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We consider the gravitational Vlasov–Poisson (VP), or the so-called collisionless
Boltzmann–Poisson equations for the self-gravitating collisionless stellar systems. We
compute the solutions using a high-order discontinuous Galerkin method for the Vlasov
equation, and the classical representation by Green’s function for the Poisson equation in
the one-dimensional setting. We study both the case of damping and Jeans instability
depending on the wavenumbers, which are taken to be greater than or less than the Jeans
wavenumber, respectively. The method is shown to be stable, accurate and conservative.
We report for the first time the BGK modes for the gravitational VP system, and we study
the behavior of solutions associated with these various wavenumbers.

� 2011 Elsevier B.V. All rights reserved.
1. Introduction

In this paper, we consider the gravitational Vlasov–Poisson (VP), or the so-called collisionless Boltzmann–Poisson equa-
tions for the self-gravitating collisionless stellar systems. The VP system in this case describes the evolution of the density of
stars in phase space and is given as follows [4],
@tf þ v � rxf þ E � rv f ¼ 0 X� ð0; T�

DxU ¼ 4pGq0ð
R

Rn fdv � 1Þ Xx � ð0; T�

E ¼ �rxU Xx � ð0; T�

ð1Þ
Here f is the stellar distribution function, G is the gravitational constant, q0 is the density of the infinite homogeneous med-
ium, E is the gravitational field, and the constant �1 in the total charge for the Poisson equation denotes the cosmological
background density. The domain X ¼ Xx � Rn, where Xx is the physical space and the phase space is taken to be Rn. More
detailed discussions of the above system for the galactic dynamics can be found in the book by Binney and Tremaine [4].

There are several important macroscopic quantities that are associated with the stellar distribution function, including
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density qðx; tÞ ¼
Z

Rn
f ðx;v ; tÞdv

current density jðx; tÞ ¼
Z

Rn
vf ðx;v ; tÞdv

kinetic energy nkðx; tÞ ¼
1
2

Z
Rn
jvj2f ðx;v ; tÞdv

gravitational energy neðx; tÞ ¼ �
1
2
jEðx; tÞj2

entropy S ¼ �
Z

X
flnðf Þdxdv

enstrophy I2 ¼
Z

X
f 2dxdv ;

total energy
Z

Xx

nkðx; tÞ þ neðx; tÞð Þdx ¼
Z

X
f

v2

2
þU

� �
dxdv :
The VP Eq. (1) conserves the mass, momentum, energy, entropy, enstrophy and total energy of the system. More impor-
tantly, if the initial f is a perturbation around the Maxwellian equilibrium distribution
feq ¼
q0

ð2pr2Þn=2 e�
1
2v

2=r2
;

then by Jeans swindle after Sir James Jeans, one can obtain the Jeans wavenumber
kJ ¼ ð4pGq0=r2Þ1=2
and the Jeans length kJ = 2p/kJ. For any initial state f(x,v,0) = feq(1 + A�p(k x)), where p(�) is an analytic 2p � periodic function, if
k > kJ or k < kJ, the perturbation is unstable and the phenomenon is called the Jeans instability. Damping of the perturbation
should occur only at wavelengths smaller than the Jeans length. This behavior differs significantly from the electrostatic VP
equations for collisionless plasmas, where damping should be expected for all wavenumbers under suitable assumptions on
the equilibrium velocity profile, for which the Debye length is roughly defined in the same way as the Jeans length [23]. The
Jeans instability accounts for the solutions of the VP system that are interpreted as the collapse of interstellar gas clouds and
subsequent star formation. In this paper, we will perform a numerical study of (1) with perturbations associated with various
wavenumbers k for the classical Maxwellian equilibrium.

The VP system with the electrostatic force has been studied extensively for the simulation of collisionless plasmas.
Popular numerical approaches include the Particle-In-Cell (PIC) methods [5,21], the Lagrangian particle methods [2], the
semi-Lagrangian methods [7] and the Eulerian approaches [15], among many others. For the gravitational case,
semi-Lagrangian schemes by Cheng and Knorr [7] have been used to simulate one-dimensional problems [17], spherical
stellar systems [18] and stellar disks [24]. An Eulerian code has been used to compute the gravitational collapse of a
one-dimensional system in [28].

