2(V™- M)+ Q"

Since |V"|¢ < My for alln € Nand t > 0, and V™ — M, by stochastic dominated convergence,
(V- M), 5 (M - M), for every t > 0. From the proof of Theorem 15.5, for every t > 0,
Q7 5 [M];. So for any t > 0, a.s. M} = 2(M - M); + [M];. By continuity, we get a.s.
M? =2(M - M)+ [M].

Next, assume that X = M is a local martingale and My = 0. Let 7, = inf{¢t > 0 : |[M;| > n},
n € N. Then M™ € M?. So a.s. for any n € N,

(M?)T = (M™)? = 2(M™ - M™) + [M™] = (2(M - M) + [M])™,

which implies that a.s. M2 = 2(M - M) + [M].
If X = A is a finite variation process, then we need to show that A2 = 24 - A. To see this,
suppose 4 = dA. Then by Fubini Theorem,

Af ://1[07t]2u2(d81®d82) :// 1A1M2(d81®d82)+// 1A2,u2(d81®d82)
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t t
— [ Antdsa) + [ Auptds) =2(a- ),
0 0

where Ay = {(s1,52) € R?:0 < 51 <89 <t}, and Ay = {(s1,52) ER?: 0 < 89 < 851 < t}.

Suppose X is a semi-martingale with canonical decomposition M + A, and satisfies Xg =
My = 0. We already have a.s. M? = 2M - M + [M] and A? = 2A - A. To prove that a.s.
X? =2X - X + [X], it suffices to show that a.s. AM = A- M + M - A. Fixt >0 and n € N.
Let t, = %t. Define processes A™ and M" by

A" = Z Ay L)y M™ = Z M X1,y -
keN keN

Note that A™ is adapted, but M™ is not. We have
AMy = (A" - M)y + (M"™ - A);, neN.

To see this, note that

(A" - M), = Z Ay (Myy, = My, ),  (M"-A)y = Z My, (Ay, — Ay, )-
k=1 k=1

Since |A?| < (A)f and AT — Ag, we get a.s. (A" - M), — (A- M), by stochastic dominated
convergence. Since |MP| < M for 0 < s < t, we get (M"™ - A); — (M - A); by ordinary
dominated convergence. Thus, for any fixed t > 0, a.s. (MA); = (A- M)+ (M - A);. By
continuity, we then get a.s. (MA); = (A- M)+ (M - A); for any t > 0.

Finally, we may remove the assumption that Xg = 0 because from above we have a.s.

(X = Xo0)” = 2(X — Xo) - (X — Xo) + [X — Xo] = 2X - X — 2Xo(X — Xo) + [X],
which implies that X2 = X2 +2X - X + [X]. O

Remark . The theorem implies that semimartingales are closed under multiplication. This is
not true for local martingales are not. We may rewrite the formula in the above theorem as
d(XY)=XdY +YdX +d[X,Y]. If X and Y are positive, then we may write the formula as

d(XY) ﬂ—kﬂ—k d[X,Y]
Xy X Y Xy -
By induction, this extends to the product of finitely many positive semimartingales:
AT, X7 C<dxi d[ X7, X"
j=1 _ )
Tox — 2= T 2 xixk

j=1 1<j<k<n

If we move the denominator on the LHS to the right, then the formula holds without assuming
that the X7 are positive.
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Proposition 15.18. Let X,Y be two semimartingales. Let t > 0. Let A™ be a sequence of
partitions of [0,t]. For each A" = {0 =17 <--- <t} }, we define

kn
TA” — CA" (X, Y) — Z(th — thil)(y;gz — Y;gzil). (29)
k=1

Suppose the mesh size |A™| — 0. Then TA" 5 (X, Y]:.

Remark . This proposition shows that the quadratic variation a.s. does not depend on the
underlying filtration. If F’ is another filtration w.r.t. which X is also a semimartingale, then
a.s. [X]7' = [X]7. This proposition also implies that if under a new measure P’ < P, X is
also a semimartingale, then the quadratic variation of X a.s. does not change. However, the
canonical decomposition of X may be different. See Girsanov Theorem later.

Proof of Proposition 15.18. We may assume that X¢ = Yy = 0. Introduce the predictable step
processes

n n
XM= Xy g YU = Y, e, g
k=1 k=1

Then we have
XY, = (X" V), + (YY" X); +T%", neN.

Since X" — X, Y" - Y, and |[X7?| < X/, [V <Y/ 0 < s <t and X* € L(Y) and

Y* € L(X), by the stochastic dominated convergence, we get (X" -Y), 5 (X -Y), and

(Y™ X)) 5 (Y - X)¢. Since by Theorem 15.17, a.s. X;Y; = (X -Y)+ (V- X ) + [X, Y], we get
72" 5 (X, 7). 0

Example . If B is a Brownian motion, then [B]; = ¢ for all ¢ > 0. This follows from Proposition
15.18 and the quadratic variation of Brownian motion. One may also prove this directly by
showing that B? —t is a martingale. If B’ is another Brownian motion independent of B, then
[B,B'] = 0. To see this, by computing covariance function, we find that (B + B’)/v/2 is a
Brownian motion, which implies that [B+ B']; = 2t for all t > 0. So [B, B’| = ([B+ B']| — [B] —
[B'])/2 = 0. Below is a more general statement.

Exercise. Suppose that X and Y are two F-continuous local martingale, which are independent
of each other. Prove that a.s. [X,Y] =0, and so XY is also an F-local martingale.

Hint: Since [X,Y] does not depend on the filtration, it suffices to show that a.s. [X,Y] =0
if the filtration is the natural filtration F(*X:Y) generated by (X,Y). By localization, we may
assume that X and Y are bounded martingales. Then a.s. [X,Y] = 0 is equivalent to that XY
is a martingale w.r.t. F&Y) | which further follows from a monotone class argument.
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Theorem 15.19 (Itd’s Formula). Let X = (X',...,X%) be a vector semimartingale. Let
f € C*(R%R). Then f(X) is a semimartingale, and a.s.

d d d
FX) = f(Xo) +)_0if(X)- X ZZ jOf(X) - [X7, X*]. (2.10)
j=1 j=1k=1
We will often express the It6’s formula as a differential form:
d 1 d d
— . - . i xk
X) =D 05 f(X)axT 3% > 0;0uf(X)d[ X7, X*]
j=1 j=1k=1
In the case that d = 1, the formula becomes
1
A (X) = F/(X)AX + " (X)d[X]
Proof. Let ¥ denote the set of all f € C*(R? — R) such that a.s. (2.10) holds. Then ¥
is a vector space, and contains all constant functions and coordinate functions: f;(z) = z;,

1 < j <d. Suppose f,g € ¥. By Theorem 15.17, a.s.

F(X)g(X) = f(Xo)g(Xo) + f(X) - g(X) + 9(X) - F(X) + [f(X), 9(X)]

= (f)(Xo) +)_ f(X)d;9(X) - X7 + Z g(X)0; F(X) - X+

j=1k=1 j=1k=1
d
+> 03 f(X)dX Z@kg )dX")
j=1 k=1
d
= (f9)(X0) + > _(F(X)259(X) + g(X)d;f(X)) - X/
j=1
1 d d
+5 D (F(X)D0kg(X) + 9(X)0;01 1 (X) + 05 (X)kg(X) + Ok f(X)0;9(X))d[ X, Xi]

Jj=1k=1

d d d
= (F9)(Xo) + 3 05(F0) (X) - X7 + 5 373" 0,04(70) (X)X, i)

j=1 j=1 k=1

Thus, fg € 3. This means that ¥ is closed under multiplication. So ¥ contains all polynomials
in z1,...,z4. We now prove that if X is uniformly bounded, i.e., there is a constant R < oo
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such that |X;| < R for all ¢+ > 0, then for any f € C?(R% R), holds. Recall the (higher-
order) Weierstrass Approximation Theorem: There is a sequence of polynomials ¢, such that
gn and its up to second order partial derivatives converge to f and its corresponding partial
derivatives, respectively, uniformly on {z € R? : |z| < R}. For each n € N, since ¢, € ¥, we
have

d o4 '
n(X) = gn(X0)+ Y 9ign(X) - X7 + = 9 Okgn (X)[X7, X*].
() = 0u(X0) + 320 ()- X+ 5 330 ()L, )
Letting n — oo and using the ordinary and stochastic dominated convergence theorems, we
then conclude that holds.

We intend to use localization to remove the boundedness assumption on X, and define for
each n € N, 7, = inf{t > 0 : | X¢| > n}. However, since we did not assume that |Xy| < n, we
do not have | X™| < n. In fact, if |Xo| > n, then 7, = 0, and X™ is a constant value outside
{z : |z| < n}. We observe that X™ is uniformly bounded on the event {|Xy| < n} € Fp, and is
constant on {|Xo| > n}. This motivates us to slightly relax the boundedness assumption on X.
We claim that, if there is an Fyp-measurable event F, such that X is uniformly bounded on the
event F, and is constant on the event E°, then holds for any f € C%(R%, R). To see this,
we may define another process X such that X = X on £ and X = 0 on E°. By an exercise,
X is also a semimartingale. Let f € C?(R% R). Since X is uniformly bounded, from the last
paragraph, we see that f ()Z' ) is a semimartingale, and holds for X. Now f (X)=7f ()A(/ )
on E, and f(X) is constant on E°. By the same exercise again f(X) is also a semimartingale.
On the event F, since X = X , by another exercise the RHS of for X agrees with the
RHS of for X. So holds for X a.s. on E. Since X is constant on E€, also
holds for X on E¢. Thus, holds a.s. for X.

Now we start the proof of the general case. For every n € N, let 7,, = inf{t > 0: | X;| > n}.
Then X7 is uniformly bounded on the event E, = {|Xo| < n} € Fo, and is constant on Ef.
From the last paragraph, we know that holds for X™. So holds for X up to 7,.

Since 7, T 0o, we get ([2.10]) throughout R;.. O
Remark . 1. Ito’s formula is a very powerful tool. The rest of this course can be viewed as

a non-ending series of applications of 1t6’s formula.

2. The differentiability assumption of f can be relaxed. If some component X7 of X is of
locally finite total variation, then we only need that f is C' in the j-th coordinate. The
proof goes through just the same.

3. Itd’s formula shows that the class of semimartingales is invariant under composition with
C?-functions, which gives a reason for the introduction of semimartingales. If M is a
local martingale, or even a martingale, f(M) is usually not a local martingale, but only
a semimartingale.

Example . We use (t) to denote the process which equals ¢ at time ¢. Let B be a Brownian
motion. Then [B] = (t). Let 0 and u be two continuous adapted processes. Let A = - (t), i.e.,
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A = f(f psds. Then A is an adapted C! process with A} = p;. Then we write dA = pdt Let
M = o - B. Then M is a local martingale with [M] = ¢? - [B] = 02 - (t). We write dM = odB.
If a semimartingale X = Xo + o - B + p - (t), then we write dX = odB + udt. It satisfies
[X] = [0-B] = % (t). So we write d[X] = o2dt. If f € C*(R,R), then Y = f(X) is a
semimartingale that satisfies

Y = Yo = [(X) X+ 3" (X) - [X] = J/(X) - (0 B () + 30"(X) - (02 (1)

1 1
= (f'(X)o) - B+ (f'(X)n) - (t) + §f"(X)0’2 () = (f'(X)o) - B+ (f'(X)n+ §f"(X)U2) (1)
So dY = f/(X)udB + (f'(X)p + 2 f"(X)o?)dt, which means that Y has the same form as X.
Example . If X = B = (B!, ..., BY) is a d-dimensional Brownian motion, and f € C%(R% R),
then since [B7, B¥]; = §; xt,

d
1
df(B) =Y _9;f(B)dB; + SAf(B)dt.
j=1
Thus, if f is harmonic, then f(B) is a local martingale.

Example (Complex It6’s Formula). A complex semimartingale is of the form Z = X 4 iY,
where X and Y are real semimartingales. Its quadratic variation is [Z] = [X +iY, X 4+ Y] =
[X]—[Y]+2i[X,Y]. Suppose f: C — C is analytic. Then f(Z) is a complex semimartingale,
and satisfies )

df(2) = f(2)dZ + 5 ["(Z)d[Z].

Here f’ and f” are first and second order complex derivatives of f. The formula also extends
to complex vector semimartingales. The details are left as an exercise.
Example . We define the stochastic exponential of a semimartingale M as

1

£(M) = exp(M — 5 [M)).

Then &(M) satisfies &(M) = eMo + &(M) - M, which may be also written as
d& (M)

&) =dM.

If M is a local martingale, then & (M) is also a local martingale. To derive the formula, let
f=e€"and X = M — $[M], then by Itd’s formula and that f” = f' = f,

A6 (M) = J/(X)AX+ o " (X)[X] = F(X) (@M — S d[X])+ L f(X)dIX] = F(X)aM = E(M)aM.

For A € C, we write &*(M) for the stochastic exponential of AM, then
2

ENM) = exp(AM — %[M]), ENM) = Mo L NENM) - M.
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So far, all local martingales or semimartingales are defined on Ry. We will relax this
assumption and study continuous processes with (possibly finite) random lifetime. Let

s= |J c@o.n),R).

T€(0,00]

For every f € X, let T(f) € [0,00] be the lifetime of f, i.e., the domain of f is [0,T(f)). A
continuous stochastic process with a random lifetime is a map X : Q — 3. We may also write X
as Xy, 0 <t <T(X). Note that for each ¢t > 0, X is only defined on the event {T'(X) > t}. We
say that X is F-adapted if for every ¢t > 0, {T'(X) > t} € F;, and X; restricted to {T'(X) > ¢}
is Fi-measurable. In this case, T'(X) is a stopping time.

Definition . A random map 7 : Q@ — [0,00] is called a predictable time if there exists a
sequence of stopping times 7, 1 7 such that 7, < 7 when 7 > 0. The stopping times (7,,) are
said to announce 7.

As an increasing limit of stopping times, a predictable time must be a stopping time. If 7
and o are predictable times, then so are 7 A o and 7 V ¢ because if (7,,) announce 7 and (o,)
announce o, then (7, A oy,) and (7, V 0p,) announce 7 A o and 7 V o, respectively.

Example . Let X be a continuous process from R, to R? and F be a closed subset of R%.
Then 77 := inf{t > 0: X; € F} is a predictable time because there is a sequence of open sets
Gy, | F, and so the stopping times 7¢, := inf{t > 0: X; € G,,} announce 7p.

Definition . Suppose 7 is a positive predictable time. Let X be a continuous stochastic
process with lifetime 7. We say that X is a local martingale (resp. semimartingale) with
lifetime 7, if there is a sequence of stopping times (7,,) announcing 7 such that for every n,
X" = Xont, 0 <t < 00, is a local martingale (resp. semimartingale) defined on [0,00). A
vector semimartingale with lifetime 7 is defined similarly.

A continuous process X with lifetime 7 is a local martingale (resp. semimartingale) iff for any
stopping time o < 7, X7 is a local martingale (resp. semimartingale). The “if” part is obvious.
For the “only if” part, let o be a stopping time with o < 7. Suppose (7;,) announces 7, and for
every n, X™ is a local martingale (resp. semimartingale). Define 7,, = 7, if 7,, < 0, and 7, = o0
if 7, > 0. Then for any t > 0, {7, < t} ={m <o} N{m <t} ={m <o At} € Font C Fi.
Thus, 7,, is a stopping time. Since 7, > ¢ for n big enough, we have T 1 co. Since for every n,
(X)) = XN\ = XN = (X7)? is a local martingale (resp. semimartingale), X7 is a local
martingale (resp. semimartingale).

Thus, the definition of local martingale or semimartingale with lifetime 7 does not depend
on the choice of the sequence (7;,) that announce 7; and the set of local martingales (resp.
semimartingales) with the same lifetime 7 form a linear space.

Example . Let 7 be a positive predictable time. Let X be a local martingale (resp. semimartin-
gale) on R;. Then X \[077) is a local martingale (resp. semimartingale) with lifetime 7 because
for any stopping time o < 7, (X|o,-))? = X is a local martingale (resp. semimartingale).
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A lifetime-T-local martingale M with locally finite total variation must be a.s. constant
because for any stopping time o < 7, M? is a.s. constant by Proposition 15.2.

An adapted stochastic process A with lifetime 7 will be simply called a finite variation
process if Ag = 0 and for each ¢ € [0,7), A has finite total variation on [0, t].

If X is a semimartingale with lifetime 7, then it has an a.s. unique canonical decomposition
X = M + A such that M is a local martingale with lifetime 7, and A is a finite variation
process with lifetime 7. For the existence, suppose (7,,) announces 7. Then for every n, X™
is a semimartingale on Ry with canonical decomposition M™ + A™. Let n < m € N. By the
a.s. uniqueness of the decomposition of semimartingales on R, we have a.s. M"™ = (M™)™
and A" = (A™)™. Thus, we may define M and A with lifetime 7 such that on an event E
with probability 1, for each n, M™ = M"™, A™ = A", and on E°, M = X and A = 0. Then
X =M+ A, where M is a local martingale with lifetime 7, and A is a finite variation process
with lifetime 7.

If M is a local martingale with lifetime 7, then M? is a semimartingale because for each
stopping time o < 7, (M?)° = (M?)? is a semimartingale. Let N + A be a canonical de-
composition of M?. Then we call A the quadratic variation of M, and denote it by [M]. For
any stopping time o < 7, N + [M]° is a canonical decomposition of (M?)2. So we have a.s.
[M]° = [M?], which is nondecreasing. Thus, [M] is nondecreasing on [0,7). For two local
martingales M and N with lifetime 7, we define [M, N] = ([M + N]—[M — N])/4. If X and Y’
are lifetime-7-semimartingales with canonical decomposition M + A and N + B, then we define
[X] = [M] and [X,Y] = [M, N].

For a finite variation process A with lifetime 7, we define L(A) to be the set of progressive
stochastic processes U with lifetime 7, such that for any ¢ € [0, 7), fot |Us||dAs| < oo. Here
by saying that U is progressive, we man that for any fixed 9 > 0, the set Dy, = {(w,t) €
Q x [0,t0] : t < T(U(W))} € Fty X Blogg), and Ulp,, is Fy, X Bjg 4o-measurable. This is the
case if U is adapted and continuous. For every U € L(A), we may define (U - A); = fg UgdAg,
0 <t < 7, which is a finite variation process with lifetime 7. Note that for every stopping time
o<1,U% € L(A%), and U7 - A = (U - A)°.

