MTH 320 Section 004 Final Sample

1. (a) [4pts] State Mean Value Theorem.

(b) [6pts] Suppose that f is differentiable on R and f’(z) > 0 on R. Prove that f is
strictly increasing.

Solution. (a) If f is continuous on [a, b] and differentiable on (a,b), then there is ¢ €
(a,b) such that
fb) = f(a)

fle) ==

(b) Let x < y € R. By Mean Value Theorem, there is z € (z,y) such that

) = @)
=5 = 1)

By the assumption, f’(z) > 0. From y > = we get f(y) — f(x) = (y —x)f'(z) > 0. So
f(y) > f(z). Thus, f is strictly increasing. O

2. Let f:R—R.

(a) (4 pts) What does it mean for f to be differentiable at a?

(b) (6 pts) Let f(z) = asin(1) when x # 0 and f(0) = 0. Is f differentiable at z = 07
Justify your answer.

Solution. (a) We say that f is differentiable at a if the limit

o F@) = (@)

r—a T —a

exists and is finite.

(b) We have
F@) = 1O _f) _ o,
z—0 T x’

We know that lim, ,osin(%) does not exist. To see this, we may choose a sequence

z
Ty =

which tends to 0. Then we have sin(ﬁ) = sin(nm + 7/2) = (—=1)". But

1
nr+m/27
the sequence ((—1)") does not converge. So lim,_,sin(1) does not exist, which implies

that f is not differentiable at 0. m

3. (a) [5 pts] Prove that the exact interval of convergence of > | - in [—1,1).

(b) [5 pts] What function does the power series above represent on (—1,1)7 Justify
your answer.



Solution. (a) This is a power series with coefficients a,, = ;. Since [ = 25 — 1,
by ratio test, the radius of the series is 1. Thus, the power series converges at every

point in (—1,1), and diverges at every point in [—1,1]°. At 2 = 1, the series becomes
Zzo 1 o> which diverges by the p-test. At x = —1, the series becomes o ( l)n,
which converges by the alternative series test. So the exact interval of convergence is

[—1,1).
(b) Let f(z) =322, 2 x € (—1,1). Differentiating the power series, we get

n=1 n’
Zx’” Zx

Thus, for some constant C' € R, f(x) =log, (=) + C = —log,(1 — z) + C. Since the
series has no constant term, f(0) = 0. Taking x = 0, we get 0 = f(0) = —log(1)+C =
C. Thus, f(z) = —log,. (1 — z). O

. (a) [4pts] Define liminf s,
(b) [6pts] Prove that if limsup s,, = liminf's,, = s € R, then (s,) converges to s.

Solution. (a) Let w, = inf{s,, : m > n}, n € N. Either s, = —oo for all n € N,
or s, € R for all n € N. In the first case, we define liminf s, = —oo; in the second
case, we define liminfs, = limu,. (b) Let v, = sup{s,, : m > n}, n € N. The
limsup s, is defined as limwv, (if v, = +oo for all n, then limsups, = +oo. From
limsup s, = liminf s, = s € R we know that limu, = limwv,, = s. Since for every n,
Uy, < S, < v,, by squeeze lemma we have lim s,, = s. O

. (a) [4 pts.] State Weierstrass M-test.

(b) [6 pts.] Prove that the series of functions y >, SinT(L?I) converges to a continuous
function on all of R, being careful to justify all of your steps.

Solution. (a) Suppose (f,) is a sequence of functions defined on S C R. Let (a,) be
a sequence of nonnegative real numbers such that ) a, converges. If |f,(x)| < a, for
each n € Nand z € S. Then )_ f, converges uniformly on S.

(b) Applying Weierstrass M-test to f,(z) = 511175_?;5) and a, = -5, and noting that

|Sm7§§x)] = ‘S“;(;””)‘ < =& and Y =5 converges, we conclude that >, SIHT(L—?I) converges
uniformly on R. Since each f, is continuous on R, the uniform limit of the series is
also continuous on R. [

. Suppose (s,) is an increasing sequence of real numbers. Prove that lim, . s, =
sup{s, : n € N}. You need to consider two cases: (i) sup{s, : n € N} € R; and (ii)
sup{s, : n € N} = 4o0.



Solution. (a) Let f, be a sequence of functions defined on S C R. Let (a,) be a
sequence of nonnegative real numbers such that a,, converges. Suppose |f,(z)| < a,
for every n € N and = € S. Then )_ f,, converges uniformly on S.

(b) We have \Smé—?w)\ < - for every x € R. Since ) -5 converges, by Weierstrass

M-test, Y7, 511175_?:@) converges uniformly on R. Since every SIHT(L—?“;) is continuous on R,

the uniform limit of the series is continuous on R. ]
. (a) [4 pts| State L’Hospital’s rule. Be sure to include all conditions.
(b) [6 pts] Find the following limits

o lim, ... (1+ %)y

cosz—1
et—1—x

L hmm%(]

Proof. (a) Let s be one of a,a™,a™, +00, —00, where a € R. Let L € RU {400, —c0}.
Suppose in a neighborhood of s, f and g are differentiable and ¢’ # 0. If

/
lim 7 /(:v) =L
=3 g'(z)
and either
lim f(z) = lim g(z) = 0,
Tr—S Tr—S
or
lim g(z)| = +oc,
then
lim M = L.
a=s g(x)

