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Abstract For a chordal SLE, (« € (0, 8)) curve in a domain D, the n-point Green’s
function valued at distinct points zy, ..., z, € D is defined to be

n

GG ...z = lim  [[rd?Pldist(y. z) < re. 1 <k <nl,
Flyeers r,,iOkZ1

whered = 1+ is the Hausdorff dimension of SLE,., provided that the limit converges.
In this paper, we will show that such Green’s functions exist for any finite number of
points. Along the way we provide the rate of convergence and modulus of continuity
for Green’s functions as well. Finally, we give up-to-constant bounds for them.
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1 Introduction

The Schramm-Loewner evolution (SLE) is a measure on the space of curves which
was defined in the groundbreaking work of Schramm [18]. It is the main universal
object emerging as the scaling limit of many models from statistical physics. Since
then the geometry of SLE curves has been studied extensively. See [8, 16] for definition
and properties of SLE.

One of the most important functions associated to SLE (in general any random pro-
cess) is the Green’s function. Roughly, it can be defined as the normalized probability
that SLE curve hits a set of n > 1 given points in its domain. See equation (1.1) for
precise definition. For n = 1, the existence of Green’s function for chordal SLE was
given in [9] where conformal radius was used instead of Euclidean distance. Forn = 2,
the existence was proved in [14] (again for conformal radius instead of Euclidean dis-
tance) following a method initiated by Beffara [4]. Finally in [11] the authors showed
that Green’s function as defined here (using Euclidean distance) exists for n = 1, 2,
and obtained an explicit formula of the one-point Green’s function for chordal SLE
in the upper half plane (see (1.2)). To the best of our knowledge, existence of Green’s
function for n > 2 has not been proved so far. Our main goal in this paper is to show
that Green’s function exists for all n > 2. In addition we find convergence rate and
modulus of continuity of the Green’s functions, and provide sharp bounds for them.

Chordal SLE, (k > 0) in a simply connected domain D is a probability measure
on curves in D from one marked boundary point (or prime end) a to another marked
boundary point (or prime end) b. It is first defined in the upper half plane H = {z €
C : Im z > 0} using chordal Loewner equation, and then extended to other domains
by conformal maps. For « > 8, the curve is space filling ([16]), i.e., it visits every
point in the domain. In this paper we only consider SLE, for « € (0, 8) and fix «
throughout. It is known ([4]) that SLE, has Hausdorff dimension d = 1 + % Let
Z1,...,2n € D be n distinct points. The n-point Green’s function for SLE, (in D
froma to b) at zy, ..., z, is defined by

n n
. d—2 .
G(Diap)(Z1s -y 2n) = hmw][[]rk P[ﬂ{dlst(zk,y)frk}], (1.1)

TlseesTn
k=1

provided the limit exists. By conformal invariance of SLE, we easily see that the
Green’s function satisfies conformal covariance. That is, if Gm.0,00) €xists, then
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G (p:a,p) €xists for any triple (D; a, b), and if g is a conformal map from (D; a, b)
onto (H; 0, c0), then

n
GG z) = [ 18P G r0.00(g(1), ., 8Gn))-
k=1

Thus, it suffices to prove the existence of G.0,00), Which we write as G. As we
mentioned above, the one-point Green’s function G(z) has a closed-form formula

([111):
G(z) = é(Im )72+ 7|72, (1.2)

where o = % — 1 is the boundary exponent, and ¢ is a positive constant depending on
«, which is unknown so far.
Now we can state the main result of the paper.

Theorem 1.1 Foranyn € N, G(z1, ..., z,) exists and is locally Holder continuous.
Also there is an explicit function F(zy, ..., z,) (defined in (2.5)) such that for any
distinct points z1, ...,z, € H, G(z1,...,2,) <X F(z1, ..., 2,), where the constant

depends only on k and n.

We prove stronger results than Theorem 1.1. Specifically we provide a rate of
convergence in the limit (1.1). See Theorem 4.1. The function F(z1, ..., z,) appeared
implicitly in [17] and we define it explicitly here. The upper bound for Green’s function
(assuming existence of G) was proved in [17, Theorem 1.1] but the lower bound is
new.

Our result will shed light on the study of some random lattice paths, e.g., loop-
erased random walk (LERW), which are known to converge to SLE ([13,19]). More
specifically, combining the convergence rate of LERW to SLE, ([5]) with our conver-
gence rate of the rescaled visiting probability to Green’s function for SLE, one may get
a good estimate on the probability that a number of small discs be visited by LERW.

We may also work on the Green’s function when some points lie on the boundary.
In order to have a non-trivial limit, the exponent d — 2 in the definition (1.1) for these
points should be replaced by —«. For k = 8/3, the existence of boundary Green’s
function for any » follows from the restriction property ([6]). The existence and exact
formulas of boundary Green’s functions when n = 1,2 were provided in [10]. In
[7] the authors found closed-form formulas of boundary Green’s functions of up to 4
points assuming their existence. Since our upper bound (Proposition 2.3) and lower
bound (Theorem 4.3) are about the probability that SLE visits discs, where the centers
are allowed to lie on the boundary, we immediately have sharp bounds of the boundary
or mixed type Green’s functions assuming their existence, which may be proved using
the main technique here.

It is also interesting to study the Green’s functions for other types of SLE such as
radial SLE, SLE, (p), or stopped SLE. In [3], the authors proved the existence of the
conformal radius version of one-point Green’s function for radial SLE.
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The rest of the paper is organized as the following. In Sect. 2 we go over basic
definitions and tools that we need from complex analysis and SLE theory. Then in
Sect. 3 we describe the main estimates that we need to show convergence, continuity
and lower bound. One of them is a generalization of the main result in [17] which
quantifies the probability that SLE can go back and forth between a set of points, and
its proof is postponed to the “Appendix”. In Sect. 4 we state our main results, and then
in Sect. 5 we use estimates provided in Sect. 3 to show existence and continuity of
the Green’s function. We prove the theorems by induction on the number of the points
following a method initiated in [14], which is to write the n-point Greens function in
terms of an expectation of (n — 1)-point Green’s function with respect to two-sided
radial SLE. Finally in Sect. 6 we prove sharp lower bounds for Green’s functions,
which match the upper bounds obtained in [17].

2 Preliminaries
2.1 Notation and definitions

We fix k € (0, 8) and set (Hausdorff dimension and boundary exponent)

8
d=1+%  a=2_1
8 K

Note thatd € (0,2) and &« > 2 — d. Throughout, a constant (such as d or «) depends

only on « and a variable n € N (number of points), unless otherwise specified. We

write X < Y or Y 2 X if there is a constant C > 0 such that X < CY. We write

X =<Yif X <Yand X 2 Y. Wewrite X = O(Y) if there are two constants §, C > 0

such thatif |Y| < 8, then | X| < C|Y|. Note that this is slightly weaker than | X| < |Y].
For y > 0 define Py on [0, co) by

a—Q—d) 2—d . .
P)’(x)z{ya * =Y
X, x> y.

we will frequently use the following lemmas without reference.

Lemma 2.1 For0 <x; <x2,0<y; <y,0<x,and0 <y, we have

Pyl(.xl) < Pyz(-xl)'
Py (x2) = Py, (x2)’
<x1>°‘ - Py(x1) - (xl)z’d _ Py

x/ T Py(x2) T \x2 © P,(x)’
—2—d

()t < a0

2 Pyz(x)

Proof For the first formula, one may first prove that it holds in the following special
cases: y1 < y2 € [0, x1]; y1 <y € [x1,x2]; and y; < y» € [x3, 0o]. The formula in
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the general case then easily follows. The second formula follows from the first by first
setting y; = 0 and y» = y and then y; = y and y» = x V y. The third formula can
be proved by considering the following cases one by one: x € (0, y1]; x € [y1, y21;

and x € [y2, 00). O
Lemma 2.2 Letzy, ..., 2, be distinct points in H. Let S be a nonempty set in C with
positive distance from {21, ..., 2,}. Then for any permutation o of {1, ..., n},

n n
[ Pimzowy @istGowy. S U (zojy < kD) = [ ] Pima, (dist(zx, S Uz 2 j < kD).
k=1 k=1
2.1)

Proof 1t suffices to prove the lemma for o = (kg, ko + 1). In this case, the factors on
the LHS of (2.1) for k # ko, ko + 1 agree with the corresponding factors on the RHS
of (2.1). So we only need to focus on the factors for k = ko, ko + 1. Let wi = zg,,
w2 = Zggt 1,4 =Imw;, L; = dist(w;, SU{zx : k < ko}), j = 1, 2. Then it suffices
to show that

Puy (L2) Py (Ly A wy — w2l) < Pyy (L) Puy (L2 A w2 — wi]). (2.2)

Letr = |w; —w;|. Note that |t —uy|, | L1 — Ly| < r. We consider several cases. First,
suppose L1 <r.Then Ly <2r,andwe get Ly Ar = Lyand Ly/2 < Ly Ar < Ls.
From the above lemma, we immediately get (2.2). Second, suppose L> < r. This case
is similar to the first case. Third, suppose L1, L > r.Inthiscase, LiAr = LoAr =,
and L =< L. Now we consider subcases. First, suppose u1; < r. Then up < 2r. If

.. P, (L . .
uy < r, by the definition, P2 ((rz)) = (%)"; if r < up < 2r, from the previous lemma,
uy
Pi,(Ly) _ p(L L . Py (L1) L .
we get sz(r) = P,((rz)) = (32)“. Since u; < r, we have Pull(r) = (=1)“. Since

L1 =< L,, we get (2.2) in the first subcase. Second, suppose u; < r. This is similar

. Pu; (L)) Lj2—d

to the first subcase. Third, suppose u1,u» > r. Then we get o) = (7) s
llj

j =1,2.Using L1 < Lj, we get (2.2) in the last subcase. O

For (ordered) set of distinct points z1, ..., 2, € H \ {0}, we let zo = 0 and define

forl <k <n,

l;= min —zil}, dg= min —zill, =Imzy, Rp=d A yi.
k=, min_{lz—zl} de ‘sn,j;ék{|Zk Zjlh vk ks Ri=dp A yi

0=j= 0=<j
(2.3)
Also set
b
0= 121]?;! % > 1. 2.4
Note that we have
Ry <dy <.
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Forry,...,r, > 0, define
n
Py, ()
FQ@lyes i e entn) = | | 22
! ! L Py, ()
n
F(zi,...,zp) = lim rd_ze,...,z;r,...,r
(z1 n) rls---qrn—>0+]£[1 k (21 ns 'l )
n a—(2—d)
B 2.5)
k=1 Py (i)

This is the function F in Theorem 1.1. When it is clear from the context, we write F'

for F(z1,...,z,). From Lemma 2.1 we see that
n
F(z1, sz 71y ooy Tn) < F(zl,...,zn)l_[r,ffd, ifry <ly, 1 <k <n.
k=1
(2.6)
Applying Lemma 2.2 with S = {0}, we see that for any permutation o of {1, ..., n},
F(zi, ..o zni oo 1n) X F(Zo)s -+ o5 Zo(m)s To(l)s -+ -5 o)) 2.7
and

F(zi,...,z20) X FZo1), -+ Zo(m))-

Let D be a simply connected domain with two distinct prime ends wg and weo. We
define

n
Fpiwpws) @1 - zn) = [ 18/ GO F(g(z1). ... g(a)).
j=1

where g is any conformal map from (D; wg, weo) onto (H; 0, co). Although such g
is not unique, the value of F(p.yy,w.,) does not depend on the choice of g.

Throughout, we use y to denote a (random) chordal Loewner curve, use (U;) to
denote its driving function, and (g;) and (K;) the chordal Loewner maps and hulls
driven by U;). This means that y is a continuous curve in H starting from a point on R;
foreacht, H; := H\ K; is the unbounded component of H \ y [0, 7], whose boundary
contains y(¢); and g; is a conformal map from (H;; y(t), oo) onto (H; 0, co) that
solves the chordal Loewner equation

0:81(2) = 8o(z) = z. (2.8)

2
&) — Uy’
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Let Z; = g; — U; denote the centered Loewner map, which is a conformal map from
(H;; y(t), 00) onto (H; 0, 0o0). See [8] for more on Loewner curves.

When y is fixed, for any set S, tg is used to denote the infimum of the times that
y visits S, and is set to be oo if such times do not exist. We write 7,° for t{j;—z|<r
and T, for 7;° = 7(,}. So another way to say that dist(y, zo) < r is 7,° < o0.

Let P denote the law of a chordal SLE, curve in H from O to oo, and E the
corresponding expectation. Then PP is a probability measure on the space of chordal
Loewner curves such that the driving function (U;) has the law of /k times a standard
Brownian motion. In fact, chordal SLE, is defined by solving (2.8) with U, = ./« B;.

As we mentioned the upper bound in Theorem 1.1 is not new. We now state [17,
Theorem 1.1] using the notation just defined.

Proposition 2.3 Letzy, ..., 2, be distinct points in E\ {0}. Let dy, ..., d, be defined
by (2.3). Letr; € (0,d}), 1 < j < n. Then we have

P[Tff <oo,1fjSn]SF(m,...,zn;rl,...,rn)-

2.2 Lemmas on H-hulls

We will need some results on H-hulls. A relatively closed bounded subset K of H is
called an H-hull if H[\ K is simply connected. Given an H-hull K, we use gk to denote
the unique conformal map from H \ K onto H that satisfies gx(z) = z + 0(|z|_1)
as z — o00. The half-plane capacity of K is hcap(K) := lim,_, » z(gx (z) — z). Let
fx = glzl. If K =0, then gx = fx = id, and hcap(K) = 0. Now suppose K # (.
Letax = min(KNR) andbg = max(KNR).Let K9 = KU[ag, bx]U{Z : z € K}.
By Schwarz reflection principle, gx extends to a conformal map from C \ K 9°"® onto
C\ [ck, dk] for some cx < dg € R, and satisfies gx (z) = gx (z). In this paper, we
write Sk for [ck, dk].

Examples

e For xp € Rand r > O,letEJr

xo.r denote semi-disc {z € H : [z — xo| =< r},

r2
z—x0°

which is an H-hull. It is straightforward to check that gz+ (z) = z +
Xo,)‘

hcap(ﬁ+ ) = r2, and Syt = [xo—2r, xo + 2r].

X0,r
X0,
e Each K; associated with a chordal Loewner curve y is an H-hull with hcap(K;) =
2t. Since y (t) € 0K; and g;(y (¢t)) = U;, we have U; € Sk, .

Lemma 2.4 For any nonempty H-hull K, there is a positive measure [Lx supported
by Sk with total mass ||k | = hcap(K) such that,

—1
fK(z)—z=fZTxduK<x>, £eC\ Sk 29)

Proof This is [19, Formula (5.1)]. |
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Lemma 2.5 [fanonempty H-hull K is contained in B;;’rfor some xy € Randr > 0,
then hcap(K) < r2, Sk C [xo — 2r, xo + 2r), and

lgk(z) —z| <3r, ze€C\K©®, (2.10)

Proof From the monotone property of hcap ([8]), we have hcap(K) < hcap(D xor) =
2 From [19, Lemma 5.3], we know that Sy C S—+ = [xo — 2r, xo + 2r]. Formula

(2.10) follows from [8, Formula (3.12)] and that gK —x0(Z — x0) = gk (2) — Xo. O

Lemma 2.6 Let K be as in the above lemma. Then for any z € C with |z — xo| > 5r,

we have
2
19K @) — 2l = 2lz = xol(—— ) ; @.11)
|z — xol
I -1 2
|Im gg (z) — Imz| §4< r ) 2.12)
[Tm z| |z — xol
lgk () — 1] < 5( )2 (2.13)
K = "\|z — xo|

Proof Since gk —x,(z — x0) = gk (z) — xp, we may assume that xog = 0. From the

above two lemmas, we find that |ug| < r? and
2r  _
frk(w) —w= / ——dugw), w e C\[-2r,2r]. (2.14)
r T — W

Thus, if |w| > 2r, then | fx (w) —w| < lwf—izr.So fx maps thecircle {|z]| = 4r}ontoa
Jordan curve that lies within the circles {|z| = 3.5r} and {|z| = 4.5r}. Thus, if |z| > 5r,
2 .

then |gx (2)| > 4r,and |z — gk (2)| = | f(8x (2)) — gk (2)] < m < r/2, which
. 2 2
implies |z| < |gx(2)| +7/2, and gk (2) — 2| < IgK(Z)I oy = |Z| 25, = |z|/2 So we
get (2.11).

Taking the imaginary part of (2.14), we find that, if w € H and |w| > 2r, then

[Im fg(w) —Imw]| < |Imw|(lw"_—22r)2.Letting w = gk (z) with z € Hand |z| > 5r,
we find that
2
IImz —Im gk (2)| < [Imgx ()| — =
(Igk (2)| —2r)?
2 2

mz| mz|

.
. <Imzl—
(2= 25m2 = Ml

which implies (2.12). Here we used that | Im gx (z)| < | Im z| that can be seen from
(2.14).

Differentiating (2.14) w.r.t. z, we find that, if |w| > 2r, then |fg (w) — 1| <
(|w|r_22r)2 . Letting w = gk (z) with z € H and |z| > 5r, we find that
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2 r2 r2

)
1 s
= e @I =22 = Gz =2.5r2 = (227

11/8k (@) —

which then implies (2.13). O

Lemma 2.7 Let K be a nonempty H-hull. Suppose z € H satisfies that dist(z, Sg) >
4 diam(Sk). Then dist( fgx (z), K) > 2 diam(K).

Proof Letr = diam(Sk). Since gx maps C\ K 9" conformally onto C\ Sk, fixes oo,
and satisfies that g’K(oo) = 1, we see that K9°"P and Sg have the same whole-plane
capacity. Thus, diam(K) < diam(K9°"®) < diam(Sk). Take any xo € K N R. Then
K C 5::),,. So |uk| = hecap(K) < r2. Since dist(z, Sg) > 4r, from (2.9) we get
| fx (2)—z] < r/4.From[19,Lemma5.2], we know xg € [ag, bx] C [ck,dkx] = Sk.
Thus, dist(fx (2), K) > | fk (z) —xo| —r = |z—x0l — | fk (z) —z| —r > dist(z, Sk) —
2r > 2r > 2diam(K). O

Lemma 2.8 Let K be an H-hull, and wq be a prime end of H\ K that sits on 0K . Let
zo € H\K and R = dist(zg, K) > 0. Let g be any conformal map from H\K onto H
that fixes oo and sends wy to 0. Then for 71 € H\K, we have

1g(z1) — 8(20)] |z1 — 2o
lg(z0)] ( R ) @19
|Img(z1) —Img(zo)| /|Imz; —Imzol lz1 — zol\1/2
oo — 0(—Im - ) n 0<—) . (2.16)

Proof By scaling invariance, we may assume that g = gx —xo, where xo = gg (wp) €
[ck, dk]. From Koebe’s 1/4 theorem, we know that

lg(z0)| = I8k (z0) — xo| = dist(gk (20), [ck, dk]) Z 18’ (z0)IR.

