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The Schramm-Loewner evolution (SLE), first introduced by Oded Schramm ([12]), is a one-
parameter (κ ∈ (0,∞)) family of random non-self-crossing curves, which has received a lot of
attention over the last decade. The definition uses Loewner’s differential equation with the
driving function being the rescaled Brownian motion. It was shown that SLE describes the
limits of a number of models from statistical physics so answering the question of conformal
invariance for them.

My research focuses on studying the geometric properties of SLE curves, which will help
people get better understanding of those lattice models that converge to SLE. My works can
be roughly divided into the following categories.

1 SLE in Multiply Connected Domains

SLE were originally defined only in simply connected domains. In my Ph.D Thesis [14], I
extended the definition of SLE to multiply connected domains. The idea is to first define SLE
in each simply connected chart of the multiply connected domain using the known types of SLE
(growing in the simply connected subdomain) so that the SLE in different charts are consistent,
and then glue these SLE together to get a global SLE. In [15], I studied SLE in doubly connected
domains called annulus SLE, which can be defined using annulus Loewner equations. I proved
that annulus SLE6 satisfies the locality property as regular SLE6, and annulus SLE2 is the
scaling limit of loop-erased random walk in doubly connected domains. In [16], I studied some
properties of annulus SLE, especially how the curve interacts with the boundary of the domain.
Since there is no marked point in my definition, an annulus SLE curve in a doubly connected
domain starts from a boundary point, and ends at a random point in the other boundary
component. In [17], I followed the approach in [4] and proved that the loop-erased random
walk in any finitely connected domain started from a boundary point converges to the SLE2 in
the domain as defined in [14]. In the subsequent paper [18], I proved the convergence of the
loop-erased random walk in a finitely connected domain started from an interior point.

2 Reversibility and Duality

There were two major conjectures about SLE: reversibility and duality. The reversibility con-
jecture says that, for κ ∈ (0, 8], a chordal SLEκ curve (which runs from one boundary point to
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another boundary point in a simply connected domain) that goes from a to b is the reversal of
a chordal SLEκ curve that goes from b to a in the same domain. The duality conjectures says
that, for κ ∈ (4,∞), the outer boundary of an SLEκ curve looks similar to an SLE16/κ curve.

My work [19] solved the reversibility conjecture for κ ∈ (0, 4]. The main idea is that, instead
of studying the reversal of SLE directly, I constructed a coupling of two chordal SLEκ curves:
one from a to b, the other from b to a, such that these two SLE curves commute with each other,
which means that if we condition on the past of one curve at a stopping time, the other curve
becomes an SLEκ curve in the remaining domain aiming at the tip of the first curve. Then it
is easy to see that the two SLE curves in the commutation coupling overlap with each other,
and the reversibility conjecture is proved. A stochastic coupling technique was introduced in
[19] to construct the coupling of two SLEκ curves.

Shortly after, the coupling technique was used in my papers [20] and [21] to prove the
duality conjecture. The way that I proved the duality conjecture is to use the stochastic
coupling technique to construct a commutation coupling of an SLEκ curve (κ > 4) with an
SLE16/κ curve, such that in the coupling, the SLE16/κ curve is the outer boundary of the SLEκ
curve.

Later in [22] I used the coupling technique to prove the reversibility of SLE(κ; ρ) curves,
which are natural variants of regular SLE. In [23] I used the coupling technique to couple a
planar Brownian motion with an SLE2 curve, and showed that SLE2 can be obtained by erasing
loops on a planar Brownian motion.

After that, I worked on the reversibility of whole-plane SLE, which describes an interior-
to-interior curve in the Riemann sphere Ĉ. In my work [25], I proved that, for κ ∈ (0, 4], a
whole-plane SLEκ curve satisfies reversibility. The paper combines the above coupling technique
and the annulus Loewner equation introduced earlier in [15], and also uses some new idea. The
main idea is to couple two whole-plane SLEκ curves growing towards each other so that they
overlap. The annulus Loewner equation comes into play because after both curves grow for a
while, the remaining domain becomes doubly connected. The driving function for the curve
growing in the remaining domain using the annulus Loewner equation can not be a regular
Brownian motion because we have an extra marked point that the curve has to end at. We
need to find a suitable force function to control the influence of the target point on the driving
function. The force function must satisfy certain PDE in order for the two opposite curves to
commute with each other. The PDE was solved using a Feynman-Kac formula.

