
Lecture Notes on Random Variables and Stochastic Processes

This lecture notes mainly follows Chapter 1-7 of the book Foundations of Modern Probability
by Olav Kallenberg. We will omit some parts.

1 Elements of Measure Theory

We begin with elementary notation of set theory. We use union A ∪ B or
⋃
αAα, intersection

A ∩ B or
⋂
αAα, difference A \ B = {x ∈ A : x 6∈ B}, and symmetric difference A∆B =

(A \ B) ∪ (B \ A). A partition of a set A is a family At ⊂ A, t ∈ T , such that A =
⋃
tAt, and

for any t1 6= t2, At1 ∩ At2 = ∅. If a whole space Ω is fixed and contains all relative sets, the
complement Ac is Ω \A. Recall that

A ∩
(⋃

α

Bα

)
=
⋃
α

(A ∩Bα), A ∪
(⋂

α

Bα

)
=
⋂
α

(A ∪Bα)

(⋃
α

Aα

)c
=
⋂
α

Acα,
(⋂

α

Aα

)c
=
⋃
α

Acα.

A σ-algebra or σ-field in a nonempty set Ω is defined as a collection of A of subsets of Ω
such that

1. ∅,Ω ∈ A,

2. A ∈ A implies that Ac ∈ A,

3. An ∈ A for all n ∈ N implies that
⋃
nAn ∈ A and

⋂
nAn ∈ A.

We may also say that a σ-algebra is a class of subsets, which contains the empty set and
the whole space, and is closed under complement, countable union and countable intersection.
There are two trivial examples of σ-algebras. First, {∅,Ω} is the smallest σ-algebra. Second,
the collection 2Ω of all subsets of Ω is the biggest σ-algebra.

A measurable space is a pair (Ω,A), where Ω is a nonempty set and A is a σ-algebra in Ω.
Every element of A is called a measurable set.

We observe that if Aα, α ∈ A, is a family of σ-algebras in Ω, then
⋂
αAα is a σ-algebra in

Ω. We use this fact to define the σ-algebra generated by a collection of sets. Let C ⊂ 2Ω, i.e.,
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C is a collection of subsets of Ω. Let M(C) be the set of all σ-algebra A in Ω such that C ⊂ A.
We define

σ(C) =
⋂

A∈M(C)

A.

Then

1. σ(C) ⊃ C as A ⊃ C for every A ∈M(C).

2. σ(C) is a σ-algebra in Ω as it is the intersection of a collection of σ-algebras in Ω.

These two properties imply that σ(C) ∈ M(C), and so is the smallest σ-algebra in Ω that
contains C. We call σ(C) the σ-algebra generated by C. There are no simple expressions of σ(C)
in terms of union, intersection, and complement of elements of C.

If S is a topological space, then the Borel σ-algebra B(S) on S is the σ-algebra generated
by the topology of S, i.e., the collection of open subsets of S. Thus, a topological space is also
viewed as a measurable space. We write B for B(R).

Besides σ-algebras, the following notation will be useful for us.

1. A π-system C in Ω is a class of subsets of Ω, which is closed under finite intersection, i.e.,
A,B ∈ C implies that A ∩B ∈ C.

2. A λ-system D in Ω is a class of subsets of Ω, which contains Ω, and is closed under proper
difference and increasing limits. The former means that A,B ∈ D and A ⊃ B implies
that A \B ∈ D. The latter means that if A1 ⊂ A2 ⊂ A2 ⊂ · · · ∈ D, then

⋃
nAn ∈ D.

It is clear that A is a σ-algebra if and only if it is both a π-system and a λ-system. If E ⊂ 2Ω,
we may similarly define the π-system π(E) and the λ-system λ(E) generated by E , respectively.

The following monotone class theorem is very useful. An application of this result is called
a monotone class argument.

Theorem 1.1. If C is a π-system, then σ(C) = λ(C).

Proof. Since a σ-algebra containing C is also a λ-system containing C, we have λ(C) ⊂ σ(C).
We need to show that σ(C) ⊂ λ(C). It suffices to show that λ(C) is a σ-algebra. Since it is
already a λ-system, we only need to show that it is a π-system. This means we need to show
that, if A,B ∈ λ(C), then A ∩B ∈ λ(C).

At the beginning, since C is a π-system, we know that if A,B ∈ C, then A ∩B ∈ C ⊂ λ(C).
Now we show that

A ∈ C and B ∈ λ(C) implies that A ∩B ∈ λ(C). (1.1)

We prove this statement in an indirect way. Fix A ∈ C. Consider the set

SA := {B ⊂ Ω : A ∩B ∈ λ(C)}.

Then
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1. C ⊂ SA,

2. SA is a λ-system.

To check the second claim, we note that

1. Ω ∈ SA because Ω ∩A = A;

2. If B1 ⊃ B2 ∈ SA, then B1∩A ⊃ B2∩A, and so (B1 \B2)\A = (B1∩A)\(B2∩A) ∈ Λ(C).
Thus, B1 \B2 ∈ SA;

3. If B1 ⊂ B2 ⊂ B3 ⊂ · · · ∈ SA, then B1 ∩ A ⊂ B2 ∩ A ⊂ B3 ∩ A ⊂ · · · ∈ Λ(C). So⋃
Bn ∩A =

⋃
(Bn ∩A) ∈ Λ(C), which implies that

⋃
Bn ∈ SA.

This means that SA is a λ-system that contains C. So SA contains λ(C). This finishes the proof
of (1.1).

Next we show that

A ∈ λ(C) and B ∈ λ(C) implies that A ∩ B ∈ λ(C).

This is enough to conclude that λ(C) is a π-system. For the proof, for any A ∈ λ(C), we define
SA by the same way as before. By (1.1, SA contains C. The argument in the last paragraph
shows that SA is a λ-system. So SA contains λ(C), and the proof is complete.

For any family of spaces Ωt, t ∈ T , the Cartesian product
∏
t Ωt is the class of all collections

(ωt : t ∈ T ), where ωt ∈ Ωt for all t ∈ T . When T = {1, . . . , n} or T = N = {1, 2, . . . }, we write
the product space as Ω1 × · · · × Ωn and Ω1 × Ω2 × · · · . If all Ωt = Ω, we use the notation ΩT ,
Ωn, or Ω∞.

If each Ωt is equipped with a σ-algebra At, then we introduce the product σ-algebra
∏
tAt

as the σ-algebra in
∏
t Ωt generated by the class of cylinder sets

{At ×
∏
s 6=t

Ωs = {(ωs : s ∈ T ) : ωt ∈ At and ωs ∈ Ωs for s 6= t} : t ∈ T,A ∈ At}. (1.2)

We call (
∏
t Ωt,

∏
tAt) the product of the measurable spaces (Ωt,At), t ∈ T . In special cases,

we use the symbols A1 × · · ·An, A1 ×A2 × · · · , AT , An, A∞.
In Topology, one may define product of topological space, which is also a topological space.

A natural question to ask is whether the Borel σ-algebra generated by the product topology
agrees with the product of the Borel σ-algebra generated by each topology. The answer is Yes if
we only consider a countable product and each space is a separable metric space. A topological
space is called separable if it contains a countable dense set.

Lemma 1.2. Let S1, S2, . . . be separable metric spaces. Then

B(S1 × S2 × · · · ) = B(S1)× B(S2)× · · · .

We remark that the product on the left is about topological spaces, and the product on the right
is about measurable spaces. For example, since R is a separable metric space, B(Rn) = Bn.
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Proof. Let Tn denote the topology in Sn. Then σ(Tn) = B(Sn). Let

Cnσ = {An ×
∏
m 6=n

Sm : An ∈ B(Sn)}, CnT = {An ×
∏
m 6=n

Sm : An ∈ Tn}, n ∈ N;

Cσ =
⋃
n Cnσ and CT =

⋃
n CnT . By definition of product σ-algebra,

B(S1)× B(S2)× · · · = σ(Cσ).

On the other hand, the product topology on S1×S2×· · · is the topology generated by CT . We
denote it by T (CT ). Thus, the Borel σ-algebra on the product space is

B(S1 × S2 × · · · ) = σ(T (CT )).

It remains to show that σ(Cσ) = σ(T (CT )). It is easy to show that Cnσ = σ(CnT ) for each n.
So

σ(Cσ) = σ(
⋃
n

Cnσ ) ⊂ σ(
⋃
n

σ(CnT )) = σ(
⋃
n

CnT ) = σ(CT ) ⊂ σ(T (CT )).

For the other direction, we use the fact that each Tn has a countable base, i.e., there is a
countable set T ′n ⊂ Tn such that each element of Tn can be expressed as a union of some elements
of T ′n. To construct T ′n, let An be a countable dense subset of Sn (because Sn is separable), and
let

T ′n = {{w ∈ Sn : dist(w, z) < q} : z ∈ An, q ∈ Q+}.

It is easy to check that T ′n satisfies the desired property. We may use T ′n to construct a countable
basis of the topology in S1 × S2 × · · · , namely

A1 ×A2 × · · · ×Am × Sm+1 × Sm+1 × · · · ,

where m ∈ N and Aj ∈ T ′j for 1 ≤ j ≤ m. Every element of the countable basis belongs to
σ(Cσ). Since every open set in S1 × S2 × · · · is a countable union of elements in the basis, we
have T (CT ) ⊂ σ(Cσ). Thus, σ(T (CT )) ⊂ σ(Cσ). The proof is then complete.

Let S and T be two nonempty sets. A point mapping f : S → T induces two set mappings
f : 2S → 2T and f−1 : 2T → 2S such that

fA = {f(x) : x ∈ A}, f−1B = {x ∈ S : f(x) ∈ B}

for A ⊂ S and B ⊂ T . Note that for the definition of f−1 we do not need f to be surjective or
injective. Then we have

f−1Bc = (f−1B)c, f−1
⋃
t

Bt =
⋃
t

f−1Bt, f−1
⋂
t

Bt =
⋂
t

f−1Bt. (1.3)

For a class C ⊂ 2T , we define
f−1C = {f−1B : B ∈ C}.
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Lemma 1.3. Let S and T be σ-algebras in S and T , respectively. Then f−1T is a σ-algebra
in S and {B ⊂ T : f−1B ∈ S} is a σ-algebra in T .

Proof. It follows directly from (1.3).

In the setup of Lemma 1.3, we call f−1T , denoted by σ(f), the σ-algebra induced or gen-
erated by f ; and if f−1T ⊂ S, then we say that f is S/T -measurable or simply measurable if
S and T are fixed. Note that σ(f) is the smallest σ-algebra in S w.r.t. which f is measurable.

Lemma 1.4. If C ⊂ 2T satisfies that T = σ(C), then f−1T ⊂ S if and only if f−1(C) ⊂ S.

Proof. Clearly f−1T ⊂ S implies that f−1(C) ⊂ S. On the other hand, if f−1(C) ⊂ S then
by Lemma 1.3, the class of sets B ⊂ T such that f−1(B) ∈ S is a σ-algebra in T . Such class
contains C by assumption, and so it contains σ(C) = T . Thus, we get f−1T ⊂ S.

Lemma 1.5. If f : S → T is a continuous mapping between two topological spaces, then f is
measurable with respect to the Borel σ-algebras B(S) and B(T ).

Proof. Let TS and TT be the topologies in S and T , respectively. Then B(S) = σ(TS) and
B(T ) = σ(TT ). By continuity of f , f−1TT ⊂ TS ⊂ B(S). By Lemma 1.4, f−1B(T ) ⊂ B(S).

Let C ⊂ 2S and A ⊂ S. We define

A ∩ C = {A ∩B : B ∈ C} ⊂ 2A.

It is clear that if C is a σ-algebra in S, then A ∩ C is a σ-algebra in A. We then call (A,A ∩ C)
a (measurable) subspace of (S, C). This definition mimics that of topological subspaces.

Lemma 1.6 (slight variation). If A ⊂ S and C ⊂ 2S, then σA(A ∩ C) = A ∩ σS(C). Here we
use σA(·) (resp. σS(·)) to denote the σ-algebra in A (resp. S) generated by some class.

Proof. Since C ⊂ σS(C), A ∩ C ⊂ A ∩ σS(C). Since the RHS is a σ-algebra in A, we get
σA(A ∩ C) ⊂ A ∩ σS(C). To prove the other direction, let S denote the class of B ⊂ S such
that A ∩ B ∈ σA(A ∩ C). Then S contains C and A ∩ S ⊂ σA(A ∩ C). Since σA(A ∩ C)
is a σ-algebra in A, it is easy to see that S is a σ-algebra in S. Thus, S ⊃ σS(C), and so
A ∩ σS(C) ⊂ σA(A ∩ C).

Suppose (S, C) is a topological space, and A ⊂ S. Then A is a topological subspace with
topology A∩C. By Lemma 1.6, B(A) = A∩B(S), and so A is also a measurable subspace of S.

Lemma 1.7 (composition). For three measurable spaces (S, S), (T, T ), and (U,U), and two
measurable mappings f : S → T and g : T → U , the composition g ◦ f : S → U is measurable.

Proof. We have (g ◦ f)−1U = f−1g−1U ⊂ f−1T ⊂ S.

Lemma 1.8. Let (Ω,A) and (St, St), t ∈ T . be measurable spaces. Let U ⊂
∏
t St and

f : Ω → U . Then f is U ∩
∏
t St-measurable if and only if for each t ∈ T , ft := πt ◦ f is

St-measurable, where πt :
∏
r Sr → St is the t-th coordinate map.
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Proof. Suppose f is U ∩
∏
t St-measurable. Fix t ∈ T and B ∈ St. We have

f−1
t B = f−1(B ×

∏
s 6=t

Ss) = f−1(U ∩ (B ×
∏
s 6=t

Ss)) ∈ A.

So ft is St-measurable. Now suppose each ft is St-measurable. Then for each cylinder set in
ST of the form B ×

∏
s 6=t Ss, B ∈ St, we have f−1(B ×

∏
s 6=t Ss) = f−1

t B ∈ A. Since the class

of such cylinder sets generates the σ-algebra
∏
t St, by Lemma 1.4, f−1

∏
t St ⊂ A. Thus, f is∏

t St-measurable if we treat it as a function from Ω to
∏
t St. For any A ∈ U ∩

∏
t St, there is

B ∈
∏
t St such that A = U ∩B. Then f−1A = f−1B ∈ A. So f is U ∩

∏
t St-measurable.

Recall that σ(f) = f−1
∏
t St and σ(ft) = f−1

t , t ∈ T , are the σ-algebras in Ω induced by f
and ft, respectively. Let

σ(ft : t ∈ T ) = σ(
⋃
t∈T

σ(ft)),

and we call it the σ-algebra generated by ft, t ∈ T .

Corollary . σ(f) = σ(ft : t ∈ T ).

Proof. This follows immediately from Lemma 1.8. We leave it as an exercise.

We use the following symbols:

R+ = [0,∞), R = [−∞,∞], R+ = [0,∞].

The latter two spaces have Borel σ-algebras

B(R) = σ(B, {∞}, {−∞}), B(R+) = σ(B(R+), {∞}).

We now fix a measurable space (Ω,A). A function f from Ω into an interval I ⊂ R is
measurable if and only if for any x ∈ I, {ω : f(ω) ≤ x} is measurable. This follows from
Lemma 1.4 and the fact that the class (−∞, x]∩ I, x ∈ I, generates the σ-algebra B(I) = I ∩B.
We will often write {f ≤ x} for {ω : f(ω) ≤ x}. The inequality ≤ x may be replaced by < x,
≥ x, or > x. The statements also hold for I = R or R+.

Lemma 1.9. For any sequence of measurable functions f1, f2, . . . from (Ω,A) into R, supn fn,
infn fn, lim sup fn and lim inf fn are also measurable.

Proof. We use the equalities

{sup
n
fn ≤ x} =

⋂
n

{fn ≤ x}, {inf
n
fn ≥ x} =

⋂
n

{fn ≥ x},

lim sup fn = inf
n

sup
m≥n

fm, lim inf fn = sup
n

inf
m≥n

fm.
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This lemma in particular implies that the limit of measurable functions (if it exists pointwise)
is measurable. This statement also holds for a general metric space.

Lemma 1.10. Let f1, f2, . . . be measurable functions from (Ω,A) into some metric space (S, ρ).
Then

(i) If fn → f , then f is measurable.

(ii) If (S, ρ) is separable and complete, then {ω : lim fn(ω) converges} is measurable.

Proof. (i) If fn → f , then for any continuous function g : S → R, we have g ◦ fn → g ◦ f . So
g ◦ f from Ω to R is measurable by Lemmas 1.5, 1.7 and 1.9. Fixing an open set G ⊂ S. We
may choose some continuous functions gn : S → R+ such that gn ↑ 1G. In fact, we may let

gn(s) = min{1, nρ(s,Gc)},

where ρ(s,Gc) = inf{ρ(s, t) : t ∈ Gc} is the distance from s to Gc, which is continuous in s
by the triangle inequality. Since each gn ◦ f is measurable, 1G ◦ f = 1f−1G is measurable. So
f−1(G) is measurable for every open set G. By Lemma 1.4, f is measurable.

(ii) Since S is complete, lim fn(ω) converges if and only if (fn(ω)) is a Cauchy sequence in
S. Now

{ω : (fn(ω)) is Cauchy in S} =
⋂
m

⋃
N

⋂
n1≥N

⋂
n2≥N

{ω : ρ(fn1(ω), fn2(ω)) <
1

m
}.

This formula is another way to state that (fn(ω)) is a Cauchy sequence if and only if for any m ∈
N there exists N ∈ N such that for any n1, n2 ≥ N , ρ(fn1(ω), fn2(ω)) < 1

m . To prove that the set
on the RHS is measurable it suffices to show that for any m,n1, n2, {ω : ρ(fn1(ω), fn2(ω)) < 1

m}
is measurable. For that purpose, we use the fact that

(i) by Lemma 1.8, (fn1 , fn2) : Ω→ S2 is A/B(S)2-measurable;

(ii) the map S2 3 (s1, s2) 7→ ρ(s1, s2) ∈ R+ is continuous (follows easily from the triangle
inequality), and so by Lemma 1.5 is measurable w.r.t. B(S2);

(iii) by Lemma 1.2, B(S2) = B(S)2; (we use the separability of S here);

(iv) by Lemma 1.7, ρ(fn1 , fn2) : Ω→ R+ is A-measurable.

Lemma 1.12. For any measurable function f, g : (Ω,A)→ R and a, b ∈ R, af + bg and fg are
measurable. If, in addition, g does not take value 0, then f/g is measurable.