For a local martingale M with lifetime 7, we define L(M) to be the set of progressive
processes U with lifetime 7 such that U? € L([M]). If U € L(M), then for every stopping time
o<1, (U%)?% = (U?? € L([M]°). So U° € L(M?), and we may define U° - M°. Suppose
(7,) announce 7. Then the family U™ - M™ n € N, is consistent, i.e., for any n < m, a.s.
Um.M™ = (U™ .- M™)™. So we may define the local martingale U - M with lifetime 7
such that for each n, a.s. (U-M)™ = U™ - M™. If 0 < 7 is a stopping time, then a.s.
for any n, (U - M)?)™ = (U™ - M™)? = (U? - M?)™. Since 7 = lim7, > o, we get a.s.
(U-M)° = (U?)-M°. If N is another local martingale with lifetime 7, a similar argument
shows that a.s. [U - M,N|=U - [M, N].

For a lifetime-7-semimartingale X with the canonical decomposition M + A, let L(X) =
L(M)NL(A). For U € L(X), we define U - X =U -M +U - A. Then U - X is a lifetime-7-
semimartingale with canonical decomposition U - M + U - A. It is the a.s. unique process with
lifetime 7 that satisfies the property that for any stopping time o < 7, (U - X)? =U? - X°.

39



Corollary 15.20 (Local It6’s Formula). Fiz an open set D C R?. Let f € C?*(D,R). Let X be
a vector semimartingale with random lifetime T such that Xy € D for allt € [0,7). Then f(X)
is a semimartingale with lifetime 7, and Ité’s formula holds up to T, and a.s.

d
FX) = f(Xo)+ ) _0if(X)- X

=1

M\

d d
ZZ@ Of(X)-[X7, X%, on[0,7). (2.11)
=1 k=1

Here the meaning of “local” is twofold: first, X is defined not on [0,00), but on [0,7);
second, f is not defined on R¢, but on D C R

Proof. The main idea of the proof is “localization”. Suppose 7, is a sequence of stopping times
announcing 7. Let G, be an increasing sequence of bounded open subsets of D such that
D =JGyp, and G,, C D for each n € N. Let 7, = inf({7} U{t > 0: X; € G,}), n € N. Let
On = Tn N7q,, n € N. Then (0,) also announces 7. Fix n € N. Then X" is contained in G,
on the event E,, := {Xy € G} € Fy, and is constant on ES. Pick xg € Go. Define Y such that
Y = X" on E,, and Y = 2o on ES. Then Y is contained in G,. By an exercise, Y™ is also a
vector semimartingale. We may define a function f,, € C?(R? R) such that f, agrees with f in
Grn+1- Applying the global 1to6’s ’s formula to Y and f,, and using the fact that f, 0;f, 0;0kf
respectively agree with and f,, 0;f, 0;0k fn, on the range of Y, we find that f(Y) = f,(Y) is
a semimartingale, and a.s.

d
FY) = f(Yo) + )0 f(Y) Y7+ 5 Zza Opf(Y) - [Y7, VP, (2.12)

j=1 j 1 k=1

Since f(Y') agrees with f(X") on E,, and f(X°") is constant on Ef. By the exercise again,
f(X?) is also a semimartingale. Since X7 agrees with Y on the event E,,, by another exercise,
the RHS of (2.12)) agrees a.s. on F,, with the same formula with X7 in place of Y. Thus, a.s.
on E,,

d d
DD 00k f(X) - [XT, XF]m. (2.13)

7j=1 k=1

N |

d
FX)7 = f(Xo) + Y (0, £(X) - XT) +
7j=1

Since X" is constant on ES, (2.11]) also holds on Ef. Thus, for any n, (2.13) a.s. holds. This
means that (2.11) a.s. holds on [0,0,). Since o, announce 7, we see that (2.11) a.s. holds
throughout [0, 7). O

From now on, a local martingale or semimartingale may have infinite or finite (and random)
lifetime.

Example . The quotient of two semimartingales X/Y is a semimartingale (assuming that Y
does not take value 0). To see this, write X/Y = f(X,Y), where f(x,y) := z/y is C? on

R x (R\ {0}).
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Example . Suppose X is a positive semimartingale, and o € R. Then X¢ is a semimartingale.
To see this, we apply the local It6’s formula to f(z) = 2 and D = (0,00). Since f'(z) = £ f(x)
and f"(z) = 22 f(x), we get

1 lafa—1)
XY= f(X)dX + = f"(X)d[X] = —XO‘X ——— X[ X].
We may rewrite this formula as
dxX* diX_i_} ( _1)d[X]
Xo ~Yx ToMY T Uiy

Example . Let D be a domain in R?. Let B be a Brownian motion in R? (started from
x € RY). Let 7 be the first time that B exits D. Let f : D — R be harmonic. Then f(Blp,7 is

a local martingale with lifetime 7. In fact, by Itd’s formula, and that [B?, B¥]; = §; xt, we have

d
B) =) 0;f(B)dB’ + Af Zaf B)dB’.
j=1

We now study time-changes. Let T be a positive predictable time. Suppose u is an adapted,
continuous, and strictly increasing process with lifetime 7" and ug = 0. This is the case, for
example, if u; = fg psds, where p;, 0 < t < T, is a positive continuous adapted process.
Let S = sup{w; : t € [0,7)}. Then w is a homeomorphism from [0,7) onto [0,S). Let
v :[0,5) — [0,T) be the inverse of u. We further extend v to [0,00) such that vs = co for
s € [S,00). Then for every s > 0, vs is an F-stopping time because

=inf{t € [0,T):u > s}, s>0. (2.14)

,and for t > 0, {vs <t} ={T >t} N{us > s} € F;. We call the v a time-change.

For each s > 0, since v, is a stopping time, we have a o-algebra F,, . Since v is increasing
in s, we get a new filtration F = (Fuy)s>0, called the filtration induced by the time-change
v. Since F is right-continuous, and vs, | vg, if s, | s, F is also right-continuous. If 7 is an
F-stopping time with 7 < T', then u, is an f—stopping time. To see this, note that for any
a,b>0,

{ur <a}N{v, <b} ={ur <a}ln{r<d}n{a<u}n{b<T}eF,

which implies that {u, < a} € F,,, = E, for any a > 0. If 7, is a sequence of F-stopping times
announcing 7', then wu,, is a sequence of f—stopping times announcing S. So S is a positive
f—predictable time.

Suppose X is a left- or right- continuous F-adapted process with lifetime 7. Then X is
progressive. By Lemma 6.5, for any s > 0, X, restricted to {s < S} is F, -measurable. So
X ow is F-adapted. We then define the F-adapted process X with lifetime S by X = X,
0 < s <5, and call it the time-change of X via v. Since v is continuous, X =Xouwvisalsoa
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left- or right-continuous process. On the other hand, now v, 0 < s < S, is a continuous and
strictly increasing F-adapted process with v(0) = 0, and u is the inverse of v. The time-change
of X via u is just the original X. Moreover, we have F, ;) = Ft, t > 0. So the status of the two

triples (X, T, F) and ()?, S, .7?) are symmetric.
Exercise. Check that the two filtrations ﬁu(.) and F agree.

Theorem 15.25 (A modified version). Let X be an F-semimartingale with lifetime T with
canonical decomposition M + A Let )/i\' ]\/4\ A\ [/\] be the time-changes of X, M, A, [X], respec-
twely, via v. Then X is an F- semzmartmgale with lifetime S with canonical decomposition
M + A and the quadratic variation ofX 18 [X] Moreover, if U is a right- or left- continu-

ous F-adapted process wzth lifetime T cmd U € L(X), then the time-change of U via v, i.e.,
U:=Uouv belongs to L(X ), and a.s. U - X is the time- change of U - X though v.

Proof. Since A has finite variation, it can be expressed as A —A_, where A, A_ are increasing.
Then A = 121\+ — A , where Xi = Ai ov are both Increasing. So A _also has finite variation.
Since A is continuous and F-adapted, Ais F—adapted Thus, Ais an .7-" finite variation process.
To prove that M is an F-local martingale, we may assume My = Mo = 0. Then we can find
a sequence T, announcing T’ such that for each n, M™ is uniformly bounded. By Optional
Stopping Theorem (for uniformly integrable martingale), for any so > s > 0,

E[M] |Fy)] = E[M]? |Fy, ] = M7

1)52 'Usl

Thus, . .
(M)gm = My, rns = M, w(ur As) = Mrno, = Mr

is an f—martmgale Since u,, announce S, M is an Flocal martmgale with lifetime S. Since
X=M+ A X is an F—semlmartmgale with canonical decomp081t10n M + A. Since [)? ] is the
finite variation component of the canonical decomposition of M 2, we see that a.s. [)? | is the
time-change of [M [ | via v. Then ~we immediately get that if X and Y are semimartingales with
lifetime 7', and X = X ov and ¥ =Y o v, then [X Y] [X,Y]ow.

Let U be a right- or left- continuous F-adapted process with lifetime T'. Then Uis a right-
or left- continuous F-adapted process. For any 0 < s < S, Iy U||dA| = o |U||dA] since
the signed measure 7i on [0,5) determined by A is related to the signed measure u on [0,T)
determined by A by 1 = pow. Thus, if U € L(A), then Ue L(A) and U - A = (U A)ow.

If U € L(M), then U? € L([M]), and so U? e L([M]) = L([M ]) So U € L(M ) Moreover,
if N is an F-local martingale with lifetime .S, then N := N ow is an F-local martingale with
lifetime T, and

[(U-M)ov,N|=[U-M,N]ov=(U-[M,N])ov="0U-([M,N]ov)=U - ([M,N]).

Thus, a.s. U-M = (U-M)ov. Soif U € L(X) = L(A)NL(M), then U € L(A)NL(M) = L(X),
and a.s. U- X =(U-X)ow. O
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3 Continuous Martingales and Brownian Motion

Theorem 16.3 (Lévy’s Characterization of Brownian Motion). For a continuous d-dimensional
adapted process X = (X!, ... , X% with Xo = 0, the following are equivalent.

(i) X is a d-dimensional F-Brownian motion.
i) X is a local martingale, and [ X7, X*), = 6;4t, t > 0, for every 1 < j, k < d.
]7

Proof. We already know that (i) implies (ii). Suppose (ii) is true. Fix v = (v1,...,vq) € RY
and t; > 0. Let (v,X) = 20 v;X7. Then (v,X) is a local martingale, and [(v, X)]; =

7j=1
Y v2[XI, XT]y = [vft. Let

M, = E((v, X)) = exp <i(v, X), — i;[(v, X)]t) — exp (z’(v,X)t + %|v|2t), t>0.

Then M is the stochastic exponential of i(v, X), and so is also a local martingale. We have

| M| = 2Vt 8o for any t; > 0, M is uniformly bounded on [0, #1], and so is a true martingale.
Let to € [0,t1]. Then E[M,,|Fi,] = My,. So for any A € Fy,,

. . 1 . . 1
E[14 exp(—i(v, Xy, ) exp(i(v, X¢,) + §|v\2t1)] = E[14 exp(—i(v, Xy,) exp(i(v, Xt,) + §]v|2to)],
which reduces to
. L 2
E[Laexp(i(v, X1, — Xi,))] = exp (= 5|0l (t1 — to) ) P[A].

Since this holds for any A € F;, and v € R%, we conclude that X;, — Xy, is independent of F,,
and has characteristic function v — exp ( — 3Pt — t0)>. So Xy, — Xy, is a Gaussian vector

with covariation matrix (t; — t9)I; independent of Fy,. Since this holds for any t; >ty > 0, X
is a d-dimensional F-Brownian motion. ]

Remark . If we do not assume that Xy = 0, then (ii) is equivalent to that X is an F-Brownian
motion started from some point.

If B is a d-dimensional Brownian motion, and 7" is a positive predictable time, then X :=
Bljo,1y is a vector local martingale with lifetime 7', and for any 1 < j, k < d, (X7, X"y = 0,4t
0 <t < T. On the other hand, if X = (X!,..., X9) is a d-dimensional local martingale with
lifetime T such that for any 1 < j,k < d, [X7, X*]; = jkt, 0 <t < T, then a natural question
to ask is whether X a.s. extends to a d-dimensional Brownian motion. In general, the answer
is no. It is simply because the probability space may not be big enough to support a Brownian
motion with full range. For example, we start with a Brownian motion By, 0 < t < 00, defined
on (2, A,P), which generates filtration F. Let X = Bl ). Let B = Fi, and restrict our

attention to the new probability space (€2, B,[P). Define a filtration F on (Q, B) by Fy = Fint,
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t > 0. Now X is an F-adapted continuous local martingale with lifetime 1, and Xy = ¢
for 0 <t < 1. But we can not extend X to a Brownian motion on (2, B,[P) because if such
extension B exists, then on the one hand, §2 — §1 is B-measurable, and on the other hand, it
is independent of X3, 0 <t < 1, which generates B. Then Bg - El must be a.s. constant, which
is not possible.

We may overcome the issue by expanding the probability space and filtration. Recall that we
have been working on the filtered probability space (2, F,P) throughout, where F = (F¢)¢>0
is a filtration. By an enlargement of (Q, F,P), we mean another filtered probability space
(Q, F,P) together with a map 7 : Q) — Q such that P = IP’ or~ 1, and for any ¢, Y F) C Fu
A process X defined on 2 may be viewed as defined on_ Q) by setting X (@) = X(m(w)). Since
s (ft, Ji)-measurable, if X is F-adapted, then X is }'-adapted For any event FE,

PoX '=Po(Xon) Y(E)=Por o X HE)=Po X (E).
So X (with underlying measure @) has the same law as X (with underlying measure P).

Theorem . For the above vector local martingale X with [ X7, Xk]t =0jxt, 0 <t <T, there is

an enlargement ((AZ,]?, @) of (Q,F,P), and a d-dimensional F-Brownian motion B defined on
Q such that a.s. Xy = Xg+ B, 0 <t <T.

Proof. We may assume that Xy = 0. First, we show that X a.s. extends to a continuous
martingale Y with lifetime oo without enlarging the probability space. We will show that on
the event T' < 00, a.s. limyp Xy converges, and if we define Y; = X; on [0,7), and Y; = limyr X;
on [T, 00), then Y is a continuous vector martingale.

There is a sequence of stopping times (7,,) that announces 7" such that for each n, | X™| is
bounded by n. Fix j € {1,...,d} and m € N. For any n; < ny € N,

[(X7)™"Te — (XTI Ty = [(XT)™ 2]y — [(XT)™AT ]y =m0 A Ty A=A Ty AL

Thus, [(X7)™ATne — (XI)yMATm] 0 < m A Ty — M A Tny. As n1,m9 — 00, Ty Ty, — 1. By
Dominated Convergence Theorem, E[(X7)™\ T2 — (X7)™ 1] — 0 as nj,ny — 0o. Since for
M e M?, |M|3,. = E[MZ2] = E[M]o, (X?)™™ n € N, form a Cauchy sequence in M?>.

Let Y9™ € M?2 be its limit. Then for each ¢t > 0, (X7)"\™ 5 Y/ as n — oo. For every
t € Q4 N[0,m), on the event {t < T}, since 7, T T', we have (X" = X} for n big enough,
which then implies that Y;"™ = X} a.s. on the event {t < T'}. Since both Y7™ and X7 are
continuous, we see that a.s. X/ = Y™ on [0,T A m). Fix t; < ta € Q4. For each n, since
T < T, (X9 = (X9 on {T < t1}. Thus, Y™ = Y™ as. on {T < t1}. Then a.s.
for any t1 < to € Q4, Ytjlm = Yém on {T < t;}. Since Y7™ is continuous, we see that it is a.s.
constant on [T, 00).

Now we still fix j, but let m vary. For m; < ma, from (X7)™ATn = ((X7)m2/\Tn )M we get
a.s. Y™ = (YJ™m2)mi_ This means that the family Y/™, m € N, are consistent, and we may
define a process Y7 on R, such that for any m € N, Y/ lj0,m] @-s. agrees with Yj’m][o’m]. Since
each Y7 is a continuous martingale on R, Y7 is also a continuous martingale on R;. Since
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each Y/™ a.s. takes constant value on [T',00), so does Y. Since for every m, Y™ a.s. agrees
with X7 on [0,7 A m), we see that Y7 a.s. agrees with X7 on [0,7). Then Y = (Y?,...,Y9)
is the extension that we want. Since a.s. Y agrees with X on [0,7'), and is constant on [T, 00),
we have

YO YK, =6t AT, 1<jk<d, t>0. (3.1)

Let (Q F, IP’) be a filtered probability space that supports a d-dimensional Brownian motion

8= (61 . Bd) Consider the product space
QZQXQ, F\t:ftx‘%t, @:PXIF)

Then (€, F,P) with the map 7(w, &) = w is the enlargement of (Q, F,P) that we need. The
process Y on (2 is then viewed as a process defined on Q by Y;(w,®) = Y;(w). By the indepen-
dence of F and .7-" we see that the new Y is a still a martingale. By Proposition 15.18, the new
Y also satisfies . We also understand ﬂ as a process on O by ﬁ(w w) = 6( ). Then 5 is
an F-Brownian motlon on O independent of Y. So for any 1 < j,k < d,

[Bj7gk]t = 5j,k‘t7 [EJ, Yk]t = 07 t > 0.

Since T' is an F-stopping time, it is also an ]?—stopping time. So for 1 < j,k < d and t > 0,
()T is a local martingale, and

[Ej7 (gk)T] = [(B’j)T’ (Bk)T] = j,kt AT, [(gj)Tvyk]t = [EJ,Yk]tT =0,
which implies that
37 = (BB = (BT = 0t =t AT, [ = (8", YH] =0.

Define B =Y + (8 — 7). Then B is an F-vector local martingale with lifetime oo, and for
1<j,k<d,

(B, B = Y7, Y ¥y + [ — (B)", 8" = (B")"]s = 6;ut, 1 >0.