Applying Koebe’s distortion theorem and Cauchy’s estimate, we find that, if |z —zo| <
R/5, then

1g'(z1) — &'zl S Ig’(zo)lw. (2.17)

Ig' @Dl =< 18" o), 18z1) — gzl S 18 zo)llz1 — zol. (2.18)

Combining the second formula with the lower bound of |g(z¢)|, we get (2.15).

To derive (2.16), we assume ‘Imzlr‘n_zlgn 2l and ‘“;ZOI are sufficiently small, and

consider several cases. First, assume that Im zo > g for some big constant C. From
Koebe’s 1/4 theorem, we know that Im g(zo) = |g’(zo)|R. This together with the
inequalities | Im g(z1) — Im g(zo)| < |g(z1) — g(zo)| and (2.18) implies (2.16).

Now assume that Im zg < g. Note that zo — zg = 2i Imzp and g(z0) — g(Zo) =
2i Im g(zp). From Koebe’s distortion theorem, we see that when C is big enough,

Isz
|Tm g(z0) — g'(z0) Im 2o < [g"(z0)| Im 2o R (2.19)
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which implies that
Im g(z0) 2 1g'(z0)| Im zo. (2.20)

Now we assume that Im zg > +/R|z1 — zo|. Combining (2.20) with (2.18) and the
inequalities | Tm g(z1) — Im g(20)| < |g(z1) — g(z0)] and Fi=20 < (aZly172 e
get (2.16).

Finally, we assume that Im zo < +/R|z1 — z0|. Let Rf = R — |z1 — 20| = R. Then
{lz — z1] < R1} C {]z — zo] < R}. From Koebe’s distortion theorem and (2.17), we
get

mzo

I
< 18" (z0)| Im zg (2.21)

IInZ]
[Img(z1) — g'(z1) Imzi| S 1g'(z1)|Imz; I

Now we have

|Tm g(z1) — Im g(z0)| < |Im g(z0) — g'(z0) Im zo| + | Im g(z1) — g'(z1) Im 21|
+18'(z1) — &' (zo)| Im 2o + [¢"(z1)[| Im z; — Im zg|.

Combining the above inequality with the inequalities (2.17-2.21) and ImRZ" <

(‘Z'—;ZO‘)I/Z, we get (2.16) in the last case. O

2.3 Lemmas on extremal length

We will need some lemmas on extremal length, which is a nonnegative quantity A(I")
associated with a family I" of rectifiable curves ([1, Definition 4-1]). One remarkable
property of extremal length is its conformal invariance ([1, Section 4-1]), i.e., if every
y € T is contained in a domain €2, and f is a conformal map defined on €2, then
A(f () = A(). Weuse do(X, Y) to denote the extremal distance between X and Y
in €2, i.e., the extremal length of the family of curves in €2 that connect X with Y. Itis
known that in the special case when €2 is an annulus with radii R; < R, and X and Y
are the two boundary components of 2, do (X, Y) = log(R2/R1)/(2m) ([1, Section 4-
2]). We will use the comparison principle ([1, Theorem 4-1]): if every y € I' contains
ay’ e I, then A(T") > A(T""). Thus, if every curve in 2 connecting X with Y intersects
a pair of concentric circles with radii R, > R, then dg(X,Y) > log(R2/R1)/(2m).
We will also use the composition law ([1, Theorem 4-2]): if for j = 1, 2, every y; in
a family I'; is contained in €2, where 1 and Q2 are disjoint open sets, and if every
y in another family I' contains a y; € I'y and a y» € 'y, then A(I") > A(T"y) + A(["2).
In addition, we need the following lemma.

Lemma 2.9 Let S\ and S be a disjoint pair of connected bounded closed subsets of
H that intersect R. Then

2
1_[ ( diam(S;) N l) < 144~ 7du(51.52)
i dist(Sy, $2) B
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Proof Forj =1, 2,let S?O“b be the union of §; and its reflection about R. By reflection
principle ([1, Exercise 4-11), dui(S1, S2) = 2dc (5§, $9°°). Choose z; € S}, j =
1,2, such that |z — z1| = dg := dist(S1, $p). Letr; = maxzes}joub lz—zl, =12
From Teichmiiller Theorem ([1, Theorem 4-7]) and conformal invariance of extremal
distance ([1]), we find that

de(S{, S§°°) < de([—r1. 0], [ds. ds + r2]) = de([—1, 0], [R. 00)) = A(R).
where R > 0 satisfies that - + r = ]—[5 1 ds +r , and A(R) is the modulus of the

Teichmiiller domain C\([—1, 0], [R, 00)). From [1, Formula (4-21)] and the above
computation, we get

2

1
o Tdn(S1.8) _ 2mAR) o L 1‘[
- 16(R+ H 161

s+rj

3r;
< It +r , the proof is now complete. O

Since diam(S;) < 2r; and %’ ANl <
Remark The lower bound of Lemma 2.9 also holds (with a different constant), and
the proof does not need Teichmiiller Theorem. But it is not needed for our purposes.

2.4 Lemmas on two-sided radial SLE

For z € H, and r > 0, we use [P to denote the conditional law IP[-|t* < oo], and
use P} to denote the law of a two-sided radial SLE, curve through z. For z € R\ {0},
we use [P} to denote the law of a two-sided chordal SLE, curve through z. Let [E
and E7 denote the corresponding expectation. In any case, we have P}-a.s., T; < oo.
See [14,15] for definitions and more details on these measures. For a random chordal
Loewner curve y, we use (F;) to denote the filtration generated by y.

Lemma 2.10 Let z € Hand R € (0, |z]). Then IP} is absolutely continuous w.r.t. IP’f
on .7-',13 N {t; < oo}, and the Radon-Nikodym derivative is uniformly bounded.

Proof 1t is known ([14,15]) that P} is obtained by weighting > using M;/G(z),
where M} = |g/(2)|*"?G(Z,(z)) and G(z) is given by (1.2). Since PX is obtained by
Weighting the restriction of P to {r; < oo} using 1/P[r; < oc], it suffices to prove

that - P[t < oo] is uniformly bounded, where t = ‘L’R

G(z)
Let y = Im z. From [17, Lemma 2.6] we have P[t < oo] <
and y = ImZ. It suffices to show that

Py(R)
~ p‘(m) Let? = g:(2)

—a Ot 2—d)
i PR _

gl < (2.22)
oy 18 Py(lz])
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Py(R)

We consider two cases. First, suppose y > R/10. From Lemma 2.1, we get VX (Bl <

(%)“(%)2_‘1. Applying Koebe’s 1/4 theorem, we get y 2 |g%(z)|R. Thus,

LHS of (2.22) <

(/12D (gr @IR)~ =D P ( Y >a<R>H

|z| @ yem =D 2]
“() =
Izl

So we get (2 22) in the first case. Second, assume that y < R/10. Then we have
% (& 1) Applying Koebe’s distortion theorem, we get y =< |g.(2)|y. Applying

Koebe’s 1/4 theorem, we get |Z| 2 |g-(z)|R. Thus,

LHS of (2.22) <

i R)“ / a—(2—d) R\«
UL | o (R

i i Izl
So we get (2.22) in the second case. The proof is now complete. O

Lemma 2.11 Let z € Hand R € (0, |z|). Then for any w € H such that % is
sufficiently small, P} and Py, restricted to ]:lee are absolutely continuous w.r.t. each
other, and

3
log<%) oy
d]P’Z“|]:T7,e R

Proof Let G and M; be as in the above proof. Let T = 7. It suffices to show that

oe (55/ ) = 0 (%)

Since ||z|—|w|| < |z—w|and|z| = R, wegetlog le| = 0L Let? = g (2)~Us
and w = g;(w) — U;. From Koebe’s 1/4 theorem and d1st0rt10n theorem, we get
212 18, IR and [F — ] S g, ()llz — wl. So we get log 2l = 0(=20). From

Koebe’s distortion theorem, we get log s (w)l = O( l2— wl) So it suffices to show that

lgr (2)
Imw sIm?7 |z — w|
1o ( _>= ) 22
S \imw/ Imz 0( R (2.23)

Now we consider two cases. First, suppose that Im z > R/8. Since |[Im w —Im z| <
lw — z| we get log 2L = o %). Applying Koebe’s 1/4 theorem, we get ImZ >
lg~ (2)|R. Since | Im w—Im7| < |w—-7] < 1g.(z)|lz — w]|, from the above argument,
we get log Ilimlfr = o= wl) which implies (2.23). Second, suppose that Im z < R/8.

Then Imw < R/4 if |z — w| < R/8. Applying Koebe’s distortion theorem, we
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get log(‘g;(lzn)‘%), log(lgé(g“%) = 0(IZ w') which together with log ‘fgf((w)‘ =

0(%) imply (2.23) in the second case. O

Remark The above two lemmas still hold if z or w lies on R\{0}, and the two-sided
radial measure is replaced by the two-sided chordal measure.

3 Main estimates

In this section, we will provide some useful estimates for the proofs of the main
theorems. As before, y denotes a chordal Loewner curve; when y is fixed in the
context, for each ¢ in the domain of y, H; denotes the unbounded domain of H\ y [0, ¢];
P denotes the law of a chordal SLE,, curve in H from 0 to co. For zg € H, and r > 0,
70 denotes the first time that the relative curve hits the circle {|z — zo| = r}; P
denotes the conditional law P[-]7° < oo]; and ]P’jo denotes the law of a two-sided
radial SLE, curve in H from 0 to oo passing through zp. A crosscut in a domain D is
an open simple curve in D, whose two ends approach to two boundary points of D.
We will make use of the boundary estimate in the form of [17, Lemma 2.5], which
originally comes from [2], and the one-point estimate in the form of [17, Lemma 2.6].

Theorem 3.1 Let z1, ..., 2, be distinct points in ﬁ\{O}, where n > 2. Let rj €
(0,d;/8), 1 < j < n.Thenwe have a constant B > Osuchthat foranyky € {2, ..., n}
and sy, > 0,

n

P |:.Ezl <. < fan" < 00; inrad g 2 (zky) < 5k0:|
frl

Sk, B
§F(Zl,...,zn;rl,...,rn)<—°) .
[Zky — 211 A |2k |

This theorem is similar to [17, Theorem 1.1], in which there do not exist the con-
dition inrady ., (zk,) < Sk, on the LHS or the factor (m—?f%)ﬁ on the RHS. If
T 0 0

Sko = |Zky — 211 A |2k, it follows from [17, Theorem 1.1]; otherwise we do not find
a simple way to prove it using [17, Theorem 1.1]. The proof will follow the argument
in [17], and take into account the additional condition inrad H: 4 (Zky) =< Sk, during the

course. Since the proof is long and quite different from other proofs of this paper, we
postpone it to the “Appendix”.

Lemma3.2 Let z; € Hand 0 < r < n < R. Let Z be a connected subset of
H. Further suppose that r < Imzy and dist(z1, Z) > R. Let Sr,? be the union of

connected components of H =1 N {|z — z1| = R}, which disconnect z; from any point
n
of Zin Hr;;l' Then

(i) PLIZ C Hpryley' o' 1NEa # 01 S (/™
(ii) IP’Zl[Z c Hﬁl yle T INE: # 01 (/.
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Proof (i) From [11, Theorem 2.3], we know that there are constants C, § > 0 such
that, if » < 8 Im z;, then P[¢/! < oo] > CG(zl)rz_d. Thus, for any r < Im z7,

Pz < 00] = C8* Gz 2 Fz)r*™ = F(zi; ). (3.1)

When Z C H_ 1, by [17, Lemma 2.1], there is a unique connected component of Ele s
n n
denoted by & =1, which disconnects z) from Z and any other connected component of
n

Etzl in H 2. Given that Z C H_z1, modulo the event that y passes through an end
1 7 1 R
point of & =1, which has probability zero, the event that y up to any time visits & z

n n
coincide with the event that the same part of y visits § 1. We will show that
n

a/4
P[Z C Hyay[r, 5] N #0557 < 0] S F(zl;r)(%) . (2

nor
which together with (3.1) implies (i).
To prove (3.2), using Lemma 2.1, we may assume that r = ne™" for some n € N.
Let ry = ne %, 0 < k < n. Let E denote the event in (3.2). Then E = Ui—: Ex.
where

Ek—{ZCHel,‘flCHl,J/I:rkl, :Iﬂ‘él;ﬁ@l' <oo}.

Let y; = Imz;. From [17, Lemma 2.6] we know that

< Pyl(rn)

P[t“ <oo]<M' IED[ SE 0
hJ

T < 00| F a1, 1! < oo]
Tkl ~ Py (21’ o

'n Tk

(3.3)

Suppose 7., < 0o and ér,?‘ - Hffk',l' Then ér,?‘ is a crosscut of Hffkl,l' By [17,
Lemma 2.1], there is a unique connected component of {|z —z1| = /7k_1 R} N Hrf A
denoted by p, which (i) separates z; from érj'l in Hrf 1 and (i) also separates z1 from
any other connected component of {|z — z1| = /r— 1R} N H 5 that satisfies (i).
Such p is a crosscut of H_ o , and divides H_ 4. into a bounded domain and an

unbounded domain. Let Ej, (resp E,) denote the events that & - o lies in the bounded

(resp. unbounded) domain. See Fig. 1.
For the event Ej, we apply [17, Lemma 2.5] to the crosscuts p and étjl to get

]P[ZCH i, )/[ méq # @, Eb|f | T <OO,$_L_$1 CH‘L’,ZI ]

Tre—r Vk] > Crg—1 1

SJ e—cmdc(p,ér;;l) S (rkI;] )0(/4‘

Combining this estimate with (3.3) and Lemma 2.1, we get

PE, N Ey] < F(z1; r)(”‘ 1)“/4(”;—;1)0‘. (3.4)
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7

|

Fig. 1 The two pictures above illustrate the events Ej, (left) and E}, (right). In both pictures, the circles are
all centered at z7; the solid circles have radii R > /ry_1 R > ry_1, respectively, and the dotted circle has

radius 7. The zigzag curves are y up to rrzk'_l and 7), respectively. In both pictures, the pair of arcs that
contribute the factor from the boundary estimate (ETz 1 and p on the left, p and J on the right) are labeled
n
and colored red. Note that on the left, grzl has three components, and so is different from STzI ; and on
1 n

the right, ’S\Tzl agrees with Srzl . On the right, there are three connected components that satisfy the first

separation property of p. The components other than p are colored green

If E, happens, then p separates z; from oo in H_ z1 . Let T, denote the first time
Tk—1

after rrz,([] that y visits p, and let p (resp. J) be a connected component of p N Hr,
(resp. {|lz—z1| = rr—1}N Hr, that separates z from oo in Hr,. Applying [17, Lemma
2.5]to p and J, we get

71 . 21 i .
P[z} < 00: Ey|Fr,. T, < 00, 17! < 00, Etgl C Hffqu]

< e—aﬂd(C(EJ) < (rk_l )Ol/4
~ ~ R *

Combining this estimate with (3.3) and Lemma 2.1, we get

PlEc N E,] < F(z1: r)(r"; )a/4(r"r:)a. 3.5)

Since E = (J;_, Ek, using (3.4) and (3.5), we get

o

IP[E]SF(Z1;r)<r];_;1>a2n:<rk1;l>“/4 < F(Z1;I’)<%>a/4 e

_ —a/4”
Pt 1] —e @

From this we get (3.2) and finish the proof of (i). R
(ii) From Lemma 2.10 and (i), we get P¥ [Z C Hzi;l cvlnt, on Efsl # 0] <

(4)%/* forany r > 0 smaller than 1 and Im z. We then complete the proof by sending
r — 0. O

Corollary 3.3 Let z1,z0 € Hand 0 < r < 1 < R. Let Z be a connected subset
of H. Further suppose that R — n,n —r > 2|z1 — zol, r < Imzo r < Imzy, and
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dist(z1, Z) > R. Let ’é{;l be the union of connected components of Hré" N{lz—z1] =
R}, which disconnect z; from any point of Z in H_z. Then
n

(i) PLIZ C Hp vl o] m’g};l # 0 S (/A
(ii) PL,[Z C Ha., vl Tl N Ea #0115 ().

20

Proof (i) Let ' = n+ |z1 — 20l and R" = R — |z1 — z¢|. Then 7:;,0 < 7', and
{lz — zo| = R’} disconnects zi, zo from {|z — z1| = R}. Let ’E\;zl be the union of
n
connected components of H_:1 N {|z — z1| = R’}, which disconnect z1, zo from Z in
n

Hr;P'Thenagl separates 21, zo fromgtnzl aswell. If Z C Hrjl and y[7;", trzo]mérgl #

@, then a.s. y[r;,o, 0] ﬂé:zl # (). Thus, by Lemma 3.2,
n
/
—~ n a/4 n a/4
PL[Z C Hy[r 5] nEa 2050 <o) S (%) S (5) -
(ii) This follows from Lemma 2.10 and (i) by sending » — 0. O
The next lemma will be frequently used.

Lemma 3.4 Le_tzl, ..., Zn be distinct points in H, where n > 2. Let K be an H-hull
such that 0 € K and H\K contains z1, ..., z,. Let wo be a prime end of H\K that
sits on K. Suppose that dist(zx, K) > s, 2 < k < n, where sy € (0, |zi| A |lzk — 211)-
Then

F(z1) Fr\ K ;wo,00) (225« -+ 5 Zn)

SFGi....z )H(M) min dist(g (1), Sk) )
v k=2 Sk 2<k=n \|gg (zx) — gk (Wo)|

n
lzkl A lze — 21\
/SF(Z17"‘7Z}1)H< _)

k=2 Sk
Proof Since wy € 0K, we get gx(wg) € Sk. So the first inequality immediately
implies the second. Let yg and i, 1 < k < n,bedefinedby (2.3). Letg = gx —gk (wo).
LetZy = g(zx),2 <k =n and define yj and [ using (2.3) for the n — 1 points: Zg,
2 < k < n.In particular, [, = |75]. Let S = Sg — g (wp) > 0. Define for2 < k < n,
Yks =dist(zy, SU(Z; : 2 < j < k}), l,f =dist(zx, KU {z; : 2 < j <k}).