Proof. To prove the measurability of af + bg, we express af + bg as the composition of the map
(f, g) : Ω → R2 and the continuous function R2 3 (x, y) 7→ ax + by ∈ R. The proof for fg is
similar. For f/g, we express f/g as the composition of (f, g) : Ω→ R× (R \ {0}) and the the
continuous function R× (R \ {0}) 3 (x, y) 7→ x/y ∈ R.
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For any A ⊂ Ω, we define the associated indicator function 1A : Ω → R to be equal to 1
on A and to 0 on Ac. Sometimes we write 1A instead of 1A. It is clear that 1A is measurable
(w.r.t. A) if and only if A is a measurable set (w.r.t. A).

Linear combinations of indicator functions are called simple functions. Thus, a simple
function f : Ω→ R is of the form

f = c11A1 + · · · cn1An ,

where n ∈ N, A1, . . . , An ⊂ Ω and c1, . . . , cn ∈ R. Here we only allow finite sums. If
A1, . . . , An ∈ A, then f is A-measurable, and called a measurable simple function.

Lemma 1.11. For any measurable function f : (Ω,A) → R+, there exist a sequence of mea-
surable simple functions fn : (Ω,A)→ R+ such that fn ↑ f .

We use the following symbols from now on. For a, b ∈ R, we use a ∧ b and a ∨ b to denote
min{a, b} and max{a, b}, respectively. The symbols also extend to a1 ∧ · · · ∧ an, a1 ∨ · · · ∨ an,
∧tat, and ∨tat, where the latter two are alternative ways to write inft at and supt at.

For x ∈ R, we use bxc to denote the biggest integer n with n ≤ x, and use dxe to denote
the smallest integer n with n ≥ x. Then bxc and dxe are monotone increasing.

Proof. We let

fn =
b2n(f ∧ n)c

2n
, n ∈ N.

Then 0 ≤ fn ≤ f ∧ n. We se that fn is a simple measurable function because it takes values in
{ k2n : 0 ≤ k ≤ n2n},

f−1
n ({ k

2n
}) = {ω :

k

2n
≤ f(ω) <

k + 1

2n
}, 0 ≤ k < n2n, (1.4)

f−1
n ({n2n

2n
}) = {ω : n ≤ f(ω)},

and the sets on the RHS are all measurable. To see that (fn) is increasing in n, we use the
inequality

b2n(f ∧ n)c
2n

≤ b2
n(f ∧ (n+ 1))c

2n
≤ b2

n+1(f ∧ (n+ 1))c
2n+1

,

where the second “≤” follows from b2xc ≥ 2bxc. Finally, we show that fn → f pointwise.
Fix ω ∈ Ω. If f(ω) = ∞, then fn(ω) = n → f(ω). Suppose f(ω) < ∞. Let ε > 0. We
may choose N such that N > f(ω) and 1

2N
< ω. For n ≥ N , by (1.4), we get the inequality

|fn(ω)− f(ω)| ≤ 1
2n < ε.

We say that two measurable spaces (S, S) and (T, T ) are Borel isomorphic if there is a
bijection f : S → T such that both f and f−1 are measurable. This means that f−1T = S and
fS = T . A space S that is Borel isomorphic to a Borel subset I of [0, 1], equipped with the
Borel σ-algebra B(I) = I ∩ B([0, 1]), is called a Borel space. By the following lemma, a Polish
space is a Borel space.
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Definition . A Polish space is a topological space, which admits a separable and complete
metrization.

Lemma A1.6. A Polish space S is a Borel space.

Sketch of the proof. The first step is to construct a continuous and injective function f : S →
[0, 1]∞. Let (sn) be a dense sequence in S. Then we define f(x) = (1 ∧ ρ(x, sn)). The second
step is to use binary expansions to construct a measurable injective function g : [0, 1]∞ → [0, 1].
See Chapter 13 of Dudley, R.M.’s “Real Analysis and Probability” for details.

For two functions f : Ω→ (S, S) and g : Ω→ (T, T ), where (S, S) and (T, T ) are measurable
spaces, we say that f is g-measurable if σ(f) ⊂ σ(g), or equivalently, f−1S ⊂ g−1T . If there is
a (T/S-)measurable map h : T → S such that f = h ◦ g, then

f−1S = g−1h−1S ⊂ g−1T .

So f is g-measurable. Under some mild conditions, the converse is also true.

Lemma 1.13. Under the above setup, if (S, S) is a Borel space, then f is g-measurable if and
only if there exists some measurable map h : T → S such that f = h ◦ g.

Proof. We only need to show the “only if” part. Since S is Borel, we may assume that S ∈
B([0, 1]). We may then view f as a map from Ω into [0, 1]. This new viewpoint does not change
σ(f). So f is still g-measurable. If in this case, there exists a measurable map h̃ : T → [0, 1]
such that f = h̃ ◦ g. Then we may define h such that h = h̃ on h̃−1(S), and h = s0 on
h̃−1([0, 1] \ S), where s0 is a fixed point in S. Then h : T → S is measurable, and f = h ◦ g.
Thus, it suffices to assume that S = [0, 1].

If f = 1A, and A ∈ σ(g), then A = g−1B for some B ∈ T . So f = 1B ◦g and we may choose
h = 1B. The result extends by linearity to any g-measurable simple functions. In the general
case, by Lemma 1.11, there exists a sequence of g-measurable simple functions fn : Ω → [0, 1]
such that fn ↑ f . For each n, there exists an T -measurable map hn : T → [0, 1] such that
fn = hn ◦ g. Then h := supn hn : T → [0, 1] is also T -measurable by Lemma 1.9. Finally, we
note that

h ◦ g = (sup
n
hn) ◦ g = sup

n
(hn ◦ g) = sup

n
fn = f.

Definition . A measure on a measurable space (Ω,A) is a map µ : A → R+, which satisfies
µ∅ = 0 and

µ
⋃
n

An =
∑
n

µAn, for all mutually disjoint A1, A2, · · · ∈ A. (1.5)

The triple (Ω,A, µ) is then called a measure space. The measure µ is called finite if µΩ < ∞,
and is called a probability measure if µΩ = 1. In the latter case, (Ω,A, µ) is called a probability
space. The µ is called a σ-finite measure if there is a sequence A1, A2, · · · ∈ A such that
Ω =

⋃
nAn and µAn <∞ for each n.
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Remark . The property (1.5) is called countably additivity, which clearly implies finitely addi-
tivity:

µ
N⋃
n=1

An =
N∑
n=1

µAn, for all mutually disjoint A1, A2, . . . An ∈ A,

by setting An = ∅ for n > N , and countably subadditivity:

µ
⋃
n

Bn ≤
∑
n

µBn, for all B1, B2, · · · ∈ A,

by defining An = Bn \
⋃
k<nBk.

Lemma 1.14 (Continuity). Let µ be a measure on (Ω,A), and let A1, A2, · · · ∈ A.

(i) If An ↑ A, then µAn ↑ µA.

(ii) If An ↓ A, and µA1 <∞, then µAn ↓ µA.

Proof. (i) We apply (1.5) to Dn = An \An−1 with A0 = ∅. (ii) We apply (i) to Bn = A1 \An.
Since µA1 <∞, we have µAn <∞ as well, and µBn = µA− µAn ↑ µA1 − µA.

Exercise . Suppose µ : A → R+ satisfies finitely additivity and the property that if B1 ⊃
B2 ⊃ · · · ∈ A, and there is ε > 0 such that µBn ≥ ε > 0 for all n, then

⋂
nBn 6= ∅. Prove that

µ is a measure.

Exercise . Prove that for two measures µ and ν on (Ω,A) with µΩ = νΩ < ∞, the class
D = {A ∈ A : µA = νA} is a λ-system.

By monotone class theorem and the above exercise, we conclude that if two probability
measures on (Ω,A) agree on a π-system C with σ(C) = A, then the two measures must agree.

We may do the following operations on measures. If µ is a measure, and c ∈ R+, then cµ is
also a measure. If µ is finite, then 1

µΩµ is a probability measure. The sum of two measures is
a measure. If (µn) is an increasing sequence of measures, then limµn is also a measure; if (µn)
is a decreasing sequence of measures, and µ1 is finite, then limµn is also a measure (Lemma
1.15). Thus, if µ1, µ2, . . . are measures on the same space, then

∑
n µn is a measure.

If µ is a measure on (Ω,A) and B ∈ A, then µ(· ∩B) : A 3 A 7→ µ(A∩B) is also a measure
on (Ω,A). It is called the restriction of µ to B. One may also view the restriction as a measure
on the measurable subspace (B,B ∩ A).

The simplest measure is the zero measure, which takes value zero at all A ∈ A. Another
natural measure is the counting measure: µA = #(A) if A is finite; µA =∞ if otherwise. For
s ∈ Ω, the Dirac measure (also called point mass) δs is defined by δs(A) = 1 if s ∈ A, and
δs(A) = 0 if otherwise.

The most important nontrivial measure is the Lebesgue measure λ. It is the unique measure
on (R,B) such that for any interval I, λI equals |I|, the length of I. It is σ-finite because
R =

⋃
n∈Z[n, n+ 1). The proof uses the Carathéodory extension theorem stated below.
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We call a class R ⊂ 2Ω a ring if it contains ∅ and is closed under finite union and difference,
i.e., A,B ∈ R implies that A ∪ B,A \ B ∈ R. A map µ : R → R+ is called a pre-measure
if µ∅ = 0 and µ satisfies countably additivity, i.e., if A1, A2, · · · ∈ R is a partition of A ∈ R,
then µA =

∑
n µAn. By considering the sets Bn = A \

⋃n
k=1Bk, we find that countably

additivity is equivalent to the combination of finitely countability and the statement that for
any B1 ⊃ B2 ⊃ · · · ∈ R, if there is ε > 0 such that µBn ≥ ε for all n, then we have

⋂
nBn 6= 0.

If R has a partition A1, A2, · · · ∈ R such that µAn <∞ for each n, then µ is called σ-finite.

Theorem (Carathéodory extension theorem). A pre-measure µ on a ring R extends to a
measure on σ(R). The extension is unique if µ is σ-finite.

We will only give a sketch of the proof of Carathéodory extension theorem, but will provide
details of the application of the theorem in constructing the Lebesgue measure because similar
arguments will be used later.

Proof of Carathéodory extension theorem (Sketch). The uniqueness part follows from a mono-
tone class argument. Note that for any n, the class An ∩R is a π-system in An, and if µ1 and
µ2 are two extensions, then the set of B ∈ An ∩σ(R) such that µ1B = µ2B form a λ-system in
An. The existence part uses outer measures. For every A ⊂ Ω, we define the outer measure of
A by

µ∗A = inf
R3I⊃A

µI.

It is clear that µ∗ = µ on R. Then we consider the set F of all A ⊂ Ω such that for every
E ⊂ Ω,

µ∗E = µ∗(E ∩A) + µ∗(E \A).

Then one can prove the following statements:

(i) F is a σ-algebra containing R;

(ii) µ∗ restricted to F is a measure.

By (i), F ⊂ σ(R). By (ii), µ∗|σ(R) is the extension that we want.

To construct Lebesgue measure, we define a ring R in R to be the class of finite disjoint
unions of intervals of the form (a, b], where a < b ∈ R. For an element A ∈ R expressed as
disjoint union

⋃m
k=1(ak, bk], we define µA =

∑m
k=1(bk − ak). It is easy to check that µ satisfies

finitely additivity. Then we need to show that, if A1 ⊃ A2 · · · ∈ R, and µAn ≥ ε > 0 for all n,
then

⋂
nAn 6= ∅. For each n, we may pick A′n ∈ R such that A′n ⊂ An and µ(An \ A′n) < ε/2n

(if An =
⋃m
k=1(ak, bk], we set A′n =

⋃m
k=1(a′k, bk] such that ak < a′k < bk and a′k − ak is

small enough). Let A′′n =
⋂n
k=1A

′
n. Then A′′n ⊂ An for each n, and A′′1 ⊃ A′′2 ⊃ · · · . Since

An \ A′′n ⊂
⋃n
k=1(Ak \ A′k), we get µ(An \ A′′n) ≤

∑n
k=1 µ(Ak \ A′k) <

∑n
k=1

ε
2k

< ε. From

µAn > ε we get µA′′n > 0, and so A′′n 6= ∅. Since each A′′n is compact and A′′1 ⊃ A′′2 ⊃ · · · , we
get

⋂
nA
′′
n 6= ∅, which together with A′′n ⊂ An implies that

⋂
nAn 6= ∅. So µ is a pre-measure

on R. We may then use Carathéodory extension theorem to extend µ to a measure on R. It is
easy to check that the extension is the Lebesgue measure.
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Lemma 1.16 (Regularity). Let µ be a finite measure on some metric space S. Then for any
B ∈ B(S),

µB = sup
F⊂B

µF = inf
G⊃B

µG, (1.6)

with F and G restricted to the classes of closed and open subsets of S, respectively.

Proof. Let C denote the set of B which satisfies (1.6). Then (i) S ∈ C because S is both closed
and open; (ii) B ∈ C implies that Bc ∈ C since F ⊂ B and F is closed if and only if F c ⊃ Bc

and F c is open; (iii) B1, B2 ∈ C implies that B1 ∪ B2 ∈ C because if for j = 1, 2, closed sets
F jn ⊂ Bj , n ∈ N, satisfy µF jn → µBj and open sets Gjn ⊃ Bj , n ∈ N, satisfy µGjn → µBj , then
µ(F 1

n ∪ F 2
n)→ µ(B1 ∪B2) and µ(G1

n ∪G2
n)→ µ(B1 ∪B2). The first follows from

(B1 ∪B2) \ (F 1
n ∪ F 2

n) ⊂ (B1 \ F 1
n) ∪ (B2 \ F 2

n),

and the second is similar. The (ii) and (iii) together imply that C is closed under difference.
Suppose (Bn) is an increasing sequence in C, and B =

⋃
nBn. Fix any ε > 0. We may first

choose n such that µBn > µB−ε/2, and then choose closed F ⊂ Bn such that µF > µBn−ε/2.
Since F ⊂ B and µF > µB − ε, we get µB = supF⊂B µF . On the other hand, for each n ∈ N,
we may choose open Gn ⊃ Bn such that µGn < µBn + ε

2n . Let G =
⋃
nGn. Then G is open,

G ⊃ B, and µ(G \B) <
∑

n
ε

2n = ε. Thus, µB = infG⊃B µG. So B ∈ C. Hence C is a λ-system.
We also know that C contains all open sets since every open set G can be written as a union
of an increasing sequence of closed sets. By monotone class theorem, C contains the Borel
σ-algebra B(S), i.e., (1.6) holds for any B ∈ B(S).

Let µ be a measure on (S, S), and f is a measurable map from (S, S) into (T, T ), then we
get a measure µ ◦ f−1 (also denoted by f∗µ) on (T, T ) defined by

(µ ◦ f−1)A = µf−1A.

It is called the pushforward of µ under f .
Given a measure space (Ω,A, µ), we are going to define the integral

µf =

∫
fdµ =

∫
f(ω)µ(dω)

for certain real valued measurable function f on (Ω,A). The construction is composed of several
steps.

Step 1. If f is a nonnegative measurable simple function of the form

f = c11A1 + · · · cn1An

with c1, . . . , cn ∈ R+ and A1, . . . , An ∈ A, we define

µf = c1µA1 + · · ·+ cnµAn.

12



Throughout measure theory we follow the convention that 0 ·∞ = 0. Using the finite additivity
of µ, one can show that the definition is consistent, i.e., if f has another expression: d11B1 +
· · · dm1Bm , then d1µB1 + · · · + dmµBm equals the same number. We then get linearity and
monotonicity: for nonnegative measurable simple functions f and g:

µ(af + bg) = aµf + bµg, for a, b ≥ 0; (1.7)

µf ≥ µg ≥ 0, if f ≥ g. (1.8)

Exercise . Check the consistency and formulas (1.7) and (1.8).

Step 2. If f : Ω → R+ is measurable, by Lemma 1.11 we may choose a sequence of
nonnegative measurable simple functions (fn) such that fn ↑ f . Then we define

µf = limµfn.

We also need to prove the consistency, i.e., the definition does not depend on the choice of (fn).

Lemma 1.18. Let f1, f2, · · · and g be simple measurable functions on Ω such that 0 ≤ f1 ≤
f2 ≤ · · · and 0 ≤ g ≤ lim fn. Then limµfn ≥ µg.

Proof. First suppose g = c1A for c ∈ R+ and A ∈ A. If c = 0, it is trivial. For c > 0, fix
ε ∈ (0, c) and let An = A ∩ {fn ≥ c− ε}. Then An ↑ A, and so

µfn ≥ µ(c− ε)1An = (c− ε)µAn ↑ (c− ε)µA.

So limµfn ≥ (c− ε)µA. Letting ε→ 0, we get limµfn ≥ cµA = µg.
Now suppose g = c11A1 + · · · cm1Am with c1, . . . , cm ∈ R+ and A1, . . . , Am ∈ A. We

may assume that A1, . . . , Am are mutually disjoint. Let µk = µ(· ∩ Ak), 1 ≤ k ≤ m, and
µ0 = µ(· ∩ (

⋃
k Ak)

c). Then µ =
∑n

k=0 µk. So µfn ≥
∑m

k=1 µkfn. For 1 ≤ k ≤ m, since
limn fn ≥ g ≥ ck1Ak , by the above paragraph we get limn µkfn ≥ ckµAk. Thus,

lim
n
µfn ≥ lim

n

m∑
k=1

µkfn =

m∑
k=1

lim
n
µkfn ≥

m∑
k=1

ckµAk = µg.

Applying this lemma, we see that if (fn) and (gm) are two sequences of measurable simple
functions with 0 ≤ fn ↑ f and 0 ≤ gm ↑ f , then for each m, limn µfn ≥ µgm. So limn µfn ≥
limm µgm. By symmetry, we have limm µgm ≥ limn µfn. So limn µfn = limm µgm, and we get
the consistency in the definition of µf .

We can easily prove the linearity and monotonicity: for measurable functions f and g from
Ω into R+, (1.7) and (1.8) both hold.

Theorem 1.19 (Monotone Convergence Theorem). Let f1, f2, · · · : (Ω,A)→ R+ be measurable.
Suppose fn ↑ f . Then µfn ↑ µf .
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Proof. For each n, we choose a sequence of measurable simple functions (gnk ) such that gnk ↑ fn
as k →∞. Then µfn = limk µg

n
k . Define

hk = g1
k ∨ g2

k ∨ · · · ∨ gkk .

Then (hk) is an increasing sequence of nonnegative simple measurable functions. Since for each
k ∈ N, hk ≤ f1 ∨ f2 ∨ · · · fk = fk ≤ f , we have limhk ≤ f and

limµhk ≤ limµfk ≤ µf. (1.9)

For any fixed n ∈ N, we have hk ≥ gnk for k ≥ n. So limhk ≥ limk g
n
k = fn. Thus, limhk ≥

sup fn = f . So we get hk ↑ f and µf = limµhk. By (1.9) we get limµfk = µf .