By Lévy’s Characterization of Brownian Motion, B is an F-Brownian motion. Since E — ET =0
on [0,7T), B agrees with Y on [0,7), and so a.s. agrees with X on [0,T). O

Because of this theorem, we may call a vector local martingale X;, 0 <t < T, that satisfies
(X7, X*], = djrt, 0 <t < T, for any 1 < j,k < d, a stopped d-dimensional Brownian motion.

Suppose now M is a (one-dimensional) local martingale with lifetime 7" such that [M] is
strictly increasing, i.e., M does not take constant value on any time interval. Let u; = [M];.
Then u is a con‘mnuous and strictly increasing adapted process. Let v be the inverse of u,
and let M be the time-change of M via v. Then M is a local martingale with lifetime S :=
supg<¢<r[M]t, and [M ]S = [M]y, = uy, = s, 0 < s < S. By the above theorem, we know that

in an enlarged probability space, M extends to a Brownian motion. So M is a time-change of
a stopped Brownian motion. Since a Brownian motion B is continuous on [0, 00) and satisfies
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that a.s. limsup,_,,, Bt = oo and liminf; ,., By = —oo, we can then conclude that a.s. on the
event that supy<;.r[M]; = oo, limsupyp My = oo and lim infy My = —o00; and on the event
that supg<;r[M]¢ < 00, limy M (t) converges to a finite number. Thus, on the event that M
is bounded from either above or below, a.s. limyr M(t) converges.

The above result also holds even if M does take constant values on some intervals. In that

case, we still define uy = [M];, and define vs by vs = inf{t : u; > s}. Now v may not be
continuous. However, since every discontinuity of v corresponds to an interval of constancy
of u = [M], on which M is constant. So M, := M,, is still a continuous local martingale.

We then still have []\/4\]5 =5, 0<s <S5, and so M is a stopped Brownian motion. Then
the original M is a time-change of a stopped Brownian motion with possible pauses. So the
result at the end of the previous paragraph still holds. The above argument works only for
one-dimensional local martingale. We can not always transform a vector local martingale to a
stopped (multi-dimensional) Brownian motion using a time-change.

Suppose that M is a local martingale such that [M] is C! with positive derivative. Besides
time-change, there is another way to obtain a (stopped) Brownian motion from M, which is a
stochastic integral against M. Let oy = /d[M];/dt > 0, and define B, = fg o7 'dM;,. Then
we have d[B]; = o7 2d[M]; = 1 (up to its lifetime). So B is a stopped Brownian motion, and
M = My + o - B. We may then write dM = odB.

We are interested in the kind of semimartingales X (with lifetime T') with canonical de-
composition M + A such that there are continuous adapted processes o and p such that
M =My+o-Band A= p-(t). Then we may express X in the following form:

dXt = UtdBt + Mtdt.

If X takes values in an open set U C R, and f € C?(U,R), then by Ito’s formula, Y; := f(X;)
satisfies the equation dY; = f'(X;)odBy + (f/(Xe)e + 5 f7(X¢)o?)dt.

Let p;, 0 <t < T, be a positive continuous adapted process. Let b w = fo psds, 0 <t < T.
Let v be the inverse of u. Then vl = 1/ps, where ps = pu,- Let X M A be the time-changes
of X, M, A via v. Then from A=Ao v, we find that dAS = lsvlds, where [is = p,,. From
M = M ov, we find that [M [M ] [M] 0w, and so d[M ]S = d[M], v.ds = 52v’ds, where G5 = 0, .
So there is another Brownian motion B such that X = X, satlsﬁes the SDE.

fis —ds.

ﬁs ps

Note the two additional factors 1/4/ps and 1/ps.

dX, =

A two-dimensional Brownian motion B = (B!, B?) may also be viewed as a complex Brow-
nian motion: By = B} + iB?.
Theorem (Conformal Invariance of Complex Brownian Motion). Let U C C be open, and
let f: U — C be analytic and injective. Let B be a complex Brownian motion started from

some point in zg € U. Let 1y be the first time that B exits U. Then f(By), 0 <t < 1y, is a
time-change of a complex Brownian motion started from f(z0) up to the time Ty
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Proof. Write f = a +ib and X = f(B) = a(B*, B%) + ib(B', B?). By Ito’s formula, a(B) and
b(B) satisfy the SDEs: (We write ay for 0ya(B))

1 1
da(By;) = (a,dB} + a,dB}) + iamd[Bl]t + iayyd[BQ]t + azyd[B', B}, = a,dB} + a,dB};

1 1
db(B;) = (bydB} + b,dB?) + 5bmd[Bl]t + Qbyyd[BQ]t + byyd[B*, B%; = b,dB} + b,dB?.
Here we used the fact that [B!] = [B?], [B!, B%] = 0, and ay; + ayy = byy + by, = 0. So we have
dla(By)] = ag(B)*dt + ay(B)*dt = | f'(B)|*dt, d[b(By)] = by(B)*dt + by(B)*dt = | f'(B)|?dt,
dla(Bt),b(Bt)] = (az(B)bz(B) + ay(B)by(B))dt = 0.
Here we use that [Bl], = [B?]; =t, [B', B?] =0, a2 +a =02 —I—b2 |f'?, and azb, + ayb, = 0.
If we define u; = fo |f'(Bs)?ds, 0 < t < 1y, and let v = u~ !, then the time-change of X =
f(B) = a(B) + ib(B) via v, i.e., f(B,,) = a(B,,) + ib(B S) satlsﬁes [a(By.)]: = [b(By.)]: = dt,
and [a(By.),b(by.)] = 0. So f(By,), 0 <s < 1y, is a stopped complex Brownian motion. Since

By — 0D as t — 1, we have f(B,,) = 0f(D) as s = S = u(1y). So v(7y) corresponds to the
time that the complex Brownian motion in f(D) exits f(D). Then we get the conclusion. [

Corollary . For an open set U C C and z € U, we use Sp_, to denote the image of a complex
Brownian motion B* started from z up to the time that it exits U, i.e, Sp . = {Bf : 0 <t < 1y}.
Such Sp . is a random set, whose law satisfies conformal invariance in the following sense. If
f maps U conformally onto U, and f(2) =%, then f(Sp,.) has the same law as 5575

Example . Brownian bridge is a semimartingale. This is not obvious from the original def-
inition: X; = By —tB1, 0 <t < 1, where B is a Brownian motion. However, we know that
X, 0 <t <1, has the same distribution as the process X; := (1 —t)B; /1), 0 < t < 1, for a
Brownian motion B. We know that B;/1_ is a local martingale since it is a time-change of
Brownian motion. Then its product with 1 — ¢ is a semimartingale. We write Y; = By/1_y).
Then [Y]; =t/(1 —1t), 0 <t < 1, and by It6’s formula,

-~ X
dXy = (1 1)dY; — Yidt = dB; — _ttdt,

where B := (1 —t)-Y is a local martingale with [B]; = fo (1—s)2[Y]\ds=t,0<t<1. SoB

is a stopped Brownian motion

Example (Bessel Processes). Let B = (B!, ..., B%) be a Brownian motion in R® started from
some g # 0. Let 7 be the first time that B reaches 0. Then |B| = /(BY)2+--- + (B%)2
restricted to [0,7) is a semimartingale.

We now do the calculation. Write f(z1,...,zs) = (/2% + -+ z%. Then

2 _
1 o Nk

.
;i f = J . 0%f = — 7
=@ T @ R Gt
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So
16 -1

218 dt.

.1 BJ)dBJ
d|B| j}:l:ajf(B)dB + S Af(B)dt ;:1: Bt

Since [Z?Zl %}t = Z?Zl(%y[Bj]t = t, by Lévy’s characterization of Brownian motion,

Z§:1 % is a one-dimensional Brownian motion. Denote it by B. Then X = |B| satisfies
the stochastic differential equation:

~ 0—1)/2
dXt = dBt -+ ()()/dt, XO = |Z'()‘
t

The lifetime of X is 7 = inf{t > 0 : X; = 0}.

Definition . Let B be a (one-dimensional) Brownian motion, xyp > 0, and § € R. The
semimartingale X that satisfies the stochastic differential equation (SDE)

C=DR2 4y Xy =, (3.2)

dX; =dB
t t + X,

is called a Bessel process of dimension § started from x.

We first prove the existence of Bessel processes. Let Y; = X; — B;. Then Y; satisfies the

ODE 6 1))2

!/
Yo=Y yp, T

For a given Brownian motion B, by the ODE theory, the solution Y;, 0 <t < T, exists and is
unique, where T is some blowup time, which could be finite or infinite. Let F be the complete
and right-continuous filtration generated by B. By the ODE theory again, we also know that
Y depends continuously on B. So Y is F-adapted. Let X =Y + B. Then X is an F-adapted
process with lifetime 7', and X; — By = X+ fg % ds, 0 <t <T. So X is a semimartingale
satisfying , and so is a Bessel process of dimension 4.

We now derive some deterministic properties of the Bessel process. Fix a Brownian motion
B. By discarding a null event, we may assume that limsup,_,., By = co and liminf, ., By =
—00. Since Yy = x9 > 0, and Y; + By # 0 on [0,T), we have X; = Y; + B; > 0 on [0,T). By the
formula for Y/, Y is monotone increasing or decreasing depending on the sign of § — 1.

First, we claim that, if T" < oo, it can not happen that Y; - cocor ¥; - —cc ast T 1. If
that is the case, since limyp B(t) converges to B(T), we see that for some ¢ > 0, 1/(Y; + By)
is bounded on (7" — ¢, T"), which implies that Y is Lipschitz continuous on (7T'—¢,T), and so Y
is bounded on (T — &,T). This contradicts that Y; — oo or Y; — —oo. Thus, if T' < oo, then
the only way that the solution blows up at the time 7" is that Y; + By =+ 0 as ¢t T T. So we find
that, if T" < oo, then limur Xy = 0.

Second, wee claim that, if ' = oo, then § > 1, and X is unbounded on [0,00). If § <1, Y is
decreasing. So 0 < Xy =Y, + By <Yy + B, = x¢ + By, which implies that By > —x¢ on [0, 7).
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Since liminf; .., By = —00, we can not have T'= co. So § > 1, and Y is increasing. Then we
get Xy > Yo+ By = o + B;. From limsup,_,., B; = oo we then see that X is unbounded.

From the strong Markov property of Brownian motion and the property of solutions of ODE,
we see that a Bessel process also satisfies strong Markov property: if X is a Bessel process of
dimension 9§, and 7 is a stopping time less than the lifetime T" of X, then conditionally on F,
the law of X.,. is a Bessel process started from X,. To see this, note that X . satisfies

(5 -1)2

X7+t:XT+(BT+t—Bq-)+/dSa 0§t<T_Ta
0 Xrts

and recall that the conditional law of §T+. — ET given F; is that of a Brownian motion.

Theorem (Transience and Recurrence of Bessel Processes). Let X be a Bessel process of
dimension § started from xog > 0. Let T be its lifetime. Then

(i) If 6 > 2, then a.s. T = co.

(ii) If § < 2, then a.s. T < oo and limy_,p X; = 0.
(11i) If 6 > 2, then a.s. limy_yoo Xy = 00, and for any r € (0,x0), P[X; >7r:0<t<T]>0.
(iv) If 6 =2, then a.s. limsup,_,., Xy = 0o and liminf; ,. X; = 0.

Remark . The strategy of the proof will be used many times later. First, we construct a local
martingale using [t6’s formula. Second, we obtain a true martingale from the local martingale
using stopping and boundedness. Third, we use the martingale to derive some equality or
inequality about the probability of some event.

Proof. Using It6’s formula, we may construct a function f defined on (0,00) such that f(X;)
is a local martingale. Since

4060 = FOAX, + 37 (Xt = F(xaB+ (700 D2 4 g

we need f to make the drift term vanish, i.e., f’(x)% + 1 f"(x) = 0. Solving this ODE, we
may choose f'(z) = z'7%. For § = 2, we let f(z) = log(z); for § # 2, let f(z) = 279,

Suppose X starts from xg € (0,00). Let 7y =inf{t > 0: X; =y}, y > 0. Fix R> z9 > r >
0. Since we know that X either tends to 0 (when T' < co) or is unbounded (when T' = c0), it
must exit the interval (r, R). So 7 ATp < T

Since Y; := f(X}) is a local martingale, and is bounded before 7, A g, Y;T”\TR is a bounded
martingale. So we have E[f(X;rr)] = E[f(X0)] = f(x0). We have either 7. < 7 or Tr < 7.

In the former case X; A, =7, and in the latter case X, rr, = R. Thus,

f(r)Pr < 7r] + f(R)P[TR < 73] = f(20).
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Combining this formula with P[7, < 7g] + Plrr < 7] = 1, we get

f(R) — f(w0) f(zo) = f(r)
f(R) = f(r)’ f(R) = f(r)

If § > 2, |f(r)] = >~ or | log(r)|, which tends to oo as 7 — 0F. So by (3.3)),

i L) — f(20)
TGQI){TT < 7r}] = lm Pl < 7] = lin R )

Plr. < 7R] = Plrr < 7] =

=0.

If T < oo, then limyr Xy = 0, and X([0,7")) is bounded. So there is R € N with R > ¢ such
that 7. < 7 for any r € (0, ). This means that

{T<oo}c | ) {7 <7}
ReN:R>z0 re(0,z0)
Thus, P[T" < 00] < PlUgen.roz e {7 < 7rY = 0. So we get (i).
If 6 <2, then f(r) =729 - 0asr — 07 and f(R) — 0o as R — c0. So

F(B) — f(xo)

ﬂ {m < 7R} = hmIP’[TT < TR] = R ,

re(0,x0)

and

f(R) — f(xo) _
Rgo Te(rolo){n < Tr}] = hm —f(R) =1.

This means that a.s. there is R > xg such that for any r € (0,z¢), 7 < 7r. This means that
a.s. X is bounded, which then implies that T' < oo and lim;—,, Xy = 0. Then we get (ii).

(iii) If & > 2, then we already know that a.s. T = oo and X is unbounded on [0, c0), i.e.,
limsup,_,., X3 = 00. Since Y = X279 i a positive local martingale, we have a.s. lim; oo Y;
converges. From 2 — ¢ < 0 and that a.s. limsup,_, ., Xy = co we get a.s. liminf, . ¥; = 0. So
a.s. limy_,o, Y3 = 0, which implies that lim;_, ., X; = oo. For r € (0, x), we have

| 2270 2= o
PXy>r:0<t<oo] =Pl =00]= nh%n;oP[Tn<Tr]7nh%rgom 1—(7) > 0.

(iv) Let § = 2. We know that ¥ = log(X) is a local martingale. If it does not hold that
lim sup,;_,, Xt = oo and liminf; ,,, X; = 0, then it does not hold that limsup,_,., Y; = co and

liminf; ,o ¥y = —o0. Since Y is a time-change of a Brownian motion up to some stopping time,
we then have a.s. limy_, Y} converges. So lim;_,, Xy converges, which contradicts that X is
unbounded because T' = co. ]

Theorem (Transience and Recurrence of Multidimensional Brownian Motion). Let B =
(B',...,B%) be a Brownian motion in R, with d > 2, started from some xo. Let 21 € R\ {zg}
and r € (0,|z1 — xo|), let 7o, = inf{t > 0: By = 21} and 75, , = inf{t > 0 : |By — x1| < r}.
Then

50



(i) Almost surely 1, = 00.
(11) If d > 3, a.s. |Bi| — oo; and for any r € (0, |x1 — x0|), P12, » = 00] > 0.
(ii) If d =2, a.s. iminf; o |B; — 21| = 0.

Proof. This follows from the previous theorem and the fact that |B — x| is a Bessel process of
dimension d started from |z; — xo|. Note that {7,, < oo} is the event that |B — x| reaches 0,
{7z, ,» < 00} is the event that |B — x| reaches r, and |B;| — oo iff |B; — z1| — 0. O

Because of this theorem, we say that Brownian motions of dimensions > 3 are transient,
and the Brownian motion of dimension 2 is neighborhood recurrent (but not point recurrent).
Note that (i) states that, when d > 2, for any fixed 71 € R?\ {20}, a.s. B does not visit z. It
does not imply that B a.s. does not visit any point other than xy. By Fubini Theorem, we see
that for d > 2, a.s. the range of a Brownian motion of dimension d has Lebesgue measure zero.

Example . We may now construct a positive local martingale X, which is not a true martingale,
and for any ¢t > 0, X; is integrable. Let B be a Brownian motion in R? started from 0. Let
v = (1,0,0). We know that B a.s. does not pass through v. Since |B — v| is a Bessel process
of dimension 3, X := |B — v|~! is a local martingale. We may show that E[X;] < 1 = X by
calculation using the density of B;. Note that the density of B; is spherically symmetric. We
may use the following two facts to do the computation. First, the average of 1/|z — v| over the
surface |z| = R equals 1/|v| = 1 if R < |v| = 1. This follows from the fact that f(z) := 1/|z —v|
is harmonic on R3 \ {v}. Second, if R > |v| = 1, the average of 1/|z — v| over the surface
|z| = R equals 1/R, which is strictly less than 1. This follows from the fact that, when |z| = R,
1/|z —v| = R/|z — 9], where © = (R2,0,0).

Exercise Provide details of the above example.

Exercise Let X;, 0 < ¢t < oo, be a nonnegative local martingale with E[X] < co. Prove the
following. (i) X is a supermartingale. Hint: Use Fatou’s lemma. (ii) If E[X] = E[Xp], then
X is a uniformly integrable martingale. (iii) If for some stopping time 7', E[X7] = E[X], then
XT is a uniformly integrable martingale.

Example (Brownian motion with a linear drift). Let B be a one-dimensional Brownian motion.
Let a > 0 and X; = By — at. By the law of iterated logarithm, we have lim;_,~, X;/t = —a < 0.
So limy_yoo Xt = —00. Since Xg = 0, ¢ := sup,>g Xt is a positive finite random number. We
wish to find the distribution of ¢. For b > 0, let 7, denote the first time that X; > b. Then
¢ >biff 7, < 0o. We now compute P[r, < oo]. The X satisfies the SDE:

dXt = dBt — adt.