From Koebe’s 1/4 theorem, we get |g"(zx) |l,§ = ’l;S We claim that when ¢ is small,

Py (Ig'zi)le) _ Py (e)
Py (Z/f) Py, (l,f)

if & < dist(z¢, K). (3.6)
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We consider two cases. If yx < dist(zx, K)/10, applying Koebe’s distortion the-

orem, we get yr = |g'(zx)|yk. Then we have (3.6) because 2’3((;;)) = %.
If yr > dist(zx, K)/10, then yy = l,f(. Applying Koebe’s 1/4 theorem, we get

Vi = g’ (zi)| dist(zx, K) = l,f. Thus, when ¢ < dist(zx, K), we have (3.6) because
both sides of it are comparable to (l%)z_d.
k

Recall that

P, (s "P, (e
F(z;) = lim sdﬂﬁ; F(zi,...,zy) = lim ¢"@=% ﬂ.
£—0F Py () £—0F i1 Py, (lk)

Since g is a conformal map from D onto H that fixes oo and takes wg to 0, we have

n n
. “)d— Py, (¢)
FDsuwgo0) (@20 - zn) = [ [ 18/ @) P lim e~ D@D [T 2,
wo,00 n !:[2 e 0t L5 Py
From (3.6), we get
n 75
Py () Py p)
F(z1)F(D:wy,00) (22, -+, Z0) < (yk— ~ )-F(Zl,---,Z)~
wo,00 n 1!:[2 Pyk(llf) P'fk(lk) n

Since l,f =dist(zx, K) Adist(zg 1 {zj 12 < j <k}) = sp Adist(zg 1 {zj :2 < j <
k), Ik = |zl Az — zil Adist(zg 2 {zj 0 2 < j < k}), and |zx| A |z — 21| = sk, we
get

Py (o) _ (|Zk| Alzg —z1l Adist(zg 1 {zj : 2 <] <k})>“ _ (|Zk| Alzk —le)“

Py, (5 ~ sk Adist(zg 1 {z; 12 < j <k} Sk
Note that Py () < 1,2 <k < n,and P _ PpliGs) _ (diSt(ZZ’S))"‘
Py ) — 7 = - EAC Py, (1z21) - [22] :
n PR @) : dist.8) \* .
From Lemma 2.2, we get [ [;_, P () < ming<g<p (T) . Then the proof is
completed. O

The next two lemmas are useful when we want to prove the lower bound.
Lemma 3.5 Let z1, ..., z, be distinct points in ﬁ\{O}. Letrj € (0,dj), 1 < j<mn,

where d;’s are given by (2.3). Let K be an H-hull such that 0 € K, and let Uy € Sk.
Suppose that zj, ¢ K and

dist(gx (zj). Sk) =< 1Zj| :== gk (zj) = Uol, 1<) <n. 3.7
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Suppose I = {1 = j1 < --- < jin} C {l,...,n} satisfies that r; < dist(z;, K).
Then we have

F(zi;dist(zi, K)) - F(Zjys -0 Zjps 18k @iDITjs -5 18k @) I7ji)
2 F(zi,22, ..., 203 F1, 72, ooy ).

The implicit constant in the conclusion depends on the implicit constants in the assump-
tion.

Proof By reordering the points and using (2.7), we may assume that I = {1, ..., m}.

Let yx and I, | < k < n, be defined by (2.3). Also take yy andﬁ be the corresponding
quantities for Zx, | <k <m.Let S = Sk — Uy 3 0. For 1 < k < m define.

Tks =dist(Zx, SU{Z; : 1 < j <k}, l,f =dist(zx, KU {z; : 1 < j <k}).
Itis clear that l,f < I;. By Koebe’s 1/4 theorem we have |g/K (zk)|l,£< = IN,‘E From (3.7)

we know thatl~,f = l~k Since rp < dist(zg, K), 1 < k < m, the argument of (3.6) gives
us

Py (I8 @Olre) Py, ()

= , <k <m. (3.8)
Py, (ik) Py, (llg{)
Since lf < I, we have
Pillgk@oln) o Pulo) 39)

Py Py T T

Multiplying (3.8) fork = 1, (3.9) for2 < k < m, the equality F(z1; dist(z, K)) =

Py (F) . . Py, (r) :

Pl and the inequalities 1 > 20 form + 1 < k < n, we get the desired
)1 'k

inequality. O

Lemma 3.6 Suppose we have set of distinct points zy, ..., z, inH. Letl;, 1 < j <n,

be defined by (2.3). Let m € {1,...,n — 1}. Take wj = zp+j, | < j <n —m. Let
l}f’, 1 < j < n —m, be the corresponding quantity for w;’s. Suppose lyy; =< l}”,
1<j<n—m. Then

F(Z]w-"Zm;rls~~~,rm)F(Zm+l»~~~7Zn;rm+]w~,rn)XF(Z]7~~’Zn;r]’~~-’rn)o

The implicit constant in the result depends on the implicit constants in the assumption.

Proof Just write the definition of F and note that Pimz,,,; (n+j) < Pimw; (l}”). O
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4 Main theorems

We state the main theorems of the paper in this section. It is clear that the existence
and the continuity of the (unordered) Green’s function follows from the existence and
the continuity of ordered Green’s function, i.e., the limit

r I'n

limw Hr‘.l_zﬁ”[tz' <. <1 <00

So the statements of Theorems 4.1 and 4.2 are about ordered Green’s functions.

For that purpose we define functions G (z1,--.,2n) byinductiononn.Forn = 1,let
@(z) = G(z) given by (1.2). Suppose n > 2 and G has been defined for n — 1 points.
Now we define G for distinct n points z1, ..., z, € H. Given a chordal Loewner curve
y,foranyt > 0,if z0, ..., z, € H;, we define

Gz, -z = [ [181G)HP G (Zi(20), -, Zi(zn));

j=1
otherwise define Gt (22, ..., Zn)\= 0.Recall that Z; = g; —U; is the centered Loewner
map at time ¢. Now we define G(z1, ..., z,) by

G@iv-.nzn) = G@DEL [Gr, (22, 20)]-

Recall that EZ, is the expectation w.r.t. the two-sided radial SLE curve through z;.

The authors of [14] proved that the two-point (conformal radius version) Green’s
function exists and agrees with the G (z1, z2) defined above (up to a constant). Their
proof used the closed-form formula of one-point Green’s function (1.2). We will show
their result is also true for arbitrary number of points. The difficulty is that there is no
closed-form formula known for two-point Green’s function. We find a way to prove the
above statement without knowing the exact formula of the Green’s functions. Below
is our first main theorem.

Theorem 4.1 There are finite constants C,,, B,, > 0 and B,,, §,, € (0, 1) such that the
following holds. Let z1, . . ., z, be distinct points in H. Let Rj,1<j<n Qand F
be defined by (2.3, 2.4). Then for any ry, ..., r, > 0 that satisfy

.
oL <5, 1<j<n, (4.1)
R;
we have
" " ri\B
[T Pre < <5 <00l =Gz < GuF ) (@525
Jj=1 j=1 7
4.2)
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As aliimmediate consequence, the G(z1, .. ., z,) defined by (1.1) exists and is equal to
> o GZo(lys - - -+ Zo(n)), Where the summation is over all permutations of {1, . .., n}.

Proving the convergence of n-point Green’s function requires certain modulus of
continuity of (n — 1)-point Green’s functions, which is given by the following theorem.

Theorem 4.2 There are finite constants C,,, B, > 0 and B,, §, € (0, 1) such that the
following holds. Let z1, ..., z, be distinct points in H. Letd;, 1 < j <n, Q and F
be defined by (2.3, 2.4). If 2y, . . ., z}, € H satisfy that

|7/ — z] [Imz, —Imz;]|
Byl s, L s, 1<j<n, 4.3)
dj Iij
then

n /

~ ~ 12, — zjI\Bn

GGz = Glan ozl = GF Y- (0% )
j=1 J

+(—| Imz; —lm )" (4.4)

Imz;

Moreover, the same inequality holds true (with bigger C,,) if G is replaced by G.

The sharp lower bound for the Green’s function is provided in the theorem below.
The reader may compare it with Proposition 2.3.

Theorem 4.3 There are finite constants C, > 0 and Vy, > 1 such that for any distinct
points z1, ..., 7z, € H\{O} and any r;j € (0,d;), 1 < j < n, we have
Pz < g

<j< > :
|Z‘=Vnz?:1 ‘Zil}’l_] _n] - CnF(le""Zl’lsrlv-"vrn)‘

We have a local martingale related with the Green’s function.

Corollary 4.4 For fixed distinct z1, ...,2, € H, M; = 6,(11, ..., 2n) is a local
martingale up to the first time any z;, 1 < j < n, is swallowed by y.

Proof It suffices to prove the following. Let K be any H-hull such that 0 € K and
21, .-.,2p € H\K.Lett = inf{t > 0: [0, ¢] ¢ K}. Then M,,, is a martingale. To
prove this, we pick a small » > 0, and consider the martingale

M,(r) = r"(d_z)IP’[tf' << T < ooI]-',AT].
By the convergence theorem and Koebe’s distortion theorem, we have M,(r) — Mip;
as r — 0. In order to have the desired result, we need uniform convergence. This can

be done using the the convergence rate in Theorem 4.1 and a compactness result from
[19]. Letz;,; = g/(zj)—U;;let Q;and R, bethe Qand R forzyys, ..., zpslet Fy =
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T2 18/ @) F (i, - -, 2n)- Tt suffices to show that ¢ (z))], O, Ry, Fr, 1 <
j <n,0 <t < 1, are all bounded from both above and below by a finite positive
constant depending only on «, K, and z1, ..., z,. The existence of these bounds all
follow directly or indirectly from [19, Lemma 5.4]. For example, to prove that F;,
0 <t < 7, are bounded above, we need to prove that |zj,; — zx;/|, j # k, and
|zj],0 <t < 7, are all bounded below. It suffices to show that |g7(z;) — gz (zx),
J # k, and dist(gy (z;), Sp) for all L in H(K), the set of H-hulls L with L C K,
are bounded below. Suppose |gL(z;) — gL (zi)|, j # k, L € H(K), are not bounded
below by a constant. Then there are z; # zx and a sequence (L,) C H(K) such that
lgL,(zj)—8&L, (zk)| = 0.Since H(K) is acompact metric space ([19, Lemma 5.4]), by
passing to a subsequence, we may assume that L, — Lo € H(K). This then implies
that g7,(z;) = limgy,(z;) = lim gy, (zx) = gr,(2k), which contradicts that g is
injective on H\ K. To prove that dist(g. (z;), S.), 1 < j < n, L € H(K), are bounded
from below, one may choose a pair of disjoint Jordan curve Ji, J> in H\ K, both of
which disconnects K from all of z;’s. Then dist(g.(z;), S1) > dist(gr(J1), g (J2)),
and the same argument as above shows that dist(gz (J1), g1.(J2)), L € H(K), are
bounded from below by a positive constant. O

Remark We may write M; = [Tj_ |8 )I" "G (g(21) = Ur. ... g1 () — U If
we know that G is smooth, then using It6’s formula and Loewner’s equation (2.8), one
can easily get a second order PDE for G. More specifically, if we view G as a function
on 2n real variables: x1, y1, ..., X, Y, then it should satisfy

n n
S(300 )26+Za - +Z
X X Vi
2via i X+ ,11
(k2 — 2
+(2—d)G-Z£xJ—2y§)=o
j=1 (xj+yj)

x +y]

Since the PDE does not depend on the order of points, it is also satisfied by the
unordered Green’s function G.

We expect that the smoothness of G canbe proved by Hormander’s theorem because
the differential operator in the above displayed formula satisfies Hormander’s condi-
tion.

5 Proof of Theorems 4.1 and 4.2

At the beginning, we know that Theorems 4.1 and 4.2 hold for n = 1 with §; = 1/2
thanks to [11, Theorem 2.3] and the explicit formulas for F (z) and G (z). We will prove
Theorems 4.1 and 4.2 together using induction. Let n > 2. Suppose that Theorems 4.1
and 4.2 hold for n — 1 points. We now prove that they also hold for n points. We
will frequently apply the Domain Markov Property (DMP) of SLE (c.f. [8]) without
reference, i.e., if y is a chordal SLE, curve in H from 0 to 0o, and t is a finite stopping
time, then Z; (y (t + -)) has the same law as y, and is independent of F.
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Fix distinct points z1, ..., 2z, € H. Letl;, d;, Rj, yj, 1 < j <n, O, and F be as
defined in (2.3, 2.4). Throughout this section, a variable is a real number that depends
onk,n and z1, ..., z,. From the induction hypothesis, Proposition 2.3, and (2.5), we
see that G < F holds for (n — 1) points. We write F; f/gr F(H,;y(),00)- Then Lemma 3.4
holds with K = K;, G(z1) in place of F(z1), and G, in place of F(u\ k,;wy,00)- WE
will use the following lemma.

Lemma 5.1 There is some constant B > 0 depending only on k and n such that for
any ko € {2,...,n} and s, > 0,

~ . Sko B
G@)E? [Gr. (22, ... z)1]inradpy, (zx)) < s 5F(—)
() E; [Gr, (22 )1 Hr,, (Zko) %0} ] EEEAUNEN

Proof This lemma essentially follows from the induction hypothesis, Theorem 3.1,
and (2.5). Below are the details. Let r; € (0, R;/8), 1 < j < n. From Theorem 3.1,
there is a constant 8 > 0 such that

P[] < o0] -]E[l{inradHTZl (2ky) < sko JP[f) <+ <17 < Oolf_[rlll L TE < oo]]
bl

Sk, B
5F(Z17"'szn;rly"'srl’l)<—0) .
[Zko — 211 A |2k

By the convergence of (n — 1)-point Green’s function, we know that

n
; d-2 .. n 22 —C .
lim l_[ Ty P[Tr. < <t < oo|ft;11 VT < oo] = Gr;l] (z2, ..., 2n)-

Applying Fatou’s lemma with r;, . .., r, — 0and using the above displayed formulas,
we get
]P’[rZl < oo] ~E[1{inrady 2 @) < sko}alel (z2, ..., zn)|'l,'fll < oo]
7 r
n

. _ Sk B
< lim Hr,f 2F(zl,...,z,,;r1,...,rn)(—0) ,
0.5 |Zkg — 21| A |2k |

which together with Lemma 2.10 implies that

]P’[rrzll < oo] . EZ [l{inradHTZ] (zry) < sko}@rzll (22, .., Zn)]
]

n
. - Sk g
< lim l_[r,,‘f 2F(zl,...,zn;r1,...,rn)( 0 )
—>Ok:2 |Zk0 —zilA |Zko|

By the continuity two-sided radial SLE at its end point and the continuity of

(n — 1) point Green’s function, we see that, under the law ]PZ’ as rp — O,

@ Springer



Green’s functions for chordal SLE curves

inradH o k) — inradHTZl (zk,) and G.[;"-ll (z2,...,2n) = Gr, (22, ..., zn). Since
& v

lim, 0 r1 ZIED[rr1 < o0] = G(z1), applying Fatou’s lemma with r; — 0, we get the
conclusion. O

5.1 Convergence of Green’s functions

In this subsection, we work on the inductive step for Theorem 4.1. Let0 < r; < R;/8,
1<j<n. Consider the event {z! < --- < 7" < oo}. We will transform the scaled
probability ]_[ i1 7 ] ]P’[r,l1 < .-+ < 1" < o0] in a number of steps into the ordered

n-point Green’s function G(zl , ..., Zn) defined by the expectation of ordered (n — 1)-
point Green’s function w.r.t. the two-sided radial SLE. In each step we get an error
term, and we define a (good) event such that we have a good control of the error when
the event happens, and the complement of the event (bad event) has small probability.

Fixs = (s2, ..., 8,) WithO < s; < |z; —z1| A|z;| being variables to be determined
later. We define events

n
Epz =) {dist(z;, K,21) = 5}, r =0, (5.1)
j=2

Here the bad event Efl 3 is the event that y approaches zi, by distance si, for some

2 < ko < n before it approaches z; by distance ry. If it also happens that 7,/ < -+ <
7" < 00, then y goes back and forth between z; and such z,. Now we decompose
the main event according to E, .z, and write

Pz} < - <1/ <oo] =Pt} <+ <17 < 00; Ep 5]+ ef.

By Theorem 3.1 and (2.5), the term eT satisfies that, for some constant 8 > 0,

B
0<er <[[r¥?F ( )
! ﬂ k Z IZJI/\Iz,—z1|

We express

IP[I“ << T <00 Erl.g]

=P[z]! <oo] -E[lg, ;P[t? <--- <" < 00| F i E,5)lTf) < o).
1

From Proposition 2.3 and Koebe’s distortion theorem, we see that, if

Tk 1

- <, 2<k<n, 52
Sk/\Rk<6 =r=n (5-2)
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then

r

IP’['L’Z2 << ‘L’Z" < OO|~7: 1, o s < l_[ F “ll (22, +» 2Zn)- (5.3)

Since Theorem 4.1 holds for n = 1, we see that, if

— < 4y, 5.4)

then

B[z < oo] = ri Gl S i F )0 /RDP.

r
Now we express

Pz < oo] -E[1g, ;P[t? <--- <77 < ool}'rrzll; s 1T < o0l

=r? dG(Z])E[lErl Ptz <<t < oo|_7-"rrzl| P Eps]lti < oo 465
From Lemma 3.4 and (5.3) we see that, if (5.2) and (5.4) hold, then
< 2-d ( )ﬂl (IZkI/\IZk—mI)O"
le] < Hrk F(g g —
Define the events
Eyp = {dist(g,51(z)), Sk ;) 2 0lg,1(z)) —U,a1l.2 < j <n}, 1.6 >0.
r (5.5)

We understand the bad event E€ - as the event that for some 2 < j < n the “angle”

of z; is small in terms of 6 viewed from the tip of y at the time 7. We use the term
Img (zj)
“angle” because dist(g 1 (z;), SK ) > Img, 1(z,) and TIUJ equals the

sine of the argument of 8. (zj)— Ur;” . If the bad event occurs the argument must be
close to 0 or r. On the other hand, the bad event may not occur even if the argument
is close to 0 or 7. In the extreme case that g_=1(z;) € R and 8.1 (zj) > Urgl , the
g 21 (zj)—max$ 5

argument is 0, and the ratio becomes TU’ which plays an important role
in the proof of the convergence of boundary Green’s function ([10]). See also the third
factor of the second line of the displayed formula in Lemma 3.4 and Condition (iii) in
Proposition 6.2.