Lemma 1.20 (Fatou). For any measurable functions f1, f2, · · · : (Ω,A)→ R+, we have

lim inf µfn ≥ µ lim inf fn.

Proof. Fix n ∈ N. Since fk ≥ infm≥n fm for all k ≥ n, by monotonicity,

inf
k≥n

µfk ≥ µ inf
m≥n

fm.

Letting n→∞ and using monotone convergence theorem, we get

lim inf µfn = lim
n

inf
k≥n

µfk ≥ lim
n
µ inf
m≥n

fm = µ lim
n

inf
m≥n

fm = µ lim inf fn.

Step 3. We define µf for integrable functions. A measurable function f : (Ω,A, µ) → R
is called integrable if µ|f | <∞. Here since |f | is a nonnegative measurable function, µ|f | was
defined in Step 2. For the definition, we find two nonnegative measurable functions f1 and f2

such that f = f1 − f2 and µf1, µf2 <∞, and then let

µf = µf1 − µf2.

For the existence of such f1 and f2, we may let f1 = f+ := f ∨ 0 and f2 = f− := (−f) ∨ 0. In
fact, we have f+, f− ≥ 0, f = f+ − f−, and |f | = f+ + f−. So 0 ≤ f± ≤ |f |, which implies that
µf± ≤ µ|f | <∞. For the consistency, suppose g1 and g2 satisfy the same properties as f1 and
f2. Then from f1 − f2 = g1 − g2 we get f1 + g2 = g1 + f2, and so µf1 + µg2 = µg1 + µf2. Since
every item is a real number, we get µf1 − µf2 = µg1 − µg2. Thus, µf is well defined. Finally,
since µf = µf+ − µf− and µ|f | = µf+ + µf−, we get |µf | ≤ µ|f |.

We then have the monotonicity and the linearity with real coefficient: if f, g : Ω → R are
integrable, and a, b ∈ R, then af + bg is also integrable, and µ(af + bg) = aµf + bµg.

In summary, the integral µf is defined for (i) all measurable functions f : (Ω,A, µ) → R+;
and (ii) all measurable functions f : (Ω,A, µ)→ R such that µ|f | <∞. In the former case, µf
takes values in R+, and in the latter case, µf takes values in R.
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Theorem 1.21 (Dominated Convergence). Let f, f1, f2, . . . and g, g1, g2, . . . be R-valued mea-
surable functions on (Ω,A, µ) with |fn| ≤ gn for all n, and such that fn → f , gn → g, and
µgn → µg <∞. Then µfn → µf .

Proof. The sequence (gn±fn) are nonnegative measurable functions and gn±fn → g±f . Since
µg <∞ and µgn → µg, g and gn are integrable for all but finitely many n. Since |fn| ≤ gn and
|f | ≤ g, the same statement holds for g and f . By Fatou’s lemma and linearity of integral,

µg ± µf = µ(g ± f) ≤ lim inf µ(gn ± fn) = lim inf(µgn ± µfn) = µg + lim inf(±µfn).

So we get µf ≤ lim inf µfn and −µf ≤ lim inf(−µfn) = − lim supµfn, which implies that
lim supµfn ≤ µf ≤ lim inf µfn. So limµfn = µf .

Lemma 1.22 (Substitution). Let f from a measurable map from (Ω,A, µ) to (S, S). Let µ◦f−1

be the pushforward measure on (S, S). Then for measurable function g : S → R,

(µ ◦ f−1)g = µ(g ◦ f). (1.10)

Here the equality means that when one side is defined, then the other side is also defined, and
the two sides agree.

Proof. We first show that if g : S → R+, and so g ◦ f : Ω→ R+ and both sides are well defined,
then (1.10) holds. The simplest case is g = 1A. In this case

(µ ◦ f−1)g = (µ ◦ f−1)A = µf−1A = µ1f−1A = µ(g ◦ f).

By linearity, (1.10) then holds for all nonnegative measurable simple functions. By monotone
convergence, (1.10) also holds for all nonnegative measurable functions.

For measurable g : S → R, since |g ◦ f | = |g| ◦ f , by (1.10) g is integrable w.r.t. µ ◦ f−1 if
and only if g ◦ f is integrable w.r.t. µ. Moreover, if g = g1 − g2 such that g1, g2 : S → R are
measurable and (µ◦f−1)gj <∞, j = 1, 2, then by applying (1.10) to gj we get (1.10) for g.

Given a measurable function f : (Ω,A, µ) → R+, we may define another measure f · µ on
(Ω,A) by

(f · µ)A =

∫
A
fdµ =

∫
1Af.

The countably additivity of f ·µ follows from monotone convergence theorem. The f is referred
as the µ-density of f · µ.

Lemma 1.23 (Chain Rule). For any measurable maps f, g : (Ω,A, µ)→ R with f ≥ 0,

(f · µ)g = µ(fg).

The meaning of the equality should be explained in the same way as (1.10), i.e., when one side
is define, the other side is also defined, and the two sides agree.
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Proof. As in the last proof, we may begin with the case when g is an indicator function and
then extend in steps to the general case.

This lemma implies that, if f, g : Ω→ R+ are measurable, then f · (g · µ) = (fg) · µ.
Given a measure space (Ω,A, µ), a set A ∈ A is called µ-null if µA = 0. A relation depending

on ω ∈ Ω is said to hold µ-almost everywhere if there is a µ-null set A such that it holds for all
ω ∈ Ac. We often write µ-a.e. or simply a.e.

Lemma 1.24. If f, g : (Ω,A, µ) → R satisfy that µ-a.e. f = g, then µf = µg. Again the
equality means that if any of µf and µg is defined, then the other is also defined, and the two
values are equal.

Proof. First, suppose g = 0 and f ≥ 0. Let (fn) be a sequence of measurable simple functions
with 0 ≤ fn ↑ f . Then {fn 6= 0} ⊂ {f 6= 0}, and so {fn 6= 0} is a null set. We may
express each fn as c11A1 + · · · cm1Am with c1, . . . , cm ∈ R+ and A1, . . . , Am are null sets. Then
µfn =

∑
ckµAk = 0. So µf = limµfn = 0 = µg.

Second, suppose f, g ≥ 0. Let h = f ∨ g. Then h ≥ f and µ-a.e., h = f . We may write
h = f + φ, where φ : Ω→ R+ is measurable and µ-a.e., φ = 0. By the first paragraph, µφ = 0.
So µh = µf + µφ = µf . Similarly, µh = µg. So µf = µg.

Now we consider integrable functions. Since µ-a.e., |f | = |g|, by the second paragraph,
µ|f | = µ|g|. So f is integrable if and only if g is integrable. Now suppose f and g are integrable.
Since f± = (±f) ∨ 0 = (±g) ∨ 0 = g± a.e., by the previous result we have µf± = µg±. So
µf = µf+ − µf− = µg+ − µg− = µg.

On the other hand, if f : (Ω,A, µ) → R+ satisfies that µf = 0, then µ-a.e. f = 0. In fact,
since {f 6= 0} =

⋃
n{f ≥ 1/n}, if µ{f 6= 0} > 0, then there is n ∈ N such that µ{f ≥ 1/n} > 0.

Then we get

µf ≥ µ 1

n
1{f≥1/n} =

1

n
µ{f ≥ 1/n} > 0.

Since two integrals agree when two integrands agree µ-a.e., we may allow the integrands
to be undefined on some µ-null sets. Monotone Convergence Theorem, Fatou’s Lemma, and
Dominated Convergence Theorem remain valid if the hypothesis are only fulfilled outside some
null sets. We also note that if f : Ω → R+ satisfies µf < ∞, then a.e. f ∈ R+ because from
∞ > µf ≥ ∞ · µf−1{∞} we get µf−1{∞} = 0.

Definition . Let µ and ν be two measures on a measurable space (Ω,A). We say that ν is
absolutely continuous with respect to µ and write ν � µ if every µ-null set is also a ν-null set.
We say that µ and ν are mutually singular and write µ ⊥ ν if there is A ∈ A such that µA = 0
and νAc = 0.

If ν = f · µ, then for any µ-null set A, νA =
∫

1Afdµ = 0 since µ-a.e., 1Af = 0. So A is
also a ν-null set. Thus, we have f · µ� µ. We focus on σ-finite measures.

Theorem A1.3 (Radon-Nikodym). Let µ and ν are two σ-finite measures on (Ω,A),

16



(i) If ν � µ, there there is a µ-a.e. unique measurable function f : Ω → R+ such that
ν = f · µ.

(ii) In the general case, there is a µ-a.e. unique measurable function f : Ω → R+ such that
σ := ν − f · µ is a measure that is singular to µ.

In Part (i) of the theorem, we also call f the Radon-Nikodym derivative of ν against µ. For
the proof of Radon-Nikodym Theorem, we introduce the notation of real measures, which is
important on its own.

Definition . Let (Ω,A) be a measurable space. A function ν : A → R is called a real measure
or signed measure if it satisfies countably additivity with ν∅ = 0, i.e., if A1, A2, · · · ∈ A are
mutually disjoint, then ν

⋃
nAn =

∑
n νAn, where the series converges absolutely.

A finite measure is a real measure, and the space of all real measures on (Ω,A) is a linear
space. Thus, the difference of two finite measures is a real measure. If µ is a measure, and
f : Ω → R is integrable with respect to µ, then (f · µ)(A) :=

∫
A fdµ is a real measure. The

countably additivity follows from the Dominated Convergence Theorem.
A real measure ν satisfies continuity: if An ↑ A or An ↓ A, then νAn → νA. Actually,

if An ↑ A, we may write A =
⋃
n(An \ An−1) with A0 = ∅. Since An \ An−1 are mutually

disjoint, νA =
∑

n ν(An \An−1) =
∑

n(νAn − νAn−1) = lim νAn. If An ↓ A, then Acn ↑ Ac and
νAc = νΩ− νA and νAcn = νΩ− νAn.

Theorem (Hahn decomposition). Given a real measure ν on (Ω,A), there exists a partition
{P,N} of Ω such that P,N ∈ A, νE ≥ 0 for all E ∈ P ∩ A, and νE ≤ 0 for all E ∈ N ∩ A.

Proof. Let s = sup{νA : A ∈ A}. Then s ≥ 0 since ν∅ = 0. We now exclude the possibility
that s = +∞. Suppose s = +∞. Let

B = {A ∈ A : sup{νB : B ∈ A, B ⊂ A} = +∞}.

Then Ω ∈ B. It is also easy to see that if A1, A2 ∈ A\B and A1∩A2 = ∅, then A1∪A2 ∈ A\B.
Thus, if A1 ∈ B, A2 ∈ A \ B, and A2 ⊂ A1, then A1 \A2 ∈ B. First, suppose

sup{νB : B ∈ B, B ⊂ A} = +∞, ∀A ∈ B. (1.11)

Then we can inductively construct a sequence A0 ⊃ A1 ⊃ A2 ⊃ · · · in B with A0 = Ω and
νAn+1 > νAn+1. Then (νAn) does not converge, which contradicts the continuity of ν. Second,
suppose (1.11) does not hold. Then there exist A0 ∈ B and M ∈ (0,∞) such that for any B ∈ B
with B ⊂ A0, we have νB ≤ M . We inductively choose a sequence of mutually disjoint sets
(An) in A0 ∩ A such that νAn > M for each n. First, since A0 ∈ B, we may choose A1 ∈ A
such that νA1 > M . Since νB ≤ M for any B ∈ B with B ⊂ A0, we see that A1 ∈ A \ B.
So A0 \ A1 ∈ B. Suppose we have found mutually disjoint sets A1, . . . , An ∈ A0 ∩ A such that
A0\

⋃n
k=1Ak ∈ B (this is the case for n = 1). Then by the definition of B, we can find An+1 ∈ A

with An+1 ⊂ A0 \
⋃n
k=1Ak and νAn+1 ≥ M . Now A1, . . . , An+1 are mutually disjoint. Since
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An+1 ⊂ A, we get An+1 ∈ A \ B. Thus, A0 \
⋃n+1
k=1 Ak = (A0 \

⋃n
k=1Ak) \ An+1 ∈ B. So

the sequence (An) is constructed. However, by the countably additivity of ν, we should have
νAn → 0, which is a contradiction. Thus, s < +∞.

For any A,B ∈ A, we have by inclusion-exclusion,

ν(A ∩B) = νA+ νB − ν(A ∪B) ≥ νA+ νB − s.

So s− νA ∩B ≤ (s− νA) + (s− νB). By induction, we have

s− ν
n⋂
k=1

Ak ≤
n∑
k=1

(s− νAk), A1, . . . , An ∈ A.

If A1, A2, . . . is a sequence in A, then by continuity ν
⋂
nAn = limn ν

⋂n
k=1Ak. So

s− ν
(⋂

n

An

)
≤
∑
n

(s− νAn), (1.12)

By the definition of s, there is a sequence A1, A2, · · · ∈ A such that νAn > s − 1
2n for each n.

Define an increasing sequence (Bn) by Bn =
⋂∞
m=nAm. By (1.12),

νBn ≥ s−
∞∑
k=n

1

2k
= s− 1

2n−1
, n ∈ N. (1.13)

Let P =
⋃
nBn and N = P c. Then {P,N} is a measurable partition of Ω. By continuity

of ν and (1.13), νP = lim νBn ≥ s. By the definition of s, νP ≤ s. So νP = s. If there is
E ∈ P ∩ A such that νE < 0, then ν(P \ E) = νP − νE > νP = s, which contradicts the
definition of s. So νE ≥ 0 for any E ∈ A with E ⊂ P . If there is E ∈ N ∩A such that νE > 0,
then ν(P ∪ E) = νP + νE > νP = s, which again contradicts the definition of s. So νE ≥ 0
for any E ∈ A with E ⊂ P .

If we set ν+ = ν(· ∩ P ) and ν− = −ν(· ∩N), then ν+ and ν− are two finite (nonnegative)
measures, and ν = ν+ − ν−. Since ν+P

c = ν−P = 0, we have ν+ ⊥ ν−. We call ν = ν+ − ν−
the Jordan decomposition of ν.

Lemma . The Jordan decomposition of a real measure is unique.

Proof. We leave this as an exercise.

If ν+ − ν− is the Jordan decomposition of a real measure ν, then we define the measure
|ν| = ν+ + ν−, and call it the total variation of ν.

Proof of Radon-Nikodym Theorem. (i) The uniqueness part is easy. If ν = f · µ = g · µ, and
µ{f 6= g} > 0, then µ{f > g} > 0 or µ{g > f} > 0. By symmetry we assume that µ{f > g} >
0. Then there is n ∈ N such that µ{f > g + 1/n} > 0. Then f · µ does not agree with g · µ on
{f > g + 1/n}, a contradiction.
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For the existence, we may assume that µ and ν are finite. This is because we may find a
measurable partition {An : n ∈ N} of Ω such that µAn, νAn < ∞ for each n. Then µn :=
µ(· ∩ An) and νn := ν(· ∩ An) are finite measures with νn � µn for each n. If for each
n, νn = fn · µn for some fn : An → R+, then we may construct the µ-density f of ν with
f |An = fn.

Now µ and ν are finite measures. Let F be the set of measurable functions f : Ω → R+

such that f · µ ≤ ν, i.e., νA ≥ (f · µ)A for all A ∈ A. Here F contains 0. For f1, f2 ∈ F , let
A1 = {f1 > f2} and A2 = {f1 ≤ f2}. For any A ∈ A,∫

A
f1 ∨ f2dµ =

∫
A∩A1

f1dµ+

∫
A∩A2

f2dµ ≤ νA ∩A1 + νA ∩A2 = νA.

So f1 ∨ f2 ∈ F . Let s = sup{µf : f ∈ F}. Then 0 ≤ s ≤ νΩ < ∞. We may find a sequence
g1, g2, · · · ∈ F such that µgn → s. Let fn = g1∨· · ·∨gn, n ∈ N. Then (fn) is increasing, and for
each n, fn ∈ F , and fn ≥ gn. So µfn → s. Let f = lim fn. By monotone convergence theorem,
for any A ∈ A,

∫
A fdµ = lim

∫
A fndµ ≤ νA. So f ∈ F . Moreover, µf = limµfn = s. We claim

that ν = f · µ. If it is not true, then ν0 := ν − f · µ is a none-zero measure. Since µ is finite,
there is ε > 0 such that ν0Ω > εµΩ. Now τ := ν0− εµ is a real measure with τΩ > 0. By Hahn
decomposition theorem, there is a partition Ω = P ∪N such that τ(· ∩ P ) and −τ(· ∩N) are
measures. For every A ∈ A, from τ(A ∩ P ) ≥ 0, we get ν0(A ∩ P ) ≥ εµ(A ∩ P ), and so

νA =

∫
A
fdµ+ ν0A ≥

∫
A
fdµ+ ν0A ∩ P ≥

∫
A
fdµ+ εµA ∩ P =

∫
A

(f + ε1P )dµ.

Thus, f + ε1P ∈ F . From s = µf ≤ µ(f + ε1P ) ≤ s we get µP = 0. So νP = ν0P = τP = 0.
Then we see that −τ is a (positive) measure, which contradicts that τΩ > 0. The contradiction
shows that ν = f · µ.

(ii) Let τ = µ + ν. Then τ is also a σ-finite measure. Since 0 ≤ ν ≤ τ , we have ν � τ .
By (i) there is a measurable g : Ω → R+ such that ν = g · τ . We have τ -a.e. g ≤ 1 because
for any A ∈ A,

∫
A 1 − gdτ = τA − (g · τ)A = τA − νA = µA ≥ 0. By changing the values of

g on a τ -null set, we may assume that 0 ≤ g ≤ 1. From ν = g · τ we get µ = (1 − g) · τ . Let
A = {g < 1}. Then µAc = 0. Define f = g

1−g on A and f = 0 on Ac. Then ν(· ∩ A) = f · µ.
Let σ = ν − f · µ = ν(· ∩Ac). Then σA = 0. So σ ⊥ µ.

For the uniqueness, we still let τ = µ + ν. Suppose ν = f · µ + σ for some measurable
f : Ω→ R+ and some measure σ with σ ⊥ µ. Let A ∈ A be such that µAc = σA = 0. Then

ν = 1Af · µ+ 1Ac · σ, τ = 1A(f + 1) · µ+ 1Ac · σ.

So ν = (1A
f
f+1 + 1Ac) · τ . By the uniqueness part of (i), if τ = g · µ + ρ and µBc = ρB = 0,

then

1A
f

f + 1
+ 1Ac = 1B

g

g + 1
+ 1Bc , τ − a.e..

This implies that τ -a.e. 1Af = 1Bg. Since µAc = µBc = 0 and µ� τ , we get µ-a.e. f = g.
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Radon-Nikodym theorem also extends to real measures.