We may find f such that f(X) is a local martingale. Since

A0 = F/ (X)X, + " (X)dt = F(X0)dB: + (5 () — af (X)),
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we need f that satisfies 3 f”(2) — af’(z) = 0. Then f(z) = €%® is a solution. Thus, Y := e?X
is a local martingale. For t < 73, we have X; < b, which implies that 0 < Y; < €2?. Thus, Y™ is
uniformly integrable, and we have 1 = Yy = E[Y;,]. Note that on the event 7, < oo, Y;, = €2,
and on the event 7, = oo, from lim; o, Xy = —o0, we get Yoo = 0. Thus, 1 = eQabIP’[Tb <
o] 4 0 - P[7, = oc], which implies that P[r, < co] = 2%, Then we get P[¢ > b] = e~2%. So ¢
has an exponential distribution with rate 2a.

Actually, we proved the following probability: for any a,b > 0,

P[B; < at 4+ b,¥t > 0] =1 — e 2%,

4 Girsanov’s Theorem and Applications

At the beginning of the lecture, we fixed a space (2, a right-continuous and complete filtration
F, and a probability measure P. We also assumed that F is P-complete. When we did a time-
change, we changed the filtration. We now fix 2 and F, but change the probability measure.

Consider two different probability measures P and @ on (€2, F). Suppose for each ¢ > 0,
@ < P on Fy,ie, A€ F and P[A] = 0 implies Q[A] = 0. We assume that F is P-complete.
Then it is also @Q-complete. By Radon-Nikodym Theorem, there is a positive JFi-measurable
random variable Z; such that Q = Z; - P, i.e., Q[A] = fA ZydP for any A € F;. Such Z; is
P-a.s. unique, and we call it the RN process from P to Q.

The next lemma describes the relation between P-martingales and ()-martingales.

Lemma 16.15. Suppose Q = Z; - P on F; for each t > 0. Then Z is a P-martingale. It
is further P-uniformly integrable iff Q < P on Foo = Vi>0Ft. Any adapted process X is a
Q-martingale iff X Z is a P-martingale.

Proof. For any adapted process X, X is a (Q-martingale iff for any ¢t > s > 0 and A € F;,
4 X:dQ = [, X,dQ. Since A € Fy C F;, this equality becomes

/XtthP:/XSZSdP,
A A

which is equivalent to that XZ is a P-martingale. Taking X = 1, we see that Z is a P-
martingale.

If Q < Pon Fu, let Zo, € Fs be the RN derivative. For any t > 0 and A € F; C Fuo,
from Q = Z;- P on F; and Q = Zo - P on Fo, we get Q(A) = [, ZydP = [, ZoodP. So we
have Z; = Ep[Zoo|Ft], t > 0, which implies that Z is uniformly integrable.

Now suppose Z is uniformly integrable. Then Z; — Z, as t — oo in L', and Z; =
Ep[Zoo|Fi] for all t > 0. Especially, Ep[Z~] = Ep[Z:] = 1. So we may define a probability
measure @ on Fu by @ = Zo - P. For any t > 0 and A € F;, since Ep[Z] = Z4, @[A] =
J1ZsdP = [, ZydP = Q[A]. So Q agrees with Q on F; for each t > 0. By a monotone class
argument, we conclude that @ =Q on Fuo. S0 Q <€ P on Fi. O

By Theorem 6.27, every martingale on F has an rcll version. We now assume that Z is rcll.
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Lemma 16.16. Suppose Q = Z;- P on F; for eacht > 0, and Z is rcll. Then for any stopping
time 7, Q = Zr - P on FrN{1 < 00}, i.e., if A€ Fr and A C {r < oo}, then Q[A] = [, ZdP.
Furthermore, an rcll process X is a Q-local martingale iff X Z is a P-local martingale.

Proof. By Optional Stopping Theorem (6.29), Ep[Z;|Frat] = Zrae for any t > 0. Fix ¢ > 0 and
A€ F.ny C F;. We have

Q[A] = /A ZudP = /A ZonidP.

Let A € Fr. Fort >0, let Ay = An{r <t} € Fran. Here we used that Fr N {r < t} =
F-N{r <17 At} C Frar- So we have

Qi) = [ Zuwar= | z.ap,
At At

where in the last equality we used that 7 = 7 At on A C {7 < t}. If A C {7 < oo}, then
A = J;>¢ 4. By Monotone Convergence Theorem, we get Q[A] = [, Z-dP.

To prove the last assertion, it suffices to show that for any stopping time 7, X7 is a (Q, F)-
martingale iff (XZ)7 is a (P, F)-martingale. Here we use (@, F) and (P, F) to emphasize the
dependence on F. By the last paragraph, for any ¢ > 0, Q = Z;a¢ - P on F] := Frat. By
Lemma 16.15, X7 is a (@, F")-martingale iff X" Z7 is a (P, F7)-martingale. It remains to show
that X7 is a (@, F)-martingale iff X7 is a (@, F)-martingale, and X" Z7 is a (P, F)-martingale
iff X"Z7 is a (P, F7)-martingale.

The two statements are similar. It suffices to prove the first one. Note that since X is rcll
and F-adapted, X7 is both F7 and F-adapted. Now suppose X7 is an (P, F)-martingale. Let
t>s>0and A € Frrs. Then A € F,, and so fAXtTdP = fAXSTdP. Thus, X7 is also an
(P, F7)-martingale. Next, suppose X7 is an (P, F7)-martingale. Let t > s > 0 and A € F;.
Then AN{s<7}=AN{s <7AS8} € Frps. S0

/ X7dP = / XTdP.
An{s<t} An{s<t}

Since X7 = X7 = X, on the event {7 < s}, we have

/ X7dP = / XTdP.
An{r<s} An{r<s}

Combining the last two displayed formulas, we get [ 2 X{dP = i) 4 XgdP. Thus, X7 is also an
(P, F)-martingale. O

Lemma 16.17. For every t > 0, Q-a.s. inf,cg4 Zs > 0.

Proof. For any t > 0, Q[{Z; = 0}] = f{tho} ZidP = 0. So Q-a.s. Z; > 0. Let 7, = inf{t > 0 :
Zy < 1/n}, n € N. Then each 7, is a stopping time. By right-continuity of Z, Z,, < 1/n on the
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event 7, < oo. Moreover, we have infscg; Zs = 0 iff 7, < ¢ for each n. By Optional Stopping
Theorem,

Qlrn <t] =Eq[l(r, <] = Ep[l(, <y Zi] = Ep[ly,,<nZ7,] < 1/n.
So we get Q[{inf,coy Zs = 0}] = limy, 00 Q[ < t] = 0. O

Theorem 16.19 (Girsanov Theorem). Suppose Q = Z; - P on F; for each t > 0, and Z is
continuous. Then for any continuous local P-martingale M, the process M = M —Z~*-[M, Z])"

is a continuous Q-local martingale, where we use the superscript P to indicate the dependence
on P.

Proof. First assume that Z > 0 and Z~! is bounded. Then M is a continuous P-semimartingale,
and by Proposition 15.15 (Chain Rule) and Theorem 15.17 (Product Formula),

MZ—MyZo=M-Z+Z-M+|M,Z)"

=M-Z+2Z-M— M, 2" +[M,2)° =M -Z+7-M.

So MZ is a continuous P-local martingale. By Lemma 16.16, M is a continuous local Q-
martingale.

For general case, define 7, = inf{t > 0: Z; < 1/n}. Then Z™ > 0 and (Z™)~! is bounded.
Since M™ = M™ — (Z™)~L.[M™, Z™]F by the last paragraph, M™ is a Q-local martingale.
By Lemma 16.17, Q-a.s. 7, T oo. So by Lemma 15.1, Misa Q-local martingale. O

From now on, we assume that Z is continuous. We add superscript P or @ to [X], L(X)
and V' - X to indicate the dependence on P or Q.

Proposition 16.20. Any P-semimartingale X is also a Q-semimartingale, and for any semi-
martingales X and Y, Q-a.s. [X]F = [X]9 and [X,Y])’ = [X,Y]9. Furthermore, for any
Ve LP(X), Q-a.s. V € L2(X), and (V- X)P = (V- X)Q. Finally, if M is a P-local martin-
gale, then Q-a.s. (V-M)=V - ]\7, where M = M — Z~1. [M, Z]* is as in Theorem 16.19.

Proof. Let M + A be the P-decomposition of X. Since M = M+2771. (M, Z)P, Mis a Q-local
martingale, and Z~!-[M, Z]" is a finite variation process, we see that X = M+2Z-1. (M, Z)P +A
is a Q-semimartingale. From Proposition 15.18, we see that Q-a.s., [X]” = [X]¥. In fact, for
any fixed tp > 0 and a sequence A, = {0 = tj < --- <t} = to} of partitions of [0,%] with
mesh size tending to 0, we have T)%" = Zf;l [ Xin — Xin_ |2 tends to [X]{, in probability w.r.t.
P. Since Q < P on Fy,, the convergence also holds w.r.t. (). By polarization, we then have
Q-a.s. [X,Y]" = [X,Y]9. From now on, we drop the superscript P or Q after [-].

Let V € LP(X). Then V € LP(A) and V2 € LP([M]) = LP([M]). For a finite variation
process A, L(A) does not depend on the underlying probability. So LF(A) = L2(A) and

LP([M]) = LR([M]). Thus, V € L(A)NLE(M). Since X = M + Z~' - [M, Z]F + A, to prove
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that V € L?(X), it remains to show that Q-a.s. V € L(Z~!-[M, Z]). This is true because by
Proposition 15.10, Q-a.s.

/0 Vo Z Id[M, Z),| < (/0 Vfd[M]5> : (/0 Z;%[Z]s) < oo, Wt>0.

Here we used the fact that V2 € L([M]) = L([M]) and Q-a.s. Z~! is continuous.

We now prove that Q-a.s., (V- X)P = (V- X)?. The equality is trivial if X is a finite
variation process. It remains to prove the case that X is the local martingale M. To prove
(V- M)? = (V- M), it suffices to show that (V - M)? = (V- M) -V . (Z71 . [M, Z]).
Recall that (under P or Q) if M is a local martingale, then V - M is the local martingale
such that for any local martingale N, [V - M,N] = V - [M,N]. The statement is also true
if N is any semimartingale since the finite variation part of N does not contribute to the
quadratic covariation. Now M = M — Z~1'.[M, Z] is a Q-local martingale. To prove that
(V-M)Q = (V-MY¥ -V .(Z71.[M,Z]), we need to show

() (V-M)Y -V .- (Z7'-[M,Z]) is a Q-local martingale;
(i) for any Q-semimartingale N, [(V - M) —V - (Z='-[M, Z]),N] =V - [M, N].

For (i), by Lemma 16.16 we need to show that Z((V - M)Y —V . (Z=1.[M, Z])) is a P-local
martingale. This follows from a straightforward [t6’s calculation: the finite variation part comes
from the first term is [Z,V - M] = V - [Z, M], while the finite variation part comes from the
second term is —Z - (V- (Z71 . [M, Z])) = =V - [M, Z]. So (i) is proved. Part (ii) also follows
from a straightforward calculation:

(V-MP -V - (21 M, Z)),N] =[(V-M)", N =V -[M,N] =V -[M,N].

From now on, we drop superscripts P and @ after stochastic integral. -
Suppose M is a P-local martingale. Then M is a Q-local martingale, and so is V' - M. We
know that V- M —V - M = VZ~!.[M,Z] is a finite variation process. We also know that

V.M —V -M is a finite variation process. So the two ()-local martingales V - Mand V- M
differ by a finite variation process. Thus, Q-a.s. (V- M) =V - M. O

Remark . Thanks to Proposition 16.20, we do not need to distinguish [-]© from []%, and
(V- X)P from (V- X)?, and so may remove the superscript.

We now explain how to remove the drift term of a semimartingale using Girsanov Theorem.

Theorem . Suppose B is a Brownian motion under P. Let f be progressive. Suppose there
is a positive uniformly integrable continuous martingale Z, which satisfies dZ/7Z = fdB. We
now define another probability measure Q by Q = Zo/Zy - P. Then under the new measure @,
B =B~ f-(t) is a Brownian motion, and so dB; = dB, + fdt. Here we use (t) to denote the
process Xy =t for all t > 0.
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Proof. Since Z = (fZ)-B, wehave Z~[B, Z] = Z~-(fZ-(t)) = f-(t). Since Z; = E[Zu|F], we
have Q = Z; - P on F for each t > 0. So by Theorem 16.19, B=B — f-(t)=B—Z"'-[B, Z]

is a local martingale under Q). By Theorem 16.20, [B]¥ = [B]Y = [B)Y = (). By Levy’s
characterization of Brownian motion, B is a Brownian motion under Q). O

Remark . The above theorem also holds for n-dimensional, in which case B = (B!,..., B") is
a n-dimensional Brownian motion, and f = (f',..., f) is progressive. We use f - (¢) to denote
the process (h},...,h7) such that hi = fg flds. If a positive uniformly integrable continuous
martingale Z satisfies dZ;/Z; = Z;‘:l tdeg, and we define a new measure Q by Q = Z/Zy- P.

Then B =B — f - (t) is an n-dimensional Brownian motion under Q.

Remark . We may remove the assumption that Z is uniformly integrable by localization.
Suppose there is a stopping time 7 such that Z7 is uniformly bounded. Then we apply the
theorem to Z7 instead. We note that dZ] = 1,1 ftZ] dB;. If we define a new measure Q" by

Q" = Z;/Zy- P, then under Q7, E[ = By — OtAT fsds, t > 0, is a Brownian motion.
Example . The following example concerns Brownian motion and Brownian bridge. Recall
that if B is a Brownian motion (started from 0), and X; = B; —tB1, 0 < ¢ < 1, then X is a

Brownian bridge. It has lifetime 1, and starts and ends at 0. It is a semimartingale: there is
another Brownian motion B such that X satisfies the SDE:

Xy

dXt:dEt—l st 0<t <1

For z € R, define X = X; +tx, 0 <t < 1. Then X§ =0 and X{ = x. We call X* a Brownian

bridge from 0 to = (in time 1). Then X* satisfies the SDE:

Xy —(1— ~ X7

X-—0=br, gp, - X
1-t¢ 1

— X

dX? = dX, + xdt = dB; — dt.

We now start with a Brownian motion B. Recall that B has transition density:

1 a2

t,x) = ez, t>0, xeR.
f(t, z) o
We compute
9, f —x _z?
= 2t
2t t
—1 z2 x2 z2
62 = e 2t + ——e¢ 2t
2 Vont -t V2rt - t2
_ 22 2 22
o f = 1/2 _ﬁ—}—ix e 2,

e
V2t -t V2mt2 - t2
So we have 0, f = %@%f For each = € R, define

1 _|Bi—=|?

Z8=f(l-t,Bi—2)= ———¢ 20-0, 0<t<]l.
i = f( s — ) D)
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Then
1
dZf = 0, f(1 —t,B; — 2)dB;y — Oy f (1 — t, By — x)dt + 58%]’(1 —t, By — x)dt

_ (By—x)?
_ _(Bt — x)e 2(1—t) dBt g, _<Bt — :l',') dt.
2m(1 — £)(1 — t) !

1-—t
So ZF, 0 <t <1, is a local martingale. In fact, ZF is a true martingale (on [0,1)) because for
any tog € (0,1), Z% is uniformly bounded on [0, t9] by \/ﬁ Moreover, we have

dZéE_ Bt—x
zr 11—t

dBs.

Fix tp € (0,1) and define ]?P/’fo such that IF’;?O = Z{ /Z5 - P. Then by Girsanov Theorem, under

the new measure P¥

t,» the process

. tAto B. —
B* = B, +/ s T s
0 1—5

is a Brownian motion. Since dB; = déf — Bf__tx dt for 0 <t < tg, we see that the part of B up
to tp under the new measure has the law of a Brownian bridge from 0 to = (with lifetime 1).
Now we change the point of view. Let 1 denote the law of By, 0 <t < 1. For each z € R,
let v{ denote the law of a Brownian bridge from 0 to x with lifetime 1. They are all probability
measures on C([0,1]), which has a coordinate process X; (X.(f) = f(t) for f € C([0,1])),
0 <t <1, and a natural filtration (F;)o<¢<1 generated by X. The above argument shows that,

forany x € R and 0 < tg < 1,
vi = f(1 —to, Xey — )/ f(1,—x) - pu1, on Fy,.

Since the density function is measurable in z, we see that x + v{ is a kernel on F;,. Moreover,
we may integrate and get

/uff(l,x)dx:/f(l—to,Xto—:L')d:r'ul:/f(l—to,x)dx'm:,ul, on Fi,.
R R R

Here in the last step we used the fact that f is a transition density. Since F; = V0<to<1 Fios
by a monotone class argument, we can show that = — v{ is a kernel on F7, and

1 = / vif(l,z)de = py1, on Fi.
R
This formula can be viewed as a decomposition of a Brownian motion B stopped at time 1

according to its value at 1, and we may say that the conditional law of B, 0 <t < 1, given the
value of By, is that of a Brownian bridge from 0 to Bj in time 1.
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Let tg > 0 and =z € R. If B is a Brownian motion, then X; = B; — %Bto + %m, 0 <t <y,
is called a Brownian bridge with any lifetime ¢ from 0 to x. Let its law be denoted by v . Let
1, denote the law of By, 0 <t < {y. Then a similar argument shows that

Lt :/Rygf)f(to,:r)dx.

Exercise Extend the above result to n-dimensional Brownian motion and Brownian bridge.

Exercise Let B be a Brownian motion in C started from 0. Let D = {|z| < 1}. Let mp be the
first time that B exits D. For each w € 9D = {|z| = 1}, let P, (z) = Re ®==. Note that P, is

. w+z
positive and harmonic in D, and equals 0 on D\ {w}. It is called the Poisson kernel in D with

pole w. An h-process X" is a two-dimensional process satisfying the SDE:

VP,

w

dXY = dB; + (XP)dt, X¥ =0,

where B is another Brownian motion in C started from 0. The process is well defined up to the
time that X* exits . One can actually show that X" exits D through w. Let p denote the
law of By, 0 < t < 7p, and let v denote the law of X*“. Prove that u = % fo% v’ df. Hint:
Consider the local martingales Z;}" := P,,(B;), 0 <t < mp, for w € {|z| = 1}. This formula may
be viewed as a decomposition of B up to mp according to its value at mp.