Fix a variable 6 € (0, 1) to be determined later. According to the occurrence of
E; .9, We express
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i GDE[1E, P[r2 < - < 1 < 00l F iz Epys]T! < o0]

ryss

—d
=r G(Zl)E[lE,I NE,,; (,IP’[ T2 <<

< ool]:rfl" ris NVEr:6|ITf) < 0o] +é5.

From Lemma 3.4 and (5.3), we see that

n
k|l N |12k — 21
56:51_[” 1—[<|k| |zk |)0.

=1 k=2

Let Z = Z = and Zx = Z(zx), 2 < k < n. Define Zl\k, 2 <k < n,and Q,

1
for the (n — 1) points Zx, 2 < k < n, using (2.3) and (2.4), which are random
quantities measurable w.r.t. .7-' oE Since Theorem 4.1 holds for (n — 1) points, using

Koebe’s distortion theorem, we conclude that, for some constants B,_; > 0 and
Bn-1,0n—1 € (0, 1), if

éanl . —rj < 51‘1—1 s
sjiARj 8

2<j<n,
then

d—2 22 z . . oo
H_[rk Pt <. <12 < SIEE E. ;] - G122 n)

i ﬁnfl
. Bn—1 r]
S Ff;ll (Z2’~ Zn)Z(Q 5 /\R ) .

Suppose E,,.p happens. Let § = Sk .. Since U_z1 € §, from Koebe’s 1/4 theorem,
. L |
we get dx 2 g’ (zi)|(d A dist(zg, v [0, 77']) and

2l < dist (g1 (z4), §)/0 = |g' (2wl dist (2%, v [0, 7' ]) /6,

which together imply that

2l g dist (.zk,)/[O, w0 _ _l(dist (zx. 7[0. % ]) /0 vl) _gmrlal
dy d A dist (Zk, )/[O, ‘Crzll ]) dy d

where the last inequality holds because dy, dist(zx, ¥ [0, r,zll 1) < |zx|. So, on the event
E,,.p, for some constant C > 1,

Q)
IA

0. (5.6)

S e
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Thus, if E,,.¢ happens, and

rj 6515,
< ’ —_— —
sji A Rj 8CBn-1

QBn—l .

then

n

d-2 2 z . . O .
‘ Hrk Pt < <t < 00| Foets Eryii N En0] — Gz,

k=2

B By rj Bn—1
SJF,;YZII(ZL'-wZn)Z(@ ]Q ! ) .

sjiARj
j=2 /

Now we express

’ Zn)

(5.7)

G(ZI)IE[L;,1 iNEy,: JP[t2 <<t < oolf,rzll; E5 N Epgllty < oo]

r2

n

2—d~
=1 G)E[E 5, [ | 7 Gzl < 00] + e,

k=2
Using Lemma 3.4, we see that, when (5.7) holds,
Alzk — z1] rj
< —dp <|Zk|—) (9 Bn—1 1 J
el < H I " )3 0%
k=2 j=2
Next, we express

n

2—d 2—d ~

T G@DE[LE, ank, o [ [ G a2l < o]
k=2

n
=176 GDE[1E, G o a, . 2] < 0] = ef.

The estimate on e is the same as that on e3 by Lemma 3.4.
To simplify the notation, we define for r > O and s € Rﬁ__l,

E. =E[-|¢f' <o0]i Gps=1£.G .

7
So far we have

n

)ﬂn—l.

Plr <+ <t <oo]l = [[ri “GGDEL[G 522, .. 2n)]

k=1
+el +e;+ e +e; —ek.
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For R > r > s > 0, define E, ;. to be the event

E sr= {y[tZI , T7'] does not intersect any connected component of

{Iz —z1] = } N Hzfl that separates z1 from any zz,2 <k < n} (5.8)

Here the bad event EY ¢ R is the event that between the times visiting smaller circles
{lz—z1| =r}and {|z— le = s}, Y crosses some arc ontheblggercucle{lz le = R},
which is needed in order for y to approaches some z;,2 < j < n, after 7;

Fix variables ny < 12 € (r1,d;) to be determined later. According to whether
Ey, ri:n, OCcurs, we have the following decomposition:

GDEL[Grisza. . 2)] = GDE [1

”l-rlsz”];E(ZL cee, Zn)] + €.

By Lemma 3.2 (applied to Z = {zj},2 < j <n)and Lemma 3.4, we have

2ozl Az — 2l a/4
0e s FIT(F—2) (1)
J

j=2
Changing the time from 7, to 7,, we get another error term e7:

GOE 1k, ., G2, z)] = GEOEL 1k, . GyisGan . zn)] + €7

To derive an estimate for e7, we use the following lemma, whose proof is postponed
to the end of this subsection.

Lemma 5.2 There exist constants B, > 0 and B, 8, € (0, 1) such that the following
holds. LetO < a < bbesuchthatzy € Hy, dist(z1, K,) < |zj—2z1|anddist(z;, Kp) >
sj,2 < j <n For2 < j <n,letp; be the connected component of {|z — z1| =
|zj — z11} N Hy that contains z;; and let & be a crosscuts of H,, which is disjoint
Sfrom pj, and disconnects p; from Kp\K, in Hy. Let d, = miny<j<, dp,(pj, ;). If

QB . o7l 5, (5.9)

then

n
A = |2kl Az — 21\« -
G@DIGy(2, v zn) = Galzz, 2| S F[ ] (T) (QPremde)P,
k=2

We now apply Lemma 5.10 with a = 7/, b = 77!, and & being a connected
component of {|z — zi| = m} N H_z that separates zx from z;. By comparison
n

principle of extremal length, we have
du, (P &) = log(lzx — z1l/m2)/2m) = log(di/n2)/(2m), 2 <k <n.
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Assume that
n+ sk <lze—z1l, 2<k<n. (5.10)

Then Ey, ;. N Er5 = Eyyriipp N Ey, 5. Thus, for some constants B, > 0 and
ﬁ*v 8* e (O! 1)9 lf

QB . 4 - S (5.11)

and (5.10) holds, then

n
|2kl A lzke — z1]\ N2\ P+
el = P (BN =y gy

il Sk d
Removing the restriction of the event Ey, ,,.,,, we get another error term eg:

GEDENM1E, , . Gzl = GEDENG iz, ., 20)] — e

ny-r1sn2

Here the estimate on eg is same as that on e by Lemmas 3.2 and 3.4.
Changing the probability measure from the conditional chordal E7! to the two-sided
radial Ejl, we get another error term eg:

GEDEN G5,y zn)] = GEDEL [G 522, -y 20)] + eo.

From [14, Proposition 2.13] and Lemma 3.4, we find that for some constant gy > 0,

n
2k — 21l A lze |\ g r1\Po
|e9|,§Fl_[<|k 1l |k|) (_1) .

s Sk m
Let the event E;;, o.,, be defined by (5.8). We now express

GzDE! [Gyi5(z2. . 2] = G@OEL [1E, o, Giis2s - - 20)] +et0

11,0517
Here the estimate on e is same as that on eg by Lemmas 3.2 and 3.4.
Changing the time from ;! to ré ' = T,, we get another error term e :

GGDEL (1, o, G5 ar - 2n)] = G@DES [1E, o Gos(2 - 20) ] + e

1,05

If (5.10) holds, then Ey, 0,5, N Ep.s = Eyp 0.0, N Eos. Apply Lemma 5.10 with
a=1,b= ré‘ = T,, and & being a connected component of {|z—z1| = nz}ﬂH{;}
that separates z; from z1, we get an estimate on e, which is the same as that on e7,
provided that (5.11) holds. Note that the constants B, B4, 8, here may be different
from those for e7. But by taking the bigger B, and smaller g, and 4., we may make
both estimates hold for the same set of constants.
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Removing the restriction of the event E;), o.;,, we get another error term ej3:

G@DE! [1g, o, Gois(z2, ... 2)] = GEDE! [Gos(z2. - ... 20)] — ern-

n1,0:m
Here the estimate on e is same as that e by Lemmas 3.2 and 3.4.

Finally, note that Go.3 = 1 EO;EGTZI . Removing the restriction of the event Ey.5, we
get the last error term e13:

GDE: [Gos(za. ... 2n)] = G@DEL [Gr, (22, ... 2n)] — €13
=Gz1,---»2n) +ens.
where by Lemma 5.1, the estimate on e;3 is the same as that on e}/ [[;_; r,f_d
At the end, we need to choose the variables s7, ..., s, and i, 12, 8, and constants
C,, B, > 0and 8,, 8, € (0, 1), such that if (4.1) holds, then (5.2,5.4,5.7,5.10, 5.11)
all hold, r; < R;/8,1 < j < n, and the upper bounds for |e;| := |e;‘|/]_[;’=] r,f*d,
1 <s <5,and |es|, 6 <s < 13, are all bounded above by the RHS of (4.2).

We take X € (0, 1) to be determined later, and choose s», ..., s, such that
Sj .
— =X, 2<j<n. (5.12)
lzjl Alzj — z1l

Then we have

rj =<1vﬁ>.iix—l.i, 2<j<n (5.13)
sjiARj s R; j

In the argument below, we assume that (5.2, 5.4, 5.7, 5.10, 5.11, 5.12, 5.13) all hold
so that we can freely use the estimates we have obtained.
From the estimate on |e} |, we get

ri ﬂnfl
lea] S, FQBn—lﬂn—lX*W*ﬁn—l@*Bn—lﬁnq max (_J) )
2<j<n \R;

From the estimates on eg‘ and e’sk, we get
les| S FXT"¥0%, s € (3,5}
If we take 6 such that 0% = @~ Bn-18u-1 maxzsjsn(;—jl_)ﬂ"—l , then we get

Pp—1

les| < FQBn—l,Bn—IX_"a_ﬂn—l max (r_J> @+ By—1Fn—1 3 <5 <5,
e 2<j<n Rj ’ -
Choose 71 and 1, such that ;—11 = % = %. Then we find that
1, a
71\ 3(F/B«ABo)
les| < FQB*"J’*X—"O‘QI—I)3 : , 6<s<12.
1

@ Springer



M. A. Rezaei, D. Zhan

Since Ry < dj, combining with the estimate on e, we get

1(a
V_1)3(4/\ﬁ*/\/30)Aﬂ1’ s e {2, 6,7,8,9,10, 11, 12}.

<F B*/B*anot(
les] S FO R

Combining this with the estimates on |es|, 3 < s < 5, we get

i\ A
|e | < FQBn 1Bn— 1+B*13*X—n0t Bn—1 max (r_]> #’ 2 <s5 < 12’
I<j<n \R;

where By := %(%/\ﬂ*/\ﬂo)/\ﬂl /\‘HZL Since |e1], |e13| < FXP#,if we choose
X such that X# = X Fn-1 maxlfjfn(Ri)ﬂ#, then with 8, := %, we get
rij ﬂn
les| < FQBi-1-14B:Ps oy (—f> C l<s<I3. (5.14)
1<j<n Rj

Now we check Conditions (5.2, 5.4,5.7,5.10,5.11) and r; < R;/8,1 < j < n.
Clearly, (5.7) implies (5.2). The LHS of (5.11) equals to QB*(;—ll)‘B < QB*(;,—'I)]/3,
and so it holds if Q3B*,g—1l < 83. Thus, (5.4) and (5.11) both hold if Q3B*;—11 < 83n8.

Condition (5.10) holds if ny < ‘12—1 and s; < %|zk — 21| A |zk|, which are equivalent to

2—11 < % and X < %, respectively, which further follow from

rj 1 3+7ﬁ+m};;ﬂ"71
max — < (
1<j<n Rj

2

From (5.13) and the choices of X and 0, we see that (5.7) follows from

. Bn_1 . By Bu—1Pn—1
QB,,_] max r_] - X0Pn=16,_1 _ Sn—1 max ("_j) FrnatBy_1 T aTBy_1Pr_1
I<j<n R; 8C Bu-1 8CBn-1 1<j<n R;
— B _ anl/gnfl . < affn—1
Let o = | — grnbis— — o755 Since By < —(HB” —— we get fg > 0. So

(5.2) and (5.7) hold if QB-1/P max1<,<,, Rf < (8an1 1/B& Thus, (5.2, 5.4, 5.7,
5.10, 5.11) all hold if

B,
3B+ n—1 ri
0" T Py max L <&,
I<j<n R;
B+na+p, 1

where 8, = 83 A8 A (1) B A (2510)7. Combining this with (5.14),

we see that, if we set B, = 3B, + B”;‘ + M, then whenever (4.1) holds,
(5.2,54,57,510,511)and r; < R;/8,1 < j 5" n, all hold, and the upper bounds
for |eg|, 1 < s < 13, are all bounded above by the RHS of (4.2). It remains to prove
Lemma 5.10 to finish this subsection.
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Proof of Lemma 5.10 Since K, C Kj, wealsohavedist(z;, K;) > 5,2 < j < n.Let
K = ga(Kp\Kq). Then K is an H-hull, and g, = gk o ga- Since gq(y (a)) = Uq, we
have U, € K NR. Since g, (y (b)) = Up, we have Uy, € Sk. Letrx = sup{|z — U] :
z € K}.FromLemma?2.5, wegetSx C [U,—2rg, Us+2rk]. Thus, |Up,—U,| < 2rg.

Define 2§ = ga(z)), 0§ = ga(p)), £ = ga(5)), 25 = g6(z))s P} = &p(0)),
2 < j < n.Then ,07, ,o?, §;‘ are crosscuts of H, z? € p;?, z? IS pj?, and é}l disconnects
K from ,oj“.. By conformal invariance of extremal distance, we get

dyi(p?. Sk) = du(pt. K) = dn,(pj. Kp\Ka) = dp,(pj. &) = ds.
Applying Lemma 2.9 to E and K, and to pﬁ-’ and Sk, respectively, we get

( diam(,o;-‘) N 1) ( diam(K)

TP —/\1><144_”d*, 2<j<n (515
dist(p?. K) dist(p? K) = e sjs=m G

diam(p?) diam(S
(+ A 1) : (#(K) A 1) < 14de™™ 2<j<n (516)
dist(p7, Sk) dist(p7, Sk)

Fix a variable ¢ € (0, 1) to be determined later. Define the event E,.4 using (5.5)
but with 7' replaced by a (instead of 7). First, suppose E,.4 does not occur. Since
dist(zj, Ky4) > 5,2 < j < n, from Lemma 3.4 we get

|zl A |2k —Z1|>“¢a

n
G@)Ga(za. - z) S F] ( »

k=2

(5.17)

Fix some j € {2, ..., n} for a while. Applying Koebe’s 1/4 theorem, we get

dist (zi’-, Sky) = |, (zj)| dist(zj, Kp) < |g},(zj)|dist(z;, Kq)
= Igk (24)I1g, () dist(z;. Ka) = |8 (z9)| dist (24, Sk, )

and
|Z?‘ — Up| > dist (zij’-, Sk) = gk ()1 dist (2, K).

Now we consider two cases.

Case 1. diam(Sg) < dist(z?, Sk)/4. In this case, since z;‘. = fx (zij’.), applying
Lemma 2.7, we get dist(z‘j., K) > 2diam(K), which implies that dist(z?, K) <
dist(z%,Sk,,)

<
lb-Upl ™

Izjf —U,| since U, € K.From the above two displayed formulas, we get

dist(z‘;,SKa)
|Z‘;—Ua\
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Case 2. diam(Sg) > dist(zlj?, Sk)/4. From (5.16), we have

diam (p?
# < 576¢ 74, (5.18)
dist (,oj, Sk)
if
1447 7% < 1/4. (5.19)

Since dist(z1, K4) < |zj —z1l,and p; C {|z — z1] = |z; — z1(}, we see that either p;
disconnects K, from 0o, or p; touches K. The former case implies that diam(p? ) >
dist(pj?, Sk ) because ,oj? disconnects K from oo, which is impossible by (5.18)if (5.19)
holds. In the latter case, p]b. := gp(p;) touches Sk, , and so dist(z?, Sk,) < diam(p?).
On the other hand, since U, € Sk and z’/’ € ,ob we get Izb Up| > dist(,o’?, Sk).
Thus by (5.18), we have dlst(z Sk,) < 576e’”d* Iz — Up| if (5.19) holds.
Combining Case 1 with Case 2, we see that, if (5. 19) holds and E,. 4 does not occur,

then for some 2 < j < n, d1st(zj, Sk,) S (¢ + e‘”d*)lzj Uy |. This together with
Lemmas 3.4 and that dist(z;, Kp) > 5;,2 < j < n, implies that

n
~ A — o
GGt ..o < F [T (BT oy ooty (5.0
k=2 Sk

Now suppose that E,.4 occurs. Since z‘; € ,o;? and U, € K, we have |z‘j‘. - Uyl >
dist(pj’, K). We claim that diam(p“) > dist(z”, Sk,). If this is not true, then the region

bounded by ,o in H is disjoint from Sk, Wthh implies that p; = g 1(,oj) is also a
crosscut of H, and the region bounded by p; in H is disjoint from K. Since p; is an
arc on the circle {|z — z1| = |z — z11}, this would imply that dist(z1, K4) > |z; —z1l,

which is a contradiction. So the claim is proved. Thus, we have

diam (,07) . dist (zfll., Sk,) _

- > > (5.21)
dist (,o;?, K) |Z? — Uy,
From (5.15), (5.21), rx < diam(K) and z? € ,0;?, we see that
144
< e < j<n, (5.22)

dist (Z‘;, K) ™~ ¢

as long as the RHS is less than 1. Applying Lemma 2.6 with xo = U,, r = rg, and
7= z‘/‘., from zll’. = gK(zﬁ), we see that, if

144
— T <

3 %, (5.23)
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then
| Im z% — Im 2% r 2

b a J J K
b — 2% < g, <4(- E 5.24
Iz~ =l =7k Im 2§ (dlSt (z4.K) (5.24)

. J

rg 2

(z%) —1 <5(—>. 5.25
gk () =11 = dist (4. K) (5:25)

LetZd = 24— U, andz% = z£ —U,,2 < j < n. Since |Up — U,| < 2rg, from (5.24),
we find that, if (5.23) holds, then

Farirar ImZz2 — Im ¢
5 L K [m) — "54(,r—K). (5.26)
1251 dist (24, K) ImZ} dist (24, K)
By definition, we have
n
Ga(z, oo vz) = [ [ 18 @HPGES, - Z);
j=2
n
Go(za. . zn) = | leh@)IP "G (3. ... 20)
j=2
n n
=[T1ex GO []1g:@n*“G@E5. ... 20).
j=2 j=2

Define 65,,;,(12, ) = H?:z |g(/l(Zj)|2_d’G\(’Z\g, ..., Z2). From (5.25) we see that
there is a constant § € (0, 1) (depending on n) such that, if

max ——& 5, (5.27)
2<j=n dist (4, K)
J
then
o~ o~ }"K 2/\
1Gb (2. v ) = Gz oo z)] S (max ——e ) Gz 20).
2<j<n dist (zj, K)

(5.28)

Define dy, 2 < k < n, and Q using (2.3) and (2.4) for the (n — 1) points 2, ..., 2%
Since Theorem 4.2 holds for (n — 1) points, from (5.26) we see that, for some constants
B,—1 >0and 8,-1,8,—1 € (0, 1), if

-7 |TmZ% — Im 2|
Bp—1 J J J J
e <Oy = < &n-1,
| Im?7j
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then

1Gap(z2, ... m—éa(zz,... 2/ Faz2, . 2n)
Z|/3nl Ilmz ImZ|/3nl

< _r R

Z( d; ) +( Imz )

Since E,;¢ occurs, (5.6) holds here with ¢ in place of 6 by the same argument. Let
By = B,,_1 + 1. Then, for some constant C > 1, if

po G F %8 ImE - ImT (5.29)
: s < Oop—1, .
Bl CBo ImZ nl

then

1Gab(@2s s 20) — Ga(zas oo 2/ Fazas -2 20)
|ImZ ImZ |),Bn 1

¥ -
< (o S ) (P

From (5.29) we see that the RHS of (5. 30) is bounded above by a constant. Since
G, <F, by induction hypothesis, we get Ga » S F, as well. From (5.28) and (5.30),

~

we see that if (5.27) and (5.29 ) both hold, then

(5.30)
J

1Gp(z2, - 20) — Ga(zas oo 2|/ Fa(z2s - s 20)
| ImZ} — Im 7| )ﬁ

rx _ 125 =24\ Bus
R = L
~ \2<j<n dist (z, Z ¢ "0 251 ImZY
§¢—2e—2nd* +(¢—BO—1QBOe—nd*)ﬁn— + (¢—2e—2nd*)ﬁn—1

,S (¢—Bo—l QBoe—ﬂd*)ﬁnfl

where the second last inequality follows from (5.22), (5.26), and that |z; — z| > 4|,
and the last inequality holds provided that

pre 2T < . (5.31)
Since dist(zj, K4) > 5,2 < j < n, from Lemma 3.4, we get
G@DIG(z2s - zn) = Galza, .. 20)]

n
<F l—[ (IZkI A lzi — Zl|)a(¢—Bo—lQBoe—ﬂd*)ﬂn—1.