In this paper, we propose to use discontinuous Galerkin (DG) methods to solve the VP system (1). The original DG method
dates back to 1973, and was introduced by Reed and Hill [26] for neutron transport. Cockburn and Shu in a series of papers
[13,12,11,10,14] developed the Runge–Kutta DG (RKDG) method for hyperbolic equations. The DG methods have been used
to simulate the VP system in plasmas [19] and analysis about its stability, accuracy and conservation are discussed in [20,1].
In [19,20], the Poisson equation is solved by a nonsymmetric interior penalty method (NIPG) method [25]. In [1], for one-
dimensional VP systems, the Poisson equation has been discretized by the conforming method, mixed finite element meth-
ods, and DG methods including the local DG method, the minimal dissipation DG and LDG methods and hybridizable DG
methods. The DG method has also been successfully devised to solve 2D incompressible flow in the vorticity stream-function
formulation [22] and later generalized to geophysical fluid equations in [3], in which the Poisson equation is treated by con-
tinuous finite element methods to ensure the continuity of the normal velocities.

The scope of this paper is to study the numerical aspects of the DG methods for (1) in the one-dimensional setting for
stellar systems. One of the main novelties is that we calculated the BGK mode as a function of the distribution f against
the particle’s total energy for the gravitational VP system. In our computation, we use the classical representation of the solu-
tion by Green’s function to compute the 1D Poisson equation, therefore the gravitational field is explicitly given as a function
of the numerical density. This guarantees no discretization error from the Poisson equation and let us more accurately inves-
tigate our DG solver for the Vlasov equations. For multiple-dimensional applications, a suitable elliptic solver as those in
[19,20,1,22,3] should be used. A detailed analysis of the DG methods for VP systems in terms of conservation, numerical
recurrence, the impact of using different polynomial spaces, and applications in multi-dimensions could be found in a
preprint with Cheng et al. [9].

In this paper, we have used a maximum-principle-satisfying limiter that has been recently proposed by Zhang and Shu in
[29] for conservation laws on Cartesian meshes, and later extended on triangular meshes [31]. The resulting scheme pre-
serves positivity of numerical solution and is genuinely high order accurate for arbitrary order of discretization. For a
complete review for this method, one can refer to [30].
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The rest of the paper is organized as follows: in Section 2, we describe the numerical algorithm. Section 3 is devoted to the
simulation results for the case of damping and Jeans instability, respectively. We conclude and provide future work in Section 4.

2. Numerical methods

In this section, we will introduce our numerical approach. For simplicity, the VP system (1) in one-dimension is renor-
malized as
@tf þ v � rxf þ E � rv f ¼ 0 X� ð0; T�
DxU ¼

R
Rn fdv � 1 Xx � ð0; T�

E ¼ �rxU Xx � ð0; T�
ð2Þ
and without loss of generality, we consider the Maxwellian equilibrium distribution
feq ¼
1ffiffiffiffiffiffiffi
2p
p e�

1
2v

2
:

Consequently, the Jeans wavenumber is kJ = 1. The domain we consider is X = [0,L] � [�Vc,Vc], where Vc is chosen large en-
ough and may be different for various test cases. The boundary conditions in the x-direction has been assumed to be periodic.
The domain X is partitioned as follows
0 ¼ x1
2
< x3

2
< � � � < xNxþ1

2
¼ L; �Vc ¼ v1

2
< v3

2
< � � � < vNvþ1

2
¼ Vc:
The computational cells are defined as:
Ii;j ¼ xi�1
2
; xiþ1

2

h i
� ½v j�1

2
;v jþ1

2
�;

Ji ¼ ½xi�1=2; xiþ1=2�; Kj ¼ ½v j�1=2;v jþ1=2� i ¼ 1; . . . ;Nx; j ¼ 1; . . . ;Nv ;
where xi ¼ 1
2 xi�1

2
þ xiþ1

2

� �
, and v j ¼ 1

2 ðv j�1=2 þ v jþ1=2Þ are center points of the cells. We have used a mesh that is the tensor

product of the mesh in the x and v direction, because this makes the implied mesh and space for the Poisson equation simple
to compute.