Example . Let § > 2 and zg > 0. Let X be Bessel processes of dimensions § started from
xo. Recall that X has infinite lifetime and lim;_,oo Xy = oco. Moreover, Z = (X /m0)2_5 is a
positive local martingale. Let 7, be the first ¢ > 0 such that X; < z¢/n, n € N. Then Z™
is a bounded true martingale. So E[Z;, ] = Zyp = 1. Let P denote the underlying probability
measure. Then we may define a new probability measure IF)n by dIAFBn = Z,,dP. Then for any
t>0, df[?’n = Z;, ndP on Fi. By Ito’s formula, Z satisfies the SDE

dZy 2-9 1(2-9)(1—-9) 2—9

=t = dX; + = dt = dB;.
Z, X, T3 X2 X,

So by Girsanov Theorem, under the new measure P,

. Tn A\t 2 _ 5
Bl .= By — / ds
! ! 0 Xs

is a Brownian motion. We find that

~, 2—6
dBt — dBt - 1[077-"]Ttdt
Since dX; = dBy + 5/2§t1/2dt, we get
_ 2-5/2 ~ . 6/2—1/2
dX; =dB} + ?)/X(S/dt =dB' + udt
t t
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up to 7,, where we define §=4—35 < 2. So under ]T”n, X is a Bessel process of dimension 5 up
to m,.

Now we change the point of view. We use y and g to denote the laws of a Bessel process
of dimension § and §, respectively, started from xzg. They are probability measures on ¥ :=
Ure(,00 C([0,T),R). Each f € X has a finite or infinite lifetime, which is denoted by Ty. Then
p-a.s. Ty = oo and pi-a.s. Ty < oo because a Bessel process of dimension > 2 and < 2 have
infinite and finite lifetime, respectively. Let X be the coordinate process on X, i.e., X¢(f) = f(¢),
0 <t < Ty. There is a natural filtration F ¥ on ¥, which is generated by X. Let 7, be the first
t > 0 such that X; < 1/n. Let Z = (X/x9)°2. The above argument shows that, under the
measure [, Z is a local martingale and Z; is a true martingale. Moreover,

W= 2 - on}"TEn.

We claim that for every t > 0, i = (X;/xo) - pon F° N {f : Tf > t}, ie., if A € F and
A C {T > t}, then a[A] = [, Zydp. To see this, fix A € F” and let 4, = An{t < 7,} € F,.
Since 1 = Z, - p on Fr,, by Optional Stopping Theorem and the martingale property of Z7,

we get
1[An] = / Zr,dp = /A Zydp.

From A C {T > t} we get A, T A. Sending n — oo in the above displayed formula and using
monotone convergence theorem, we get fi[A] = [ 4 Ztdp, as desired.

We observe that the Z in the above example is a local martingale but not a true martingale.
In fact, since under pu, a.s. T = oo, we have,

E,u[Zt] = / th[L = / th,l,t = /j[T > t] — O, as t — oo,
Q {T>t}

where the limit holds because fi-a.s. T' < co. So we can not have E,[Z;] =1 = Z; for all t > 0.

Example . In the previous example, we changed a Bessel process of dimension § > 2 to a
Bessel process of dimension § = 4 — ¢ < 2 using the local martingale (X;/ x0)27%. For general
4,0 € R, we can still find a local martingale for the same purpose. The local martingale may
be expressed as

Zy = (Xt/:co)(g_é)/2 x some C! function.

We first calculate

G-8)/2 7 _ z_ Y
29 _ 5)/2dXt+ 1( 5)/2((52 0)/2-1)
le(5—5)/2 X 2 X

(6 —6)/2 (6—8)(0+68—4)
= %4pB dt.
X, ot 8 X2
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So the correct formula for 7 is

- -
_ (5-5)/2 (6-6)(6+6—4)
Zy = (X¢/x0) X exp (/0 SX? d5>

because

4z’ _dxP - 5Era-1), (-0

= 3 2
Zf’5 Xt(676)/2 8X; X;

dBs.

If we let s and pz be respectively the laws of a Bessel process of dimension ¢ and S started

from z¢, then for any ¢ > 0, uz = Zf’é “ps on FPE N AT > t}.

In the above examples, we find explicit formulas for the RN process Z. For a general
progressive process f, if f € L(B), i.e., fot f2ds < oo for all t > 0, then a solution of dZ = fZdB
may be expressed as a stochastic exponential:

Z=€(f-B)=exp(f B~ 5 (1))

If such Z is uniformly integrable, then we may defined a new measure @ by Q = Z/Zp - P.
Then under @, B:=B-— f - (t) is a Brownian motion. Let Pg and Pg_¢.(;) denote the law of
B and B — f - (t), respectively. Then under P and @, B respectively has the law Pg_;.;) and
Pp. From @ < P, we find Pp < Pp_j.(4). If we further now that Zo, > 0. Then P < @ as
well, and so Pg_¢.;) < Pp. In that case, we can say that B — f - (t) satisfies every almost sure
property of a Brownian motion.

If we do not have the condition that Z is uniformly integrable, then we may find a sequence
of stopping times (7,,), which increases to oo, such that Z™ is uniformly bounded for each n.
We may then apply the theorem to Z™. In this case we can conclude that B — f - (t) satisfies
every almost sure local property of a Brownian motion, such as Hélder continuity and the law
of iterated logarithm at 0.

Finally, we state a criterion to check when £(f - B) is a uniformly integrable martingale so
that we do not need to do localization.

Theorem 16.23 (Nivikov condition). Let M be a local martingale with My = 0 and
EleMl</?] < oo,
Then E(M) = exp(M — 1[M]) is a uniformly integrable martingale.

In particular, if M = f - B, then [M]yx = fot f2ds, and the Nivikov condition becomes
Elez Jo~ 7245) < oo,

Lemma . Let B be a Brownian motion. Then £(B); = ePt=Y/2 is a martingale.
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Proof. Fixt > s > 0. Since B; — B;_ll Fs, we have eBt=Bs || F.. Recall that B; — B, has density
2
_ -1 .~ (Ifs)
flt—s,x) T 2(-5). So
22
B,~B BB e ="
E[eB—B:| F,] = E[eBBe] :/ewf(t—s,x)dx

R N R \/27(t — s) e

t—s e —-s
=€ 2 ——dx = e(t—s)/Q’
R \/27(t — s)
which implies that E[eBi_t/Q\]—"s] — Bs—s/2. 0

Lemma 16.22. Suppose Q = C(R1,R), and P is the law of Brownian motion. This means
that the coordinate process under P is a Brownian motion. Let B denote this coordinate process.
Let F be the right-continuous and P-complete filtration generated by B. Let P’ denote the law
of a Brownian motion plus the process (t). Then for anyt >0, P’ = E(B); - P on F;.

Proof. Let Z = £(B). Then Z is a martingale by the lemma. Fix tg > 0. Then Z" = &£(1jy 4, B)
is a uniformly integrable martingale. If we define a new probability measure @)y, on € by
dQy, /dP = Z1 = Z;,, then under the new measure Q,, Eéto) = B;— f(f it (8)ds = By —t Ao
is a Brownian motion. In other words, under @);,, up to the time ¢y, B is the sum of a Brownian
motion B and the function ¢, i.e., the law of B under Q1, is P’ on Fy,. Since Qt, = Z, - P, and
Zy, is Fy,-measurable, we get the conclusion. O

Lemma 16.24. Let B be a Brownian motion. Let T be a stopping time such that E[eT/Q] < 00.
Then E[£(B),] = E[ePr—2] = 1.

Proof. Let Z = £(B). Although Z is a martingale with Zy = 1, we can not apply Optional
Stopping Theorem directly because Z is not uniformly integrable and 7 may not be bounded.

We may suppose that Q@ = C(Ry,R), P is the law of a Brownian motion, and B is the
coordinate process (so is a Brownian motion under P). Let P’ denote the law of a Brownian
motion plus the process (). By Lemma 16.22, for every to > 0, P’ = Z;, - P on F,. By Lemma
16.16, for any stopping time 7', P’ < P on Fp N {T < oo}, and the Radon-Nikodym derivative
is Zp. Thus, T is such that P'[T' < oo] = 1, we then have E[Z7] = 1.

Fix b > 0 and let 7, be the first time that B; —t = —b; and 7, = oo when such time does
not exist. Then P'[7, < oo] = 1 since under P’, B; —t has the law of a Brownian motion, which
is a.s. recurrent. So we get E[Z,, ] =1 = Zy. Since Z > 0, from E[Z;,] = 1 we know that Z™ is

b b
a uniformly integrable martingale (exercise). Thus, by Optional Stopping Theorem,

1=2p= E[Zrb/\T] = E[l{féfb}eriT/Z] + E[1{7b<7'}eBTb 77{7/2]‘ (4'1)
When 7, < 00, By, — 7y = —b. So By, — /2 = 1,/2 — b. From E[e7/?] < 0o we get
]E[l{Tb<T}eBTb_Tb/2] = e_b]E[l{Tb<T}eT”/2] < e PE[e™/?] -0, asb— .

Letting b — oo in (4.1]) we get E[eBT_T/Q] =1. 0
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Proof of Theorem 16.23. Let uy = [M];, S = sup{u; : t > 0} = [M]x, and vs = inf{t > 0 :
ug > s}. Then in an enlarged probability space M, , 0 < s < S, extends to a Brownian motion
B, and S is a stopping time for B. By the assumption, we have E[es/z] < 00. By Lemma 16.24,
E[eMeo—[Mle/2] = E[ePs—5/2] = 1. Thus, eM~IM/2 is a uniformly integrable martingale. O

5 Stochastic Differential Equations

A stochastic differential equation (SDE) has the following general form.

§
dX] = "oi(t,X)dB] +b'(t, X)dt, 1<i<d.
j=1

or equivalently,
X;—ngz/ a;.(s,X)ng+/ b'(s,X)ds, 1<i<d.
— Jo 0
J

Here X = (X',..., X% is a continuous vector semimartingale and B = (B',..., B%) is a ¢-
dimensional Brownian motion. The a;'- and b*, 1 <i<d, 1< j<§, are real valued functions
defined on

R, x C(R4,RY),

which are progressive in the sense that for any fixed tg > 0, aé and b’ restricted to the subspace
[07 tO] X C(R-i-v Rd)

are measurable w.r.t. B([0,%0]) x Ff, where F{ is the o-algebra on C(Ry,R) generated by
the coordinate process up to to. This means that, for a fixed ¢, the values of of(t,w) and

bi(t,w), w € C(Ry,R), depend only on the values of w(s), 0 < s < t. Note that the second
variable of a;'- and b’ is not a vector in R? but an R%valued continuous function, and there

are no randomness in 0';- and b'. We write o0 = (U;) and b = (b*), which are R¥°-valued and

Re-valued, respectively. We often write the SDE in the vector form:
dX; =o(t,X) odB; + b(t, X)dt, (5.1)

or

t t
X —Xo= / o(s,X)odBs+ / b(s, X)ds. (5.2)
0 0

A simple case of o and b is that there exist measurable functions o : Ry x R? — R%*9 and
b:Ry x RY — R? such that o(t,w) = o(t,w;) and b(t,w) = b(t,w;). Then the SDE becomes

dXt = O'(t, Xt) e} dBt + b(t, Xt)dt
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If o and b further do not depend on ¢, then the equation becomes
dX; = O'(Xt> odBy; + b(Xt)dt,

and is said to be time-homogeneous. We emphasize that there are also other possibilities of o
and b. For example, b(t,w) = fot weds.

We call or SDE(o,b). If we further require that Xy = z for some 2 € R%, then
the equation is called SDE,(o,b). The x may also be replaced by a random variable ¢, which
must be independent of B, or a probability measure p on R

There are two kinds of solutions of SDE(c,b): strong solution and weak solution.

For the strong solution, besides ¢ and b, we are also given a d-dim Brownian motion B on
some probability space and an initial value, which is a deterministic point z € R? or a random
vector ¢ in R? independent of B. We require that the solution X to be adapted to FZX0, which
is the complete and right-continuous filtration generated by B and Xy. The SDE is required to
hold w.r.t. FB:Xo,

For the weak solution, besides o, b, we are only given the initial value € R? or an initial
distribution p on R?. We are not given the Brownian motion or the probability space. Instead,
we have the freedom to choose a Brownian motion. A weak solution of the SDE,(c,b) is a
package:

Q,F,P), B, X,

where (Q, F,P) is a filtered space such that F is complete and right-continuous, B is a d-dim
F-Brownian motion, X is a d-dim F-semimartingale with X¢g = x or Xy ~ u, and holds
w.r.t. the filtration F. Note that the filtered space and the Brownian motion are also parts of
the solution.

The relations between the two kinds of solutions are (i) if X is a strong solution for the
given B, then (92, FBX0) B and X together is a weak solution. (ii) if (F, B, X) is a weak
solution, and X is FB¥Xo_adapted, then X is a strong solution for such B. Condition (ii) does
not hold in general.

We will discuss the uniqueness of the solution. If two strong solutions X and X’ of SDE(o, b)
with the same initial value both have infinite lifetime, the uniqueness means that a.s. X = X'
We may allow that a solution to have a finite lifetime. In that case, the uniqueness means that
if X3, 0<t<T,and X/, 0 <t < T, are strong solutions, then a.s. X = X’ on [0,T AT").
If the uniqueness holds, then there exists an a.s. unique solution with the maximal interval so
that all other solutions are its restrictions.

There are two kinds of uniqueness for weak solutions. We say that pathwise uniqueness holds
if for any two weak solutions (B, X) and (B’, X’) of SDE(0, b) defined on the same filtered space
(Q, F,P) such that B = B' and X, = X|), we have a.s. X and X’ agree on the common time
interval. We say that uniqueness in law holds if any two weak solutions (B, X) and (B’, X’) of
SDE, (o, b) with the maximal interval have the same joint finite dimensional distribution.

Example (A trivial example). Let d = ¢; 0‘; =1ifi=j, =0if i # j; and b’ = 0. The
SDE(0, b) becomes
dX¢ = dB;s.
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For ¢ independent of B, X = ( + B is a strong solution of the SDE with initial value (.
Example . Let d =6 =1, o(t,w) = wy, and b = 0. The SDE(o, b) becomes
dX; = X¢dBy.

The stochastic exponential £(B); = P~/ is a strong solution of the SDE with initial value
1. For ¢ independent of B, X = (£(B) is a strong solution of the SDE with initial value (.

Example . Bessel process of dimension ¢ is the solution of the SDE:
0—1

dX; = dB
t t + 29X,

dt.

Recall that we get the existence and uniqueness of the strong solution by transforming it into

an ODE.

Example (Brownian motion on the unit circle). Let B be a 1-dimensional Brownian motion.
Let X = cos(B) and Y = sin(B). Then (X,Y) takes values in {(z,y) : 22 +3? = 1}, and the
argument runs as a Brownian motion. It is called a Brownian motion on the unit circle. Ito’s
formula shows that they satisfy the SDE:

1
dX; = ~YidB; — S Xdt;

1
dY; = X dBy — §Ydt.
On the other hand, if (X,Y") solves this SDE, then (X,Y’) stays on a circle because
d(X? +Y?) = 2XdX; + 2Y;dY; 4 Y2dt + X2dt = 0.

Example (A weak solution not a strong solution). Let d = § = 1. Let W be a 1-dimensional
Brownian motion. Let

¢
B; :/ sign(Ws)dWs, t >0,
0

where sign(z) € {1,0,—1} depending on the sign of z. Then B is a local martingale with
[B]: = fg sign(Ws)2%ds = t, t > 0. Here we used the fact that the set B~!(0) has Lebesgue
measure zero. By Levy’s characterization of Brownian motion, B is also a Brownian motion.
Since W; = fg sign(Ws)dBs, t > 0, (W, B) is a weak solution of

dW = sign(W)dB, W (0) = 0. (5.3)

Here the underlying filtration is " generated by W. This solution does not satisfy the pathwise
uniqueness. In fact, (—W, B) is also a weak solution.

We claim that W is not a strong solution of . We show that W is not adapted to the
filtration FP generated by B. For the proof, take a sequence of convex even C? functions F},
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such that F,(z) = |z| if |x| > 1/n, and for each x € R, F,,(z) | |z|. Let f,, = F].. Then |f,| <1
and f,(x) — sign(x) on R. By It6’s formula, for any n,

t
F,(Wy) — F,(Wp) = /fn s)dWs + = /F,’{(Ws)ds, t>0.

Let n — oco. Then F,, (W) — F,,(Wy) — |Wy|. By dominated convergence theorem for stochastic
integral, fo fa(Wg)dWs — fo sign(Ws)dWs = By. Since F/ is even, we get

1 t
B, = |Wi| —nli_)no102/0 FI(Wa))ds, > 0.

This means that B is adapted to the filtration FIW! generated by |W|. If W is adapted to F5,
then FW ¢ FB ¢ FIWI ¢ FW. We should have FV = FIWI. However, for a Brownian motion
W, FW £ FIWI because for any fixed to > 0, the event {W (o) > 0} belongs to FW but not to
FIWI. This is a contradiction.
Let L; = limy o0 L} = limy o0 5[5 FY(|W|)ds, t > 0. Then
|W| =B+ L.
Since for each n, F)' > 0, each L™ is increasing, and so is L. Thus, |W| is a semimartingale
with
d|Wt’ = dBt + st = sign(Wt)th + ClLt
The equation is called It6-Tanaka equation, and L is called the local time of the Brownian
motion W. Since F/(x) = 0 for |z| > 1/n, L™ stays constant on each interval on which
|W| > 1/n, which implies that L stays constant on each open interval on which W # 0. So it
increases only at the time when W = 0.

Example . Consider the d-dimensional SDE
dX; = dB; + b(t, Xt)dt, (54)

where B is a d-dimensional Brownian motion and b : [0, 00) x R? — R?. Under certain condi-
tions, we may use Girsanov Theorem to construct a weak solution. First let B be a Brownian
motion on (€2, F,P). Define a local martingale Z = £(3_; ¥/(s, B) - BY). Suppose the Nivikov

condition is satisfied, i.e.,
1 o0
E[exp (2/ Hb(s,Bs)HstH < .
0

This is the case, for example, if there is a function b € L?(Ry, \) such that ||b(t,z)| < |b(¢)]
for each t > 0 and z € R?. Then Z is a uniformly integrable martingale. We define another
probability measure P on (2, F) such that P = Z-P. Then P = Z;-P on F; for each t > 0. By
Girsanov Theorem, under the new measure IP Bt = B;— fo s, Bg)ds, t > 0, is a d-dimensional

Brownian motion. Now B and B satisfy
dB; = dB; + b(t, By)dt.