(b) For the first limit, we write (1 + %)y — e¥loec(43)  GQince 1/y = 0 as y — 00, we
get

lim ylog, (1 + —) = lim # — Lim og, (1 + :,17)’
Yy—r00 y a

Y—00 z—0 x
if the latter limit exists. Since
lim log, (1 4 2z) = log, (1) = 0 = lim z,
z—0 z—0
by L’Hospital’s rule, we have
log,(1+2z) . jlog.(1+22)
m——— = = lim

d )
dmm

li

x—0 €x x—0

if the latter limit exists. Direct calculation shows

) di log, (1 + 2x) ) 2
lim 2£ = lim =
z—0 %x z—0 1 4+ 22




Thus, lim,_, ylog.(1 + %) = 2, which implies that

lim (1 + g)y — ehmy%oo y10g5(1+%) _ 62.
Yy—00 Y

For the second limit, we observe that

lim(cosz —1) =cos0—1=1—-1=0;

z—0

lim(e* —1—2)=e’-1=1-1=0.

x—0

Thus, by L’Hospital’s rule, we have

. cosz —1 . %(COSZE—l) . —sinx
lim ———— = lim ¢ = lim ,
=50e? —1—x o0 L(e? —1—g) o0 —1
X

if the latter limit exists. Since

lim(—sinz) = —sin0 =0 =¢’ — 1 = lim(e” — 1),
z—0 z—0

by L’Hospital’s rule, we have
4 (—sinz) i G087
fe-n MTe

. —sinzx .
lim = lim
z—0 e — 1 z—0

Y

—CosT
er

if the latter limit exists. Using the continuity of cosx and e*, we get lim,

—cos0 __ : cosz—1 __
—o— = —L. Thus, lim, 0 >— = —1L.

c

. (a) [4 pts] For a, L € R, define the expressions lim, ,,- f(x) = L, lim, ,,+ f(x) = L
and lim,_,, f(z) = L.

(b) [6 pts] Prove that if lim, ,,~ f(z) = lim, .+ f(z) = L, then lim,,, f(z) = L.

Solution. (a) We first give definitions using sequences. By saying that lim, ,,- f(z) =
L we mean that there is 7 > 0 such that f is defined on (a —r,a), and for any sequence
(sn) in (@ — r,a) with s, — a, we have f(s,) — L. By saying that lim,_,.+ f(z) = L
we mean that there is r > 0 such that f is defined on (a,a + r), and for any sequence
(Sp) in (a,a+r) with s, — a, we have f(s,) — L. By saying that lim,_,, f(z) = L we
mean that there is 7 > 0 such that f is defined on (@ — r,a) U (a,a + ), and for any
sequence (s,) in (a —r,a) U (a,a + r) with s, — a, we have f(s,) — L.

We then give definitions using the “c — §” language. We say that lim, .- f(z) = L
if for any € > 0, there is § > 0 such for any = € (a — d,a), f(z) is defined and
|f(x)— L| < e. We say that lim,_,.+ f(x) = L if for any € > 0, there is § > 0 such that
for any « € (a,a+9), f(z) is defined and |f(z) — L| < e. We say that lim,_,, f(z) = L
if for any € > 0, there is § > 0 such for any = € (a — d,a) U (a,a + ), f(z) is defined
and |f(z) — L| <e.



(b) We give two proofs. The first is easier, and based on “c — §” definitions. Suppose
that lim, ,,~ f(x) = lim, ,.+ f(z) = L. Let ¢ > 0. Then there exist d,,0_ > 0
such that for any = € (a — 0_,a), f(x) is defined and |f(z) — L| < &, and for any
x € (a,a+9), f(x) is defined and |f(x) — L| < e. Let 6 = min{d,,d_} > 0. Since
(a—9,a)U(a,a+0) C (a—d_,a)U(a, a+0, ), we find that for any = € (a—6, a)U(a, a+9),
f(z) is defined and |f(z) — L| < e. Thus, lim,_,, f(z) = L.

The second proof is longer, and based on the sequential definitions. Suppose that
lim, .- f(z) = lim,_,q+ f(z) = L. Then there are r,,r_ > 0 such that f is defined
on (a —r_,a) and (a,a + r;), and for any sequence (s,) in (a —r_,a) or (a,a + ry)
with s, — a, we have f(s,) — L. Let r = min{r,,7_} > 0. Then f is defined on
(a —r,a)U(a,a+r1). Let (s,) be a sequence in (a —r,a) U (a,a+r) with s, — a. We
need to show that f(s,) — L. For this purpose, it suffices to show that L is the only
subsequential limit of (f(s,)). If this is not true, then (s,) contains a subsequence
(Sn,) such that f(s,, ) — L' # L. Here L' could be +00 or —oco. One of the following
two cases must happen: 1) there are infinitely many k such that s,, > a; 2) there are
infinitely many £ such that s,, < a. In the first case, we get a subsequence (Snkl) of
(Sn, ), which lies in (a,a + 1) C (a,a + r4). In the second case, we get a subsequence
(Sn,) Of (S, ), which lies in (¢ —r,a) C (a —r—,a). In either case, we have s,, — a,
but f(sn, ) — L' # L, which contradicts the assumption. Thus, f(s,) — L. O