For all macroscopic quantities, we use the piecewise polynomial space in the x-direction
Zk
h ¼ fn : njJi

2 PkðJiÞ; i ¼ 1; . . . Nxg; ð3Þ
where Pk(Ji) is the space of polynomials of degree up to k on Ji. For the full (x,v) space, we define
Vk
h ¼ fu : ujIi;j

2 PkðIi;jÞ; i ¼ 1; . . . Nx; j ¼ 1; . . . Nvg ð4Þ
where
PkðIi;jÞ ¼ spanfxl vm;8 0 6 lþm 6 k; l P 0;m P 0g on Ii;j:
We start by reviewing the semi-discrete DG scheme formulation for the Vlasov equation. We find fhðx; tÞ 2 Vk
h , such that
Z

Ii;j

ðfhÞtuhdxdv �
Z

Ii;j

vfhðuhÞxdxdv þ
Z

Kj

dvfhu�h
� �

iþ1=2;v
dv �

Z
Kj

dvfhuþh
� �

i�1=2;v
dv �

Z
Ii;j

EhfhðuhÞvdxdv

þ
Z

Ji

dEhfhu�h
� �

x;jþ1=2
dx�

Z
Ji

dEhfhuþh
� �

x;j�1=2
dx ¼ 0 ð5Þ
holds for any test function uhðx; tÞ 2 Vk
h. Here and below, we use the following notations ðuhÞ

�
iþ1=2;v ¼ lim�!0uhðxiþ1=2 � �;vÞ,

and ðuhÞ
�
x;jþ1=2 ¼ lim�!0uhðx; v jþ1=2 � �Þ. dvfh are numerical fluxes. We can assume that in each Kj, v holds constant sign by

properly partitioning the mesh. We can then use the upwind flux, which is defined as
dvfh ¼
vf�h if v P 0 in Kj

vfþh if v < 0 in Kj

�
: ð6Þ
and
dEhfh ¼
Ehf�h if

R
Ji

Ehdx 6 0

Ehfþh if
R

Ji
Ehdx > 0

(
: ð7Þ
The above description coupled with a suitable time discretization, e.g. the TVD Runge–Kutta method [27] will complete
the RKDG methods. In this paper, we have used the third order TVD Runge–Kutta method [27] in our simulations. Next, we
will describe the positivity-preserving schemes, for more details about the implementations of the scheme, one can refer to
[30,8].
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In each of the forward Euler step of the Runge–Kutta time discretization, the following procedures are performed:

� On each cell Ii,j, evaluate Ti;j ¼minðx;vÞ2Si;j
fhðx;vÞ, where Si;j ¼ Sx

i � bSy
j

� �S bSx
i � Sy

j

� �
, and Sx

i ; S
y
j denote the (k + 1) Gauss

quadrature points, while bSx
i ;
bSy
j denote the (k + 1) Gauss–Lobatto quadrature points.

� Compute efhðx;vÞ ¼ hðfhðx;vÞ � ðfhÞi;jÞ þ ðfhÞi;j, where ðfhÞi;j is the cell average of fh on Ii,j, and h ¼minf1; jðfhÞi;jj=jTi;j � ðfhÞi;jjg.
This limiter has the effect of keeping the cell average and ‘‘squeeze’’ the function to be positive at points in Si,j.
� Use efh instead of fh to update the Euler forward step.

In order to obtain Eh at each time step, we need to solve the Poisson equation numerically. Recall that beyond periodicity,
we need to enforce some additional conditions to uniquely determine U. For example, we require U(0, t) = 0. In the one-
dimensional setting, the exact solution can be then obtained by using the fact that U(0) = U(L) as
Uh ¼
Z x

0

Z s

0
qhðz; tÞdz ds� x2

2
� CEx;
where CE ¼ � L
2þ 1

L

R L
0

R s
0 qhðz; tÞdz ds, and
Eh ¼ �ðUhÞx ¼ CE þ x�
Z x

0
qhðz; tÞdz: ð8Þ
From (8), we can see that if fh 2 Vk
h, then qh ¼

R Vc

�Vc
fhdv 2 Zk

h, hence Eh 2 Zkþ1
h

T
C0. This formula uses the classical repre-

sentation of the solution by Green’s function, and is only valid in the one-dimensional setting as mentioned in the introduc-
tion. For multiple-dimensions, a suitable elliptic solver needs to be implemented.