Thus, (B, B ) on (£, F, ﬁ’) is a weak solution of 1} Now B plays the role of X, while B plays
the role of B in the SDE.
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5.1 Strong solution: existence and uniqueness

We now consider the existence and uniqueness of the strong solution of the following SDE
t t
X, - Xp = / (s, X,) - dBs + / b(s, X.)ds, (5.5)
0 0

where o = (a‘;:) € C(Ry x RE R and b = (b') € C(R, x RYR?). The theory parallels the
main existence/uniqueness result for ordinary differential equations.
We use L? to denote the space of random vectors ¢ in R? such that ||¢]|2 = E[||¢/|?]Y/? < oo.

Theorem 18.3 (A simplified version). Fiz a d-dimensional Brownian motion B. Suppose that
there is K > 0 such that for any t € Ry and x,y € R?,

lo(t, )] + [[b(¢, 2) || < K (1 + [l]]); (5.6)
lo(t,z) — o(t,y)| + bt z) — b(t,y)|| < K|z —y]. (5.7)
Then we have the following.

(i) For any ¢ € L? independent of B, a strong solution X¢ of SDE(o,b) (with initial value
) exists, and Xf € L? for any t > 0.

(it) The strong solution in (i) is unique, and any weak solution of SDE¢(o,b) with initial value
¢ € L? is a strong solution.

(i) We may choose a version of the solution X with initial value x for each x € R? such that
REx R, > (x,t) — X{' is continuous. This means that the solution depends continuously
on the initial value.

(iv) Let XF, x € R, t € Ry, be as in (iii). Then for any ¢ € L?, X®|,—¢ is a strong solution
of SDE¢(,b). In other words, the solution X¢ in (i) a.s. equals X%|,—¢.

Here the norm ||o(t, z)| is defined by ||o (¢, z)||* = >, > \a (t,)|?, and the norm ||b(t, z)||
is defined by ||b(t,z)[|? = Y, [b'(t, )|

Lemma 18.4 (Gronwall). Let a,b > 0. Let f € C(Ry,Ry) such that

t)<a+b/tf(s)ds, £> 0.
0

Then f(t) < ae® for allt > 0.

Proof. Let F(t) = fo s)ds, t > 0. Then F € CI(R+,R), and F' = f < a+bF. Let
G(t) = e U"F(t). Then G’() = e Y (F'(t) — bF(t )) < ae™® and G(0) = 0. So G(t) <
f ae%ds = a(1—e ") /b. Thus, F(t) = "G (t) < a(e® —1)/b, and f(t) < a+bF(t) < ae’. O
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Let F be a filtration, and B be an F-Brownian motion. For any continuous JF-adapted
process X in R?, we define an F-vector semimartingale S(X) in R? by

t t
S(X) = / b(s, Xs)ds +/ o(s,Xs)odBs, t>0.
0 0
If X = Xo+ S(X), then (X, B) is a weak solution of SDE(c, b). If we further have F = FBXo,

then X is a strong solution.

Lemma 18.5. Let X and Y be adapted continuous processes in R such that X;,Y; € L? for
allt > 0. (i) If o and b satisfy (@, then

Blsup [S(X).IP] < 4K2(0+ 40+ [ BIX.Js). (5.9

(it) If o and b satisfy (5.7), then

E[ sup [|S(X)s — S(Y)sl*] < 2K3(t + 4)/0 E[[| X — Y;|[*)ds. (5.9)

0<s<t

Proof. (i) Using that (z + y)? < 222 + 2y%, we get
S S

E[ sup [S(X);|°] < 2E[ sup I b(u, Xu)dul|*] + 2E[ sup A o (u, Xu) 0 dByl|?].
0<s<t 0<s<t 0<s<t

For the first term on the RHS, since ||b(t, z)|| < K(1 + ||z||), by Cauchy-Schwarz inequality,

S

Bl sup || [ b, X)dsl?) < B[ /0 I1b(s, X.) ds)?] < Eft /0 1b(s, X.) [2ds]

0<s<t

_ ! s 2 S ¢ 2 2 S 2 K 2 3). )
—t/o E[[jo(s, X.)[?)d St/o E[K2(1 + X, ])%d S2Kt/0(1+E[HXsH lds).  (5.10)

For the second term on the RHS, since |o(t,z)|| < K(1 + ||z||), using Doob’s martingale
inequality, we get

s t
E[sup || [ o(u, X,)odB,|? §4E[II/ a(s, Xs) 0 dBs||’]
0<s<t Jo 0

/ZU s, X)dBI)? /Zla;i(s,xs)%s]

t t t
—4 / Efllo (s, X,)|2)ds < 4 / E[(K(1 + || X,]))2)ds < 8K / (1 +E[IX.2ds.  (5.11)
0
Combining (5.10) with - we get (5.8 .
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(ii) We have
E[IS(X): — S(OV)i[2) < 28] /0 b(s, X,) — b(s, Ya)ds||?] + 2E]]| /0 (0(5, X.) — o(s,Y2)) 0 dB,.

For the first term, using a similar argument as in (5.10|) and that ||b(t, z) — b(¢,y)|| < K|z —y||,
we get

t t
Bl [ s, X.) s Vo)) < K% [ EIX, — Y. ?lds.
0 0

For the second term, using a similar argument as in (5.11) and that ||o(t,z) — o(t,y)|| <
Kllz —yl, we get

E[| /O (0(5, X.) — 0(s,Ya)) 0 dB, %] < AK? /0 E[|[X, - Y;||)ds.

Combining the two displayed formulas, we get (5.9). O

Corollary . Suppose o and b satisfy . If (X, B) is a weak solution of such that
Xo € L?, then for any t > 0,

E[|| X:]|?] < (2E[[| Xol[?] + 8K2(t + 4)£)e3K "+t < o0, (5.12)
and so Xy € L?. If (Y, B) is another weak solution of with Yy € L?, then for any t > 0,

2
E[sup || X, - Y;|[*] < 2E[| Xo — Yp[*Jet 4", (5.13)
0<s<t

In particular, the weak solution of with L?-initial value satisfies pathwise uniqueness.

Proof. Fix R > 0. Let 7g be the first ¢ > 0 such that || X;|| > R. Let og(t,z) = 1| <go(t, v)
and bg(t,z) = 13 <rb(t,z). Then X% is a solution of SDEy,(og,br), which means that
Xinry = Xo + Sr(X Arg), where

t t
Sr(X) = / br(s, Xs)ds —I—/ or(s,Xs)odBs, t>0.
0 0

Note that X¢a., € L? for all t > 0 because || X¢nrs || < RV || Xol||. Since og and by satisfy (5.6,
by Lemma 18.5 (i), (5.8) holds for Si. Since Xinr, = Xo + Sr(X.Arg)t, We get

t
El| Xenrell”) < 2E[1Xo0[I*] + 2E[ISr(X-nre)el|*] < 21| Xo||* + 8K (¢ + 4)(t +/0 E[| Xsnrp|I*]ds.

Let fr(t) = E[||Xtarg|/?]- Then fg is continuous by Dominated convergence theorem. By the
displayed formula, we have for any T > 0,

fr(t) < 2E[|| Xo||*] +8K*(T +4)T + 8K*(T + 4) /t f(s)ds, 0<t<T.
0
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By Gronwall’s lemma, fr(T) < (2E[|| Xo||?] + 8K2(T + 4)T)e3E*(THOT T > (. Since Xynr, —
X; as R — oo, by Fatou’s lemma, we get (5.12)), so X; € L? for all ¢t > 0.
Since X; = Xo + S(X); and Y; = Yo + S(Y), we get

E[ sup || X, — Y;|”] < 2E[|| Xo — Yo|[*] + 2E[ sup [|S(X)s — S(¥)s||’]

0<s<t 0<s<t
t

< 9E[| X0 — Yo|!] + 4K*(T + 4) / E[IX, - Y|)lds, 0<t<T
0

If we let f(t) = [supo<s<t 1Xs = Yall?), then f(t) < 2E[[|Xo — Yo||?] + 4K(T + 4) [; f(s)ds
Then we get (5.13)) using Gronwall’s lemma.
If Xo =Y, then (5.13)) implies that a.s. X =Y. So we get the pathwise uniqueness. ]

Proof of Theorem 18.3. (i) For the existence, we use the well-known Picard iteration for ODE.
Let the J-dimensional Brownian motion B and a random vector ¢ € L? be fixed such that
¢ILB. A solution X of SDE(c,b) satisfies that X = ¢ + S(X). Define a sequence of F5:<-
semimartingales (X™) such that X% = ¢, and for any n > 0, X"*! = (+S(X™). If the sequence
converges to some process X in some sense, then we expect that X = ¢ + S(X).

Fix T > 0. Let C; = 4K*(T + 4)T(1 + E[||¢||?]) and Cy = 2K%(T + 4). We will prove by
induction that for any n > 0,

n+1 n2 (CQt)n
E[ sup || X7 — X215 < Cy , YO<t<T. (5.14)
0<s<t n!
For n = 0, we have X! — X0 = §(XY) = ). By (5.8) we get (5.14]) for n = 0. Assume that
(5.14)) holds for n — 1. Since X"+ — X" = S(X”) - (X" D), by 1-;
C n—1 Cot)™
B{sup X X7 < Ca [ B - X s < ¢a [ 02y - o ()
0<s<t 0 — 1) TL‘
Thus, (5.14) holds for all n > 0.
By Chebyshev’s inequality,
4C,TH"
P[ sup || X7 — X712 > 47" < Clg, n > 0.

0<s<T n!
Since >, 6’1% < 00, by Borel-Cantelli Lemma,

P[for infinitely many n, sup | X7 — X7 > 27" = 0.
0<s<
Thus, a.s. there is a random number N such that for n > N, supgc,op || X2 — X2 < 277
Since Y o7 ;27" < oo, this implies that a.s. X "[jo,r) converges as n — oo uniformly on [0, T7.
The limit is a continuous process on [0,7]. Then we can conclude that a.s. for every N € N,
limp, 00 X™[[o,n] converges uniformly on [0, N] to some XN If N < N’, then we have a.s.
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XWN) — X(N/)][()’N}. Thus, outside a null event, we have X(N) = X(N/)\[O7N} forany N < N’ € N.
So there is a continuous process X on [0, 00) such that a.s. X converges to X uniformly on
[0,7] for any T > 0. Since each X" is FB<¢-adapted, so is X. By , for every t > 0, X}"
converges in L2 So X; € L? is the L%limit of (X[*). By and the fact that p(X,Y) :=
E[supg<s<r | Xs — Ys||?]'/? is a metric, we have

o0
Cot)™ N 1/2
E X, — X212 < c( 2 .
[oilingH SR (1 o )

m=n

(5.15)

We now prove that a.s. ( + S(X) = X. First, we have

E[ sup || X, — X M%) < ( i (Cl (Cifzm)lﬂ)?

0<s<T

m=n+1

which tends to 0 as n — co. Since X"*! = ¢ + S5(X"), by (5.9) and (5.15)),
E[ sup [I¢ +5(X)s — XJH?] = E[OEUET 15(X)s = S(X™)s]1*)

0<s<T

T r, = (Cas)™\1/2\2
< 2K(T + 4)/ E[|| X, — X"|2ds < 2K2(T + 4)/ ( 3 (01 ) ) ds,

0 0 “jtn m!
which also tends to 0 as n — oco. Thus, by sending n — oo, we get E[supg<g <7 [|¢ + S(X)s —
X,||?] =0, ie., as. ¢ +S(X) = X on [0,7]. Since this holds for any T > 0, we get a.s.
¢+ S5(X) = X. So X is a solution of the SDE¢(c,b). Since X is FP<¢-adapted, it is a strong
solution.

(ii) The uniqueness of the strong solution with initial value in L? follows from the pathwise
uniqueness of the weak solution since every strong solution is also a weak solution. By the
pathwise uniqueness of the weak solution and the existence of the strong solution, a weak
solution with initial value in L? should also be a strong solution.

(ili) We will apply Theorem 2.23. It is about the existence of a continuous version of
a process with given finite dimensional distribution. We used it to prove the existence of
continuous Brownian motion. It says that if Xy, t € R?, is a process taking values in a complete
metric space (S, p), and there exists a,b, C' > 0 such that for any s,¢ € RY,

E[p(Xs, X¢)?] < C|ls — t]|**?,

then X has a continuous version. We apply Theorem 2.23 here to X7 with index set (z,t) €
R? x R,. It suffices to prove the estimate for a bounded region, i.e., for any R, T > 0, there
exists a, b, C' > 0 such that

B[l X2 - X7 < C(lz =yl + s = th™*, |zl llyl <R, s,t€[0,T]. (5.16)

When this holds, we get the existence of a continuous version of Xf on {x € R? : |z <
R} x [0,T]. Letting R, T — oo, we then get the continuous version of XF on R? x R,. The
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proof of requires BDG inequality, which we have skipped. So we now skip the technical
part of the proof of (iii).

(iv) Suppose now X7, z € R? t € R,, is jointly continuous in = and ¢, and for every z,
X? is the strong solution of SDE,(c,b). Let ¢ € L? be independent of B. We want to show
that the solution X¢ of SDE¢(0,b) is a.s. equal to X%|,—. First, suppose ¢ takes values in a
countable set ¥. Recall that when we constructed the solution X¢ by successively defined a
sequence of processes X", which a.s. converges to X¢ locally uniformly. We now write them as
XS to emphasize the dependence on ¢. Similarly, for any z € R?, we have a sequence X%,
which a.s. converges to the solution X7 with initial value . We can prove by induction that
for any n and any = € ¥, on the event {{ = z}, a.s. X6n = X*7 Thus, as their limits, we have
a.s. X¢ = X7 on the event {¢ = x}. Since ( takes values in ¥, and ¥ is countable, we then get
a.s. X¢ = X?|g—¢. For a general ¢, we may define a sequence ((,,), m € N, such that when ¢

lies in the cube H?Zl[f—rﬂ, kéil) for some (ki,...,kq) € Z%, ¢ takes values (oL, ..., 5m) Then
each (,, takes countably many values, belongs to L? and is independent of B, and as m — oo,
Gm — € pointwise and in L?. Now for each m, we have a.s. X¢m = X?®|g=¢,,- Fix t > 0. By the

continuity of X7 in x, we know that X[|,—¢, converges to X{|,—¢ as m — oo. By a corollary

we know that Xf’" — XtC in L?, which implies that (Xfm) has a subsequence, which converges

a.s. to Xtc. Thus, we get a.s. XtC = X[|z=¢. Since both sides are continuous in ¢, we then get
a.s. X¢ = X%,_. O

Remark . The condition of Theorem 18.3 is somewhat too strong because ¢ and b have to be
defined on R, x R?, and the Lipschitz condition should hold throughout. However, we may use
localization and Lipschitz extension to weaken the assumptions. We may assume that ¢ and b
are defined on Ry x U, where U is a domain in R? containing the initial value z, and o and b
are locally bounded and locally Lipschitz continuous in x. The weaker assumption is satisfied
if o and b are continuous and continuously differentiable in . In that case, we may not have a
solution defined on [0, 00). But for any initial value zy € U, the solution X*° exists up to some
positive random lifetime T'. If Y;, 0 < ¢t < S, also solves the initial value problem, then a.s. Y
is a restriction of X®°. Moreover, if T' < 0o, then as ¢t 1 T, either || X;°|| — oo or X;° — 9U.

5.2 Weak solution and martingale problem
Suppose (X, B) defined on the filtered space (2, F,P) is a weak solution of
dX; = O'(t, Xt) odB; + b(t, Xt)dt

for two measurable functions o : Ry x R — R%9 and b : Ry x R — R?. We assume that
o and b are locally bounded, i.e., for any R > 0 and 7' > 0, ||| and ||b|| are bounded on
[0, 7] x {z € R? : ||lz]| < R}. Let C2(R% R) denote the space of C? functions on R? with
compact supports. For f € Cg(Rd, R), by Itd’s formula, we have

d d d
A6 = 3 A (X)X + 3 DS 00 (X)X, X
i=1 7j=1k=1
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d

d 6
— ZZ Xt t Xt dB'7 + Za f Xt (t>Xt)dt

=1

d d d
+2 SN 0506 f(X0) Y ol (t, Xy)ok (8, Xy)dt.

j=1k=1 =1
Let a/* = 25_1 Jiaf, i.e., as matrixes, a = oo’. Define
t
M = f(Xt)—f(XO)—/ A f(Xy)ds, >0, (5.17)
0
where
d 14
_ k
Af(z) _; (t,2)0i f (x +2;Z—:a3 (t,2)0;01 f (z).

Then M7 is an F-local martingale. We will see that M7 is in fact a true martingale.

Since f € CZ(R%,R), we know that f, 9;f, and ;0 f are all bounded, and there are R > 0
such that 9;f and 9;0)f vanish outside {z € R? : \x! < R}. Since b and a = oo’ are locally
bounded, we can then conclude that for any 7' > 0, t — sup,cpa |A¢f(z)| is bounded on [0, T7.
Thus, Mtf is bounded on [0,7] for any T' € R;. So MY is a true F-martingale. In fact, we do
not need to mention F because M/ is a martingale w.r.t. the natural filtration generated by
itself.

We say that X solves the martingale problem (a, b) if for any f € CZ(R%,R) with a compact
support, the M7 defined by is a martingale (w.r.t. the natural filtration generated by
itself). Thus, if (X, B) is a weak solution of SDE(o,b), then X solves the martingale problem
(a,b) with a = o0’.

Theorem 18.7. The SDE(0,b) has a weak solution (X, B) if and only if X solves the martingale
problem for (a,b) with a = oo’.

Proof. We have proved the “only if” part. For the “if” part, suppose X is such that for any
f € C*(R,R) with compact support, M f is a martingale.