Later, I collaborated with Steffen Rohde to study backward SLE ([27]). A backward SLE
is defined using the backward Leowner equation, which differs from the (forward) Loewner
equation by a minus sign. A backward SLE process does not naturally generate a curve as a
forward SLE does. For κ ∈ (0, 4], a backward chordal SLEκ generates a welding of R, which is
a random automorphism φ of R that satisfies φ−1 = φ, φ(0) = 0, and φ(±∞) = ∓∞. The main
result in [27] is that the backward chordal SLEκ welding satisfies the following symmetry: Let
φ be a backward SLEκ welding and h(x) = −1/x. Then h ◦ φ ◦ h has the same law as φ. This
work illustrates another important application of the stochastic coupling technique, which is
used to construct a coupling of two backward SLEκ processes such that the weldings φ(1) and
φ(2) generated by the two processes satisfy that φ(1) = h ◦ φ(2) ◦ h.
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Since the backward SLE welding is a quite different object from the forward SLE curve,
we derived in [27] some fundamental results in Complex Analysis to study the backward SLE
process and its welding. Those results are used in constructing the coupling of backward SLE
processes, and are also interesting on their own. Furthermore, from the computation used in
that paper, we made an interesting observation that a backward SLEκ process may be viewed
as a forward SLE with parameter −κ. This observation extends the range of the parameter κ
for SLE from (0,∞) to (−∞, 0) ∪ (0,∞).

3 Tips and Decomposition of SLE

The symmetry property of backward SLE welding was later found useful in studying forward
SLE curves in my subsequent work [26], which combines the symmetry of backward SLE, the
conformal removability of SLEκ curves for κ ∈ (0, 4) ([3, 11]), and the forward/backward SLE
symmetry. In that paper, I proved that, for κ ∈ (0, 4), a whole-plane SLE(κ;κ + 2) curve (a
natural variant of regular whole-plane SLE) stopped at a deterministic (capacity) time satisfies
reversibility. This result has a different flavor from other reversibility results of SLE because
it is concerned with a stopped SLE curve instead of a complete SLE curve. An immediate
application of this reversibility result is that, for κ ∈ (0, 4), the tip of a chordal or radial
SLEκ curve at a deterministic capacity time looks similar to the initial part of a whole-plane
SLEκ(κ+ 2) curve, which agrees in law with the final part of a whole-plane SLEκ(κ+ 2) curve
by the reversibility of whole-plane SLEκ(ρ) process ([10]). From the SLE coordinate changes
([13]), we see that, for κ < 4, a chordal SLEκ curve stopped at a deterministic capacity time
looks like a chordal SLEκ(−8) curve with the force point being the tip of the former curve.

In my later paper [29], I extended the above result from κ ∈ (0, 4) to all κ > 0. That
paper does not use symmetry of backward SLE or conformal removability of SLE, but uses only
technique from stochastic processes. One main result of the paper states that, the following two
methods generate the same measure on the space of curve-point pairs: (i) first sample a point
z in a subdomain U of the half plane according to certain density function with close-form
formula, and then sample a chordal SLEκ(−8) curve that ends at z, and finally extend the
curve by a chordal SLEκ curve from z to ∞ in the remaining domain; (ii) first same a chordal
SLEκ curve γ from 0 to ∞, and then sample a point on γ according to the capacity time that
γ spends in U . One immediate corollary is that we get the expectation of the capacity time
that a chordal SLEκ curve spends in a given subset U of the half plane, which is equal to the
integral of the above density function on U .

Another major result of [29] involves two-sided radial SLE, Green’s function and natural
parametrization for SLE. Let κ ∈ (0, 8). A two-sided radial SLEκ curve in the half plane from 0
to ∞ that passes through a given point z0 has two arms: the first arm is a chordal SLEκ(κ− 8)
curve that grows from 0 to z0, and the second arm is a regular chordal SLEκ curve from z0 to
∞ in the remaining domain given the first arm. The Green’s function for a chordal SLEκ curve
γ is G(z) = limr↓0 r

d−2P[dist(z, γ) < r], where d = 1 + κ
8 is the Hausdorff dimension of SLEκ

([1]). The natural parametrization for SLEκ was introduced in [6, 7] as candidates of the limit
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of discrete lattice paths with there natural length, and was proved later in [5] to agree with the
d-dimensional Minkowski content of the SLE curve. It is stated in [29] that the following two
methods generate the same measure on the space of curve-point pairs: (i) first sample a point z
in a subdomain U of the half plane according to the Green’s function for SLEκ, and then sample
a two-sided radial SLEκ curve γ from 0 to ∞ that passes through z; (ii) first same a chordal
SLEκ curve γ, and then sample a point on γ ∩ U according to the d-dimensional Minkowski
measure on γ restricted to U . Thus, if one samples a point on a chordal SLEκ curve according
to its d-dimensional Minkowski content measure, then he sees a two-sided radial SLEκ near
that point. The result extends Field’s recent work [2] from κ ∈ (0, 4] to κ ∈ (0, 8).