3. Numerical results

In this section, we collect simulation results for (2) with various wavenumbers. The critical Jeans wavenumber in (2) is
kJ = 1. The initial condition is f(x,v,0) = feq(1 + A cos (kx)). The computational domain is taken as x 2 [0,L = 2p/k], v 2 [�Vc,Vc].
From a classical calculation of the linear theory [16], we can derive the dispersion relation as
eðk;xÞ ¼ 1� 1

k2 1þ xffiffiffi
2
p

k
Z

xffiffiffi
2
p

k

� �� �
; ð9Þ
where the plasma Z � function is defined as
ZðzÞ ¼ 1ffiffiffiffi
p
p

Z 1

�1
e�t2 dt

t � z
¼ 2ie�z2

Z iz

�1
e�t2

dt:
The relation e(k,x) = 0 will give us a theoretical value of x when k is known. The imaginary part of x will be used to bench-
mark with the damping or growth rate from our numerical results. In all of our simulations, we have used a CFL condition
that ensures the stability of the scheme as well as maintains the positivity condition. In particular, for the P2 space, we have
taken CFL = 0.19.

3.1. Damping phenomena

In this subsection, we will consider the case of k/kJ > 1. We first start with k/kJ = 2.0. In this case, the damping is very strong.
Here Vc = 5 and the perturbation is of magnitude A = 0.1. We use P2 elements and third-order TVD-RK time stepping in the com-
putation. First we use a 100 � 200 mesh to study the time evolution of the Log Fourier amplitude for gravitational field and den-
sity. Here, we assume that, the density can be expanded in the Fourier series qhðxÞ ¼

P
nP0qn cosðnkxÞ. The ‘‘log Fourier mode’’

for the gravitational field [19] is defined as logFMnðtÞ ¼ log10
1
L

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j
R L

0 Ehðx; tÞ sinðknxÞdxj2 þ j
R L

0 Ehðx; tÞ cosðknxÞdxj2
q� �

. The theo-

retical damping rate calculated from the dispersion relation (9) is�0.187. From Fig. 1, we measure the damping rate for the first
mode of density q1(0.5 6 t 6 3) to be�0.1872, while for logFM1 it measures�0.1871. Both agree with the theoretical prediction
and they share similar time behaviors. In Fig. 2, we plot the evolution of the macroscopic quantities. The particle number (mass),
momentum and total energy are well conserved. In particular, for a 200 � 400 mesh, the amount of mass that is lost from t = 0 to
t = 130 is 1.8 � 10�8 of the original mass. The amount of the total energy change for the same period is 4.5 � 10�7 of the original
value. In fact, in [9], the authors show that the DG schemes in its present form can preserve mass exactly in fully discrete level,
when there is no boundary effect, i.e., when the domain is chosen large enough such that the f vanishes on the phase space
boundaries at all times. Here, we can see that the discrepancy is induced by choosing Vc = 5, which gives non-zero but very small
f at the phase space boundaries.

Fig. 3(a) contains a plot of the BGK mode (i.e., the relationship given by the order pair (� = v2/2 + U(x,T), f(x,v,T))) at
T = 100. In Fig. 3(b), we have seen the system has almost reached at steady state at T = 100. In Fig. 3(c) and (d), we show
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Fig. 1. Damping with k/kJ = 2.0 and A = 0.1. P2 elements and third-order TVD-RK time stepping on a 100 � 200 mesh.
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the details of the BGK plots at T = 100, 120, 130. The plots demonstrate an interesting bar type structure with shorter bars
near the tail. As time progresses, the height of the bars is reduced (see Fig. 3(c)). This verifies the convergence of the BGK
modes to a single-valued discrete function as t ?1. We also remark that the distance between those bars are mesh size
dependent, but time independent.