S
k=2 k

Combining the above with (5.17, 5.20), which holds when E,., does not occur,
we find that, as long as Conditions (5.19, 5.23, 5.27, 5.29, 5.31) all hold, no matter
whether E,., happens, we have
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GEDIGy(z2, .2 2n) — Gal22, .- )]

S F ﬁ (|Zk| A |Zk - Z1|)a[e—and* + ¢a + (¢_BO_1QBOe_”d*)ﬂ"*1]'

S
k=2 k

Finally, we may find constants bx, B, > 0 and B, 6, € (0, 1), such that, with ¢ =
e_b*”d*, if (5.9) holds, then (5.19, 5.23, 5.27, 5.29, 5.31) all hold, and the quantity
in the square bracket of the above displayed formula is bounded above by a constant
times (QB*e™7 d:)B+ This is analogous to the argument after the estimate on e13 and
before this proof. O

5.2 Continuity of Green’s functions

We work on the inductive step for Theorem 4.2 in this subsection. Suppose 2}, .. ., z,,
are distinct points in H such that z’j isclosetozj, 1 < j < n.The strategy of the proof

is similar to that of Theorem 4.1. We will transform f}\(z’l, ..., 2)) into G(z1, ..y 2n)
in a number of steps. In each step we get an error term, and we define a (good)
event such that we have a good control of the error when the event happens, and the
complement of the event (bad event) has small probability. These events actually have
already appeared in the proof of Theorem 4.1. In addition, we find that it suffices to
prove two special cases, which are the two lemmas below.

Lemma 5.3 With the induction hypothesis, Theorem 4.2 holds if 7| = z1.
Lemma 5.4 With the induction hypothesis, Theorem 4.2 holds if z; = zx, 2 < k < n.

Before proving these lemmas, we first show how they can be used to prove the
inductive step for Theorem 4.2 from n — 1 to n. We have

(/1 /2 )—A(Zl,ZZ,...,zn)|
= a(i Z/Z"- ) (Z&,Z2,...,zn)|
a( Zn) — 6(21,22,...,zn)| =1+ D.

By Lemma 5.4, for some constants B,g ) > 0and ,3(2) 8(2) € (0, 1), I, is bounded by
the RHS of (4.4) when (4.3) holds for j = 1. We need to use Lemma 5.3 to estimate
I, with the assumption that z} is close to z; but may not equal to z;. Define d; and

l,/{, 1 <k <n, Q' and F’ using (2.3) and (2.4) for the n points z/l, Z1s ..., 2n. From
Lemma 5.3, we know that, for some constants B;, > 0 and 8,6, € (0, 1), I1 is

bounded by the RHS of (4.4) when (4.3) holds for 2 < j < n, with d} Q' and F' in
place of dj, O and F, respectively. Suppose

|z’1 —z1] < di/2, Imz’1 = Imz;. (5.32)

Then we have [z}| < |z1 and |zx — z}| =< |zx — z1], 2 < k < n, which imply that
d; < dy and [} < I;, 1 < k < n, which in turn imply that Q' < Q and F' =< F.
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Thus, there are constants B,gl) > (0 and ﬂ,ﬁl), 8,51) € (0, 1), such that I; is bounded
by the RHS of (4.4) when (4.3) holds for 2 < j < n. Finally, taking B, = B\" v B\®,
Bn = ,3(1) A ﬁ,?) and §, = 8(1) A 8(2) 1/8, we then finish the inductive step for
Theorem 4.2 from n — 1 to n.

Proof of Lemma 5.3 Define Ey.; and Ey.g using (5.1) and (5.5) for zy, z2, .. ., z,; and
define E6;§ and E(’) o using (5.1) and (5.5) for z1, 25, ..., z,. Let T =T, = 75

Fix 5 = (s2,...,s,) with s; € (Iz zjl,1z; —z1l A lzj]) and @ € (0, 1) being
variables to be determined later. From Koebe s 1/4 theorem and distortion theorem,
we see that there is a constant § € (0, 1/10) such that, if

2 = zj _
— <, 2<j<n, (5.33)
Sj

and E.z occurs, then
4gr () — gr(z))| < dist(gr(z)), Sk;) < lgr(zj) —Url, 2<j<n,
which implies that
Eps N E();z@ C Eps N Egp C Egz N E6;9/2' (5.34)
Since § < 1/2, (5.33) clearly implies that
E{);zg C Eps C E6;§/2~ (5.35)
Suppose (5.33) holds. First, we express

-~

G(z1,22, ... zn) = G@DEL [Gr (22, ..., 2)]
= G(@zNE] [, GT(zz,...,zn)]-l-el;
G(z1,2b....2)) = G@DEL [Gr(Zh ..., 2]
= G@DE! [1£,,Gr (), ... )] +¢f.

Using Lemma 5.1 and (5.35), we find that there is a constant 8 > 0 such that

B
O<ene <F (—)
! Z 1Zj| A lzj — 21

Second, we express

G@DE: [1£,;Gr (22, .., )] = G@DE? [Leysnggs G122, - . 20)] + €23
G(zDE! [1£,;Gr (@b, ..., 2] = G@DE? [LeysnE0 G1 (s - . 2))] + €.
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From Lemma 3.4, (5.34, 5.35), and that G < F holds for (n — 1) points, we get

0 < ey, e <F1_[(—|ZJ|/\|ZJ Zl') 0*.
j=2 5

Now suppose E.5 and E.g both occur. Let Z = Z7,Z; = Z(z;) and?i = Z(z/i),
2 < j < n. By definition, we have ' '

n
Gr(z, ..., 2n) = H 187 GNP GG T

~ 2 d o~
Gr Zz,-u, 1_[| 8r G(Zzy -,Zn).
Define /G\’T(z’z, ez = ]_[?22 |g’T(z,-)|2*d6(z”2, ..., 2,). From Koebe’s distortion

theorem, there is a constant 8" € (0, 1) such that, if

|z, — zjl
STy 2<j<n, (5.36)

Sj
then

n
|6T(z’2, A Z}\’T(z’z,...,zé)l S
=2

12—zl ~
JT Gp(zh, ... 2)). (5.37)
J

Define ZZ}, 2 <k <n,and Qusing (2.3) and (2.4) for the (n — 1) points 23, . . . , 2.
Since Theorem 4.2 holds for (n — 1) points, we see that, for some constants B,_; > 0
and 1871—15 (Sn—l € (07 1)9 if

Ot e <8, — L <8,
dj Im j

then
G2, ..., 2,) — GG T/ F Gy Z0)

- Xn: (éBn—l l?j —/Z\j|)/3n71 n (|Im’2’j - Im’Z\j|>ﬂn71
~ d, ImZ; i

j=2 J

If E¢.p occurs, (5.6) holds here by the same argument. Let By = B, + 1. Then, for
some constant C > 1, if

2. =zjl  @Bos,_; |ImZ; —ImZ}|
Bp ZJ I 7 Onml UL (5.38)
[Z;] CBo Im7Z;
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then

|/G\/T(Z/2"-'7Z/)_Z;\T(Z29""ZI1)|/FT(22’"’7Zn)
2y =ZilNgor 1ImZ; = ImZj |\ By
< —Bo Bo_ e
E(( 0 I?jl) +( e ) ) (5.39)

From (5.38) we see that the RHS of (5.39) is bounded above by a constant. Since
GT < Fr, we get G (2, .. 2y) S Fr(za, ..., zp). From (5.37) and (5.39), we see
that, 1f (5.36) and (5. 38) both hold, then

IGr(2h, 7)) — GT(zas ooy 2)l/ Fr(z2s - ., 2)
Z( |2 — 2l ( f—Bo gBo 2 _/Z\J'|>5"—' n ('Im?j _Imffl)ﬁ"‘l)
~ 1zl Im?Z; .

(5.40)

Applying Lemma 2.8 to K = K7 and using Z = gr — Ur and Ur € Sk, , we find
that, if (5.33) holds, then for 2 < j <n,

- . I . - _ . !/ . I .
2, =2l - 12 —zjl  [ImZ; —ImZ;| - |Imz/; —Imz;| +(|Zj Z]|>1/2
T s Imz;  ~ Img; )
(5.41)

Thus, there is a constant Co > 0, such that if

oo [T 0P, (T —ingl s,

, (5.42)

’

<
s Co Imz; Co

then (5.38) holds.
Now we express
G(z)EL [1Ey:nEg, Gr(z, ..., )] = G@DEL [1£,:nEn, Gr(z, ..., )] + es.

From (5.40, 5.41) and Lemma 3.4, we find that, if (5.33, 5.36, 5.42) all hold, then

n n /
Zj| A lzj — z1]\@ _ |2} = 2j1\Bu-1/2
les] SFl_[(—’ s4’ ) Z((" B°QB°—]S, )
j .

j=2 j=2 !

+(|Imz'] —Iij|>ﬂn_|>
Im z; '

At the end, we follow the argument after the estimate on e13 in Sect. 5.1. First
suppose that = X,2 < j < n,forsome X € (0, 1) to be determined.

|z =zl .
’d—,j, 2 < j < n. Then we may set
J

lzj \Alz —z1]

I/ z\ _
Then we have L <x L.
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/

1z —zil\a |7 — zi|\b |Imz Imzi|\e
6 = max (j—J) , X = max (J—J> \/ max (—/>
dj 2<j<n dj 2<j<n Imz]

for some suitable constants a,b,c > 0. It is easy to find those a, b, c and
some constants B, > 0 and B,,8, € (0,1) such that the upper bounds for
le1l, l€}1, lezl, |€5], |e3| are all bounded by the RHS of (4.4) with z; = zy, and if

(4.3) holds, then (5.33, 5.36, 5.42) all hold. The proof is now complete. O
Proof of Lemma 5.4 Fix s; € (1z] — z1l, |z; —z1l A lzjD), 2 < j < n, and 2 >
n > Iz/1 — 71| depending on «, n, zl,z/l,zz, ..., Zn to be determined later. Define
Eos, Ey,5s and Ey, 0., using (5.1), (5.1), and (5.8), respectively, for z1, z2, .. ., Zn.
Define E(/);g using (5.1) for 2}, z2, ..., zp, let E;“j = E,,.5, and define

E ;71 0 {y[r,7 L Tz/l ] does not intersect any connected component of

{lz—z1l = m}N Hrj" that separates z} from any zx, 2 < k < n}.
1

First, we express

G(z1, 22, 2n) = G(z)E], [lEO;gaTzl (22, ... z)| + e
G220 s 2n) = G(Z/I)Ez‘,l [1564;65’1 (22, ....z0)] +ef.

Now suppose (5.32) holds. Recall that we have |z; — 2}| < [z; —z1,2 < j < n,
Q' < Qand F' < F.By Lemma 5.1, we see that there is a constant 8 > 0 such that

B
OSe,eNF ( )
b Z IZJI/\Iz,—mI

Second, we express

G@DE: [1£,;Gr, 2. ... 20)] = GGDEL MEyinE, o, O, @200 2]+ €23
G@E (15 Gr, Gavoo 2] = GEDES [y gy Gy (2. oz)] + b

n1,0;n2

From Lemma 3.2, Corollary 3.3 (applied to Z = {z;},2 < j < n), Lemma 3.4, and
that |z; — 2} < |z; —z1]and F' < F, we get

A a/4
Ofez,eZNFn(—|Zj| 12 Zl') (m> .
Sj n2

j=2

Third, we change the times in the two expressions from 77, and T, respectively,
to the same time 7, , and express

@ Springer



M. A. Rezaei, D. Zhan

G@EL [1ey:nEy, 0, G, (220 - 2)]

= G(z1)E, [1£ $NE, /G\rm] (22, ... 2n)] +e3;

npss 1:0:m

/ * ~

GPE, [lE(’);}mE:]lﬁoszTz/l (22, 2n)]

= G(ZDE[1 G.u(z, ..., él.
(z}) 1’1[ E) NE) oy O] (z2 )]+ e

Now suppose (5.10) holds. Then Ey, o, N Ey ;5 = Eyj 0,9, N Eo;5 and E;“ 0y 1

:“;3 = E;n,O;nz N E(/);E' Applying Lemma 5.10 witha = ], b = T,, or b = Ty,
andusing Q' < Q, F' < F and |z; — 2| < |zj — z1, we find that, for some constants
B, > 0and By, 8, € (0, 1), if (5.11) holds, then

n
Zjil N zj — z1]\@ B+
|e3|,|e/3|§Fl_[(—| R 1|> (QB*E> .

S d
j=2 k !

Note that the proof of Lemma 5.10 uses Theorem 4.2 for n — 1 points so we can
use it here by induction hypothesis. Removing the restriction of the events Ey, 0.y,

!/
and Em,O;nz’ we express

G@DE: 15, 0k, o)
GEDES [l ng GG oozn)] = GEDES 1y G (aan oo z)] — e

nOimy Ty

Goor (2o an)] = G@OEL [1g, .Gt (o, o an)] = ews

NE n;s

n1ss

The estimates on ey4, eg are the same as that on ej, e’2 by Lemma 3.2, Corollary 3.3,
Lemma 3.4, and that F’ < F and |z; — 2| < |zj — z1].
Changing G (z}) to G(z1) on the RHS of the second displayed formula, we express

G@E)E] [1E;I:§Gr;ll @2, 2n)] = GDE] [1E;I;§Grsll (22,....20)] +es.
From (1.2) and Lemma 3.4 we see that there is a constant § > 0 such that, if

Iz} — z1l _s |Im z} — Im zy|

5, (5.43)
|z1]

’

Imz;

then

Lzl Alze — 2\ /lz) — 21l [ImzZ) —Imzy|
lesl < P (FEASEE0) (LS SRAL TR
k=2 Sk [z1] Imz4

Finally, we express

G(2)E], [1,%}6{;11 (22, 20)] = GDEL [1E ér;ll (22, .., z20)] + e.

n1;s
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Since Ei’ﬂ ; = Ej,.5, the random variables in the two square brackets are the same,
which is 7z -measurable. By Lemmas 2.11 and 3.4, we see that there is a constant §

n
such that, if

2] — z1l

m

<4, (5.44)

then

n /
ikl Az — zi\@ /12 — 21l
|e6|5F1—[<| Kl A zk I) ( 1 )

S
s k m

At the end, we follow the argument after the estimate on e;3 in Sect. 5.1. Suppose
that m = X,2 < j <n,forsome X € (0, 1) to be determined. Pick ny, n2
such that |'z/l —z1l/m = n1/m = n2/d;. It is easy to find constants a, B, > 0 and
B, 6n € (0, 1) such that with X = (%)“, if (4.3) holds for j = 1, then Conditions
(5.32,5.10, 5.11, 5.43, 5.44) all hold, and the upper bounds for |e;|, 1 < j < 6, and
|e; [, 1 < j <4, are all bounded by the RHS of (4.4). The proof is now complete. O

6 Proof of Theorem 4.3

In this section we want to show the desired lower bound for the multi-point Green’s
function. The method of the proof is based on the generalization of the method used
in [15] and [12] to show the lower bound. We find the best point (almost means the
nearest point but we make it precise) to go near first and we consider the event to go
near that point before going near other points (as much as possible). This can be done
by staying in a L-shape as defined in [15]. It is possible that we can not go all the way
to a specific given point since couple of points are very near each other. In this case
we can stop in an earlier time and separate points by a conformal map. We will go
through the details about this general strategy in this section. Following Lawler and
Zhou in [15], we define for z € H and p e (0,1),

L, =1[0,Rez]U[Rez,z],
and
L., ={ e H|dist(Z, L;) < plz|}.
A simple geometry argument shows that, for any zg € H\{0} and p € (0, 1),

Ly, N{zeH: |zl > |zol} C {lz — 20l < v2plz0l}- (6.1)

Now we state a lemma which shows what happens to points which are not in the
L-shape when we flatten the domain.
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Lemma 6.1 Suppose 0 < p < }‘. Then the following equations hold with implicit
constants depending only on « and p. Suppose z € H, z1,z2 € H\L; 75, and y (1),
0 <t <T,isachordal Loewner curve such that y(0) =0, y(T) =z, and y[0, T] C
L; . Let Z = Zt be the centered Loewner map at time T. Then we have the following.