Corollary . Let µ be a σ-finite measure on (Ω,A). Let ν be a real measure on (Ω,A). Suppose
ν � µ, i.e., for any A ∈ A, µA = 0 implies νA = 0. Then there a µ-a.e. unique f : Ω → R,
which is integrable w.r.t. µ, such that ν = f · µ.

Proof. This follows from the Radon-Nikodym theorem and Jordan decomposition.

Example (An important application). Suppose µ is a probability measure on (Ω,A), F is a
sub-σ-algebra of A, and f : Ω → R is A-measurable with µ|f | < ∞. Let ν = f · µ. Then ν is
a signed measure on (Ω,A), and ν � µ. Let µ′ = µ|F and ν ′ = ν|F . Then µ′ is a probability
measure on (Ω,F), ν ′ is a signed measure on (Ω,F), and ν ′ � µ′. By the above corollary, there
is an F-measurable f ′ : Ω→ R with µ′|f ′| <∞ such that ν ′ = f ′ · µ. Then for any A ∈ F ,∫

A
f ′dµ =

∫
A
f ′dµ′ = ν ′A = νA =

∫
A
fdµ.

Such f ′ is µ-a.e. unique, and is called the expectation of f conditionally on F with respect to
µ.

A measure space (Ω,A, µ) is called complete if for every B ⊂ A ⊂ Ω with A ∈ A and
µA = 0, we have B ∈ A. Given a measure space (Ω,A, µ), a µ-completion of A is the σ-algebra

Aµ := σ(A,Nµ),

where Nµ is the class of all subsets of µ-null sets in A. Note that Nµ is closed under countable
union because if N1, N2, · · · ∈ Nµ, there there are A1, A2, · · · ∈ A with Nn ⊂ An and µAn = 0
for each n. Then

⋃
nNn ⊂

⋃
nAn ∈ A, and µ

⋃
nAn = 0. So

⋃
nNn ∈ Nµ.

Lemma 1.25. (i) A set A ⊂ Ω is Aµ-measurable if and only if there exist A′, A′′ ∈ A with
A′ ⊂ A ⊂ A′′ and µ(A′′ \ A′) = 0. (ii) A function f from Ω to a Borel space (S, S) is Aµ-
measurable if and only if there is an A-measurable map g : Ω→ (S, S) such that µ-a.e., f = g.

Proof. (i) Let Ãµ denote the set of A ⊂ Ω such that the A′, A′′ in the statement exist. We
need to show that Ãµ = Aµ. Clearly, A,Nµ ⊂ Ãµ ⊂ Aµ. It suffices to show that Ãµ is a

σ-algebra. We need to show that (a) if A ∈ Ãµ, then Ac ∈ Ãµ; and (b) if A1, A2, · · · ∈ Ãµ,
then

⋃
nAn ∈ Ãµ. For (a), note that if A′ ⊂ A ⊂ A′′ with A′, A′′ ∈ A and µ(A′′ \ A′), then

(A′′)c ⊂ Ac ⊂ (A′)c, and µ((A′)c \ (A′′)c) = 0. For (b), note that if for each n, A′n ⊂ An ⊂ A′′n,
A′n, A

′′
n ∈ A and µ(A′′n \ A′n) = 0, then A′ :=

⋃
nA
′
n, A

′′ :=
⋃
nA
′′
n ∈ A and satisfy that

A′ ⊂ A ⊂ A′′ and 0 ≤ µ(A′′ \A′) ≤
∑

n µ(A′′n \A′n) = 0.
(ii) If the g exists, then there is N ∈ A with µN = 0 such that f = g on N c. For any B ∈ S,

we have

f−1B = ((f−1B) \N) ∪ ((f−1B) ∩N) = ((g−1B) \N) ∪ ((f−1B) ∩N).
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So (g−1B) \N ⊂ f−1B ⊂ (g−1B)∪N . Since (g−1B) \N, (g−1B)∪N ∈ A and µN = 0, by (i),
f−1B ∈ Aµ. So f is Aµ-measurable.

Now suppose f is Aµ-measurable. Since S is a Borel space, we may assume that it is a Borel
subset of [0, 1]. We first show that there is an R-valued A-measurable function g such that µ-
a.e., f = g. If f = 1A for some A ∈ Amu, then by (i), there exist A′, A′′ ∈ A with A′ ⊂ A ⊂ A′′.
Then µ-a.e., f = 1A′ := g. The statement then extends to simple measurable functions by
linearity. Now suppose f ≥ 0. There exists a sequence of Aµ-measurable simple functions (fn)
such that 0 ≤ fn ↑ f . For each n, there exists an A-measurable simple function gn such that
µ-a.e. fn = gn. The sequence (gn) may not be nonnegative or increasing. However, we may
choose Nn ∈ A such that µNn = 0 and fn = gn on N c

n. Let N =
⋃
nNn. Then N ∈ A and

µN = 0, and 0 ≤ gn ↑ f on N c. Let g = lim gn on N c and = 0 on N . Then g is A-measurable
and µ-a.e., f = g. Finally, we may modify the value of g such that g takes values in S, and
still satisfies other properties that we want. Let N ∈ A be such that µN = 0 and f = g on N c.
Then g ∈ S on N c since f takes values in S. So g−1S ⊂ N c. We now choose s0 ∈ S, and define
g̃ such that g̃ = g on g−1S ∈ A and g̃ = s0 on (g−1S)c. Then g̃ : Ω→ S is A-measurable, and
µ-a.e., g̃ = g, so µ-a.e., f = g̃.

It is natural to extend µ to the completion Aµ in the way such that if A′ ⊂ A ⊂ A′′ with
A′, A′′ ∈ A and µ(A′′ \ A′) = 0, then µA = µA′. The definition is consistent, and defines a
measure on (Ω,Aµ).

Exercise . Prove the statements in the above paragraph.

We are going to construct product measures. Let (S, S, µ) and (T, T , ν) be two σ-finite
measure spaces. We want the product measure µ× ν be a measure on S × T that satisfies

(µ× ν)(A×B) = µA× νB, ∀A ∈ S and B ∈ T . (1.14)

We will also show that such measure is unique. The µ× ν is called the product of µ and ν.

Lemma 1.26. For any measurable function f : S × T → R+, and any t ∈ T , the function
f(·, t) : S → R+ is S-measurable. If we integrate f(·, t) against µ and get µf(·, t) ∈ R+ for each
t ∈ T , then t 7→ µf(·, t) is T -measurable.

Proof. First suppose µ is finite. Let C denote the set of C ∈ S × T such that the lemma
holds for f = 1C . Then C contains the π-system {A × B : A ∈ S,B ∈ T}. In fact, if
f = 1A×B, then for t ∈ B, f(·, t) = 1A, and for t ∈ Bc, f(·, t) ≡ 0. In either case f(·, t) is
S-measurable. Moreover, µf(·, t) = µA1B(t) is T -measurable. Using the linearity of integrals,
we easily see that C is a λ-system. By monotone class theorem, C = S × T . Thus, the lemma
holds for indicator functions. By linearity and monotone convergence, the statement extends
to nonnegative measurable functions.

Now we do not assume that µ is finite. Since it is σ-finite, we may express µ =
∑

n µn, where
each µn is a finite measure. The measurability of each f(·, t) does not rely on the finiteness
of µ. Since t 7→ µnf(·, t) is T -measurable for each n, the same is true for t 7→ µf(·, t) =∑

n µnf(·, t).
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Theorem 1.27 (Fubini). The product measure µ× ν exists uniquely, and for any measurable
f : S × T → R+ or f : S × T → R with (µ× ν)|f | <∞, we have

(µ× ν)f =

∫
µ(ds)

∫
f(s, t)ν(dt) =

∫
ν(dt)

∫
f(s, t)µ(ds). (1.15)

Here the meaning of the second double integral is that we first fix t ∈ T , treat f(s, t) as a
function in s ∈ S, and integrate the function against the measure µ. The integral is a function
of t ∈ T . We then integrate the function against the measure ν. The procedure is valid for
measurable f : S×T → R+ by Lemma 1.26. The meaning of the first double integral is similar.

Proof. By a monotone class argument involving partitions of S and T into finite measurable
sets, it is easy to see that there exists at most one product measure.

By Lemma 1.26, we may define

(µ× ν)C =

∫
µ(ds)

∫
1C(s, t)ν(dt), C ∈ S × T .

Then µ × ν is clearly a measure that satisfies (1.14). By uniqueness and symmetry, we also
have

(µ× ν)C =

∫
ν(dt)

∫
1C(s, t)µ(ds), C ∈ S × T .

Thus, (1.15) holds for indicator functions. By linearity and monotone convergence, the state-
ment extends to measurable R+-valued functions.

If f : S × T → R is integrable w.r.t. µ× ν, then (µ× ν)|f | <∞. By (1.15),∫
ν(dt)

∫
|f(s, t)|µ(ds) <∞. (1.16)

So for ν-a.e. t ∈ T ,
∫
|f(s, t)|µ(ds) < ∞, i.e., f(·, t) is integrable w.r.t. µ. So we may define∫

f(s, t)µ(ds) (as a function of t) outside a ν-null set. Since |
∫
f(s, t)µ(ds)| ≤

∫
|f(s, t)|µ(ds)

whenever f(·, t) is µ-integrable, by (1.16), t 7→
∫
f(s, t)µ(ds) is ν-integrable. So the double

integral
∫
ν(dt)

∫
f(s, t)µ(ds) is well defined. Similarly,

∫
µ(ds)

∫
f(s, t)ν(dt) is also well defined.

We may prove (1.15) for such f by expressing f = f+ − f−.

Note that the product µ× ν is also a σ-finite measure, and we may then define (µ× ν)× σ
for another σ-finite measures. If (Sk, Sk, µk), 1 ≤ k ≤ n, are σ-finite measure spaces, then we
may use induction to construct the product measure µ1 × · · · × µn on S1 × · · · × Sn, which is
the unique measure that satisfies

(µ1 × · · · × µn)(A1 × · · · ×An) =

n∏
k=1

µkAk, ∀Ak ∈ Sk, 1 ≤ k ≤ n.

In the case all µn are the same µ, we write the product as µn. For the Lebesgue measure λ on
R, its power µn is called the Lebesgue measure on Rn.

We may define the product of infinitely many measures, but need to assume that they are
all probability measures.
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Definition . Let (St, St, µt), t ∈ T , be a family of probability spaces. A probability measure µ
on the product measurable space (

∏
t St,

∏
t St) is called the product of µt, t ∈ T , denoted by∏

t µt, if for any finite Λ ⊂ T , and Aλ ∈ Sλ, λ ∈ Λ, we have

µ
( ∏
λ∈Λ

Aλ ×
∏
t∈T\Λ

St

)
=
∏
λ∈Λ

µλAλ.

By a monotone argument, we see that the product measure in the definition is unique, if
it exists. The existence of the infinite product measure (assuming St are Borel spaces) will be
proved in the next chapter.

Definition . A measurable group is a group G endowed with a σ-algebra G such that the
group operations in G are measurable. This means

(i) the map g 7→ g−1 from G to G is G/G-measurable;

(ii) the map (f, g) 7→ fg from G2 to G is G
2
/G-measurable.

If G is a topological group, i.e., endowed with a topology such that the group operations
are continuous, and has a countable basis, then it is a measurable group. We will mainly work
with the Euclidean space Rn as a measurable group.

Definition . For two σ-finite measures µ and ν on a measurable group G, the convolution of
µ and ν, denoted by µ ∗ ν, is the pushforward of the product measure µ × ν under the map
(f, g) 7→ fg.

The convolution µ ∗ ν may not be σ-finite. If both µ and ν are finite, µ ∗ ν is also finite. If
µ1, µ2, µ3 are finite measures, then the associative law holds: (µ1 ∗ µ2) ∗ µ3 = µ1 ∗ (µ2 ∗ µ3). If
G is Abelian, then the commutative law holds: µ ∗ ν = ν ∗ µ.

Definition . A measure µ on a measurable group G is said to be right- or left invariant if
µ ◦ T−1

g = µ for any g ∈ G, where Tg denotes the right or left shift x 7→ xg or x 7→ gx. If G is
Abelian, right-invariance and left-invariance are equivalent.

Example . The Lebesgue measure λn is an invariant measure on Rn, and any locally finite
invariant measure on Rn is a scalar product of λn.

Lemma 1.28. Let (G,+) be an Abelian measurable group with an invariant measure λ. Suppose
µ and ν are σ-finite measures on G with λ-densities f and g. Then µ ∗ ν has a λ-density f ∗ g
given by

(f ∗ g)(s) =

∫
f(s− t)g(t)λ(dt) =

∫
f(t)g(s− t)λ(dt), s ∈ G. (1.17)

Proof. Let π : G × G → G be the map (s, t) 7→ s + t. Let A ∈ G. Then (s, t) ∈ π−1A if and
only if t ∈ A− s := {x− s : x ∈ A}. So

(µ ∗ ν)A = (µ× ν)(π−1A) =

∫
µ(ds)

∫
1π−1A(s, t)ν(dt)
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=

∫
µ(ds)

∫
1A−s(t)ν(dt) =

∫
µ(ds)

∫
1A−s(t)g(t)λ(dt)

=

∫
µ(ds)

∫
1A(t)g(t− s)λ(dt) =

∫
f(s)λ(ds)

∫
1A(t)g(t− s)λ(dt)

=

∫
1A(t)λ(dt)

∫
f(s)g(t− s)λ(ds) =

∫
1A(t)(f ∗ g)(t)λ(dt).

Here in the third line we use the invariance of λ. Thus, µ ∗ ν has a λ-density f ∗ g.

Note that when G = Rn and λ is the Lebesgue measure on Rn, the f ∗ g defined by (1.17)
agrees with the convolution of f and g.

We now define Lp-spaces for p > 0. Given a measure space (Ω,A, µ) and p > 0, we write
Lp = Lp(Ω,A, µ) for the class of all measurable functions f : Ω→ R with

‖f‖p := (µ|f |p)1/p <∞.

In particular, L1 is the space of all integrable functions. We have a scaling property ‖cf‖p =
|c|‖f‖p for any c ∈ R.

Lemma 1.30 (Hölder inequality and norm inequality). For any measurable functions f and g
on Ω,

(i) if p, q > 1 and 1 = p−1 + q−1, then ‖fg‖1 ≤ ‖f‖p‖g‖q;

(ii) for all p > 0, ‖f + g‖p∧1
p ≤ ‖f‖p∧1

p + ‖g‖p∧1
p .

Proof. (i) If ‖f‖p or ‖g‖q equals 0, then the inequality is trivial because fg = 0 a.e. If ‖f‖p and
‖g‖q are both positive, and one of them is∞, the inequality is also trivial because the RHS is∞.
So we may assume that ‖f‖p, ‖g‖q ∈ (0,∞). By scaling we may assume that ‖f‖p = ‖g‖q = 1.

The relation p−1 + q−1 = 1 implies that (p − 1)(q − 1) = 1. So for x, y ≥ 0, y = xp−1 if
and only if x = yq−1. Consider two subsets of R2

+: A1 = {(x, y) : 0 ≤ x ≤ x0, 0 ≤ y ≤ xp−1}
and A2 = {(x, y) : 0 ≤ y ≤ y0, 0 ≤ x ≤ yq−1}. By Fubini theorem, λ2A1 =

∫ x0
0 xp−1dx and

λ2A2 =
∫ y0

0 yq−1dy. Suppose (x, y) ∈ [0, x0]× [0, y0]. If y ≤ xp−1, then (x, y) ∈ A1; if y ≥ xp−1,
then x ≤ yq−1, and (x, y) ∈ A2. So [0, x0]× [0, y0] ⊂ A1 ∪A2. Thus,

x0y0 = λ2[0, x0]× [0, y0] ≤ λ2A1 + λ2A2 =

∫ x0

0
xp−1dx+

∫ y0

0
yq−1dy = xp0/p+ yq0/q.

Applying the inequality to x0 = |f | and y0 = |g|, we get

‖fg‖1 = µ|f ||g| ≤ µ(|f |p/p+ |g|q/q) = 1/p+ 1/q = 1 = ‖f‖p‖g‖q.

(ii) If p ∈ (0, 1], the inequality follows from the inequality (x+y)p ≤ xp+yp for any x, y ≥ 0
(because x 7→ xp is a concave function). Suppose p > 1. If ‖f‖p or ‖g‖p = ∞, the inequality
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trivially holds. Suppose ‖f‖p, ‖g‖q <∞. Since |f + g|p ≤ 2p(|f | ∨ |g|)p ≤ 2p(|f |p + |g|p), we get
‖f + g‖p <∞. By applying (i) to q := p

p−1 , we get

‖f + g‖pp =

∫
|f + g|pdµ ≤

∫
|f ||f + g|p−1dµ+

∫
|g||f + g|p−1dµ

≤ ‖f‖p‖|f + g|p−1‖q + ‖g‖p‖|f + g|p−1‖q.

Note that

‖|f + g|p−1‖q =
(∫
|f + g|(p−1)qdµ

)1/q
=
(∫
|f + g|pdµ

) p−1
p

= ‖f + g‖p−1
p .

So ‖f + g‖pp ≤ ‖f + g‖p−1
p (‖f‖p + ‖g‖p), which implies (ii) because ‖f + g‖p <∞.

Since ‖f‖p = 0 if and only if a.e. f = 0. By the norm inequality, Lp becomes a metric space

with distance ρ(f, g) = ‖f − g‖p∧1
p if we identify functions that agree µ-a.e. From now on, Lp

will be a space of measurable functions with ‖f‖p <∞ modulus the “equal almost everywhere”
equivalence. We say that fn → f in Lp if ‖fn − f‖p → 0. For p ≥ 1, Lp is a normed space. We
now show that Lp is complete for all p > 0. Then for p ≥ 1, Lp is a Banach space.

Lemma 1.31. Let (fn) be a Cauchy sequence in Lp, where p > 0, then for some f ∈ Lp,
‖fn − f‖p → 0.

Proof. First choose a subsequence (fnk) with
∑

k ‖fnk+1
− fnk‖

p∧1
p < ∞. By Lemma 1.30 and

monotone convergence, we get ‖
∑

k |fnk+1
− fnk |‖

p∧1
p < ∞, and so

∑
k |fnk+1

− fnk | < ∞ a.e.
Hence (fnk) is Cauchy in R a.e. So there is a measurable function f such that fnk → f a.e. By
Fatou’s lemma,∫

|fn − f |pdµ ≤ lim inf
k

∫
|fn − fnk |

pdµ ≤ sup
m≥n

∫
|fn − fm|pdµ→ 0, n→∞.

Thus, f ∈ Lp and ‖fn − f‖p → 0.