Next, we consider k/kJ = 1.1, Vc = 5, A = 0.1. For a 200 � 400 mesh, the numerical damping rate for q1(1 6 t 6 4) is �0.1621,
while for logFM1(1 6 t 6 4) it is �0.1620, which agrees with theoretical rate calculated from the dispersion relation (9),
�0.163. In Fig. 4, we plot the evolution of the macroscopic quantities. The ratio of mass change from t = 0 to t = 100 is
1.4 � 10�7, and it is 3.4 � 10�6 for the total energy. From the momentum plot Fig. 5(b), we can identify that the system is
close to but not yet at steady state. This fact can seen from the close up plots Fig. 5(c) and (d), in which detailed structures
of the mode can be observed.

3.2. The Jeans instability

In this subsection, we consider the Jeans instability case with k/kJ < 1. We consider the weak Jeans instability with
k/kJ = 0.8, A = 0.01, and Vc = 5; as well as the strong Jeans instability, k/kJ = 0.1, A = 0.01, and Vc = 35. The computations
are performed with P2 elements and third-order TVD-RK time stepping on a 200 � 400 mesh. For the weak Jeans instability,
the ratio of mass change from t = 0 to t = 100 is 0.82 � 10�6, and it is 2.07 � 10�5 for the total energy. For the strong Jeans
instability, unlike all previous cases, the total energy is not well conserved with the positivity-preserving limiter. We
believe this is due to the strong instability of the problem. We choose to use the RKDG scheme without the positivity-
preserving limiter only for this example. In Fig. 6, we plot the evolution of q1 for both cases. The growth rate for
q1(1 6 t 6 4) is 0.3048 for the weak Jeans instability, and it is 0.9764 for the strong case (2 6 t 6 4). Those agree with



Fig. 3. Damping with k/kJ = 2.0 and A = 0.1. P2 elements and third-order TVD-RK time stepping on a 200 � 400 mesh. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 4. Damping with k/kJ = 1.1 and A = 0.1. Evolution of macroscopic quantities. P2 elements and third-order TVD-RK time stepping on a 200 � 400 mesh.
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theoretical rate from the dispersion relation (9), 0.304 and 0.985, resp. After saturation, we can see that q1 undergoes oscil-
lations that eventually damp. In Fig. 7(a), we plot the BGK mode at T = 100 for the weak Jeans instability. It clearly does not
form a curve because the system is not in equilibrium, see Fig. 7(b) for verification. The contour plots of the pdf f(x,v, t) at
various times can be found in Figs. 8 and 9. For the strong Jeans instability, we can see that the distribution is first distorted
and then develops a core-halo structure similar to the corresponding one in [17] for the same choice of wavenumber and
amplitude of perturbation.



Fig. 5. Damping with k/kJ = 1.1 and A = 0.1 at T = 100. P2 elements and third-order TVD-RK time stepping on a 200 � 400 mesh.

t

lo
g(

ρn
)

0 20 40 60 80 100

-8

-7

-6

-5

-4

-3

-2

-1

n=1

n=2

n=3

t

lo
g(

ρn
)

0 20 40 60
-4

-3

-2

-1

0

n=1

n=2
n=3

Fig. 6. Jeans instability. Log Plot of the first three Fourier amplitudes (n = 1,2,3) for the density q(x) as a function of time. P2 elements and third-order TVD-
RK time stepping on a 200 � 400 mesh.

2058 Y. Cheng, I.M. Gamba / Commun Nonlinear Sci Numer Simulat 17 (2012) 2052–2061



Fig. 7. Weak Jeans instability. P2 elements and third-order TVD-RK time stepping on a 200 � 400 mesh.

Fig. 8. Weak Jeans instability. Contour plots of pdf at various times. P2 elements and third-order TVD-RK time stepping on a 200 � 400 mesh.
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4. Conclusions and future work

In this paper, we used a high-order discontinuous Galerkin scheme to compute the gravitational Vlasov–Poisson
equations. The scheme was stable, accurate and conservative. We compute the case of damping and the Jeans
instability with the initial condition taken as a perturbation of the Maxwellian distribution. Future work includes a
detailed study of the Jeans instability with multi-bump (two-streaming) distributions, and comparison with the fluid
theory [6].



Fig. 9. Strong Jeans instability. Contour plots of pdf at various times. P2 elements and third-order TVD-RK time stepping on a 200 � 400 mesh.
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