1Z'(z1)] < 1.
Im(Z(z1)) < Im(zy).
Z(zD)] < |z1].
|Z(z1) — Z(z2)| S |21 — 22l

Finally if z1, 2o, . . ., Zn are distinct points in H\ L; >, and ry, ..., r, > 0 we have
F(Z(z1)s s Z(zn)i 12" @)1y - 12 @) lrn) 2 F @1 e Zns L - Ta).

Proof The proofs for first 3 equations above are in [15, Proposition 3.2]. For the
second to last one, suppose 7 is a curve in H\ L, 5, which connects z; and z and has
length at most c1|z; — z2|. If the closed line / passing through z; and z, does not pass
through L, >, then it works otherwise we go on the / until we hit L; 5, then we go up
on L; 7, to modify pass such that it does not pass through L, »,. Then the length of
the image of 1 under Z is at most ¢2|z1 — z2| by derivative estimate. The last statement
is a result of the definition of F' and the previous equations. O

Remark We expect that |Z(z1) — Z(z2)| < |z1 — z2| holds in the statement of the
lemma. We do not try to prove it since it is not needed.

The same proof gives us the following modification of Lemma 6.1. Suppose the
chordal Loewner curve y satisfies that y[0, T] C {|z| < R}. Suppose z1,...,2, ¢
{|z| < 2R}. Then all the results of the Lemma 6.1 holds for z, ..., z, as well. These
results also follow from [19, Lemma 5.4]. See, e.g., the proof of Corollary 4.4.

Now we strengthen [15, Proposition 3.1]. We quantify the chance that we stay in
the L-shape and at the same time the tip of the curve behaves nicely. Among those
estimates, (iii) means that the “angle” of zo (see the description after the definition
(5.5) of E,.p) viewed from the tip of y at 7p is not small.

Proposition 6.2 There are uniform constants Co, C1 > 0, N > 2,by > 1 > b1 >0
such that for every 0 < § < 1, there is Cs > 0 such that for every zg € H\{0} and

O0<r< % there exists stopping time t) = rg (zo, 1) such that the event E defined

by 19 < o0 and

(i) dist(zo, v[0, T0]) € (b1r, bor),

(ii) y[0, 0] C L5,
(iii) dist(gr(20), Sk,) = Colgr(20) — Uyl = ColZr, (201,
(iv) |Z(z0)| < C14/rl20l,

satisfies that

P% [Eq] = Cs; 62)
PlEx] > CsF (z0: 7). 63)
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Proof By scaling we may assume max{|xg|, yo} = 1, where xo = Rezp and yp =
Im zg. Then |zg| =< 1. We first prove (6.2), and consider two different cases to prove
this. First we consider the interior case when r is smaller or comparable to yg, and then
we consider the boundary case when r is bigger or comparable to yg. Also throughout
the proof we consider N as a fixed number (greater than 2) which we will determine
at the end.

Interior case Suppose for this case that r < 10yg. Define the stopping time t by

T =inf {¢ : dist(y (), z0) = % Al

By [15, Proposition 3.1], we know that there is u > 0 depending only on x and %
such that for every zg € H, ]P’jo[y[O, T,] C LZ0 5] > u. By this we know that
0: N

IP’;‘O[)/[O, 7] C LZO’%] > u.

Let E denote the event y[0,t] C L . Now define 79 by

20, o

2

. Yo r
ro_lnf{ Y:(z0) = 100/\ 10},
where Yy (zp) is the conformal radius of zo in H;.

Now we want to show P} [ETO |E] > ug for some constant ug > 0. Since IP’*O-a S.
T,, < oo, we have IP’* [0 < oo] = 1. By Koebe’s 1/4 theorem, we immediately have
Property (i).

For Property (ii) let £ I denote the event that after time 7, y stays in L 20,8 il T7.
From Lemma 3.2 applied to Z = 0L, 5, weget IP’* [(E ) ] < N~ for some constant
¢ > 0. Since IE”[E] > u, there is a constant C > 0 such that ]P’;O[Eloﬁ] >1-CN~“.

For Property (iii) we use [15, Lemma 2.2]. By Koebe’s 1/4 theorem we know that
log(Y4,) —log(Y;) < —1. By [15, Lemma 2.2], for any p < 1 we have 6y > 0 such
that

P} [1m Zey(20)/1Z1(20)| = 60| Fc] = o

Call the eventIm Z,(z0)/|Z+(z0)| = 6o as E7 2 If Ez 2 , occurs then Property (iii) is sat-
isfied (with the constant depending on 6p) because dlst(gIO (z0), SKrO) > Im Z,(z0).
If we choose p € (0, 1) and N > 2 such that ug = p — CN~¢ > 0 then we have

P: [EY NEL|E] > P:[ELE] + P [EZIE] =12 p— CN ™ = ug > 0.
So IP* [E ! ﬂE2 ] > uug > 0. We have seen that Properties (i)-(iii) are satisfied on the
event E}O N E%O. For Property (iv), set Z = Zy,, and let I1 = {z € H : Im(z) = 10}.

Then Im Z(z) < Imz = 10 for z € Il. Consider the event that Brownian motion
starting at zg hits IT before hitting ¢ [0, o] UR. By Property (i) and Beurling estimate
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it has chance less than c./r for some fixed constant c. After map Z, the chance that
Brownian motion starting at Z(zo) hits Z(IT) before hitting R is at least Im(Z(zp))/10
by gambler’s ruin estimate which has the same order as |Z(zp)| when E%O happens.

So we have Property (iv) on the event E ! " NEZ 2 Thus, E; ! , NEZ 2 E,. This finishes
the proof of (6.2) in the interior case.

Boundary case For this case assume that 1 > r > 10yy. Without loss of generality
we assume xo = 1. Then zo = 1 + iyp. We follow the steps as in the interior case just
we have to modify some definitions for the boundary case. First, following [10] we
consider

=inf{x >0:T, >t}, D;=H U{z:z¢€ H} U (xy,0),
X =27Z:(1)=g) = U, Op=gi(x)— U,
X — Oy X

Ji=——F— M) = ;Otg/(l)-
Xi X,

Note that Y; is 1/4 times the conformal radius of 1 in D;. So we have

1
7 dist(1.9D) < Yy (1) < dist(1, D). (6.4)

Take
T =inf {z : dist(y (1), 1) = 100r}.

By [15, Proposition 3.1], we know that there is u > 0 depending on « and % such
that IP’T[)/[O, ] C L, %] > u. Let E denote the event that y[0, t] C ng%. Then

]P’T[E] > u. Now take 7 as

1o =inf {¢ : Y, (1) = 8r}.

Since P}-a.s. Ty < oo, we have P[tp < oo] = 1. By (6.4), we immediately have
Property (1) Let £, 0 denote the event that after t, the curve stays in Ly s till 77. Using
Lemma 3.2 as in the interior case, we get Pi[E; ! |E ] > 1 — CN~¢ for some constants
C,c>0.1f Elo happens, since L1 s C L, s, we have Property (ii).

By Koebe’s 1/4 theorem we know that log(Y,) — log(Y;) < —1. By [10, Section
4] we have that for any p < 1 there is 8y > 0 such that

PilJz = 60l F:1 = p.

Call the event J, > 6o as EZ. Since |z0 — 1| = yo and dist(zo, K,)
2r > 20y, by Koebe’s 1/4 theorem and distortion theorem, we get |g4,(z0) —
gD < %dist(gr0 (z0), Sk,,)- Thus, by triangle inequality, dist(g+,(z0), Sk,,) <
dist(gz, (1), Sk,,)- Since Uy, € S, we have |gz,(20) — g5 (D] < 218z (z0) — Usy|.
So we also get |g7,(20) — Uzyl < |87 (1) — Uy, . If E%O happens then the Property (iii)
is satisfied at the point 1 with Coy = 6y, and so is also satisfied at the point zo with a
bigger constant by the above estimates.

v
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If we choose p € (0, 1) and N > 2 such that ug = p — CN~¢ > 0 then we have
PEL NEZ |E] > up. So PfLEL N EZ] > uug > 0. Since dist(zo, ¥ [0, 0]) > 2r,
until time 7o the two probability measures IP7 and IP] are comparable by a universal
constant ¢ by [15, Proposition 2.9]. So we get IP’* [E1 N E2 1 > uug/c > 0.

We have seen that Properties (i)-(iii) are satlsﬁed ontheevent E rlo NE %0 . For Property
(iv), similar to the interior case, we use Beurling estimate. Take D = D,. Brownian
motion starting at 1 has chance less than c4/r to hit [T = {Im z = 10} before exiting
D. By conformal invariance of Brownian motion, this implies that distance between
(—o0, 010) and Z,(1) which is X4, — Oy, is not more than c+/r, which then implies
gm(l) S T because Yy, < r. Since Jy, > 6y, we have | Z;(1)] < /7. By Koebe’s
distortion theorem we get |Z,(z0) — Z¢, ()| S gr0(1)|20 — 1] < /r. So we get
| Z 1, (z0)] < /7, as desired. So we get E1 N E2 C E,. This finishes the proof of
(6.2) in the boundary case.

Finally, we prove (6.3). From [14,15] we know that IP is absolutely continuous with
respect to IP7 on F7; N {rp < oo}, and the Radon-Nikodym derivative is

|Z (20)]* Im(Zy (20)) 2D~ .
ay -4 , 20 € H;

lg7, @) 1>~ 1z0l*
R =

|Zey G0)I
EAEDICEIEE

zo € R\{0}.

Recall that in both of the above two cases, we defined events E%O and £ %0 such that

Elo N E%O C Eqy and P}, [E1 N Efo] > 1. So it suffices to show that R < F(zo; ) on
2

E2.

In the interior case, suppose E%O happens. Then Im Z(z0) < |Z,(z0)|. They are
also comparable to dist(gr (0). Sk,,) because Im Zz, (z0) < dist(gr (z0). Sk,,) <
|Z(z0)|. By Koebe’s 1/4 theorem we get

dist(gz (20). Sk,)* ¢
_ 2-dy—a
2= lzoleyg 07"

dist(z0, Kz)? ¢ y2-d
2—d)— 2—d)—
ey oy e

= = = F(zo;1).
|87, (z0) lzo 20
|Z (z0) |
187, @0)[¥[z0l* "
Suppose E%O happens. Then | Z,(z0)| = dist(g4,(z0), SKz0)~ By Koebe’s 1/4 theorem

we get

In the boundary case, by Koebe’s distortion theorem, we get R <

_ dist(gq,(z0), SKTO)O[ _ dist(zo, K¢)* _ r®

= = = F(zo; ).
|87, (z0)1¥|zo|* lzol* lzol*
So we get R < F(zp;r) on EZO in both cases. The proof is now complete. O

Remark Since F(zp; r) is comparable to the probability that SLE goes to distance r
of zp, we showed that there is a good chance to go to distance r of zp in a “good way”.
Once we have this we can prove Theorem 4.3.
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Case A Case B Case C

Fig. 2 The three cases in the proof of Theorem 4.3

Proof of Theorem 4.3 We prove the theorem by induction on n. Forn = 1 itis a
corollary of Proposition 6.2. Suppose thatn > 2 and the theoremistruefor 1, ..., n—1
with constants C; > Oand V; > 1,1 < j < n, and we want to prove it for n. We
consider different cases.

We now give a summary of the cases that will be considered. The first case: Case
A happens when {z1, ..., z,} can be divided into two nonempty groups such that
the first group lie inside of a smaller semidisc, and the second group lie outside of
a bigger semidisc, both centered at 0. In this case a good strategy for y is to visit
neighbors of all points in the first group before leaving a semidisc centered at 0. We
then reduce Case A to the induction hypothesis. The second case: Case B happens
when {z1, ..., z,} can be divided into two nonempty groups such that for a point,
say 71, with the smallest modulus, the first group lie inside of a thin L-shape w.r.t.
z1 and the second group lie outside of a thick L-shape w.r.t. z;. In this case we use
Proposition 6.2 to y to reach some suitable distance from z; before leaving an L-shape
w.r.t. z1 such that the “angle” of z; viewed from the tip of y is not small. By mapping
the complement domain conformally onto H, we reduce this case to Case A or the
induction hypothesis. The third case: Case C happens when all of z;’s lie inside of a
thin L-shape w.r.t. z1, which has the smallest modulus. By (6.1) they lie in a small
disc centered at z;. In this case we use Proposition 6.2 again to let y approach this
group while staying inside an L-shape such that the “angle” of z; viewed from the tip
of y is not small. By applying a conformal map, we then reduce this case to Case B.
See Fig. 2

Case A There exist R,7 > 0 and m € N with R > 2(max;<j<,—1 V;)r > 0 and
m < n—1lsuchthat |z;] <r,1 < j <m,and |zj| > R,m+1 < j < n.
Let 19 = v;f’zlrrzjzj and ' = R/2. From the induction hypothesis, we have P[ty <
T{|z|=r}] 2 F(zi,...,zZms 11, ..., rm). Let Ey, denote the event 79 < T{)zj=r}- Let
V(0) = Zey(y (10 + 1), %) = Zoy(z)), and 7j = | Z} (2))|rj/4. m + 1 < j < n. By
DMP of SLE, conditionally on Fy,, ¥ has the same law as y. Let Ts and 77 be the
stopping times that correspond to 7. By induction hypothesis, we have

F o~ .
]P)[TFJ- < Nzl=Vaom Ximrr B} T +1=j=n|Fy, Efo]
2 F@ngts oo 205 Tmgls ooy )

Suppose E, happens. Then K, C {|z| < r’}. By Lemma 2.5 and that Uy, € SKro we
have | Z4,(z)—z| < 5r' forany z ¢ K_,0 Let E denote the event on the LHS of the above
displayed formula. By Koebe’s 1/4 theorem, we see that E;; N E C ﬂ;’-zl{rfj /<
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T(z)=r )}, Where 1’ = 6r' + Vi, _p, Z?:m-{-l (Izjl 4+ 5r'). Since /' < R < |z,|, we can
find a constant V,, > 1 such that r” <V, Z';:l |zj|. Thus,

B55 < ey o) = FLEw 0 E] = BLEq 1 E[P(EVF. Eo])

n j=
5F(Zla-~~7Zn1;r19~~-arm).E[F(Zm-l—]a---aZn;7m+19~~-37n)|ft()v Er0]~
ZF(Zl"'°7zm;r19""rm)'F(Zm+la""Z)’l;rm+11""rn)
< F(Z1y ooy Zns Ly eees ).

where the second last estimate follows from the remark after Lemma 6.1, and the last
estimate follows from Lemma 3.6 because dist(z;, {z1,...,zm}) < lzjl,m +1 <
Jj < n. The proof of Case A is now complete.

We will reduce other cases to Case A or the case of fewer points. By (2.7) we
may assume that z1 has the smallest norm among z;, 1 < j < n. Fix constants
pj €(0,1/2),1 < j < n, with p; > --- > p, to be determined later.

Case B {z1,...,za}\Lz,,p; # ¥. By pigeonhole principle, Case B is a union of
subcases: Case B.k, 1 < k < n — 1, where Case B.k denotes the case that Case B
happens and {z1, ..., 2y} N (L7 o \Lzy, ppit) = 9.

Case B.kInthiscase wehave {z1, ..., 2, }\Lz; o, 7 0:.421, ..., 2030 (Lzy o \Lzy, pryr)
=¢,and {z1,...,2,} N Ly p, # D becausez; € Ly 4, By (2.7) we may assume
thatz1,...,2m € Ly py and zZpi1, ..., 20 € Ly p, Wwhere 1 <m <n —1.

We will apply Proposition 6.2. Let N, by, C; be the constants there. Let § =

2}7—1:’ 2pk+1, and r = % Let 79 = tg(zl,r) and E, be given by Proposi-

tion 6.2. For 1 < j < m, since z; € Ly p,, and |zj| > [z1], by (6.1), we have

lzj — z1l < V/2pk+1121] < b%. Suppose E, happens. By Koebe’s 1/4 theorem, we
have

gz, zDIb1r < |7 (zD)| dist(z1, Kry) < 4dist(gr(21), Sk,) < 41Z4(21)]

<4Ci/rlz1l.

For 1 < j < m, since dist(z1, Ky,) > bir > 2|z; — z1], by Koebe’s distortion
theorem, we have

|Z2(2)) = Zey (z1)] < 2187, @D|zj — 21l < |85, (2D 1b1r < 4C1y/r|z1].
Since | Z4,(z1)] < C14/rlz1l, we get

|Ze (zj)l =5C1y/rlzil, 1= j<m.
Suppose that

8 < pi/2. (6.5)
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Since Ky C Ly s,andzj ¢ Ly p,m+1 < j < n, by Lemma 6.1, we see that
lg7,(zj)| = Cpy, where Cp, > 0 depends only on « and pi. By Koebe’s 1/4 theorem,
we get

| Z2,(z)| = dist(gr(z)), Skyy) = 187, (2 dist(zj, Kzy)/4 = Cpprlz11/8,
m+1<j<n.

Suppose now that

Coeprlz1l/8 = 2(1<I;1<ar),(71 V;)5C1y/rlzil. (6.6)
Then we see that Z;,(z1), ..., Zy,(z,) satisfy the condition in Case A.

We will apply Lemma 3.5 with K = Ky and Uy = Uy,. Let I = {1} U{l < j <
n:rj < dist(z;, K¢)}. We check the conditions of that lemma when E7, happens.
By the definition of /, we have r; < dist(z;, K¢,) for j € I\{1}. For j = 1, since
dist(z1, Kvy) = bir 2 |zil and r1 < d; < |z1], we have r| < dist(z1, Ky,). We
have to check Condition (3.7). First, (3.7) holds for j = 1 by Property (iii) of E,.
Second, for 2 < j < m, since |z; — z1| < %dist(zl, K+,), by Koebe’s 1/4 theorem
and distortion theorem, (3.7) also holds for these j. Third, form 4+ 1 < j < n, by
Lemma 6.1 and Koebe’s 1/4 theorem, we have dist(g,(z;), SKIO) 2 dist(zj, Ly, 5)-
On the other hand, since Ky, C L 5 C {lz| < r'}, where ' := 2|z;|, we have
|Z4(2) —z| < 5r' = 10|z;| forany z € H\ K, by Lemma2.5. Thus, | Z,(z;)| < |z;].
Since px > 28, it is clear that |z| < dist(z, L., 5) forany z € E\Lz,pk. So we see that
(3.7) also holds form + 1 < j <n.