We use a localization argument. Fix ¢ € {1,...,d}. For any R > 0, there is a function
fr € C*(R,R) with compact support such that fh(z) = z; for |z| < R. Note that fi(z) =
for |z| < R. Using f = fh, we find that

My = fo(X,) — fo(Xo) — Z/ 0; (X)W (s, X1ds) — Z/ a* ;0 f1(X o) [ X1, XF]ds
is a martingale. Stopping this process at the time 7r, which is the first time that X exits

{|z| < R}, we still get a martingale. Since fi(z) = z; for |z| < R, 8;z; = §; j, and ;0 = 0,
the stopped process MR can be expressed as

) ) tATR )
MR = Xy — X /0 bi(s, X, )ds.
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Letting n — oo, we conclude that
. . . t .
M} = X{ — X§— / b'(s, Xs)ds
0

is a local martingale. A similar localization argument (with fé’k in place of f% which satisfies
Ij%k(x) = xjxy, for |x| < R) shows that for any j, k,

MY = XIxF - xix}k —/ bﬂ(s,Xs)des—/ bk(s,Xs)ngs—/ a?* (s, X,)ds
0 0 0
is a local martingale. By the definition of M*® and M7*, we have, for any 1 <1, j, k < d,
dX} = dM} +b'(t, X;)dt;

A(XIXF) = dMPF + 7 (¢, X)) XFdt + b* (¢, X)) XI dt + a?* (¢, X,)dt.
Applying the product formula to the first group of SDE, we get

d(XIXF) = XTdMF + XFdM] + 67 (¢, X)) XFdt + bF (¢, X,) X] dt + d[M7, M*),.

Compared it with the second equation, we get
d[M7, M*], = a?*(t, X,)dt = Za (t, X;)ok(t, X,)dt.

Then we use Theorem 16.12, which can be viewed as a higher dimensional counterpart of Levy’s
characterization theorem. We are not going to give a proof of this theorem.

Theorem 16.12. Let M = (M1 M) be a d-dimensional vector martingale with My = 0
such that d[M7, M¥);, = >0l okdt for some progressive processes o7, 1 < j < d, 1 < i <
0. Then in an extended filtered space there exists an §- dzmenszonal Browman motion B =
(BY,...,B%) such that dM] = ZZ LoldBi, 1<j<d.

Applying this theorem we get a (5—d1men51onal Brownian motion B = (B',...,B%) (in an
enlarged filtered space) such that M = Zz L0l (t, Xy)dB; for all 1 < j < d. Then we get

dX] = dM} +V (£, Xy)dt = Y ol (t, X,)dB} + V (t, X;)dt, 1<j<d.
i=1

So X is a weak solution of the SDE dX; = o(t, X;) o dB; + b(t, X;)dt. d
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5.3 Diffusion and Markov property
We will focus on the SDE of the kind
dX; = o(X;) 0 dBy + b(Xy)dt, Xo =z, (5.18)

where o € C(R? R%%) and b € C(R% R?). Note that ¢ and b do not depend on t. Suppose
that they satisfy the conditions in Theorem 18.3, i.e., there is a constant K > 0 such that for
any z,y € RY,
lo(@)]] + [1b(2) ]| < K (1 + [J[]);
lo(z) — o)l + [bo(z) —by)|| < K|z —yll.
The (unique) strong solution X* of the SDE with initial value x is called a diffusion process.

Let P* denote the law of X*. Since we can find a version of X* for each x € R? such that X7
is jointly continuous in ¢ and x, we see that x — P? is a probability kernel.

Theorem . The strong solution X of with any initial value ¢ € L? is a time-homogeneous
Markov process w.r.t. the complete filtration FB generated by B, and for any fized tg > 0,
Law|[X;4.|FB] = P,

Proof. Fix tg > 0. By Theorem 18.3, X, € L2 Define Bl" = By 4 — By, and F"7 = FP, |

¢t > 0. Then B is an 5%+ Brownian motion independent of 72. Let X;°" = X; 14, t > 0.
Since X satisfies ([5.18)), we have for any ¢ > 0,

to+t to+t
X§0+ _ X80+ — / U(Xs) o dBs +/

to to

t t
b(X,)ds = / F(X0+) 0 dBIF 1 / b(X'0+)ds.
0 0

Thus, (X%t Bot) w.r.t. the filtration F5%% is a weak solution of (5.18) with initial value
Xi,, which is in L2, By Theorem 18.3, this weak solution is a strong solution. Moreover, by
the same theorem there is a family of R%valued random vectors Z (z,t), x € R? ¢t € R, such
that

(i) For each z € R, Z(z,t), t > 0, is a strong solution of ((5.18)) with initial value z and with
Btot in place of B.

(ii) The map R% x Ry 3 (z,t) — Z¥ is continuous.
(iii) Almost surely X = Z(Xy,, ).

For each = € RY, we have Law[Z(z, )| FZ] = Law[Z(z,-)] = P” since Z(x, ) is measurable w.r.t.
B and B || 7P (and so Z(x,-) ILFF). From the facts that a.s. X0t = Z(X,/,-) and that
Xy, is Ff-measurable, we then know that Law[Xy,1.|FZ] = PXto. O

6 Connections with Partial Differential Equations
In this section we study diffusion processes from the perspective of their Markov properties,

and connect them with the partial differential equations. The material of this section is chosen
from multiple references.

74



6.1 Transition kernel and operator

We now briefly review the notation of probability kernels and Markov process needed here. A
probability kernel from R? to R? is map u defined on the product space R? x B(R?) such that
for any € RY, u(x,-) is a probability measure on R?, and for any Borel measurable set A C R?,
u(-, A) is a Borel measurable function on R%. From now on we simply call such x a kernel in
Re. If ;1 and v are two kernels in R, then we may define a new kernel pv in R? by

uv(x, A) = /,u(a:,dy)y(y,A), reRY  Ac BRY.

The formula means that we integrate the measurable function v(-, A) on R? against the measure
p(x,-). We have the associative law: (uv)\ = p(vA), but not the commutative law.

An F-adapted R%valued process Xy, t € Ry, is called F-Markov if there is a family of
probability kernels jis¢, 0 < s <t < o0, from R? to R?, such that for any 0 < s < ¢, a.s.

LaW[Xt|.FS} = LaW[Xt|X5] = ,U/s,t(X& )

This means that if f : R? — R is bounded and measurable, then

E[f(Xt)‘]:s] = /f(y)ﬂs,t(X&dy)'

The family ps; must satisfy the Chapman-Kolmogorov relation:
My sthsit = frt 0<r<s<t.

If j15 + depends only on t—s, i.e., there is a one parameter family p;, ¢ € Ry, such that ps; = p1—s,
then X is called time-homogeneous, and the Chapman-Kolmogorov relation becomes

Pspit = pstt, S, 0> 0.

Recall that the diffusion processes are time-homogeneous Markov processes.
For every kernel p in RY, we associate it with an operator T, p defined by

T, f(x) = / Fw)ule, dy),

where f is a bounded measurable function from R? to R. Then |T,.f| is also bounded. If
f = 14 for some A € B(R?), then T,,f = u(-, A) is measurable. Thus, for any measurable
simple function f, T}, f is measurable. By approximation, 7}, f is measurable for any bounded
measurable function f.

If 1 and v are two kernels in R%, then we have the following equality

T, 0T, =T,
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because for any f,

1,0 Tf(w) = [ Tfntedy) = [ [ Hovtdntedy) = [ fulo.do).

Suppose (u) is a family of probability kernels in R? associated with a time-homogeneous
Makrov process X in R%. Let T, = T, - Then from Chapman-Kolmogorov relation, we get

TS OTt == Tert, S,t 2 0.

Thus, {7} : t > 0} forms a semigroup of operators on the space of bounded measurable functions
on R%. If X* is the Markov process starting from x, then for any ¢t > 0, the law of X} is p(z, -).
Then the integral [ f(y)u(z, dy) is exactly the expectation of f(X;). So we get an expression
of T; in terms of X%:

Tif(x) = E[f (X)) = E*[f (X0)],

where E* means the expectation w.r.t the law of the Markov process started from z.

6.2 Boundary value problems

Let D be a bounded domain in R%. Let f be a continuous function on dD. Consider the
following Laplace’s equation
%Au(a:) =0, z€D;
{ u(x) = f(x), x € dD.

0%?u. The factor = is to make the

Here u is continuous on D and C? on D, and Au = Z i—10;

connection with It6’s formula.
Suppose u is a solution of the above PDE. Let z € D. Let B* be a Brownian motion in R?
started from x. Let 7p be the first time that B* exits D. By It6’s formula,

Xt = U(Bx

t/\‘l‘D) 13 2 O’
is a bounded martingale. Then we get
u(z) = Xo = E[X7,] = E[u(B7,)] = E*[f(Br,)].

So we get a formula of u in terms of f. On the other hand, if we define u by the above formula,
then it can be shown that it is the solution of the Laplace’s equation. But it takes some work.
Next, we consider a modified PDE problem:

{ tAu(z) = g(z), =€ D;
u(x) = f(x), x € dD.

The f is the same as before. The g is a continuous and bounded function on D. If u is a
solution, by It6’s formula, the

tATD
X, = u(Bi,,) - / o(B)ds, >0,
0
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is a local martingale. One can actually show that it is a uniformly integrable true martingale.
So we get

u() = Xo = E[X,,] = E[f(BZ,) - /0 " g(Br)ds).

On the other hand, if we define uw using the above formula, then it turns out that it is the
solution of the PDE.
Thirdly, we consider the heat equation.

duu(t, ) = LAu(t,z), te(0,00),z € D;
ult,z) = f(2), t € [0,00),x € OD;

u(0,z) = up(z), x e D.

Here ug is continuous on D, f is continuous on 4D, and uglgp = f. The solution u(t,z) is
continuous on [0,00) x D, and is C*? on (0,00) x D.
Suppose u is a solution of the heat equation. Fix 3 > 0 and xg € D. Then the process

Xi = u(to—t/\TD,Bf/(\)TD), 0<1t<t,
is a true martingale. So we get

U(to, J,‘O) = XO = E[Xto] = Emo[l{TDSto}f(BT)} + Ewo [1{TD>t0}u0(Bt0)]‘

This formula does give the solution of the PDE.
A more general heat equation is

du(t,z) = LAu(t,z) + g(z), t€ (0,00),2 € D;
u(t,z) = f(x), t €[0,00),x € OD;
u(0,x) = up(x), r e D.

If u is a solution, we construct a martingale

S

tAtoATD
Xt:u(to—t/\TD,BfMD)—/ g(Bi%)ds, 0<t<t.
0
Using u(to, z0) = Xo = E[X},], we get a formula of the solution w.

6.3 Infinitesimal generator and parabolic PDE

Suppose that X is a diffusion process as strong solutions of (5.18]), where o and b satisfy the
conditions in Theorem 18.3. For a fixed bounded continuous function f, we define

u(t,x) = Tp f(x) = E[f(X7)] = E*[f(X:)].

Note that u(0,z) = f(x). Since f is bounded, u is bounded on Ry x R?. Since X7 is jointly
continuous in z and ¢, by dominated convergence theorem, u(¢, x) is jointly continuous in ¢ and
x.
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The infinitesimal generator A associated to the SDE is

Af(z) = ltifg (th)(xz — /@) = 1}%1 %(u(t,x) —u(0,z)), ze€R<

Let D4 denote the set of all bounded continuous functions f on R? such that the limit exists
for every & € R, For f € Dy, Af is a well-defined measurable function on R%.
Let a = oo’. Define the second order differential operator A by

d
0 =5 > @00 +sz

Example . Suppose b = 0 and U§ = 0;j, i.e., o is the identity matrix, then the same is true
for a. Then Af = %A f- We will also deal with more complicated cases.

Theorem . The space C3(R?) (C? functions with compact support) belongs to D, and for any
f € C3RY),
Af(z) = Af (). (6.1)

Proof. Let f € C2(RY). Since X solves the martingale problem (a,b),
t
M= ) = @) = [ ApE)s

is a martingale. From E[M}] = E[M{] = 0, we get

LR - 1) =E[f [ Asexs].

The quantity inside the square bracket on the RHS is uniformly bounded because 9;f and
0,0k f have compact supports, and b' and a?* are locally bounded. Letting ¢ | 0, by dominated
convergence theorem, the RHS tends to Af(x). So f € D4, and (/6.1]) holds. O

From the expression of M} and its martingale property (0 = My = E[M,]), we get the
Dynkin’s formula

Theorem (Dynkin’s formula). For any bounded stopping time 7, if f € C2(RY), then

E[f(X2)] = /() + E] /0 " AF(XT)ds).

Remark . If 7 is the less than 7y, which is the first time that X exits a bounded domain U,
then Dynkin’s formula holds for any f € C?(R%) with Af replaced by Af. This is because we
may find another function fo € C2(RY) such that f = fy on U.
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Recall that u(t,z) = Ty f(x) = E[f(X[)]. When 7 in the theorem is a deterministic time ¢,
Dynkin’s formula becomes

u(t, z) :f(x)+/0 E[Af(xg)]ds:u(o,xH/O u(s, z)ds,

where uA(t,z) is defined in the same way as u(t,z) except with Af in place of f. Since
Af = Af € Co(R?), uA(t,z) is continuous in ¢ and . So u is differentiable in ¢, and

duu(t,z) = BT f(x) = ut(t,z) = Ty o Af(z), f e CERY). (6.2)

Theorem (Kolmogorov’s backward equation). For f € CZ(R?), u(t,-) € Da for each t > 0;
and u satisfies the following equation with initial value

{ Owu(t,x) = Au(t,z), t >0,z € R%

u(0,z) = f(x), x € R% (6.3)

Here the operator A acts on the second variable x.

Proof. Clearly, u(0,z) = f(z), » € R%. Fix t > 0. Let g(z) = u(t,x). Since u is differentiable
in t, using the Markov property of X we get for small 7,

L@ g(x,)] - g(a)) = =

r C(ETE [f(X0)]] - E°[f(X)])

LB (X 10) | F) — EPF(X)])

_ %]Ex[f(XTH) X)) = %(u(r Ft2) —ut,z)) — B, 710,

Hence

1
Au = liﬁ)l ;(El’ [9(X;)] —g(z)), exists and equals Opu.

O]

We have proved that A = A on C2(RY). Here we can not say that Au = Au because u in
general dos not belong to Cg. If we know that Au = Au. Then Equation (6.3 becomes the
following second-order parabolic PDE

{ owu(t,z) = Au(t,z), t>0,2¢€R%

u(0,z) = f(x), z € R% (6.4)

The PDE is parabolic since the coefficient matrix (a?*);<; x<q is semi-positive definite (because
a = oo’). At this moment we can not immediately say that u(t,z) := E*[f(X};)] gives the
solution of because we have not shown that Au = Au. However, we have the following
theorem, which says that such u is the only bounded candidate of the solution. We let C’bl 2 (R4 x
}Rd) denote the space of bounded functions defined on R, x R? which are once continuously
differentiable in the first variable, and twice continuously differentiable in all other variables.
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Theorem . Ifu € C‘;’Q(]RJr x RY) is a solution of the PDE , then u(t,x) = E*[f(X3)].

Proof. Fix tg > 0 and z € RY. We want to show that u(to, ) = E*[f(X,,)]. Let X be a strong
solution of the SDE(c,b) started from x. Define

Mt:u(to—t,th), Ogtgto.

Then M is a semimartingale, and by It6’s formula, we calculate

d
dMy = —Opu(to — t, X;) + > du(to — t, X )dX] + Z 8O u(to — t, X;)d[ X7, Xp];.
i=1 jk} 1

Since X is a strong solution of SDE(c,b), we have

§
dX] = oi(Xy)dB] + b'(Xy)dt,

j=1
and
d[x’, x*), Za (X)oF(Xy)dt = a/*(X;)dt.
Thus,
d 1)
dMy = dwu(to —t,X) Y ol(Xy)dB] — dulto — t, Xy)dt + Au(to — t, Xy)dt.
- ~

The drift term disappears because dyu = Au. So M is a local martingale. Since u is bounded,
M is a true martingale. So E[M;,] = My. From the definition of M, we get E[f(X:,)] =
E[u(0, Xy, )] = E[M,] = Mo = u(to, x). O

For the operator A defined by

d
1
5 Z a]’k (9 8k; + Z b
7,k=1
we define its adjoint A* by
1 d d
— . ,k (b 2 (md
z) =5 Z 9O (a”" (x)g(x)) — Z&(bz(w)g(l‘)% g € C*(R).
J,k=1 =1
It is called the adjoint of A because
[ At dx—/ f@)A*g(2)dz, f e CRY, g € C2(RY).

This fact follows from integration by parts (and that f vanishes outside a bounded set).
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Theorem (Kolmogorov’s forward equation). Assume that the diffusion process X that satisfies
the SDE
dX; = O'(Xt) odB; + b(Xt)dt

has a transition density pi(z,y), i.e.,
Tif(e) =B U(X0) = [ Sy, | € GG

and pi(x,y) is C? in y for every t > 0 and v € RY. Then py(x,y) satisfies the Kolmogorov’s
forward equation:
opi(z,-) = Aype(z,-), t>0,

where A acts on the second variable of pi(x,y).

Proof. Let f € C2(R?). By Dynkin’s formula, E*[f(X,)] = f(z) + fg E*[Af(Xs)]ds. By the
definition of density function, for t5 > t; > 0,

to t2
| 1@t - p@anay= [ [ Af@pdvds = [ 1) [ Appaogasdy,
Rd t1 Rd Rd t1
Since the equality holds for any f € C2(R%), we get
to
pe(2,y) — o (2,y) = | Apps(z,y)ds,  t2 >t > 0.
t1
Letting to — t; — 0, we get the conclusion. O

6.4 The Feynman-Kac formula
Let the diffusion processes X, the infinitesimal generator A, and differential operator A be as

before. Suppose f,q € Cy(R?). Consider the following equation:

_ d.
{Btu—.Au—l—qu, t>0,r € R (6.5)

u(0,2) = f(x), =R

Theorem . If u is a solution of such that for any to, u is bounded on [0,to] x RY, then

u(t,z) = E* [f(Xt) exp </0t q(XS)ds)}, t>0,z R (6.6)

Proof. Fix tg > 0. Define N(t) = u(to — ¢, X¢), 0 <t < tg. By It6’s formula,

d d
1 A
AN, = —Oyulto — t, Xy)dt + Y dgulto — t, Xp)dX] + 5 > 0i0kulto — t, Xe)d[ X7, X",
i=1 Gk=1
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1
u(to —t,X¢) > ot (Xo)dB] — duu(to — t, Xy)dt + Aulty — t, X;)dt
j=1

1
M-
S
||M&

u(to — t, Xy) Za (X,)dB! — q(X;)u(to — t, X, )dt.
7=1
Let

t
M; = Nyexp </ q(XS)dS).
0
By product formula,
t
dM, = exp ( / q(XS)ds) dN; + Myq(Xy)dt
0

' d s .
= exp ([ ax.)as) > dutto~1.X) 3o} (Xa].