Lemma 1.32. For any p > 0, let f, f1, f2, · · · ∈ Lp with fn → f a.e. Then fn → f in Lp if
and only if ‖fn‖p → ‖f‖p.

Proof. If fn → f in Lp, by the norm inequality,

|‖fn‖p∧1
p − ‖f‖p∧1

p | ≤ ‖fn − f‖p∧1
p → 0,

and so ‖fn‖p → ‖f‖p. If ‖fn‖p → ‖f‖p, then we define

gn = 2p(|fn|p + |f |p), g = 2p+1|f |p.

We have gn → g a.e. and µgn → µg = 2p+1‖f‖pp <∞. Since gn ≥ |fn − f |p → 0, by dominated
convergence theorem, µ|fn − f |p → 0, i.e., fn → f in Lp.
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Lemma 1.33. Given a metric space (S, ρ) and a finite measure µ on (S,B(S)), for any p > 0,
the space Cb(S,R) of bounded real valued continuous functions on S is dense in Lp(S,B(S), µ).

Proof. Since µ is finite, we have Cb ⊂ Lp(µ). We need to show that the closure Cb of Cb in
Lp equals Lp. First, for every open set G, there is a sequence (fn) in Cb such that fn → 1G
pointwise. We may choose fn(s) = 1 ∧ nρ(x,Gc). Since 0 ≤ fn ≤ 1, by dominated convergence
theorem, fn → 1G in Lp. So 1G ∈ Cb. By Lemma 1.16, for every B ∈ B(S), 1B ∈ Cb. Since Cb
is a linear space, it then contains all measurable simple functions. By monotone convergence,
we see that Cb contains all nonnegative functions in Lp, and so equals Lp.

Because of Hölder’s inequality, if f, g ∈ L2, fg is integrable, and

|
∫
fgdµ| ≤ ‖f‖2‖g‖2.

So L2 is a Hilbert space with inner product: 〈f, g〉 :=
∫
fgdµ.

Another important space is L∞(µ): the space of bounded measurable functions modulo
“equal almost everywhere”’ equivalence. It is a Banach space with the norm

‖f‖∞ := inf{a ≥ 0 : |f | ≤ a µ− a.e.}.

Theorem . Suppose µ is a σ-finite measure. Let p ∈ [1,∞). Let q = p
p−1 if p > 1; and q =∞

if p = 1. Then every continuous linear function T : Lp → R corresponds to a unique g ∈ Lq
such that for any f ∈ Lp, T (f) =

∫
fgdµ. Conversely, every g ∈ Lq determines a continuous

linear function on Lp defined by f 7→
∫
fgdµ. Moreover, for any g ∈ Lq,

sup
f∈Lp\{0}

|
∫
fgdµ|
‖f‖p

= ‖g‖q.

This means that Lq can be identified as (Lp)∗, the dual of Lp.

Sketch of the proof. Let T be given. Let {An} be a partition of Ω such that µAn < ∞ for
every n. For each n, we may define a real measure νn on An such that νnA = T (1A) for
A ∈ A and A ⊂ An. If µA = 0, then 1A = 0 a.e. and so T (1A) = 0, which implies that
νnA = 0. So νn � A. By Radon-Nikodym theorem, there is a measurable gn on An such that
νnA =

∫
A gndµ. Define g on Ω such that g|An = gn for each n. Then using Hölder inequality,

one can check that such g satisfies the properties.

Exercise . Complete the above proof.

Fix a measurable space (S, S). Let M(S) denote the spaces of σ-finite measures on (S, S).
For each B ∈ S, we define a map πB :M→ R+ such that πB(µ) = µB. We endowM(S) with
the σ-algebra generated by the mappings πB for B ∈ S, i.e.,

σ(π−1
B (B(R+)) : B ∈ S).

ThenM(S) becomes a measurable space. Let P(S) denote the space of all probability measures
on (S, S). Then P(S) = π−1

S {1} is a measurable subset of M(S).
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Lemma 1.35. For any measurable spaces (S, S) and (T, T ), the product mapping (µ, ν) 7→ µ×ν
is measurable from P(S)× P(T ) to P(S × T ).

Proof. It suffices to show that for any C ∈ S × T , πC(µ × ν) = (µ × ν)C from P(S) × P(T )
to R is measurable. Let C denote the class of all such C. Then C is a λ-system. On the other
hand, it contains the π-system {A× B : A ∈ S,B ∈ T}, which generates the σ-algebra S × T .
By monotone class theorem, C equals S × T .

Definition . Given two measurable spaces (S, S) and (T, T ), a mapping µ : S × T → R+ is
called a (probability) kernel from S to T if for every s ∈ S, µs := µ(s, ·) is a (probability)
measure on (T, T ), and for every B ∈ T , s 7→ µ(s,B) is a measurable function on (S, S).

A measure µ on T can be viewed as a kernel: µs = µ for every s ∈ S. In general, a
kernel from S to T can be understood as a S-measurable measure on (T, T ). For a nonnegative
measurable function f : T → R, we may define the integral µf =

∫
µ(s, dt)f(t). The value is a

function on S.

Lemma 1.37. Let C be a π-system in T with σ(C) = T . Let {µs : s ∈ S} be a family of
probability measures on (T, T ). The following are equivalent.

(i) µ(s,B) := µs(B) is a probability kernel from S to T ;

(ii) the map s 7→ µs from S to P(T ) is measurable;

(iii) for any B ∈ C, s 7→ µsB from S to [0, 1] is measurable.

Proof. The equivalence between (i) and (iii) follows from monotone class theorem since the set
of B ∈ T such that s 7→ µsB is measurable form a λ-system. The equivalence between (i) and
(ii) is also straightforward because by the definition of the σ-algebra on P(T ), the map s 7→ µs
is measurable if and only if for any B ∈ T , s 7→ µsB is measurable.

Lemma 1.38. Fix three measurable spaces (S, S), (T, T ), and (U,U). Let µ be a probability
kernel from S to T , and ν be a probability kernel from S × T to U . Let f : S × T → R+ and
g : S × T → U be measurable. Then

(i) µsf(s, ·) is a measurable function of s ∈ S;

(ii) µs ◦ (g(s, ·))−1 is a kernel from S to U ;

(iii) we may define a probability kernel µ⊗ ν from S to T × U by

(µ⊗ ν)(s, C) =

∫
µ(s, dt)

∫
ν(s, t, du)1C(t, u), C ∈ T × U. (1.18)

Proof. (i) By Lemma 1.26, for every s ∈ S, f(s, ·) is measurable. So µsf(s, ·) is well defined.
If f = 1A×B for A ∈ S and B ∈ T , then µsf(s, ·) = 1A(s)µsB is measurable in s. This then
extends to all indicator functions by a monotone class argument, and to arbitrary f by linearity
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and monotone convergence. (ii) For every s ∈ S, µs ◦ (g(s, ·))−1 is a probability measure on
U . For any B ∈ U , (µs ◦ (g(s, ·))−1)B = µs(1B ◦ g(s, ·)). Since (s, t) 7→ 1B(t) ◦ g(s, t) from
S × T to R+ is measurable, applying (i) to the function f(s, t) := 1B(t) ◦ g(s, t), we see that
s 7→ (µs ◦ (g(s, ·))−1)B is measurable. (iii) Applying (i) to the function f((s, t), u) := 1C(t, u),
we see that

∫
ν(s, t, du)1C(t, u) is a measurable function of (s, t) ∈ S × T . Applying (i) again

to the function f(s, t) :=
∫
ν(s, t, du)1C(t, u), we see that the RHS of (1.18) is well defined

and measurable in s ∈ S for a fixed C ∈ T × U . When s is fixed, by monotone convergence,
(µ⊗ ν)(s, ·) is a measure on S×T . Since µ(s, ·) and ν(s, t, ·) are both probability measures, we
get (µ⊗ ν)(s, T × U) = 1. So µ⊗ ν is a probability kernel from S to T × U .

Note that when µ and ν are probability measures, i.e., µ does not depend on s and ν does
not depend on (s, t), then µ⊗ ν is the product measure µ× ν.

By linearity and monotone convergence, for any measurable f : T × U → R+,

(µ⊗ ν)sf =

∫
µ(s, dt)

∫
ν(s, t, du)f(t, u).

We may simply write it as (µ⊗ ν)f = µ(νf).
Suppose we have kernels µk from S0 × · · · × Sk−1 to Sk, k = 1, . . . , n. By iteration we may

combine them into a kernel µ1 ⊗ · · · ⊗ µn from S0 to S1 × · · · × Sn, given by

(µ1 ⊗ · · · ⊗ µn)f = µ1(µ2(· · · (µnf) · · · ))

for any measurable f : S1 × · · ·Sn → R+. In the context of Markov chains, µk is often a kernel
from Sk−1 to Sk, 1 ≤ k ≤ n, and we can get a kernel µ1 · · ·µn from S0 to Sn given by

(µ1 · · ·µn)sB = (µ1 ⊗ · · · ⊗ µn)s(S1 × · · · × Sn−1 ×B)

=

∫
µ1(s, ds1)

∫
µ2(s1, ds2) · · ·

∫
µn−1(sn−2, dsn−1)µn(sn−1, B), s ∈ S0, B ∈ Sn.

Exercise . Problems 1, 6, 7, 15, 19 in Exercises of Chapter 1.

2 Processes, Distributions, and Independence

We now begin the study of probability theory. Throughout, fix a probability space (Ω,A,P).
In the probability context, the sets A ∈ A are called events, and PA = P(A) is called the
probability of A. Given a sequence of events, we may be interested in the events

lim supAn =
⋂
n

⋃
m≥n

Am, lim inf An =
⋃
n

⋂
m≥n

Am.

Since ω ∈ lim supAn if and only if there are infinitely many n such that ω ∈ An, we also
call lim supAn the event that An happens infinitely often, and denote it as {An i.o.}. Since
ω ∈ lim inf An if and only if there is N such that ω ∈ An for all n > N , we also call lim inf An
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the event that An happens ultimately, and denote it as {An ult.}. By basic set theory, we get
{An i.o.}c = {Acn ult.}. We may understand {An i.o.} and {An ult.} from another perspective.
We view every ω ∈ Ω as a universe. The space Ω is a collection of parallel universes. For a
universe ω, we understand An as something that we know whether it happens at the time n. If
ω ∈ An, then in the universe ω, An happens at the time n. Then {An i.o.} is the collection of
universes in which An happen infinitely many times; and {An ult.} is the collection of universes
in which all An happen for n big enough.

By countably subadditivity of P, for any m ∈ N,

P{An i.o.} ≤ P[
∞⋃
n=m

An] ≤
∞∑
n=m

PAn.

If
∑

n PAn <∞, then
∑∞

n=m PAn → 0 as m→∞. So we get P{An i.o.} = 0. This is the easy
part of the Borel-Cantelli lemma.

A measurable mapping f from Ω to another measurable space (S, S) is called a random
element in S. It is called a random variable when S = R, a random vector when S = Rn, a
random sequence when S = R∞, a random or stochastic process when S is a function space, and
a random measure (kernel) when S is a class of measures. The notation P-almost everywhere
will now be called almost surely (abbreviated as a.s.). Let (S, S) be a measurable space and T

be an abstract index set. Let U ⊂ ST . A mapping X from Ω to U , which is U ∩ST -measurable,
is called an S-valued (random) process on T with paths in U . By Lemma 1.8, X can be treated
as a family of random elements Xt in the state space S.

Given a random element ζ in (S, S), the pushforward P ◦ ζ−1 is a probability measure on
(S, S), and is called the distribution or law of ζ. We write it as Law(ζ). For two random elements

ζ and η in the same measurable space, the equality ζ
d
= η means that Law(ζ) = Law(η).

If for every t ∈ T , Xt is a random element in a measurable space (St, St). Then X = (Xt :
t ∈ T ) is a random element in (

∏
t St,

∏
t St). For every finite subset Λ ⊂ T , the associated

finite-dimensional distribution is given by

µΛ = Law(Xt : t ∈ Λ).

For Λ1 ⊂ Λ2 ⊂ T , we use πΛ,Λ1 to denote the natural projection from
∏
t∈Λ2

St to
∏
t∈Λ1

St,
which is measurable. We omit Λ2 when it is equal to T . Since (Xt : t ∈ Λ) = πΛ(X), the finite
dimensional distribution µΛ is the pushforwards of the law of X under πΛ, i.e.,

µΛ = Law(Xt : t ∈ Λ) = (πΛ)∗ Law(X).

Let P∗(T ) to denote the class of all nonempty finite subset of T . Suppose Λ1 ⊂ Λ2 ∈ P∗(T ).
From πΛ1 = πΛ2,Λ1 ◦ πΛ2 we get

µΛ1 = (πΛ2,Λ1)∗µΛ2 , Λ1 ⊂ Λ2 ∈ P∗(T ). (2.1)

If we have a family of finite dimensional distributions µΛ, Λ ∈ P∗(T ), on
∏
t∈Λ St, and the

consistency condition (2.1) holds for every pair Λ1 ⊂ Λ2 ∈ P∗(T ), then we call (µΛΛ)Λ∈P∗(T ) a
consistent family.
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Theorem 5.16 (Kolmogorov extension theorem). Suppose each St, t ∈ T , is a Borel space.
Then for any consistent family (µΛΛ)Λ∈P∗(T ), there exists a unique probability measure µ on∏
t∈T St such that for every Λ ∈ P∗(T ), µΛ = (πΛ)∗µ.

Remark . One important application of Kolmogorov extension theorem is the existence of
infinite product measure. Suppose T is an infinite index set, and for each t ∈ T , µt is a
probability measure on a Borel measurable space (St, St). We define the family

µΛ =
∏
t∈Λ

µt, Λ ∈ P∗(T ),

where P∗(T ) is the class of nonempty subsets of T . We have known that the finite product
measures are well defined. The consistency condition is easy to check. Since St are all Borel
spaces, by Kolmogorov extension theorem, there is a unique probability measure µ on

∏
t St

such that µΛ = (πΛ)∗(µ) for every Λ ∈ P∗(T ). Such µ is the product
∏
t∈T µt.

For a random variable ζ, the expected value, expectation, or mean of ζ is defined as

Eζ =

∫
ζdP =

∫
xdLaw(ζ)

whenever either integral exists. The last equality follows from Lemma 1.22. By that lemma,
we also note that for any random element ζ in a measurable space S and a measurable map
f : S → R,

Ef(ζ) =

∫
Ω
f(ζ)dP =

∫
S
f(s)dLaw(ζ) =

∫
R
xdLaw(f ◦ ζ),

if any integral exists. For a random variable ζ and an event A, we often write E[ζ;A] for
E[1Aζ] =

∫
A ζdP.

Proof of Kolmogorov extension theorem. The uniqueness part follows from the monotone class
theorem.

We now consider the existence part. First assume that T = N. Every Borel space St is
Borel isomorphic to a Borel subset of [0, 1]. Since the theorem depends only on the σ-algebra
structure of St, we may assume that each St is a Borel subset of [0, 1]. Then each µΛ can be
also viewed as a probability measure on [0, 1]Λ.

The proof uses Carathéodory extension theorem. For each n ∈ N, let Fn denote the σ-
algebra on

∏
k∈N Sk generated by the projection πNn , where Nn = {1, . . . , n}. This means that

Fn is the family of subsets A ⊂ [0, 1]∞ of the form B× [0, 1]∞, where B ∈ B([0, 1])n. Then Fn is
increasing in n. Let R =

⋃
nFn. Then R is a ring in [0, 1]∞, and B([0, 1])∞ = σ(R). We define

µ : R → [0, 1] such that if A = B × [0, 1]∞ ∈ Fn for some B ∈ B([0, 1])n, then µA = µNnB.
Such µ is well defined thanks to the consistency condition.

We now show that µ is a pre-measure. It is easy to see that µ satisfies the finitely additivity.
It remains to show that if A1 ⊃ A2 ⊃ · · · ∈ R with µAn ≥ ε > 0 for all n, then

⋂
nAn 6= ∅.

Assume that Ak ∈ Fnk . Since Fn is increasing in n, we may assume that (nk) is increasing
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in k. By inserting repeated sets (e.g., if n1 = 2, n2 = 5, n3 = 7, then we use a new sequence
(A1, A1, A2, A2, A2, A3, A3, . . . ) to replace (A1, A2, A3, . . . )), we may assume that An ∈ Fn for
each n. Suppose An = Bn × [0, 1]∞ for some Bn ∈ B([0, 1])n.

By Lemma 1.16, for each n, there is a closed set Kn ⊂ Bn such that µNn(Bn \Kn) < ε
2n .

Let A′n = Kn × [0, 1]∞ ⊂ An. Then µ(An \ A′n) < ε
2n , and each A′n is a compact subset of

[0, 1]∞. Let A′′n =
⋂n
j=1A

′
j , n ∈ N. Then for every n, A′′n is a compact subset of An, and

An \ A′′n ⊂
⋂n
j=1(Aj \ A′j). The latter implies that µ(An \ A′′n) ≤

∑n
j=1

ε
2j
< ε, which together

with µAn > ε implies that A′′n 6= ∅. Since A′′1 ⊃ A′′2 ⊃ · · · and each A′′n is compact, we get⋂
nA
′′
n 6= ∅, which together with A′′n ⊂ An implies that

⋂
nAn 6= ∅.

Thus, µ is a pre-measure on R. By Carathéodory extension theorem, µ extends to a
probability measure on [0, 1]∞. By the definition of µ on R, for every n ∈ N, µ(

∏n
j=1 Sj ×

[0, 1]∞) = µNn
∏n
j=1 Sj = 1. So µ

∏∞
n=1 Sn = limn µ(

∏n
j=1 Sj × [0, 1]∞) = 1. Thus, µ is also

a probability measure on
∏∞
n=1 Sn. For every An ∈

∏n
j=1 Sj ∈ B([0, 1])n, we have µ(An ×∏∞

j=n+1 Sj) = µ(An × [0, 1]∞) = µNnAn. So µNn = (πNn)∗(µ) for every n ∈ N. For every
Λ ∈ P∗(N), there is n ∈ N such that Λ ⊂ Nn. By (2.1) we have

µΛ = (πNn,Λ)∗(µNn) = (πNn,Λ)∗ ◦ (πNn)∗(µ) = (πΛ)∗(µ).

So µ is what we need. We now know that the theorem holds if T is countable.
Finally, we consider a general T . Let Pσ(T ) denote the class of all nonempty countable

subsets of T . We have proved that for any Γ ∈ Pσ(T ), there exists a unique probability measure
µΓ on

∏
t∈Γ St such that for any finite subset Λ of Γ, µΛ = (πΓ,Λ)∗(µΓ). By the uniqueness, if

Γ1 ⊂ Γ2 ∈ Pσ(T ), then µΓ1 = (πΓ2,Γ1)∗(µΓ2). For each Γ ∈ Pσ(T ), let

FΓ = (πΓ)−1
∏
t∈Γ

St =
∏
t∈Γ

St ×
∏
t∈T\Γ

St.