Let ¥,Zj,7j, Ts and T7 be as defined in Case A. ThenZ; = Z(z;), 1 < j < n,
satisfy the condition in Case A. By the result of Case A (if || = n) or the induction
hypothesis (if || < n), we see that

~Zj ~ . ~ ~ ~
P[% < Ta=v s, mi J € HFa B ) 2 F @ T T o2 T

where V is the maximum of V;, 1 < j < n — 1, and the V, as in Case A. Let E
denote the event on the LHS of the above displayed formula. Since [Z; — zj| < 5¢/,
by Koebe’s 1/4 theorem, we see that Ex, N E C (Vi {1y < T(z1=r)}, where
r=6r'+ V3 izl +5r) <V, 27:1 |z;| for some constant V;, > 1. Thus,

Plt;) < ey, s 120 = BLEq 0 E] = E[Eq] - E[P[E]Fy,. Eq]]
2 F@uir) EB[F(Zj. Ty Tine oo T )| Frgs Exg ]
Z F(Z]5""Zn;r]5”'arn)’
where the last inequality follows from Lemma 3.5 and that dist(z, K¢,) < br. We
remark that the implicit constant in the above estimate depends on p; and pk1. This

does not matter because py and pi1 are constants once they are determined. Now we
have finished the proof of Case B.k assuming Conditions (6.5, 6.6).
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Case C z1,...,2p € Ly p,. This case is the complement of Case B, and we will
reduce it to Case B. Let

e, = max |z; —z1].
1<j<n

From (6.1) we know that e, < /2p1]z1]-

We appl.y Proposition 6.2 Wi.t}.l 20 = 21,0 = % Jprandr = Zb%”. Let1.: = .r(‘).s.(.zl, r)
and E., given by that proposition. Suppose E, happens. By Properties (i,iii) and
Koebe’s 1/4 theorem, we have

. . 8by
|Z4 (z1)] < dist(gey(21), Sk,y)/ Co < 415, (z1)I dist(z1, Kr))/Co < -—~-

<pc |7, (z)len-

By Koebe’s distortion theorem, we have
2’ !/
max |Zq(z;) — Zg(z1)| > §|g10(11)|en.

I<j=n

Thus, if Z,(zs) has the smallest norm among Z(z;), 1 < j < n, then
b1C,
lr;ljz,i;n | Z2(2j) — Zgy(25)] = EIZTO(ZS)I-

If p; satisfies that

b1 C
V2p1 < =2 (6.7)

72by°

then from (6.1) we see that not all Zy(z;), I < j < n, are contained in Lz, (z,),p;-
After reordering the points, we see that Z; (z;), 1 < j < n, satisfy the condition in
Case B.

We will apply Lemma 3.5 with K = K, and Uy = Uy,. Let I = {1,...,n}. We
check the conditions of that lemma when E, happens. Since | < |z1 —z1| < e, and
dist(z1, K¢)) > 2e;1, we have r; < dist(z1, K¢y). For2 < j < n,sincer; < d; <
|zj — z1] < e, and dist(zy, K¢)) > 2e,, we see that r; < dist(z, Ky,). So I satisfies
the property there. We have to check Condition (3.7). First, (3.7) holds for j = 1 by
Property (iii) of Ey,. Second, for 2 < j < n, since |z; — z1| < %dist(zl, K+), by
Koebe’s 1/4 theorem and distortion theorem, (3.7) also holds for these ;.

Let y,%;, 7}, Ts and T} be as defined in Case A. By the result of Case B we see
that

~Zj ~ . ~ o~ ~
P[‘L’;jj (I DI 1) P S g L 2R Eq] 2 F@1, ... 2071, ),

where V isthe V,, asin Case B. Letr’ = 2|z1|. Then K¢, C {|z] < r'}.S0|Z(2)—z| <
5r' for z € H\K,. Let E denote the event on the LHS of the above displayed formula.
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By Koebe’s 1/4 theorem, we see that Ez, N E C ﬂ;%:]{t,zjj < T{z|=r"}}, Where
r"=6r'+V Z’j’.:l(|zj| +5r)y <V, Z'/'.:l |z;| for some constant V,, > 1. Thus,

Pl < 1=y, S 0] = P[Er 0 E] = E[Eq] - E[P[E|Fyy, Ex]]
2 F(zi;r) -E[F(Zl, ...,'Z,,;?l,...,7n)|}"m,Em] 2 F(Z1y ey Zn3 Ly s Tn),

where the last inequality follows from Lemma 3.5 and that dist(z1, K,) < byr. Now
we have finished the proof of Case C assuming Condition (6.7).

In the end, we need to find p1, ..., p, such that Conditions (6.5, 6.6, 6.7) all hold.
To do this, we may first use (6.7) to choose p;. Once py is chosen, we may use (6.5, 6.6)
to choose pi41 because these two inequalities are satisfied when pj 1 is sufficiently
small given py. O
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Appendices
A Proof of Theorem 3.1

In order to prove Theorem 3.1, we need some lemmas. The proof of Theorem 3.1
will be given after the proof of Lemma A.4. We still let y be a chordal SLE, curve
in H from 0 to oo. Throughout the appendix, we use C (without subscript) to denote
a positive constant depending only on «, and use C, to denote a positive constant
depending only on « and some variable x. The value of a constant may vary between
occurrences.

First, let’s recall the one-point estimate and the boundary estimate for chordal SLE,.
(see [17, Lemma 2.6, Lemma 2.5]).

Lemma A.1 (One-point Estimate) Let T be a stopping time for y. Let zo € H,
yo=Imzo>0,and R >r > 0. Then

. Py, (r)
P[t? < oo|Fr, dist(zo, K7) > R] < C 22—
[ r ] P)O(R)

Lemma A.2 (Boundary Estimate) Let T be a stopping time. Let &1 and &; be a disjoint
pair of crosscuts of Hr such that

1. either & disconnects y (T) from & in Hr, or y(T) is an end point of &1;
2. among the three bounded components of Hr\(& U &), the boundary of the
unbounded component does not contain &;.

Then

Pte, < 00| Fr] < Ce ™y 1:82),
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Lemma A3 Letm € N. Let z; € H, vj =Imzj, and R; > r; > 0 be such that
lzjl > Rj, 1 < j < m.Let D; = {|lz — zj| < r,}andD] = {lz — zj| < Rj},
1<j<mLet Jo, Jo, JO be three mutually disjoint Jordan curves in C, which bound
Jordan domains ﬁo, Do, Do, respectively, such that ﬁo ) Do ) D() and 0 ¢ Dy. Let
A= Do\D() be the doubly connected domain bounded by Jo and Jo. Suppose that
AﬁD =0, 1<j<m, andtherezssomeno e{l,. m}suchthatDoﬂDno = 0.
Let §; _BD NH, éjj _8D NH,0<j<m, andéo_aD/ N H. Let

E = {15, <T ST <T ST, <o <Tp ST, < Ty < o0}
Then

_ Py (r j)

IP>[E|.7’-'rs ] < ¢c™em@mdclh, Jo)/2 1_[ Pij(R 5

Remark The lemma is similar to and stronger than [17, Theorem 3.1], which has the
same conclusion but stronger assumption: D; Dj, 1 < j < m, are all assumed to be
disjoint from Do. Here we only require that D;, 1 < j < m, are disjoint from A, and
at least one of them: D,,O is disjoint from Do The condition that Do N Dno = ) can
not be removed. The proof is similar to that of [17, Theorem 3.1]. The symbols such
as zj, R, rj in the statement of this lemma and the proof below are not related with
the symbols with the same names in other parts of this paper, but are related with the
symbols in [17].

Proof We write 19 = Tz, ‘L'/ =T and 7; = %), 1<j<m,and 141 = Tg/
From the one-point estimate, we have

P, (r;
Plt; < ool F ] < DDy, (A.D)
‘ Py; (Rj)

P\ . n
Thus, P[E|F7,] < C™ H/ 17, ((R )) Now we need to derive the factor ¢ ~¢74c(Jo.J0)/2
J

By mapping A conformally onto an annulus, we see that there is a Jordan curve p
in A that disconnects Jy from Jy, such that

dc(p, Jo) = dc(p, Jo) = dc(J, Jo)/2. (A2)

Let T =inf{r > 0: &) ¢ H;}. Lett € [0, T). Each connected component 7 of
p N H; is a crosscut of H;, and H;\n is the disjoint union of a bounded domain and
an unbounded domain. We use H,"(n) to denote the bounded domain. First, consider
the connected components 7 of p N H; such that &) C H,*(n). If such 5 is unique,
we denote it by p,. Otherwise, applying [17, Lemma 2.1], we may find the unique
component 19, such that H *(no) is the smallest among all of these H/" (). Again
we use p; to denote this ng. Let Uy U’ = H (o). Then 50 c Uy . U’ Next, consider the
connected components 7 of p N H; such that H;*(n) C UP\EO Let the union of H;*(n)
for these 1 be denoted by U/. Then we have Up C Up and U N £ =10.
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Now we define a family of events.

e Let Ao.1) be the event that 7o < 73 A T and Dy NH C U#.

e Forl < j<mno—1,1let A j) betheeventthatt; | <7; <T,and D; NH ¢
Uf,_,,but Dy NH C UY,.

e Forl <j < no—l,letA(j,j_H)betheeventthattj < ’t\j+1/\T,andDjﬂ]HI [a Ufpj,
but D]+1 NH C Urj

e Forng < j <m, letA(J jybetheeventthatt; | <t; < T,and D; NH ¢ U,/ 1
but D; NH C U,

° Forno <j=< m—l letA(] j+1 betheeventthat 7; <Tj;1 AT,and D; NH ¢
Uf.but Dj NHC UZ.

e Let A(y i1 be the event that 7,, < Tyy AT and D, NH ¢ UL

Let/ ={(j,j+1) :0<j<mU{(y,j) :1 < j < m}. We claim that
E C ULGI A,. To see this, note that, if none of the events A(J j+1),0=<j<no—1,
and A(] s 1 < j < mno— 1, happens, then D,y NH ¢ Ufn Since Dno is disjoint
from DO, we can conclude that D,,, NH ¢ Uglo In fact, if D,y NH C U% then from
Dy, N Do =0,p C Do, and p surrounds &), we may find a connected component n
of p N H; £Lthat disconnects D,, N H from 50 in H,n Since Dy, N H, 50 C U,n
have n C Ufn From the definitions of p,, and U,,O, we see that  does not dlsconnect
&) from oo in Hy, . Thus, Dy, NH C H* (r)) C Urno and £) N H (n) = (. This
shows that D, N ]HI C Urn which is a contradlctlon Since D,, N H ;Z Ur ,> one of
the events A(; j) and A(”H), ng < j < m, must happen. So the claim is proved We
will finish the proof by showing that

Py, (rj)

PIE N A,|Fy] < C"e —amde(Jo,Jo)/2 l—[ i -
Yj

el. (A.3)

Case 1 Suppose Ao,1y occurs. Then at time 7o, there is a connected component,
denoted by g, of p N Hy,, that disconnects S 1 from both &) and oo in n Hy,. Since
“Eo C DpNH C H,O and y (1) € 3Dy, we see that py, disconnects 51 also from
v (10) in Hy,. Since él is dlS_]Oll‘lt from A, it is contamed in either Dy or (C\Do If 51
is contalned in Dy (resp. (C\Do), then Joy N Hy, (resp. Jo N Hy,) contains a connected
component, denoted by 1y,, which disconnects & from Pz, and oo in Hy,. Using the
boundary estimate and (A.2), we get

P[F1 < 00l Fry, Aou1y] < Ce™ i Pro-tio) < ¢ omomdetio.Jo)/2,

which together with (A.1) implies that (A.3) holds for ¢ = (0, 1).

Case 2 Suppose for some 1 < j <ng—1, A(j, j+1) occurs. See Fig. 3. Then at time
7;, there is a connected component, denoted by 0, pr;, of p N Hy;, that disconnects S i1
from both &; and oo in HTJ Since y (1)) € &, we see that p; pr; disconnects §j+1 also
from y(z;) in Hy;. According to whether &4 belongs to Dy or (C\Do, we may find
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Fig.3 The two pictures above illustrate Case 2 (left) and Case 3 (right), respectively. In both pictures, the
zigzag curve is y up to 7;, and the three big arcs are Jo, p and Jy restricted to H. But the positions of the

two pairs of concentric circles (Ej, &) and (%+ 1,&j+1) are swapped. In both pictures, the pairs of acs
that contribute the factors from the boundary estimate (pr; and 57, on the left, pr. and n; on the right)
are labeled and colored red. We also labeled p j on the left and pr ; on the right, and colored both of them

green. One can see the difference between ﬁrj and Uz; as they are bounded by pr; and ,T)}j , respectively

a connected component 7, ; of Jo N Hy, or .76 N Hy, that disconnects /f\j+1 from ,5,_/.
and 0o in Hy;. Using the boundary estimate and (A.2), we get

. ~ —andy, . (Pr: N7 _ i
P[Tj+1 - 00|-7:rj,A(j,j+1),Tj - Tj—H] < Ce Hr ) (Prjne;) < Ce andcc(JoJo)/Z,

which together with (A.1) implies that (A.3) holds fort: = (j, j+1),1 < j <np—1.

Case 3 Suppose for some ng < j < m, A, j+1) occurs. See Fig. 3. We write &, 11 =
E(’). Then p;; disconnects &4 from y(z;) and oo in Hy;. According to whether &4

belongs to Dy or C\ﬁo, we may find a connected component 7., of Jo N Hy, or

.76 N Hy, that disconnects /E\j+1 from Pr; and o0 in H,_/.. Using the boundary estimate
and (A.2), we get

o~ ~ —andy, . (pr; Nc;) _ 7
P[Zj41 < 00l Fe;, A i1y, Tj < 1] < Ce T < cemendetio S0/,

which together with (A.1) implies that (A.3) holds for¢ = (j, j + 1),n9 < j < m.

Case 4 Suppose for some ng < j <m — 1, A(j, j) occurs. Define a stopping time
oj :inf{t >Tj-1: DjﬂHC 17,'0}

Then 7,1 < 0; < 7;. From [17, Lemma 2.2], we know that

e y(0j) is an endpoint of P’

e D;N H c ﬁé)j.
The second property implies that 7;_; < o; < 7;. Now we define two events. Let
F.={oj <Tj}and F> ={T; <0j < 1;}.Then A(j jy C F- U F>.
Case 4.1 Suppose F> occurs. Let N = [log(R;/rj)] € N. Let & = {z € H :
|z — zj| = (R;v_kr;-‘)l/N}, 0 < k < N. Note that {y = §,~ and {y = ;. Then
F- c U, Fi, where

Frp={tg_, <oj <ty <00}, 1<k=<N.
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See Fig. 4 for an illustration of F. If Fi occurs, then ¢ C ﬁfj. Since g1 N ng has

a connected component ;,g i 1> which disconnects ¢ from p, i in H, i by the boundary
estimate, we get

%j
_aﬂngj (paj ’Ck,l)

Py, < 00| Fo;. Fi] < Ce

According to whether ¢ belongs to Dy or 50, we may find a connected component
- . agj .
No; of JoN Hy, ;or JoN H(,j that disconnects ¢, 7 | from pg i and oo in H, i Moreover,

we may find a connected component ;g 7 of ZoN ng that disconnects No; from g“,f i 1
From the composition law of extremal length and (A.2) we get

) . . 1 -~
dn,, (po; §1) = diy, (0o 10) +d, (67 6 )) = 7de (o, Jo)

+k—1] (Rj)
_0 —
2n N g rj

Thus, we get
—~ 7 a k=1
IP’[TQ < 00|Fyg;, Fk] < Ce—"’”d(C(J"’J")/Z(R—j)2 .
J

From the one-point estimate, we get

_ Py, ((RY 1A YY)
s <) 2P,
Py (rj)

P[tj < 00| Fr, . Fx] <C —
k Py (R} ) )

The above three displayed formulas together imply that

a k—1
~ 7 FiNsS & /i \~/N Py (rj)
Pz <oo, FilFr; y, tj—1 < Tj] < Ce—‘)””l‘C(JO’JO)/Z(—])2 ' (—]> A

! R; R; Py; (Rj)
Since Fx C U1]<V:1 Fy, by summing up the above inequality over k, we get
IP’[rj <00, Fx|Fry; y,Tj—1 < ’fj]
(rie/2
< coromteuniyn Pa) | iy 12 &)
- P,.(R)) R _(Ii\@/2N)
ASAY J 1 (Rj)

< comemdctn i 20 (A4)
- Py, (Rj)
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where the second inequality holds because the quantity inside the square bracket is
bounded above by ;——. To see this, consider the cases Rj/rj < eand R;/r; > e
separately.

Case 4.2 Suppose F- occurs. Then Ej - 17 ! . According to whethergj belongs to
Dg or Do, we may find a connected component No; of Jo N Hy; or Jo N H,; that
disconnects S j from po; and oo in Hy;. By the boundary estlmate we get

. —anrdy, . o) _ "
IP)[":j < OOU:Ujv F<] <Ce o (paj o <Ce andC(JOJO)/Z,

which together with (A.1) implies that

7y Py (rj)
) —amde(Jo,Jo)/2 " ViV J
Pltj < o0, F<|J fj—l] < Ce et m (A-5)

Combining (A.4) and (A.5), we get

—ande(io.doy2 Py (i)
Py (R))

}P’[rj <00, A | Fr;_y Tj—1 <?J] <Ce

which together with (A.1) implies that (A.3) holds for ¢ = (j, j), no < j < m.

Case 5 Suppose for some 1 < j < ng — 1, A(j, j) occurs. Define a stopping time
oj :inf{t >7j1:Dj NH C Utp}

To derive properties of o, we claim that the following are true.

O IfD;NH C H,\Uf 1> then there is ¢ > 0 such that D; N H C H\U/ for
h < t <ty)+e¢;

(i) If D; NH C Utﬁ , and if y (#g) is not an endpoint of a connected component of

p N Hy, that disconnects D; N H from oo in H,,, then there is & > 0 such that

D-ﬂHcUpfort0—£<t<to

To see that (i) holds, we consider two cases. Case 1. D; NH C H,O\U From [17,
Lemma 2.2], there is ¢ > O such that forfp <t <ty +¢, D; NH C H;\U, , which
implies that D; NH C H,\U/. Case 2. D; NH C Up\Up Then there is a curve
¢ in Hyy, which connects &) with D;, and does not intersect p. In this case, there is
& > Osuchthatfortg <t < ty+¢,¢{ C Hyand D; NH C H,, which imply that
Dj NH c Ht\Utp.