4 Multi-point Green’s Functions for SLE

In a series of papers [28, 31], I collaborated with my postdoc Mohammad A. Rezaei to study the
multi-point Green’s functions. Let κ ∈ (0, 8), γ be a chordal SLEκ curve in a domain D, and
z1, . . . , zn be distinct points in D. The Green’s function for γ valued at (z1, . . . , zn) is defined
to be

G(z1, . . . , zn) = lim
r1,...,rn↓0

n∏
k=1

rd−2k P[dist(zk, γ) < rk, 1 ≤ k ≤ n], (1)

provided that the limit exists. The limit was previously only known to converge for n = 1, 2.
In [28], we obtained an upper bound of P[dist(zk, γ) < rk, 1 ≤ k ≤ n] in terms of a function

that can be easily handled. Using that upper bound, we concluded that, for any bounded
subdomain U of the half plane, the d-dimensional Minkowski content of a chordal SLEκ curve
γ restricted in U has finite moments of any order.

In [31], we proved that the upper bound in [28] for P[dist(zk, γ) < rk, 1 ≤ k ≤ n] is also its
lower bound, up to a multiplicative constant depending only on n. In addition, we proved that
the n-point Green’s function exists for any n ∈ N. We followed the approach of [8], where the
existence of 2-point Green’s function is proved. It takes some significant work to extend their
result to all n ≥ 3 because the argument in [8] uses the close-form formula of 1-point Green’s
function, while there is no close-form formulas for n-point Green’s function when n ≥ 2. The
argument in [31] relies on a series of careful estimates on the SLE curve, which may be useful
in the future. At the same time, we derived the convergence rate of the rescaled probability to
the n-point Green’s function, which was previously known only for n = 1. The upper bound
and lower bound for P[dist(zk, γ) < rk, 1 ≤ k ≤ n] then give us the up-to-constant sharp bound
of the multi-point Green’s function.

5 Arm Exponents for SLE

I had a joint paper with Hao Wu on arm exponents for SLE, which would give the alternating
half-plane arm exponents for the critical lattice models, which converge to SLE. Let γ be
a chordal SLEκ curve in the upper half plane growing from 0. Let D be a small semi-disc
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centered at 1 with radius ε > 0, and L be the half-infinite interval (−∞,−1]. For κ > 4,
we considered the event that γ visits D and L alternatively for n times, and estimated the
probability of that event as ε→ 0. In the paper, we derived exponents α+

n and proved that the

above probability is comparable to εα
+
n when ε is small.

The same setting does not work for κ ≤ 4 because in that case the SLEκ curve γ does not
intersect L. To solve this issue, we used a half-infinite strip (−∞,−1] × (0, h] in place of the
half-infinite interval (−∞,−1], where h > 0 is small but does not go to 0 as ε→ 0. In this case,
we also derived exponents α+

n and proved that the probability that γ visits D and L back and

forth for n times is comparable to εα
+
n when ε is small.

6 Future Goals

Currently, I am working on constructing SLEκ loops for κ ∈ (0, 8). It is a σ-finite measure on
the loops in Ĉ that start and end at a given point, say 0. I expect that the SLEκ loop satisfies
the following properties. First, it satisfies the domain Markov property, i.e., given any stopping
time, and conditional on the curve before the stopping time and the event that the curve is
not finished at that time, the rest of the curve is a regular chordal SLEκ curve growing in the
remaining domain. Second, it satisfies reversibility, i.e., the reversal of an SLEκ loop has the
same law as itself. Last, the SLEκ loop should be invariant under space-time shift. This means
that, if the SLEκ loop γ is parameterized by natural parametrization, i.e., the d-dimensional
Minkowski content measure, and if it is extended to be defined on R periodically, then for any
deterministic number t0 ∈ R, the new curve γt0(t) := γ(t0 + t) − γ(t0), t ∈ R, has the same
law as γ. The construction will use the results in [29], and the method may also be used to
construct SLEκ bubbles: a σ-finite measure on the loops in a simply connected domain that
starts and ends at a boundary point, which satisfies domain Markov property and reversibility.

Another project I am working on now is to extend the results of [28, 31] with my Graduate
students. We plan to get sharp bounds for the probability that a radial SLE visits a number
of discs as well as prove the existence of multi-point Green’s function for radial SLE. We also
plan to prove the existence of multi-point boundary Green’s function, where the z1, . . . , zn lie
on the boundary of the domain, and the exponent d− 2 is replaced by −α = 1− 8

κ . Moreover,
we want to study the properties of the multi-point Green’s functions, e.g., how the function
behaves when two points merge together.

The reversibility of chordal SLE and whole-plane SLE for κ ∈ (4, 8] were recently proved
in [9, 10]. Their papers used couplings of SLE with Gaussian free field. I am still looking
for a proof, which only uses traditional SLE techniques. Since it was proved in [29] that
for any κ ∈ (0, 8), chordal SLEκ can be constructed using two-sided radial SLEκ, we may
transform the reversibility of chordal SLEκ into the reversibility of two-sided radial SLEκ. Using
radial Loewner equation, we find that the reversibility of two-sided radial SLEκ is equivalent to
constructing a pair of real valued stochastic processes which commute with each other. I have
not been able to construct these processes, but there seems to be some hope.
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