It is easy to check that
⋃

Γ∈Pσ(T )FΓ is a σ-algebra, and so equals
∏
t∈T St. We define µ :⋃

Γ∈Pσ(T )FΓ → [0, 1] such that if A has an expression π−1
Γ B ∈ FΓ for some Γ ∈ Pσ(T ) and

B ∈
∏
t∈Γ St, then µA = µΓB. The value of µA does not depend on the choice of the expression

of A thanks to the consistency condition µΓ1 = (πΓ2,Γ1)∗(µΓ2). So µ is well defined. From the
definition, µΓ = (πΓ)∗µ for every Γ ∈ Pσ(T ). If Λ ∈ P∗(T ), we may pick Γ ∈ Pσ(T ) with Γ ⊃ Λ.
Then we get the desired equality µΛ = (πΓ,Λ)∗ ◦ (πΓ)∗µ = (πΛ)∗µ.

Remark . For the existence of infinite product measure, we do not need to assume that the St
are Borel spaces. The proof still uses Carathéodory extension theorem. Following the proof of
Kolmogorov extension theorem and the construction of the infinite product measure, we need
to show that, if T = N, and A1 ⊃ A2 ⊃ · · · satisfy that for some ε > 0,

An = Bn ×
∏
j>n

Sj , for some Bn ∈
n∏
j=1

Sj with (
n∏
j=1

µj)Bn ≥ ε,

for all n ∈ N, then
⋂
nAn 6= ∅.
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For n > m ∈ N and (x1, . . . , xm) ∈
∏m
j=1 Sj , we define

Bn(x1, . . . , xm) = {(xm+1, . . . , xn) ∈
n∏

j=m+1

Sj : (x1, x2, . . . , xn) ∈ Bn.

By Lemma 1.26, for each (x1, . . . , xm) ∈
∏m
j=1 Sj , Bn(x1, . . . , xm) is a measurable subset

of
∏n
j=m+1 Sj , and (x1, . . . , xm) 7→ (

∏n
j=m+1 µj)Bn(x1, . . . , xm) is a measurable function on∏m

j=1 Sj . For n ≥ 2, let

F (1)
n = {x1 ∈ S1 : (

n∏
j=2

µj)Bn(x1) > ε/2}.

Then F
(1)
2 ⊃ F (1)

3 ⊃ · · · are measurable subsets of S1. By Fubini theorem,

ε ≤ (

n∏
j=1

µj)Bn =

∫
µ1(dx1)(

n∏
j=2

µj)Bn(x1) ≤ ε

2
µ1(F (1)

n )c + µ1F
(1)
n ,

which implies that µ1F
(1)
n ≥ ε/2 for all n ≥ 2. So µ1

⋂
n F

(1)
n ≥ ε/2, and then we have⋂

n≥2 F
(1)
n 6= ∅.

Pick x1 ∈
⋂
n≥2 F

(1)
n . Let B

(1)
n = Bn(x1), n ≥ 2. For every n ≥ 3, and x2 ∈ S2, let

B(1)
n (x2) = Bn(x1, x2) = {(x3, . . . , xn) ∈

n∏
j=3

Sj : (x1, x2, x3, . . . , xn) ∈ Bn.

For n ≥ 3, let

F (2)
n = {x2 ∈ S2 : (

n∏
j=3

µj)B
(1)
n (x2) > ε/4}.

Using Fubini theorem and a similar argument as above, we get
⋂
n≥3 F

(2)
n 6= ∅. So we may pick

x2 ∈
⋂(2)
n≥3 F

(2)
n . Then (

∏n
j=3 µj)Bn(x1, x2) > ε/4 for any n ≥ 3.

Repeating the argument, we can find a sequence x := (x1, x2, . . . ) ∈
∏
k Sk such that

xk ∈ Sk, k ∈ N, and

(

n∏
j=m+1

µj)Bm(x1, . . . , xn) > ε/2n, ∀m > n ∈ N.

We now show that x ∈
⋂
nAn. Pick any n ∈ N, since An = Bn ×

∏∞
j=n+1 Sj , to prove that

x ∈ An, it suffices to show that (x1, . . . , xn) ∈ Bn. To prove this assertion, note that from
µn+1Bn+1(x1, . . . , xn) > 0 we get Bn+1(x1, . . . , xn) 6= ∅. So there is xn+1 ∈ Sn+1 such that
(x1, . . . , xn, xn+1) ∈ Bn+1. From An+1 ⊂ An, we get Bn+1 ⊂ Bn × Sn+1, which then implies
(x1, . . . , xn) ∈ Bn.
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A random vector ζ in Rn is called integrable if every component ζj , 1 ≤ j ≤ n, is integrable.

Lemma 2.5 (Jensen’s inequality). Let ζ be an integrable random vector in Rn. Let f : Rn → R+

be convex, i.e.,

f(px+ (1− p)y) ≤ pf(x) + (1− p)f(y), x, y ∈ Rn, 0 ≤ p ≤ 1.

Then f(Eζ) ≤ E[f(ζ)].

Proof. We use a version of Hahn-Banach Theorem, which asserts that

f(x) = sup
L
L(x),

where the supremum is over all affine functions L : Rn → R with L ≤ f . Since for every affine
function L ≤ f ,

L(Eζ) = E[L(ζ)] ≤ E[f(ζ)],

taking the supremum over all affine functions L ≤ f , we get f(Eζ) ≤ E[f(ζ)].

For a random variable ζ and p > 0, the integral E|ζ|p = ‖ζ‖pp is called the p-th absolute
moment of ζ.

Lemma 2.4. For any random variable ζ ≥ 0 and p > 0,

Eζp = p

∫ ∞
0

P{ζ > t}tp−1dt = p

∫ ∞
0

P{ζ ≥ t}tp−1dt.

Proof. By Fubini’s theorem and change of variables,

Eζp = E
∫ ∞

0
1{ζp > s}ds =

∫ ∞
0

E1{ζ > s1/p}ds

=

∫ ∞
0

E1{ζ > t}ptp−1dt = p

∫ ∞
0

P{ζ > t}tp−1dt.

Here in the third “=” we used s = tp. The proof if the second expression is similar.

Exercise . Show that ‖ζ‖p ≤ ‖ζ‖q if p ≤ q. Here we use the fact that PΩ = 1. So the Lp-spaces
are decreasing in p.

The covariance of two random variables ζ, η ∈ L2 is given by

cov(ζ, η) = E(ζ − Eζ)(η − Eη) = Eζη − EζEη.

It is clearly bilinear. The variance of ζ ∈ L2 is defined by

var(ζ) = cov(ζ, ζ) = E(ζ − Eζ)2 = Eζ2 − (Eζ)2.

33



By Cauchy inequality,
| cov(ζ, η)|2 ≤ var(ζ) var(η).

We say that ζ and η are uncorrelated if cov(ζ, η) = 0.
For any collection ζt ∈ L2, t ∈ T , the associated covariance function ρs,t = cov(ζs, ζt), s, t ∈

T , is nonnegative definite, in the sense that for any n ∈ N, t1, . . . , tn ∈ T , and a1, . . . , an ∈ R,∑
i,j aiajρti,tj ≥ 0. This is because∑

i,j

aiajρti,tj =
∑
i,j

aiajE(ζti − Eζti)(ζtj − Eζtj ) = E(
∑
i

ai(ζti − Eζti))
2 ≥ 0.

Example . We now study the following distributions (i.e. probability measures) on R. In each
case below, we suppose ζ is a random variable with Law(ξ) = µ. Recall that Eζ =

∫
xdµ and

var(ζ) = Eζ2 − (Eζ)2 =
∫
x2dµ − (

∫
xdµ)2 are determined by µ. We first consider discrete

distributions, which are combinations of Dirac measures.

(i) The degenerate distribution at x0. This is the point mass µ = δx0 , x0 ∈ R. We have
Eζ =

∫
xdδx0 = x0 and Eζ2 =

∫
x2dδx0 = x2

0 and so var(ζ) = 0.

(ii) The Bernoulli distribution with parameter p ∈ [0, 1]. The measure, denoted by B(p),
has the form µ = pδ1 + (1 − p)δ0. We have Eζ = p(1) + (1 − p)(0) = p and Eζ2 =
p(12) + (1− p)(02) = p. So var(ζ) = p− p2.

(iii) The binomial distribution with parameter n ∈ N and p ∈ [0, 1]. The measure, denoted by
B(n, p), has the form µ =

∑n
k=0 p

k(1 − p)n−k
(
n
k

)
δk. It is a probability measure because∑n

k=0 p
k(1− p)n−k

(
n
k

)
= (p+ (1− p))n = 1. We have

Eζ =
n∑
k=0

pk(1− p)n−kk
(
n

k

)
=

n∑
k=1

pk(1− p)n−k n!

(k − 1)!(n− k)!

= np
n∑
k=1

pk−1(1− p)n−k (n− 1)!

(k − 1)!(n− k)!
= np;

E(ζ2 − ζ) =
n∑
k=0

pk(1− p)n−kk(k − 1)

(
n

k

)

= n(n− 1)p2
n∑
k=2

pk−2(1− p)n−k (n− 2)!

(k − 1)!(n− k)!
= n(n− 1)p2.

So var(ζ) = E(ζ2 − ζ) + Eζ − (Eζ)2 = n(p− p2).
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(iv) The geometric distribution with parameter p ∈ (0, 1]. The measure, denoted by Geom(p),
has the form µ =

∑∞
k=1(1 − p)k−1pδk. It is a probability measure because

∑∞
k=1(1 −

p)k−1p = p
1−(1−p) = 1, where we used

∑∞
k=0 x

k = 1
1−x for |x| < 1. We have

Eζ =

∞∑
k=1

k(1− p)k−1p =
p

(1− (1− p))2
=

1

p
;

E(ζ2 − ζ) =

∞∑
k=1

k(k − 1)(1− p)k−1p

= p(1− p)
∞∑
k=2

k(k − 1)(1− p)k−2 =
2p(1− p)

(1− (1− p))3
=

2(1− p)
p2

.

Here we used the equalities
∑∞

k=1 kx
k−1 = 1

(1−x)2
and

∑∞
k=2 k(k − 1)xk−2 = 2

(1−x)3
for

|x| < 1, which can be proved by differentiating the equality
∑∞

k=0 x
k = 1

1−x . Thus,

var(ζ) = E(ζ2 − ζ) + Eζ − (Eζ)2 = 2(1−p)
p2

+ 1
p −

1
p2

= 1−p
p2

.

(v) The Poisson distribution with parameter λ > 0. The measure, denoted by Pois(λ), has

the form µ =
∑∞

k=0 e
−λ λk

k! δk. It is a probability measure because
∑∞

k=0
λk

k! = eλ. We have

Eζ =
∞∑
k=0

k
λk

k!
= λ

∞∑
k=1

λk−1

(k − 1)!
= λ;

E(ζ2 − ζ) =
∞∑
k=0

k(k − 1)
λk

k!
= λ2

∞∑
k=2

λk−2

(k − 2)!
= λ2.

So var(ζ) = E(ζ2 − ζ) + Eζ − (Eζ)2 = λ2 + λ− λ2 = λ.

Below are continuous distributions on R, which have density functions w.r.t. the Lebesgue
measure λ. In each example below, f is the λ-density of Law(ζ). Then Eζ =

∫
R xf(x)dx and

Eζ2 =
∫
R x

2f(x)dx.

(i) The uniform distribution U [a, b] for a < b ∈ R. The density is f(x) = 1
b−a1[a,b]. Then

Eζ = 1
b−a

∫ b
a xdx = 1

b−a
x2

2 |
b
a = a+b

2 and Eζ2 = 1
b−a

∫ b
a x

2dx = 1
b−a

x3

3 |
b
a = 1

3(a2 + ab + b2).

So var(ζ) = 1
3(a2 + ab+ b2)− (a+b

2 )2 = (a−b)2
12 .

(ii) The exponential distribution Exp(λ) with parameter λ > 0. The density is 1[0,∞)λe
−λx.

It is a probability measure because
∫∞

0 λe−λxdx = 1. We have

Eζ =

∫ ∞
0

xλe−λxdx = −
∫ ∞

0
(−e−λx)dx =

1

λ
;

Eζ2 =

∫ ∞
0

x2λe−λxdx = −
∫ ∞

0
2x(−e−λx)dx =

2

λ2
.

Here we use integration by parts. So var(ζ) = Eζ2 − (Eζ)2 = 1
λ2

.
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(iii) The normal distribution N(µ, σ2) with parameter µ ∈ R and σ > 0. The density is

f(x) =
1√
2πσ

e−
(x−µ)2

2σ2 .

It is a probability measure because using a change of variable x = µ+
√
σy, we get

1√
2πσ

∫
R
e−

(x−µ)2

2σ2 dx =
1√
2π

∫
R
e−y

2/2dy,

and by Fubini’s theorem and using polar coordinate,(∫
R
e−y

2/2dy
)2

=

∫
R

∫
R
e−x

2/2e−y
2/2dxdy =

∫ 2π

0

∫ ∞
0

e−r
2/2rdrdθ

= 2π

∫ ∞
0

e−r
2/2rdr = 2π(−er2/2)|∞0 = 2π.

Using the same change of variable x = µ+ σy, we get

Eζ =
1√
2πσ

∫
R
xe−

(x−µ)2

2σ2 dx =
1√
2π

∫
R

(µ+ σy)e−y
2/2dy = µ;

Eζ2 =
1√
2πσ

∫
R
x2e−

(x−µ)2

2σ2 dx =
1√
2π

∫
R

(µ+ σy)2e−y
2/2dy

= µ+ σ2 1√
2π

∫
y2e−y

2/2dy.

Here we used that
∫
R ye

−y2/2dy = 0 because the integrand is odd. Thus,

var(ζ) = σ2 1√
2π

∫
y2e−y

2/2dy = σ2 1√
2π

∫
e−y

2/2dy = σ2,

where we used integration by parts: differentiating y and integrating ye−y
2/2.

We understand the degenerate distribution δµ as a normal distribution N(µ, 0), which
does not have a λ-density. In this case it trivially holds that Eζ = µ and var(ζ) = 0. If
Law(ζ) = N(µ, σ2), then for any a, b ∈ R, Law(aζ + b) = N(aµ+ b, a2σ2).

Exercise . Prove the following

(i) The binomial distribution B(n, p) is the n-th convolution power of the Bernoulli distri-
bution B(p), i.e.,

B(p) ∗ · · · ∗ B(p)︸ ︷︷ ︸
n copies

= B(n, p).
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(ii) The Poisson distributions satisfy that for any λ1, λ2 > 0,

Pois(λ1) ∗ Pois(λ2) = Pois(λ1 + λ2).

(iii) The normal distributions satisfy that for any µ1, µ2 ∈ R and v1, v2 ≥ 0,

N(µ1, v1) ∗N(µ2, v2) = N(µ1 + µ2, v1 + v2).

Example . There exists a probability measure on R, which is not a combination of a discrete
distribution and a continuous distribution. Consider the Cantor 1/3 set:

C = {
∞∑
n=1

an
3n

: an ∈ {0, 2}, n ∈ N}.

It is Borel isomorphic to the product space {0, 2}∞. Let f : {0, 2}∞ → C be the bijective
measurable map

f((an)n∈N) =
∞∑
n=1

an
3n
.

Let µ = 1
2(δ0+δ2) be a probability measure on {0, 2}. We have known that the product measure

µ∞ exists on {0, 2}∞. The pushforward measure f∗µ
∞ is a probability measure on C. Then

f∗µ
∞(Cc) = 0. We know that λ(C) = 0. So f∗µ

∞ ⊥ λ. We also see that f∗µ
∞ has no point

mass, i.e., there does not exist x ∈ C such that f∗µ
∞({x}) > 0, because µ∞ has no point mass.

Exercise . Let µ = 1
2(δ0 + δ1) be a probability measure on {0, 1}. Let f : {0, 1}∞ → [0, 1] be

defined by

f((an)n∈N) =

∞∑
n=1

an
2n
.

Prove that f is measurable, and f∗µ
∞ = λ(· ∩ [0, 1]).

We now define and study the notation of independence. The events At, t ∈ T , are said to
be (mutually) independent (w.r.t. P) if for any distinct indices t1, . . . , tn ∈ T ,

P[
n⋂
k=1

Atk ] =
n∏
k=1

PAtk . (2.2)

We say that a class of families Ct, t ∈ T , are independent, if when we pick an At in every Ct,
then At, t ∈ T , are independent. We do not require the independence between events in the
same family Ct. The random elements ζt, t ∈ T , are said to be independent if the independence
holds for the generated σ-algebras σ(ζt), t ∈ T .

Lemma 2.10 (Strengthened version). For each t ∈ T , let ζt be a random element in a mea-
surable space (St, St). Let ζ = (ζt : t ∈ T ) be a random element in

∏
t∈T St. Then ζt, t ∈ T ,

are independent iff

Law(ζ) =
∏
t∈T

Law(ζt).
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Proof. This is a strengthened version of Lemma 2.10 of the textbook, which assumes that T is
finite. We leave the proof as an exercise.

Corollary . Let T be an arbitrary index set. Suppose for each t ∈ T , µt is a probability measure
on a Borel space (St, St). Then there is a probability space (Ω,A,P), and an independent family
of random elements ζt, t ∈ T , defined on it such that Law(ζt) = µt for each t.

Proof. We have shown that the product measure
∏
t∈T µt on (

∏
t∈T St,

∏
t∈T St) exists. Let

(Ω,A,P) = (
∏
t∈T St,

∏
t∈T St,

∏
t∈T µt). For each t ∈ T , let the random element ζt : Ω → St

be the projection map π{t}. Then the random element ζ = (ζt : t ∈ T ) from Ω to
∏
t∈T St = Ω

is just the identity map. So Law(ζt) = (π{t})∗
∏
s∈T µs = µt, t ∈ T , and Law(ζ) =

∏
t∈T µt. By

Lemma 2.10, ζt, t ∈ T , are independent.

Lemma 2.6. If the π-systems Ct, t ∈ T , are independent, then so are the σ-fields Ft := σ(Ct),
t ∈ T .

Proof. We need to show that for any distinct indices t1, . . . , tn ∈ T , and any Atk ∈ Ftk ,
1 ≤ k ≤ n, (2.2) holds. By assumption, it is true if Atk ∈ Ctk , 1 ≤ k ≤ n. By a monotone
class argument, we may first weaken the assumption on At1 from At1 ∈ Ct1 to At1 ∈ Ft1 , and
then weaken the assumption on At2 from At2 ∈ Ct2 to At2 ∈ Ft2 . Repeating the argument until
we weaken the assumptions of all Atk from Atk ∈ Ctk to Atk ∈ Ftk . Then we get the desired
equality.