Now we consider (ii). Since D; N H C U,p , there is a connected component ¢ of
o N Hy,, which is contained in UtO, and disconnects D; N H from E{) and oo in Hy,.
From the assumption, y (#p) is not an end point of ¢. By the continuity of y, there is
e1 > 0 such that y[tg — &1, fo] N ¢ = ¥. This implies that, for 1o — &1 < t < 19, ¢
is also a crosscut of H,. Since H, is simply connected, ¢ also disconnects D; N H
from 50 and oo in H;. Since py, is a connected component of p N Hy, that d1sconnects

Up D Up D D; NH from oo, y (fy) is also not an endpoint of py. Since ¢ C U, lo’
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Fig. 4 The two pictures above illustrate the subcase Fy C F> of Case 4 (left) and the subcase F of Case
5 (right), respectively. In both pictures, the zigzag curve is y up to o, and the three big arcs are Jo, p and

Jo restricted to H. The acs that contribute the factors from the boundary estimate (¢ TRUIE {g 7 and {Z i 1
on the left, p; ; and n¢ ; on the right) are labeled and colored red

from [17, Lemma 2.2], there is € € (0, &1) such that fortg —e <t <19, ¢ C ﬁtp,
which implies that D; NH c U/
From (i) and (ii) we conclude that

e y(o;) is an endpoint of a connected component of p N Hy; that disconnects D j NH
from oo in HU_,.. Let this crosscut be denoted by /75_/.

e D(zj.rj))NH C US,.

Following the proof of Case 4 with 5, ; and Ué)]. in place of p,; and l/]\(fj , respectively,
we conclude that (A.3) holds for ¢« = (j,j), 1 < j < ng — 1. See Fig. 4 for an
illustration of the subcase F_ of Case 5. The proof is now complete. O

Let E be a family of mutually disjoint circles with centers in H, each of which
does not pass through or enclose 0. Define a partial order on E such that & < & if
& is enclosed by &1. One should keep in mind that a smaller element in E has bigger
radius, but will be visited earlier (if it happens) by a curve started from O.

Suppose that E has a partition {E,}.c¢ with the following properties:

e For each ¢ € &, the elements in E, are concentric circles with radii forming a
geometric sequence with common ratio 1/4. We denote the common center z,, the
biggest radius R,, and the smallest radius r,, and let y, = Im z,.

o Let A, = {r. < |z—2z0| < R.} be the closed annulus associated with E,, which is
a single circle if R, = r,, i.e., |E.| = 1. Then the annuli A,, e € £, are mutually
disjoint.

Note that every Z, is a totally ordered set w.r.t. the partial order on E.

Lemma A.4 Suppose that J| and J; are disjoint Jordan curves in C, which are disjoint
from all & € E. Suppose that 0 is not contained in or enclosed by Jy, J is enclosed
by Jo, and that every & € E that lies in the doubly connected domain bounded by J;
and Jp disconnects Ji from J,. Suppose &, < &, € E are both enclosed by Ji, and
& € B neither encloses Jp, or is enclosed by J. Let E denote the event that te < 00
forall§ € B, and t¢, < 1z, < 1g,. Then
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PE] < Cjge” Ferdct/in/2) I Prlre)
£ Pye(Re)

where C|g| € (0, 00) depends only on k and |£|.

—~

Discussion From [17, Theorem 3.2], we know that Pl < o00,§ € E] <

Cig 1 leee %. Now we need to derive the additional factor e~ #e1™4c(/1:/2)

the condition 7z, < Tg, < Tg,.

using

Proof We write N, for {k € N : k < n}. Let § denote the set of bijections o : Njg| —
E such that £; < & implies that 0~ '(£]) < o7 '(&), and 071 (&,) < o7 1(&) <
o~ 1(&). Let

E° = {to1) < To2) <+ < Tog) <0}, 0 E€S.

Then we have

E=|JE°. (A.6)

oes

We will derive an upper bound of P[E? ] in (A.11).

Fix o € S. For e € &, if there is no & € E such that £ > max E,, then we say that
e is a maximal element in E. In this case, we define @e = B¢ and £ = max &,. If
e is not a maximal element in E, let £ denote the first £ > max &, that is visited by
y on the event E?, and define 2. = E. U &7. This definition certainly depends on o.
Label the elements of 2, byé <--- < Ei,e = &), where N, = |§e| -1

For e € E, define

Je={l1<n=<N,: ail(é,f) > 07](5,77])4- 1}.

Roughly speaking, n € J, means that between Tge and tg¢, y visits other element in
E that it has not visited before on the event E .

Order the elements of J, U {0} by 0 = 5.(0) < -+ < s.(M,), where M, = |J,|.
Set so(M, + 1) = N, + 1. Every @e can be partitioned into M, + 1 subsets:

ey ={:se(Dsn<s(+D—1}, 0<j<M,.

The meaning of the partition is that, after y visits the first element in '@(e, j)» which
must be ES‘; ) it then visits all elements in ’E\(e’ j) without visiting any other circles
in E that it has not visited before. Let I = {(e, j) : e € £,0 < j < M,}. Then
{/E‘:L : 1 € 1} 1is a cover of E. Note that every 0‘1(’3\1), t € I, is a connected subset of
Z.

For ¢ € 1, let e, denote the first coordinate of ¢, z, = z,, and y, = Im z,. Define P,

= _ Py (Rx8,)
foreach « € I. If max g, € E,,, define P, = 5=

B P,VL (Rminil) ’

the radius of &. If max &, ¢ E,, which means max &, = 5; > max E,,, then we

where we use R; to denote
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consider two subcases. If &, contains only one element (i.e., éjj) or two elements (i.e.,
Pyl (Rmax ! )
Py, (R

S; and max &, ), then let P, = 1; otherwise let P, = . From the one-point

min ’E\[)

estimate, we get

]P[tmax B, | min u[] = CP“ tel. (A-7)
Let P, = 2% ¢ £ From Lemma 2.1
et e =P, (R),ee . From Lemma 2.1 we get
[]Pesy <4™P. cek. (A.8)
We have |I| = Zeeg(Me + 1). Considering the order that y visits /f[,
t € I, we get a bijection map 01 * Nj;; — I such that ny < np implies
that maxa (ugl(nl)) < mma (ug,(nz)) and n;y = ny — 1 implies that

mino - (ug,(,,z)) — maxo (ugl(m)) € {0, 1}. The difference may take value 0
if max Eq,(n) =&, ¢ B for e = e5;(n,). We may express E as

— — < = A <... S =
E {Tmm Eor(y — Tmax Eop(1) = Tmin Eor2) = STmm Eop (1) < Thax Eor (1) < OO}
. —1 . .

Fix egp € €. Letn; = o; ((e0, j),0 = j <= M Thennj+1>nj+20<
j < Me0 —1.Fix0<j < M,—1Letm = n]_H —nj— 1L Ifmaxu,,,(,, )
and min Eg; (n;4+k) are concentric for 1 <k <m, applylng Lemma A.3 w1th Jo =
min &,,, Jo = max u(eo j) = max ua,(n/), Jy = min E(,, j+n = min UU,(,,/H),

{lz = 2kl = Ri} = min Eq; (n; k) and {|z — zx| = re} = max Eqyn k), | <k < m,
we get

njt1—1
]P)[EU | : ~ ] < CWL470(/4(Sg0(j+1)71) l_[ PU )
= ing max & 1= 1(n)»
[max uol(,,j),mm HJI(,LJ.H)] arnj) n=n 41
(A.9)
where E° is the event
[max uol(,, )»min ual(n,_H)
= < P < = <...< 5 < P
{tmax :“71("]') — Tmm :‘C’I("j+l) — Tmax ngl(,,j+1) — — Tmax C‘U]("j+m) — Tmm ngl(y,j+l) OO}.

Because of the definition of P, ¢t € I, the above estimﬁte still holds in the general
case, i.e., there may be some 1 < k < n such that max Ey, (nj+k) = £ ¢ E,, where
€ = €oy(nj+k)- R R

We say that y makes a (J1, J>) jump during [max EU,(,,J.), min Ea,ﬁ,}jﬂ)] if min E,,
is enclosed by Ji, and there is at least one kg € N, such that min EAUI (nj+ko) 18 Dot
enclosed by J>. In this case, applying Lemma A.3 with Jo = J; and Jo = J2, we get
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nj+1—1
—amde(Jy,02)/2
]P)[E([Tmax min ] r“‘2"“5} (n~)] = Cme et 1_[ Pgl(n)'
unl(n ) HG](n/+1) 1V n=n;+1
Combining this with (A.9), we get
PlE7 P T
[ [max Eal(,lj),mln E“l("jﬂ)] maxaal(nj)]
=R nj+1—1
< CM e~ 57dcU1,02) 4= § (5 (j+D—=1) 1_[ Poy(n)- (A.10)

n=n;+1
Letting j vary between 0 and M., — 1 and using (A.7) and (A.9), we get
Megy .
I[D[EO'] < C‘I‘47a/42_/=1 (SBO(])*I) 1—[ PL.
el
Using (A.8) and |I| = ) ,(M, + 1), we find that

Me, .
PIE?] < CIE| 0 eee Meg =5 Xj21 3¢ () 1—[ P..
ec€

Since a_l(éa) < U_I(SC) < a‘l(é‘gb) &, < & are enclosed by Ji, and &, is not
enclosed by J;, there must exist some ¢q € & and some j € [0, M,, — 1] such that y
makes a (J1, J2) jump during [max Eor(nj)s min ug,(n]Jrl)] In that case, using (A.7),
(A.9), and (A.10), we get

- o —Me .
P[E?] < CI€1CTece Mep=§mde(n T 4= Xj=) o) []P
ec€

Taking a geometric average of the above upper bounds for P[E? ] over ¢g € £, we get

PE7] < CIEICTece Mepaermdet Py =gl Teee L5 D [ B, (AL
ee€

So far we have omitted the o on I, M,, s.(j) and etc; we will put o on the superscript
if we want to emphasize the dependence on o. From (A.6) and (A.11), we get

P[E] < C¥! 2 | S so | C Zeee e e
(Me;(Se(j))yio)ees
o Me . -
i T (A12)
ee€
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where
SMe sy = {0 € St M = Me,s7(j) = 50(j), 0 < j < Me,e € M},

and the first summation in (A.12) is over all possible (M,; (s.( J)) eo)ee& namely,
M, >0and 0 =s,(0) < 5.(1) < ---5.(M,) < N foreverye € €. It now suffices to
show that

o Me .
Z |S(My (5, () | C 2oeee Med ™ iET Leeg 2j=1%) < Cigls (A.13)

(Me; (50 ()1 ece

for some C|g| < oo depending only on |£] and k.

We now bound the size of Sy, (s, (j)))- Note that when M and s? (j),0 < j < M7,
e € £, are given, o is then determined by o; : Nj;o| — 19, whichis in turn determined
by eg;n), 1 < n < |I7] = ) ,ce(MJ + 1). Since each ey, () has at most |€]
possibilities, we have [S(a,, (s, ()| < |E|Xeee MetD)  Thus, the left-hand side of
(A.13) is bounded by

€83 [cienMeaTsE = <0

(M3 (se () Jp)ece €€

Ne
o Me .
= |€||5| l_[ Z (C|5|)Me Z 4_mzj=lst’(l)
ecE M,=0 0=5(0)<-- <50 (M) <N,
00

Slfl'g‘]_[i(q&)’” 3o i 4= Tl s ()

ec€ M=0 s(D=1  s(M)=M

00 M 00
<1 T] Y clen” [T >2 4w

ec€ M=0 j=ls()H=j

00 M I€]
[|S|Z< ClE| ) 4 168M(M+1)i| '

| — 4 sEl

The conclusion now follows since the summation inside the square bracket equals to
a finite number depending only on « and |£]. O

Proof of Theorem 3.1 By (2.7), we may change the order of the points z1, ..., 2,.
Thus, it suffices to show that

» Py.(rj) 51 ol
IP’[‘L’rZ/-I <oo,l<j<n .L.lel <.L.r122 <7:rzll]§C” i\ ( )32n ,
: o Pop) Mar =zl Azl

(A.14)
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for any distinct points z1,...,2, € ﬁ\{O}, ri € (0,dj),1 < j <n,and s; >0,
where y;, 1, d; are defined by (2.3). If 51 < r1, the event on the LHS is empty, and
the formula trivially holds; if s > |z1 — z2| A |z1], the formula follows from [17,
Theorem 1.1]. For the rest of the proof, we assume that s1 € (rq, |21 — z2] A |z1])-

We want to deduce the theorem from Lemma A.4, so we want to construct a family
E of mutually disjoint circles and Jordan curves Ji, J5.

Suppose 4h-/'rj <l < 4hf+1rj for some h; € N, 1 < j < n. By increasing the
value of s1, we may assume that s; = 4hp where 7{1 € N and 711 > hy. Define

g ={lz—zjl=4""7r)}, 1<j<n 1<s<h;

The family {E; 1 <j<n, 1=s < hj;}may not be mutually disjoint. So we
can not define E to be this family. To solve this issue, we will remove some circles as
follows. For 1 < j < k < n,let Dy = {|z — zx| < lx/4}, which contains every &,{,
1 <r < hg,and

Ij,k={gj. i1 gsghj,gj.ka;é@}. (A.15)

Then E = {S; 1l <j<nl<s< h./}\U1§j<k§n I r is mutually disjoint. If
dist(y, z;) < rj, then y intersects every E;, 1 <s <hj. So we get

n hj
Pldisty.z) =01 < j =n] <P[(r ng; 20| =P N1y ng £ 0]
j=1s=1 £cE
(A.16)

Next, we construct a partition {E, : e € £} of E. We introduce some notation: if e
is a family of circles centered at zp € H with biggest radius R and smallest radius r,

then we define A, = {r < |z —2z9| < R}and P, = ﬁlh:(‘;((;))

First, E has a natural partition E;, 1 < j < n, such that &; is composed of circles
centered at z;. For each j, we construct a graph G, whose vertex set is &;, and
&1 # & € E; are connected by an edge iff the bigger radius is 4 times the smaller
one, and the open annulus between them does not contain any other circle in E. Let
&; denote the set of connected components of G ;. Then we partition E; into E,,
e € &}, such that every E, is the vertex set of e € £;. Then the circles in every &,
are concentric circles with radii forming a geometric sequence with common ratio
1/4, and the closed annuli A, associated with E,, ¢ € £;, are mutually disjoint. From
the construction we also see that for any j < k, and e € £, A, does not intersect
Dy, which contains every A, with e € &. Let £ = U;le Ej. Then A,, e € &, are
mutually disjoint. Thus, {E, : e € £} is a partition of E that satisfies the properties
before Lemma A 4.

We observe that for j < k, Ug cg, § C Dy can be covered by an annulus centered
at z; with ratio less than 4 because

maxeep{lz — 21} _ lzj =zl +l/4 _ b+ le/4

- < < < 4.
mingep {lz —z;1} = lzj — 2l — /4~ Ik — Ik /4
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Thus, every I;; defined in (A.15) contains at most one element. We also see that,
for j < k, Ugeaké C Dy intersects at most 2 annuli from {4hf_srj <lz—zjl <
4hi=stlpy 2 <5 < h;. If j > k, by construction, Ukeeg, & is disjoint from the
annuli {4 =57; < |z — z;| < 4" =51r;},2 <5 < hj, which are contained in Dj.

y; (7))
j=1 P; (lj)
So we may assume that |72 — 21| A |z1]| > 4%+1g,  Since for k > 2, U%‘eak & C Dy
can be covered by an annulus centered at z; with ratio less than 4, by pigeon hole
principle, we can find a closed annulus centered at z; with two radii r < R satisfying
s1<r<R<|zo—z1|A|z1land R/r < (W)I/Z” that is disjoint from all
UE = & C Dy, k = 2. Moreover, we may choose R and r such that the boundary
circles are disjoint from every £ € E. Applying Lemma A.4 with J; = {|z—z1| =1},
SH={lz—zul=RL& ={lz—al=s1}.& ={lz—aul=n}é ={lz—22l =}
and {E, : e € £}, we find that

From [17, Theorem 1.1], we have IF’[rf_/ <00, 1 <j<nl<CJII"

w

i S1
Plr;) <oo,1<j<mtl <12 <1i] =< C|5|(7) ol 1_[ I[] P
! lz1 — 22| Az lees;

(A.17)

Here we set ]_[eeg P, = 1if £; = . We will finish the proof by proving that |£| < 2n
Py (rj)
and [[,c¢ Pe < C Py/ an-

We now bound |€] = ijl |€j]. For 1 < m < n, we use Sj(.m), 1 <j<m,to
denote the set of connected components of the graph G?"I) obtained by removing the
circles in /j 4, j < k < m, from E;. Let gm — U;’;l El(m). Then & = €™, For
2<m<mn,and 1 < j <m — 1, we may define a map f;, : U;f’z_]l 5](_m) — gm=D
such that for every e € 5;'"), 1 < j <m—1, fu(e) is the unique element in S}m_l)
that contains e. Then each e € £~ has at most 2 preimages, and e € £~ has
exactly 2 preimages iff D,, is contained in the interior of A,. Since the annuli A,,
e € £m=D are mutually disjoint, at most one of them has two preimages. Since 5,2")
contains only one element, we find that |7 | < |£™~D| 4+ 2. From |£M| = 1 and
E=EM weget|€| <2n—1.

Toestimate [ [,.¢ Pe, weintroduce S to be the family of pairs of circles {{|z—z ;| =

#ri}{lz —zjl = 43’1rj}} s € N. Let S(m) denote the set of ¢’ € §; such that
Ay C U, c£™ A. Then [, £ P, H estm P,. Note that, for m > j, A,

e e S ) can be obtained from Ay, e €8, (m—1) , by removing the annuli in the latter
group that intersects D,,. Since Dy, can be covered by an annulus centered at z; with
ratio less than 4, it can intersect at most two of A, ¢’ € §;. Using Lemma 2.1, we
find that [ ], ce™ P, < 4% [, c£mD P,. Since I; < 4" +1 ,we get [ ce P, =

P)J (rj) P
Py @iy = P» (l)

Thus, [], £ P, < 49@n=2j+D) "((’ which implies that
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I ~-= ﬁ [T 7 < ﬁ4a<2n—2/+1) Py ) _ o ﬁ Py, (r))
=1

ecEm J=1 peg® Pyj @ j=1 Pyj @)
J
The proof is now complete. O
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