Thus, M is a local martingale. For any ¢y > 0, since ¢ is bounded on R¢ and u is bounded on
[0,%9] x R?, we see that M is bounded on [0 tg] Thus, M is a true martingale. We then get
u(to, @) = Mo = E[Myo] = E[f(Xs,) exp( [y a(X,)ds))- O

We call the Feynman-Kac formula. If we define u by , we can not immediately say
that u solves (6.5)). Instead we have the following theorem.

Theorem . Let f € C2(RY) and q € Cy(RY). Define u by . Then u satisfies the equation

Ou=Au+qu, t>0,z € R (6.7)
u(0,7) = f(x), z &R '
Proof. Let YV; = f(X;) and Z; = exp fo X,)ds). Then Z is an adapted C! process, and

dZ; = Z1q(Xy)dt. Since q is bounded, say by R we have 0 < Z; < eff* for any t > 0. Recall
that for some local martingale L,, Y; satisfies the SDE:

dY; = dL; + .Af(Xt)dt
Since Z; is a C'' adapted process,
d(Y;th) =Y dZ; + Z1dY; = ZiydLy + Zt(.Af(Xt) + q(Xt)Y;g)dt

Thus, the M defined by

t
My = YiZs — Yo Zo — /0 Zo(AF(X) + q(X,) F(X.)ds
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is a local martingale. Fixed to > 0. Since Z is uniformly bounded on [0, ], and ¥ = f(X),
Af(X), and ¢(X)f(X) are all uniformly bounded, M is also uniformly bounded on [0,?y]. So
M is a true martingale. Thus, E[M;] = E[My] = 0, which implies that

u(t,x) = E*[YiZ)] = f() + /0 EP[Z4(Af(Xo) + g(X2) f(X.))lds

is differentiable in ¢.
Let r > 0. We have Z,4,/Z, = exp(f(;S q(Xr4s)ds). By the Markov property of X, we have

t
E* Yt Zrt| Fr] = Z, B[ f (Xrtt) exp(/ 4(Xrys)ds)|Fr] = ZExr [YiZi] = Zyult, Xo).
0

Thus,
ulr +,2) = B (Vys Zep] = B2 (B Yy 1 Zp il Fo]] = B2 Zyult, X))
Recall that Au(t, ) = lim,jo 2(Tru(t, x) — u(t,z)). Since Tru(t, z) = E*[u(t, X, )], we get

(E*[u(t, X,)] — u(r +t,x)) + %(u(r +t,x) —u(t,x))

L (Tult, ) — u(t,2) = -
- Em[u(t,Xr)%(l —Z)+ %(u(r +t2) — ult, 2)).

As r | 0, the second term on the RHS tends to dyu(t,x). By dominated convergence theorem,
the first term tends to —q(z)u(t, ). So we get u € Dy and Au = dyu — qu. O

6.5 Feller semigroup

We will learn some abstract theory in this subsection. It has a flavor of operator theory in
Functional Analysis. Let (7}):>0 be a semigroup of transition operators associated with a
time-homogeneous Markov process X, i.e.,

Tif(x) = E*[f(X)].

Recall that T} is a map from C,(R%) to Cy(R%). Now we let Cy = Co(RY) denote the space of
continuous functions f on RY, which satisfy that f(z) — 0 as ||z|| — oo. The space Cj is a
Banach space equipped with the uniform norm || f|| = sup |f(x)|.

Definition . We call (7}):>0 a Feller semigroup, and X a Feller process if
(F1) T,Cy C Cp, t > 0,
(F2) For any f € Cy, (t,x) — T,f(x) is continuous on [0, 00) x RY.

By the definition of T}, it is clear that each T} is a contraction map, i.e., | Trf| < || f]|-
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Example . Let 0 € C(RYR¥%) and b € C(R?,R?) be Lipschitz continuous. Let B be a
0-dimensional Brownian motion. Consider the SDE

dX! =0o(X{)odBy + b(X[))dt, X§=u=.

We have known that the solution exists uniquely, and we may choose a version of X% for
every z € R? such that X7 is jointly continuous in z and ¢. Now we further assume that
o and b are bounded. Then X is a Feller process. In fact, for f € Cpy, we already know
that T3 f € Cp It remains to show that for any ¢ > 0, E[f(X})] — 0 as ||z|| - oco. Fix
t > 0. By dominated convergence theorem and the fact that f € Cy, it suffices to show that

| X B o as Hx|| — 00. This holds because by the boundedness assumption on ¢ and b,
| XF — x| = | fo o(X¥)odBs + fo (X%)ds|| is bounded in L? by a constant independent of z.
Since f(X}) is jointly continuous in x and ¢, we get (F2) by dominated convergence theorem.

Recall that we say that (7}) is a semigroup because it satisfies Ty o Ts = Ty45. A semigroup
of operators on a Banach space B may be constructed from bounded linear operators. For a
bounded linear operator A on B, its exponential is the bounded linear operator e” defined by

A = A"

e’ = gy
n=0

where AY is the identity I, A' = A, and A"t = Ao A™. The series converges in the operator
norm because ||A"|| < ||A||*. It is easy to see that ' o es4 = ()4, So (et4);5g form a
semigroup. We say that A is the infinitesimal generator of this semigroup, and may recover A
from (e');>0 because

n An n—2 An
—(etA—I):th;,l — A+ tzt A — A, ast]O.

n=1

So we make the following definition for the Feller semigroup.

Definition . For a Feller semigroup (7}), its infinitesimal generator A is defined by

Af—hm (th f), [ €Da,

where D4 is the set of all f € Cy such that the above limit converges in the norm topology.

It turns out that A is not defined on the whole space Cy, and is not a bounded linear
operator. We can not thus express T; as e, But we can still do something on it. The
following theory is inspired by, but does not make reference to diffusion processes.

Proposition . If f € Dy, then (i) T,f € Dy for every t > 0; (ii) the function t — T, f is
strongly differentiable in Cy, and O, T, f = T\ Af = AT,f; (i5i) T, f—f = fg TsAfds = fg AT fds.
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Proof. For fixed t > 0, using the semigroup property, we get

lim — [Tth T, f] —hmTt[ (T.f — )] = TAf.

{0

So we get Ty f € Dy, which is (i), and ATy f = T,Af. Since T, T; = T4, the above shows that
t — T;f has right-hand derivative T;Af = AT;f. Since Af € Cy, TyAf is continuous in t. So
the right-hand derivative is actually the two-sided derivative, and (ii) and (iii) both hold. [

An operator A with domain D4 on a Banach space B is called closed if its graph {(f, Af) :
x € Dy} is a closed subset of B2. This is a natural extension of bounded linear operators. An
operator A is closed if and only if for any sequence (f,,) in D4, the two conditions “f,, — f in
B” and “Af, — g in B” together imply that f € D4 and Af = g.

Proposition . The domain D4 of the infinitesimal generator A of a Feller semigroup is dense
in Cy, and A is a closed operator.

Proof. Set Apf = %(Thf — f) and Bsf = %fos Tifdt. Then Ap and B are bounded operators
on Cy, and
ApBs = BsAp = AgBy, = By As.

Here the first and the third “=" follows easily from the fact hat T}, commutes with 73. The
second “=" follows from

poant = [(nmg - pa= 5 [ -mpa= ([T nga- [nga)

1 h+S h
:hs(/ thdt—/o ﬂfdt):Athf.
For every f € Cy, we have B, f — f as h | 0. Thus, for s > 0,

Athf = Athf — Asfy h | 0.

So Bsf € Dy. Since Bsf — f as s 0, Dy is dense in Cjy.
Let (f,) be a sequence in D4 converging to f, and suppose Af, — g. Then
Bsg = hm B,Af, = hm By hrnAhfn = lim lim B;Ap, fn

n—00 hl0

= lim lim A;By fr, = hm Asfn = Asf.

n—o00 ¢0

It follows that f € D4, and Af = lim, g Asf = limgjo Bsg = g. So A is closed. O

Remark . For the Feller semigroup obtained from the SDE dX; = o(X;) o dB; + b(X})dt, we
have known that the infinitesimal generator A agrees with the second order differential operator
A= % Zij aj’k8j8k+zi b'9; on CZ. From the above proposition, we know that, for any f € Co,
if there is a sequence (f,) in C3 such that f, — f and Af,, — g € Cp, then f € D4 and Af = g.

85



Let A > 0, we define
Ryf(z) = / e M f () dt.
0

Since T;f € Cy and ||Tif|| < ||f|| for all t > 0, by dominated convergence theorem, Ry f € Cj.
By triangle inequality, || Ry f[| < [5° e || f[|dt = L[| f]l, i.e., [Rall < %, and AR, is a contraction
operator on Cy. Each R) is called a resolvent of the Feller semigroup.

Proposition . For any A > 0, the operator A\I — A from D4 to Cy is one-to-one and onto, and
its inverse is R .

Proof. For f € Dy,
Ry(M — A)f :/ e MTyNf — Af)dt
0
=\ / e NTyfdt — / e MO (Tyf)dt
0 0

- _ / - (e Ty fdt — / h e MOW(Ty f)dt
0 0

= — /OOO 8t(6_/\tth)dt = —e_Atth|80 = Tof = f

Conversely, if f € Cj, then

o) B 1 1 %) B
ARy f = R\Awrf =/ e )\tTtﬁ(Thf_f)dt = h/ e M (Thaef — Tif)dt
0 0
L[ L[ [
— e Ty fdt — — e My fdt — — e My fdt
h Jo h Jn h Jo
1 &0 N —\(t+h) 1 h —At
= — (e —e VT fdt — — e M fdt.
h Jo h Jo
As h | 0, the LHS tends to AR, f, while the RHS tends to fooo e MTfdt — f = AR\f — f. So
Ryrf € Dy and AR)\f = AR, f — f, which implies that (A\] — A)R\f = f. O

From this proposition we see that the infinitesimal generator A determines all resolvents
R)y. Since A — Ry f is the Laplace transform of ¢t — T} f, the resolvents in turn determine the
Feller semigroup (73).

Proposition (Resolvent identity). (i) For any A\, pu > 0,
Ry — R, = (p—ANR\R, = (1 — AR, Rx.

(ii) For any f € Co, ||ARxf — f|| = 0 as A — oc.
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Proof. (i) From Ry = (Al — A)~! we get
-1 -1
R, —Ry" =pl — AL
Composing Ry on the left of both sides, and composing R, from the right of both sides, we get

Ry — R, = (1 — A)R\R,. Switching Ry and R,,, we get Ry — R, = (11 — A\) R, R).
(ii) First suppose f € Dy. Let g = (I — A)f € Cy. Then f = Ryg, and

ARAf — f = AR\R19g — Rig = R\R1g — Ryng = Rx\(Rig—g) = 0

in the norm topology because R1g — g € Cp, and ||Ry|| < 1/A. For a general f € Cp, since Dy
is dense in Cp, we may find a sequence (f,,) in D4 such that f,, — f. For each n, AR)f, — fn
as A — oo. Since AR) is a contraction for each A > 0, AR) f, — AR)f as n — oo uniformly in

A. So we have AR)f — f as A — oo. O

6.6 One-dimensional diffusion process
At the end, we focus on the solution of the following SDE
dXt = O'(Xt)dBt + b(Xt)dt, (68)

where o,b € C*(I,R) is positive, and I is an open interval on R. Since ¢ and b are locally
Lipschitz continuous, the strong solution X* with any initial value x € I exists uniquely, which
may blow up at some random finite time. When that happens, Xj* tends to one end point of 1
(which could be 400 or —o0) at that time.

We may simplify the SDE as follows. Suppose Y = f(X) for some f € C?(I). By It&’s
formula, Y satisfies the SDE:

dY; = f(Xy)o(Xy)dB; + f'(X:)b(Xy)dt + %f/,(Xt)U(Xt)2dt-

If f is strictly increasing and satisfies the equation

F/@)b(a) + 5 ()o@ =0, (69)
then the SDE for Y simplifies to
dY; = (af') o f~1(Y;)dBt, (6.10)

and so Y is a local martingale. ]

Solvin ,we get f(x)/f'(x) = 2b(z)/o(x)?. Since f/f = L(log '), we get log f'(x) =
C+ ffo 21%((3)255, vah(erl/io( ii any (pc))i/nt( ir)l I, and fC/é R is (a gicj)cn)stant.g Songf(EL‘)) =
exp(fxx0 2b(s)/o(s)?ds) is one solution. Integrating f’, we get f. Since f’ is C! and positive, f
is C? and strictly increasing. Since o € C!, we see that (of’) o f~! € C!. So we can reduce

to the equation
dXt = O'(Xt)dBt, (611)

where o € C(I,R) is positive.
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Lemma . Let a < b € I. The process X that satisfies does not stay in [a,b] during its
life period [0,T).

Proof. By applying a function f € C?(I), we may assume that X satisfies . Then X
is a local martingale, and so is a time-change of a full or stopped Brownian motion. This
means that there is a Brownian motion W defined on an extended probability space such that
X = Wixj,, 0 <t <T. Then almost surely either [X]o, = 0o and limsupyp X¢ = +00 and
liminfyr Xy = —o00, or [X]r < co and limyr X; converges to Wix),. Suppose X; € [a,b] for
0 <t < T. Then the first case can not happen, and we have [X]7 < oo and limy7 X; converges
to some zg € [a,b]. If T < oo, then X; approaches some end point of I. So we must have
T = oo. But now [X]p = [;°0(X)? = oo because limyoo 0(X;) = o(z0) > 0, which is a
contradiction. O

Proposition . For the solution X of Jifa<xz <béel, then

b—=x . T —a
o P, < 14) = o

Px[Ta < Tb] — (612)

where 7, and T, are the first time that X reaches a and b, respectively.

Proof. We know that it does not happen that X ([0,7")) C [a,b]. So 74 AT, < T'. Since X is a
local martingale, and X is bounded on [0, 7, A 73], we get

r = X§ =E[X7 A ] = aP[1a < ] + 0P% [, < 7).
Since P?[1, < 7] + P¥[1, < 74) = 1, we get (6.12)). O

Corollary . For the solution X of and an injective C? function f on I such that f(X)
s a local martingale, if a < x < b € I, then

fb) = f(=x) f(z) = f(a)
fb) = f(a)’ fb) = fla)
Proof. If X starts from x, then Y := f(X) satisfies and starts from f(z). The time

that X reaches a or b is the time that Y reaches f(a) or f(b). Then we apply the previous
proposition to Y. ]

P, <) = P¥m, < 70] = (6.13)

The increasing function f with the property of is called a scale function for X. Such
scale function is unique up to an affine map. If f(x) = x is a scale function, then X is a local
martingale, and we say that X is on a natural scale.

For X on a natural scale, the behavior of X at its terminal time, i.e., the limit of X; as
t 17T, is determined by the interval I. This is the statement of the following proposition.

Proposition . Suppose X solves on an interval I, and starts from z € I.

(i) If I =R, then a.s. T = oo, limsupyp Xy = +00 and lim infy7 Xy = —oo0.
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(it) If I = (a,00) or (—oo,a) for some a € R, then a.s. limyr Xy = a.

(iii) If I = (a,b) for some a < b € R, then

Tr—a

P[lim X, = q = 22 —
—a

,  P*[lim Xy = b]
T b—a T

Proof. Since X is a local martingale, on an extended probability space there is a Brownian
motion W such that X; = W[X]t, 0 <t <T. So as. either Case 1: [X]r < oo and limyp Xy
converges, or Case 2: [X]r = oo, limsupyy Xy = +oo and liminfy7 Xy = —oo. When I = R,
Case 1 can not happen because if limyr X; = 29 € R, then [X]p = fOT 0(X5)?ds < oo, which
implies that T" < oo. But T' < oo implies that X; — 400 or —oc as t T T, a contradiction. So
Case 2 must happen, i.e., [X]7 = oo, limsupyy X; = +0o and liminfyr Xy = —oo. We then
get a.s. T' = oo because if T' < oo, then X; tends to oo or —oo as t T 1. So we get (i). For (ii)
and (iii), Case 2 can not happen because I # R, and so a.s. limu7 X; converges. The limit must
be a boundary point because if it is zy € I, then from [X]p = fOT o(Xs)%ds < oo we get T < o0,
which implies that X; tends to an end point of I, a contradiction. So we get (ii). For (iii), we
have P*[limyr X; = a] + P*[limyr Xy = b] = 1. Then we may compute P[limyr X; = a] using
the martingale property of X. O

Corollary . Suppose X solves on an interval I with a scale function f, and starts from
rzel.

(i) If f(I) =R, then a.s. T = oo, limsupyy X; = sup I and liminfyr X; = inf 1.

(it) If f(I) = (a,00) for some a € R, then a.s. limyp Xy = inf I; if f(I) = (—o0,a) for some
a € R, then a.s. limyr Xy = sup [.

(iii) If f(I) = (a,b) for some a < b € R, then

b—f(z)

f(@)—a
b—a ’

P*[lim Xy = inf I] =
T b—a

, ]P’m[giTrp}lXt =supl] =

Suppose X is on a natural scale, i.e., solves . We are specially interested in the case
that I = R. In this case, X visits every point infinitely many times, and is recurrent. We
call v = o(x)~2dz the speed measure for X. The name comes from the following ergodicity
theorem. We will not work on its proof.

Theorem . Suppose X is a diffusion on R on a natural scale with speed measure v. Then for
any two nonnegative measurable functions f and g on I with vf < oo and vg > 0, and any
z € R, we have P*-a.s.

Jo F(Xo)ds — vf

tliglo t ~ Vg
fo 9(Xs)ds g
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In particular, if v is a finite measure, and we normalize it to a probability measure Py = v/|v|,
then we get by choosing g = 1,

1
lim —
t—oo t

/0 ' F(X0)ds = [ ra@paan)

Moreover, if the process X starts with initial distribution Py, then it is a stationary process.
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