Corollary 2.7. Let Ft, t ∈ T , be independent σ-algebras. Let Rs, s ∈ S, be a partition of T .
Then the σ-algebras F ′s = ∨t∈RsFt := σ(

⋃
t∈Rs Ft), s ∈ S, are independent.

Proof. For each s ∈ S, let Cs denote the set of all finite intersections of sets in
⋃
t∈Rs Ft. Then

each Cs is a π-system, and it is straightforward to check that Cs, s ∈ S, are independent. By
Lemma 2.6, we have F ′s = σ(Cs), s ∈ S, are independent.

Pairwise independence between two objects A and B will be denoted by A |= B. In gen-
eral, pairwise independence between all pairs of At, t ∈ T , say, does not imply the (total)
independence of the group At, t ∈ T .

Lemma 2.8. The σ-algebras F1,F2, . . . are independent iff ∨k≤nFk |= Fn+1 for all n.

Proof. The “only if” part follows from Corollary 2.7. For the “if” part, it suffices to show
that for any n ∈ N and Ak ∈ Fk, 1 ≤ k ≤ n, we have P

⋂n
k=1Ak =

∏n
k=1 PAk. This follows

from induction and the fact that P
⋂n
k=1Ak = PAn · P

⋂n−1
k=1 Ak because Fn |= ∨k≤n−1 Fk, and⋂n−1

k=1 Ak ∈ ∨k≤n−1Fk.

A σ-algebra F ⊂ A is called (P-)trivial if for any A ∈ F , PA ∈ {0, 1}.

Lemma 2.9. (i) A σ-algebra F ⊂ A is trivial iff F |= F . (ii) If F is trivial, and ζ is an
F-measurable random element in a separable metric space S, then ζ is a.s. constant.
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Proof. (i) First suppose F is trivial. Let A,B ∈ F . Then PA and PB equal to 0 or 1. If
PA = 0, then since A ∩ B ⊂ A, we have P[A ∩ B] = 0 = PA · PB. Similarly, if PB = 0,
then P[A ∩ B] = PA · PB. Now suppose PA = PB = 1. Then PAc = PBc = 0. Thus,
P[Ac ∪ Bc] = 0. So P[A ∩ B] = 1 − P[(A ∩ B)2] = 1 − P[Ac ∪ Bc] = 1. If F |= F , then for any
A ∈ F , PA = P(A ∩A) = (PA)2, which implies that PA ∈ {0, 1}, and so F is trivial.

(ii) Suppose F is trivial. For each n ∈ N, we may partition S into mutually disjoint
countably many Borel sets Bn,j of diameter < 1/n. Fix n ∈ N. Since P[ζ ∈ Bn,j ] ∈ {0, 1} for
each j, and (Bn,j) is a partition of S, there is jn such that P[ζ ∈ Bn,jn ] = 1. So there is a null
event Nn such that ζ ∈ Bn,jn on N c

n. Let N =
⋃
nNn. Then N is a null set, and ζ ∈

⋂
nBn,jn

on N c. Since diam(Bn,jn) < 1/n for all n, ζ is a constant on N c.

Lemma 2.11. Let ζ and η be independent random elements in measurable spaces S and T ,
and let f : S × T → R be measurable. If f ≥ 0, then Ef(ζ, η) = E[E[f(s, η)]|s=ζ ]. Here
the RHS means that we first fix s ∈ S and integrate the random variable f(s, η), which is
a measurable function in s ∈ S by Lemma 1.38; then we compose it with ζ to get a random
variable, and integrate it. If we do not assume that f ≥ 0, but assume that either E|f(ζ, η)| <∞
or E[E[f(s, η)]|s=ζ ] <∞, then the equality also holds.

Proof. This lemma essentially follows from Fubini’s theorem. We now only work on the case
that f ≥ 0. Let µ and ν be the laws of ζ and η, respectively. Since ζ |= η, by Lemma 2.10,
Law(ζ, η) = µ× ν. By Fubini’s theorem,

Ef(ζ, η) =

∫
f(s, t)µ× ν(ds, dt) =

∫
µ(ds)

∫
f(s, t)ν(dt)

= E
[ ∫

f(s, t)ν(dt)|s=ζ
]

= E[E[f(s, η)]|s=ζ ].

The case without assuming f ≥ 0 follows from linearity.

Corollary . For independent random variables ζ1, . . . , ζn,

1. (i) if ζ1, . . . , ζn ∈ L1, then E
∏n
k=1 ζk =

∏n
k=1 Eζk;

2. (ii) if ζ1, . . . , ζn ∈ L2, then var(
∑n

k=1 ζk) =
∑n

k=1 var(ζk).

Proof. By induction and Corollary 2.7, it suffices to prove the case n = 2. Suppose ζ |= η. To
prove Eζη = EζEη, we apply Lemma 2.11 with f(x, y) = xy. For the variance, we note that

var(ζ + η)− (var(ζ) + var(η)) = 2 cov(ζ, η) = 2E(ζ − Eζ)(η − Eη) = 2E(ζ − Eζ)E(η − Eη) = 0,

where the second equality holds because ζ − Eζ |= η − Eη. So var(ζ + η) = var(ζ) + var(η).

Corollary 2.12. Let ζ, η be independent random elements in a measurable group. Then Law(ζ+
η) = Law(ζ) ∗ Law(η).
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Proof. By Lemma 2.10, Law(ζ, η) = Law(ζ)×Law(η). So Law(ζ+η) equals the pushforward of
Law(ζ)×Law(η) under the map (x, y) 7→ xy, which is the convolution of Law(ζ) and Law(η).

By an exercise, if ζ1, . . . , ζn are independent random variables with Bernoulli distribution
B(p), then ζ1+· · ·+ζn has the binomial distribution B(n, p). Suppose ζ1 and ζ2 are independent
random variables. If they have Poisson distributions Pois(λ1) and Pois(λ2), respectively, then
ζ1 + ζ2 has Poisson distributions Pois(λ1 +λ2). If they have Normal distributions N(µ1, v1) and
N(µ2, v2), respectively, then ζ1 + ζ2 has Normal distributions N(µ1 + µ2, v1 + v2).

We now study some zero-one laws. Given a sequence of σ-algebras F1,F2, . . . , the associated
tail σ-algebra is defined by

T =
⋂
n

∨
k≥n
Fk =

⋂
n

σ(
⋃
k≥n
Fk).

Example . Suppose ζ1, ζ2 . . . is a sequence of random variables, and Fn = σ(ζn) for each n.
Let T be the tail σ-algebra. Then

(i) The set A1 of ω ∈ Ω such that limn ζn(ω) converges is measurable w.r.t. T .

(ii) The set A2 of ω ∈ Ω such that
∑

n ζn(ω) converges is measurable w.r.t. T .

(iii) The set of ω ∈ Ω such that 1
n

∑n
k=1 ζk(ω) converges is measurable w.r.t. T .

(iv) If we define η1 = limn ζn on A1, then η1 is A1 ∩ T -measurable.

(v) If we define η2 =
∑

n ζn on A2, then η2 may not be A2 ∩ T -measurable.

(vi) If we define η3 = limn
1
n

∑n
k=1 ζk on A3, then η3 is A3 ∩ T -measurable.

Theorem 2.13 (Kolmogorov’s zero-one law). Let F1,F2, . . . be independent σ-algebras in A.
Then the associated tail σ-algebra is trivial.

Proof. For n ∈ N, define Tn =
∨
k>nFk. Then T =

⋂
n Tn. By Corollary 2.7, for any n,

F1, . . . ,Fn, Tn are independent. Since T ⊂ Tn, T ,F1, . . . ,Fn are independent for all n. Then
we conclude that, T ,F1,F2, . . . are independent. By Corollary 2.7 again, we get T |=

∨∞
n=1Fn.

Since T ⊂
∨∞
n=1Fn, we get T |= T . By Lemma 2.9 (i), T is trivial.

Corollary 2.14. Let ζ1, ζ2, . . . be independent random variables. Let Sn =
∑n

k=1 ζk, n ∈ N.
Then each of the sequences (ζn), (Sn) and ( 1

nSn) is either a.s. convergent or a.s. divergent. If
(ζn) or ( 1

nSn) a.s. converges, then the limit is a.s. constant.

There is another zero-one law, which works best for the sum of independent and identically
distributed (i.i.d.) sequences of random vectors.

A bijective map p : N→ N is called a finite permutation of N if there is N such that pn = n
for n > N . A finite permutation p of N induces a bijective map Tp : S∞ → S∞ given by
Tp(s1, s2, . . . ) = (sp1 , sp2 , . . . ). A set I ⊂ S∞ is called symmetric if T−1

p I = I for all finite

permutation p of N. Let (S, S) be a measurable space. Then for every p, Ip := {I ∈ S
∞

:
T−1
p I = I} is a σ-algebra. So the set of symmetric I ∈ S∞ form a σ-algebra I =

⋂
p Ip, which

is called the permutation invariant σ-algebra in S
∞

.
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Example . Suppose G is an Abelian measurable group (e.g. Rd). Let B ⊂ G be measurable.
Then the set

EB = {(v1, v2, . . . ) ∈ G :

n∑
k=1

vk ∈ B for infinitely many n}

belongs to the permutation invariant σ-algebra.

Theorem 2.15 (Hewitt-Savage zero-one law). Let ζ1, ζ2, . . . be an i.i.d. sequence of random
elements in a measurable space (S, S), and let ζ = (ζ1, . . . , ζn). Let I be the permutation
invariant σ-algebra in S

∞
. Then ζ−1I is trivial.

Lemma 2.16. Given any σ-algebras F1 ⊂ F2 ⊂ · · · in S, a probability measure µ on ∨nFn,
and a set A ∈ ∨nFn, there exist a sequence A1, A2, · · · ∈

⋃
Fn with µ(An∆A)→ 0.

Proof. Let D denote the set of A ∈ ∨nFn with the stated property. Then D is a λ-system
containing the π-system C :=

⋃
Fn. Here we use the fact that µ(A∆B) = ‖1A − 1B‖1. By

monotone class theorem, D contains σ(C) = ∨nFn.

Proof of Theorem 2.15. Let µ = P ◦ ζ−1. Set Fn = S
n × S∞, n ∈ N. Note that F1 ⊂ F2 ⊂ · · · ,

and ∨nFn = S
∞ ⊃ I. For any I ∈ I, by Lemma 2.16 there is a sequence In of the form Bn×S∞

with Bn ∈ S
n

such that µ(In∆I)→ 0, and so µIn → µI. Writing Ĩn = Sn ×Bn × S∞, then by
the symmetry of µ and I, we have µĨn = µIn and µ(Ĩn∆I) = µ(In∆I)→ 0. Hence

µ((In ∩ Ĩn)∆I) ≤ µ(In∆I) + µ(Ĩn∆I)→ 0

because (A ∩B)∆C ⊂ (A∆C) ∪ (B∆C). So µ(In ∩ Ĩn)→ µI. By independence of ζk, we have

µ(In ∩ Ĩn) = P[(ζ1, . . . , ζn) ∈ Bn, (ζn+1, . . . , ζ2n) ∈ Bn] = P[(ζ1, . . . , ζn) ∈ Bn]2 = µ(In)2.

So µ(In ∩ Ĩn)→ µ(I)2. Then we get µI = (µI)2 and so µI ∈ {0, 1}.

Corollary 2.17. Let ζ1, ζ2, . . . be i.i.d. random vectors in Rd, and put Sn = ζ1 + · · ·+ζn. Then
for any B ∈ B(Rd), P{Sn ∈ B i.o.} = 0 or 1.

Note that Kolmogorov’s zero-one law does not apply here because {Sn ∈ B i.o.} is not a
tail event.

The sequence (Sn) is called a random walk on Rd. For a more specific example, we may
consider the case that every ζk has the distribution

1

2d

∑
σ∈{+,−}

d∑
j=1

δσej ,

where ej is the vector in Rd whose j-th component is 1 and all other components are 0. In
this case (Sn) is called a simple random walk on Zd. By Corollary 2.17, for every v0 ∈ Zd,
P{Sn = v0 i.o.} = 0 or 1. By translation invariance of Zd, one easily see that the value of
P{Sn = v0 i.o.} depends only on d. If the value is 1, the random walk is called recurrent; if the
value is 0, the random walk is called transient. It turns out (not easy!) that, when d ≤ 2, the
random walk is recurrent, and when d ≥ 3, the random walk is transient.
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Theorem 2.18 (Borel-Cantelli lemma). Let A1, A2, · · · ∈ A. Then
∑

n PAn <∞ implies that
P[An i.o.] = 0, and when the An are independent, P[An i.o.] = 0 implies that

∑
n PAn <∞.

Proof. We have proved the first assertion. Now suppose An are independent. Then Acn are also
independent. For any n < N ∈ N,

1− P
N⋃

m=n

Am = P
N⋂

m=n

Acm =

N∏
m=n

(1− PAm).

Letting N →∞, we get

1− P
∞⋃
m=n

Am =

∞∏
m=n

(1− PAm).

If P[An i.o.] = 0, then there is n such that 1− P
⋃∞
m=nAm > 0, which implies by calculus that∑∞

m=n PAm <∞, and so
∑

n PAn <∞.

For x = (x1, . . . , xd) and y = (y1, . . . , yd) in Rd, we write x ≤ y (resp. x < y) if xk ≤ yk
(resp. xk < yk) for all 1 ≤ k ≤ d. For x < y ∈ Rd, we define

(−∞, y] = {z ∈ Rd : z ≤ y} =
d∏

k=1

(−∞, yk], (x, y] = {z ∈ Rd : x < z ≤ y} =
d∏

k=1

(xk, yk].

For a random vector ζ in Rd, we define the associated distribution function F by

F (x) = P[ζj ≤ xj , 1 ≤ j ≤ d] = Law(ζ)(−∞, x].

By a monotone argument, we get

Lemma 2.3. Two random vectors in Rd have the same distribution iff they have the same
distribution function.

We may use F to calculate µ(x, y]. For d = 1, µ(x, y] = F (y) − F (x). For d ≥ 2, we need
an inclusion-exclusion argument.

Exercise . Prove that for any x < y ∈ Rd,

µ(x, y] =
∑

S⊂{1,...,d}

(−1)|S|F (zS), (2.3)

where zS ∈ Rd such that zSk = xk if k ∈ S and zSk = yk if k 6∈ S.

Then F satisfies the following properties.

(i) F (x, y] ≥ 0 for every x < y ∈ Rd, where we define F (x, y] to be the RHS of (2.3).

(ii) F is right-continuous in the sense that limx↓y F (x) = F (y) for any y ∈ Rd, where x ↓ y
means that xk > yk and xk → yk for all 1 ≤ k ≤ d.
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(iii) limminxk→−∞ F (x) = 0.

(iv) limminxk→∞ F (x) = 1.

Here (ii)-(iv) follow from the continuity of µ and the fact that µ(Rd) = 1.

Theorem 2.25-2.26. If F satisfies (i-iii), then it is the distribution function of some σ-finite
measure µ on Rd. If F also satisfies (iv), then µ is a probability measure.

Proof. We define a ring R on Rd to be the class of disjoint unions of sets of the form (x, y] for
x < y ∈ Rd. Define µ : R → R+ such that if A has a disjoint union expression

⋃m
j=1(xj , yj ],

then

µA =

m∑
j=1

F (xj , yj ].

Such µ is well defined and satisfies finitely additivity. We then show that µ is a pre-measure.
Suppose A1 ⊃ A2 ⊃ · · · ∈ R with µAn ≥ ε > 0 for all n. We need to show that

⋂
nAn 6= ∅. For

every n ∈ N, we may choose A′n ∈ R such that A′n ⊂ An and µ(An \A′n) < ε
2n . Here we use the

fact that if xn ↓ x < y, then F (xn, y]→ F (x, y], which follows from the right-continuity of F .
Let A′′n = A′1 ∩ · · · ∩ A′n. Then A′′n ⊂ An for each n, and A′′1 ⊃ A′′2 ⊃ · · · . Since An \ A′′n ⊂⋃n

k=1(Ak \ A′k), we get µ(An \ A′′n) ≤
∑n

k=1 µ(Ak \ A′k) <
∑n

k=1
ε

2k
< ε. From µAn > ε we get

µA′′n > 0, and so A′′n 6= ∅. Since each A′′n is compact and A′′1 ⊃ A′′2 ⊃ · · · , we get
⋂
nA
′′
n 6= ∅,

which together with A′′n ⊂ An implies that
⋂
nAn 6= ∅. So µ is a pre-measure on R. We may

then use Carathéodory extension theorem to extend µ to a measure on Rd. It is σ-finite because
µ(x, x+ 1] <∞ for every x ∈ Zd, where 1 = (1, . . . , 1).

By (iii) we have, for every y ∈ Rd,

F (y) = lim
minxk→−∞

F (x, y] = lim
minxk→−∞

µ(x, y] = µ(−∞, y].

So F is the distribution function of µ. If (iv) holds, then

µRd = lim
n→∞

µ(−∞, (n, . . . , n)] = lim
n→∞

F (n, . . . , n) = 1,

which implies that µ is a probability measure.

Exercise . Problems 4, 5, 8, 12 of Exercises of Chapter 2.

3 Random Sequences, Series, and Averages

We still fix a probability space (Ω,A,P), and assume that all random elements are defined on
this space. We will study several different concepts of convergence of random variables: almost

sure convergence, ζn → ζ a.s., convergence in probability, ζn
P→ ζ, convergence in distribution,

ζn
d→ ζ, and convergence in Lp.
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Definition . Let ζ, ζ1, ζ2, . . . be random elements in a metric space (S, ρ).

(i) We say that ζn converges almost surely to ζ, and write ζn → ζ a.s., if there is a null event
N such that ρ(ζn(ω), ζ(ω))→ 0 for every ω ∈ Ω \N .

(ii) We say that ζn converges in probability to ζ, and write ζn
P→ ζ, if for every ε > 0,

limn→∞ P{ρ(ζn, ζ) > ε} = 0.

(iii) We say that ζn converges in distribution to ζ, and write ζn
d→ ζ, if for every f ∈ Cb(S,R),

the space of bounded real-valued continuous functions on S, we have Ef(ζn)→ Ef(ζ).

(iv) In the case that S = R, we say that ζn converges to ζ in Lp for some p > 0, if ζ, ζ1, ζ2, · · · ∈
Lp and ‖ζn − ζ‖p = (E|ζn − ζ|p)1/p → 0.

Lemma 3.1 (Chebyshev inequality). For any measurable ζ : Ω→ R+ and r > 0,

P{ζ ≥ r} ≤ 1

r
Eζ.

Proof. Since ζ ≥ r1{ζ≥r}, we get Eζ ≥ E(r1{ζ≥r}) = rP{ζ ≥ r}.

Exercise . Prove that ζn → ζ in Lp for some p > 0 implies that ζn
P→ ζ.

Lemma . For ζ, ζ1, ζ2, . . . in the above definition, ζn
P→ ζ iff E[1 ∧ ρ(ζn, ζ)]→ 0.

Proof. For every ε ∈ (0, 1), from ε1{ρ(ζn, ζ) > ε} ≤ 1 ∧ ρ(ζn, ζ) ≤ 1{ρ(ζn, ζ) > ε}+ ε, we get

εP{ρ(ζn, ζ) > ε} ≤ E[1 ∧ ρ(ζn, ζ)] ≤ P{ρ(ζn, ζ) > ε}+ ε.

These inequalities imply the equivalence.

Remark . The lemma means that the convergence in probability is determined by a metric

ρV (ζ, η) = E[1 ∧ ρ(ζ, η)].

This is in general not true for almost surely convergence

Lemma 3.2 (subsequence criterion). Let ζ, ζ1, ζ2, . . . be as before. Then ζn
P→ ζ iff every

subsequence N ′ ⊂ N has a further subsequence N ′′ ⊂ N ′ such that ζn → ζ a.s. along N ′′. In
particular, the almost sure convergence implies the convergence in probability.

Proof. Suppose ζn
P→ ζ. Then E[1 ∧ ρ(ζn, ζ)] → 0 by the above lemma. Suppose N ′ ⊂ N.

Then E[1 ∧ ρ(ζn, ζ)] → 0 along N ′. We may then choose a subsequence N ′′ ⊂ N ′ such that∑
n∈N ′′ E[1 ∧ ρ(ζn, ζ)] <∞. By monotone convergence theorem, we get

E[
∑
n∈N ′′

1 ∧ ρ(ζn, ζ)] <∞,
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which implies that a.s.
∑

n∈N ′′ 1 ∧ ρ(ζn, ζ) <∞. So a.s. ζn → ζ along N ′′. On the other hand,

suppose ζn 6
P→ ζ. Then E[1 ∧ ρ(ζn, ζ)] 6→ 0. So there is ε > 0 and a subsequence N ′ ⊂ N such

that E[1 ∧ ρ(ζn, ζ)] > ε for any n ∈ N ′. It there is a further subsequence N ′′ ⊂ N ′ such that
ζn → ζ a.s. along N ′′, then since 1 ∧ ρ(ζn, ζ) → 0 a.s. along N ′′, by dominated convergence
theorem, E[1 ∧ ρ(ζn, ζ)]→ 0 along N ′′, which is a contradiction.

Finally, if ζn → ζ a.s. then for any N ′ ⊂ N, ζn → ζ a.s. along N ′. So we get ζn
P→ ζ.

Remark . From Lemma 3.2, we see that the condition that ζn → ζ a.s. in dominated conver-

gence theorem can be further weakened to ζn
P→ ζ. This means that if ζn → Pζ, |ζn| ≤ η for

all n, and Eη <∞, then Eζn → Eζ.

Example . We may find a sequence of random variables ζn on ([0, 1], λ) such that ζn
P→ 0 but

ζn does not a.s. converge to 0. In fact, we may choose ζn = 1An , where

A1 = [0, 1], A2 = [0, 1/2], A3 = [1/2, 1],

A4 = [0, 1/4], A5 = [1/4, 2/4], A6 = [2/4, 3/4], A7 = [3/4, 1], . . .

The general formula is: for 2k ≤ n ≤ 2k+1−1, ζk = 1[ n
2k
−1,n+1

2k
−1]. We observe that ‖ζn‖1 = 2−k

if 2k ≤ n ≤ 2k+1− 1. So ζn → 0 in L1, which implies that ζn
P→ 0. However, for every t ∈ [0, 1],

there are infinitely many n such that ζn(t)→ 1. So ζn does not a.s. tend to 0.

Lemma 3.3. Let S and T be two metric spaces. Suppose ζn
P→ ζ in S, and f : S → T be

continuous. If ζn
P→ ζ in S, then f(ζn)

P→ f(ζ) in T .

Proof. By Lemma 3.2, every subsequence N ′ ⊂ N contains a further subsequence N ′′ ⊂ N ′

such that ζn → ζ a.s. in S along N ′′. By the continuity of f , we see that f(ζn) → f(ζ) a.s. in

T along N ′′. Thus, by Lemma 3.2 f(ζn)
P→ f(ζ) in T .

Corollary 3.5. Let ζ, ζ1, ζ2, . . . and η, η1, η2, . . . be random variables with ζn
P→ ζ and ηn

P→ η.

Then aζn+bηn → aζ+bη for any a, b ∈ R and ζnηn → ζη. Furthermore, ζn/ηn
P→ ζ/η whenever

ηn and η do not take value zero.

Proof. From ζn
P→ ζ and ηn

P→ η we get (ζn, ηn)
P→ (ζ, η). We may then apply Lemma 3.3 to

continuous functions R2 3 (x, y) 7→ ax+ by ∈ R, R2 3 (x, y) 7→ xy, and R× (R\{0}) 3 (x, y) 7→
x/y, respectively.

Definition . For random elements ζ1, ζ2, . . . in a metric space (S, ρ), we say that (ζn) is a
Cauchy sequence in probability if for any ε > 0, P{ρ(ζn, ζm) > ε} → 0 as n,m → ∞. Using a
similar argument as before, we can show that this is equivalent to that E[1 ∧ ρ(ζn, ζm)]→ 0 as
n,m→∞.
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If ζn
P→ ζ, then E[1∧ρ(ζn, ζ)]→ 0 as n→∞. By triangle inequality, we get E[1∧ρ(ζn, ζm)]→

0 as n,m → ∞, which implies that (ζn) is a Cauchy sequence in probability. The converse is
true if (S, ρ) is complete. This is the lemma below.

Lemma 3.6. If (S, ρ) is complete, then (ζn) is a Cauchy sequence in probability iff ζn
P→ ζ for

some random element ζ in S.

Proof. We have proved the “if” part. Now we prove the “only if” part. Assume that (ζn) is
a Cauchy sequence in probability. We may choose a subsequence (nk) of N such that E[1 ∧
ρ(ζnk , ζnk+1

)] ≤ 2−k for all k ∈ N. Then we have

E[
∑
k

1 ∧ ρ(ζnk , ζnk+1
)] ≤

∑
k

2−k <∞,

which implies that a.s.
∑

k 1 ∧ ρ(ζnk , ζnk+1
) < ∞, and so

∑
k ρ(ζnk , ζnk+1

) < ∞. So almost
surely (ζnk) is a Cauchy sequence in S. By the completeness of S, there is a random element ζ

in S such that a.s. ζnk → ζ. Thus, E[1 ∧ ρ(ζnk , ζ)]→ 0 as k →∞. To see that ζn
P→ ζ, write

E[1 ∧ ρ(ζm, ζ)] ≤ E[1 ∧ ρ(ζnk , ζ)] + E[1 ∧ ρ(ζm, ζnk)],

and use the convergence of the RHS to 0 as m, k →∞.

This lemma shows that the space of random elements on S with metric ρV (ζ, η) = E[1 ∧
ρ(ζ, η)] is complete when S is complete.

Lemma 3.7. The convergence in probability implies the convergence in distribution.

Proof. Suppose ζn
P→ ζ in S, and f ∈ Cb(S). Then f(ζn)

P→ f(ζ) by Lemma 3.3. By monotone

convergence theorem (for convergence in probability), we have Ef(ζn)→ Ef(ζ). So ζn
d→ ζ.

Definition . Let µ, µ1, µ2, . . . be probability measures on a metric space (S, ρ). We say that
µn converges weakly to µ, and write µn

w→ µ, if for any f ∈ Cb(S,R), µnf → µf .

Remark . By Lemma 1.22, Ef(ζ) = Law(ζ)f . So ζn
d→ ζ iff Law(ζn)

w→ Law(ζ). This means
that the convergence in distribution depends only on the distributions of ζ and ζn (and not on
the exact value of ζn(ω) and ζ(ω)).

Lemma 3.25 (Portmanteau). For any probability measures µ, µ1, . . . , µn on a metric space
(S, ρ), these conditions are equivalent:

(i) µn
w→ µ;

(ii) lim infn µnG ≥ µG for any open set G ⊂ S;

(iii) lim supn µnF ≤ µF for any closed set F ⊂ S;
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(iv) limn µnB = µB for any B ∈ B(S) with µ∂B = 0.

A set B satisfying the condition in (iv) is called a µ-continuity set.

Example . Suppose (xn) is a sequence in S and xn → x0 ∈ S. Then we have δxn
w→ δx0

because for any f ∈ Cb,
δxn = f(xn)→ f(x0) = δx0f.

Suppose G ⊂ S is open, and x0 ∈ ∂G, then we can find a sequence (xn) in G such that xn → x0.
Then δx0G = 0 but δxnG = 1 for each n. So we do not get a strict inequality in (ii).

Proof. Assume (i), and fix an open set G ⊂ S. Let fm(x) = 1 ∧ (mρ(x,Gc)), m ∈ N. Then
fm ∈ Cb(S) and fm ↑ 1G. For each m, by µn

w→ µ, we have µfm = limn µnfm ≤ lim infn µnG.
Sending m → ∞ and using monotone convergence, we then get (ii). The equivalence between
(ii) and (iii) are clear from taking complements. Now assume (ii) and (iii). For any B ∈ B,

µB◦ ≤ lim inf
n

µnB
◦ ≤ lim inf

n
µnB ≤ lim sup

n
B ≤ lim sup

n
B ≤ µB.

If µ∂B = 0, then µB = µB◦ = µB, and (iv) follows.
Assume (iv), and fix a closed set F ⊂ S. Write F ε = {s ∈ S : ρ(s, F ) < ε}. Then the

sets ∂F ε ⊂ {s ∈ S : ρ(s, F ) = ε}, ε > 0, are disjoint. So there are at most countably many
ε > 0 such that µ∂F ε = 0. We can find a positive sequence εm → 0 such that for every m,
µ∂F εm = 0. So µF εm = limn µnF

εm ≥ lim supn µnF . Sending m → ∞, we get (iii). Finally,
assume (ii) and let f : S → R+ be continuous. By Lemma 2.4 and Fatou’s lemma,

µf =

∫ ∞
0

µ{f > t}dt ≤
∫ ∞

0
lim inf

n
µn{f > t}dt ≤ lim inf

n

∫ ∞
0

µn{f > t}dt = lim inf
n

µnf.

Suppose now f ∈ Cb(S) and |f | ≤ c. Applying the above formula to c ± f , we get c ± µf ≤
lim infn(c± µnf), which implies limn µnf = µf , i.e., (i) holds.

Exercise . Let µ, µ1, µ2, . . . be probability measures on Rd. Let F, F1, F2, . . . be their distri-
bution functions. Prove that µn

w→ µ iff for any continuity point x of F , Fn(x)→ F (x).

Definition . A family of probability measures µt, t ∈ T , on a topological space S is called
tight, if for any ε > 0, there is a compact set K ⊂ S such that µt(S \K) < ε for any t ∈ T .

Suppose (S, ρ) is a metric space. For x ∈ S and ε > 0, let B(x, ε) = {y ∈ S : ρ(x, y) < ε}.
For A ⊂ S and ε > 0, let

Aε =
⋃
x∈A

B(x, ε) = {y ∈ S : ρ(y,A) < ε}.

We now state some results about weak convergence without proofs.

Theorem 14.3 (Prokhorov’s theorem). Let (S, ρ) be a separable metric space. Then
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(i) The Prokhorov metric ρ∗ on the space P(S) defined by

ρ∗(µ, ν) = inf{ε > 0 : µA ≤ νAε + ε and νA ≤ µAε + ε for any A ∈ B(S)}

is a metric such that the weak convergence of probability measures on S is equivalent to
the convergence w.r.t. the Prokhorov metric.

(ii) A tight family is relatively sequential compact w.r.t the weak convergence, i.e., every se-
quence in the family contains a weak convergent subsequence.

(iii) If S is complete, then (P(S), ρ∗) is complete and every relatively compact subset of P(S)
is a tight family.

This lemma tells us that the weak convergence is induced by some explicitly defined metric,
and if S is complete, then the a tight family is equivalent to a relatively compact set w.r.t. weak
convergence.

In the case that S = Rd, we sketch a proof of (ii) as follows. Suppose µ1, µ2, . . . is a sequence
of probability measures on Rd. Let F1, F2, . . . be the distribution functions. Since 0 ≤ Fn ≤ 1,
for every x ∈ Qd, (Fn(x)) contains a convergent subsequence. By a diagonal argument and
passing to a subsequence, we may assume that (Fn(x)) converges for each x ∈ Qd. Let F̃ (x),
x ∈ Qd, be the limit function. Such F̃ is non-decreasing on Qd. We use F̃ to define a function
F on Rd such that F (x) = limQd3y↓x F̃ (y), x ∈ Rd. Then F is non-decreasing and right-
continuous, and Fn(x)→ F (x) for each continuity point x of F . If {µn} is tight, then F is the
distribution function of some probability measure µ, which is the weak limit of µn.

To understand the Prokhorov metric, suppose X and Y are two random elements in S
defined on the same probability space (Ω,A,P) such that

P{ρ(X,Y ) > ε} < ε. (3.1)

Then it is straightforward to check that ρ∗(Law(X),Law(Y )) < ε. The converse is not true,
but we have the following coupling theorem, whose proof is omitted.

Theorem (coupling theorem). If ρ∗(µ, ν) < ε, then there are a probability space (Ω,A,P) and
two random elements X,Y in S defined on Ω such that Law(X) = µ, Law(Y ) = ν, and (3.1)
holds.

From Lemma 3.7, ζn
P→ ζ implies that Law(ζn)

w→ Law(ζ) and ζ
d→ ζ. We have a converse

statement in the following sense. We omit its proof.

Theorem 3.30 (Skorokhod’s representation theorem). Let µ, µ1, µ2, . . . be probability measures
on a separable metric space (S, ρ). Then there exist a probability space (Ω,A,P) and random
elements ζ, ζ1, ζ2, . . . in S defined on Ω such that Law(ζ) = µ, Law(ζn) = µn, and ζn → ζ
pointwise.

Exercise . Suppose ζn
d→ ζ and Law(ζ) is a point mass. Prove that ζn

P→ ζ.
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There are other types of convergence of measures, such as the strong convergence: µnA→
µA for every A ∈ A, and an even stronger convergence: the total variation convergence:

‖µn − µ‖TV := 2 sup
A∈A
|µA− νA| → 0.

They are stronger than the weak convergence, but do not rely on the topology of S.

Example . Let S be a metric space. Let (xn) be a sequence in S that converges to x0. Suppose
xn 6= x0 for all n. Then δxn converges to δx0 weakly but not strongly. If we take A = {x0},
then δxnA = 0 for all n but δx0A = 1.

Exercise . Let µ, µ1, µ2, . . . be probability measures on a measurable space S. Let ν be a
finite measure on S such that µ � ν and µn � ν for all n. Such ν always exists, e.g., let
ν = µ +

∑
n
µn
2n . Let f = dµ/dν and fn = dµn/dν. Then f, fn ∈ L1(ν); µn → µ in total

variation iff fn → f in L1(ν); and µn → µ strongly iff fn → f weakly in L1(ν), i.e., for any
g ∈ L∞,

∫
fngdν →

∫
fgdν.

We now introduce a new concept: uniformly integrability, which plays an important role
in the theory of martingales. To motivate the definition, we observe that if ζ ∈ L1, then by
dominated convergence theorem, E[1|ζ|≥Rζ]→ 0 as R→∞.

Definition . A family of random variables ζt, t ∈ T , is called uniformly integrable, if

lim
R→∞

sup
t∈T

E[1|ζt|≥Rζ] = 0.

The previous observation shows that any finite set of integrable random variables is uni-
formly integrable. The uniformly integrability depends only on the distributions of the random
variables, and is stronger than the tightness of the distributions.

Exercise . For t ∈ T , let ζt be a random variable with distribution µt, and let pt,n = P[|ζt| ≥ n].
Prove that ζt, t ∈ T , is uniformly integrable iff

∑
n pt,n converges uniformly in t ∈ T , which

then implies that the family µt, t ∈ T , is tight.

Exercise . Prove that a sequence ζ1, ζ2, · · · ∈ L1 is uniformly integrable iff

lim
R→∞

lim sup
n→∞

∫
{|ζn|≥R}

|ζn|dP = 0.

Lemma . If for some p > 1, {ζt : t ∈ T} is Lp-bounded, i.e., there is C < ∞ such that
‖ζt‖p ≤ C for all t ∈ T , then ζt, t ∈ T , is uniformly integrable.

Proof. To see this, note that∫
{|ζt|≥R}

|ζt|dP ≤
∫
{|ζt|≥R}

(|ζt|/R)p−1|ζt|dP ≤ R1−pE|ζt|p = R1−p‖ζt‖pp ≤ R1−pCp.
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The lemma does not hold for p = 1. For example, if ζn = n1[0,1/n], n ∈ N, are defined on
([0, 1], λ), then ‖ζn‖1 = 1 for all n, but for any R > 0, E[1|ζn|≥Rζn] = 1 if n ≥ R.

Lemma 3.10. The random variables ζt, t ∈ T , are uniformly integrable iff they are L1-bounded,
and

lim
PA→0

sup
t∈T

E[1A|ζt|]→ 0. (3.2)

Proof. Suppose ζt, t ∈ T , are uniformly integrable. Then

E[1A|ζt|] ≤ RPA+ E[1|ζt|≥R|ζt|].

For any ε > 0, we may choose R > 0 such that E[1|ζt|≥R|ζt|] < ε/2 for all t ∈ T . Thus, if
PA < ε/(2R), then E[1A|ζt|] < ε for all t ∈ T . To get the L1-boundedness, we take A = Ω and
take R to be sufficiently big in the displayed formula.

Suppose now ζt, t ∈ T , are L1-bounded, and (3.2) holds. By Chebyshev’s inequality we get

P{|ζt| ≥ R} ≤
1

R
sup
t∈T
‖ζt‖1 → 0, R→∞,

which together with (3.2) implies the uniformly integrability.

Exercise . Let ζs, s ∈ S, and ηt, t ∈ T , be two uniformly integrable families of random
variables. Then |ζs|+ |ηt|, (s, t) ∈ S × T , are also uniformly integrable.

Proposition 3.12. Fix p > 0. Suppose ζ1, ζ2, · · · ∈ Lp are such that |ζn|p, n ∈ N, are uniformly

integrable. Suppose ζn
P→ ζ. Then ζn → ζ in Lp.
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