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Abstract

In this paper, we propose a new discontinuous Galerkin finite element method to solve the Hamilton–Jacobi equations.
Unlike the discontinuous Galerkin method of [C. Hu, C.-W. Shu, A discontinuous Galerkin finite element method for
Hamilton–Jacobi equations, SIAM Journal on Scientific Computing 21 (1999) 666–690.] which applies the discontinuous
Galerkin framework on the conservation law system satisfied by the derivatives of the solution, the method in this paper
applies directly to the solution of the Hamilton–Jacobi equations. For the linear case, this method is equivalent to the tra-
ditional discontinuous Galerkin method for conservation laws with source terms. Thus, stability and error estimates are
straightforward. For the nonlinear convex Hamiltonians, numerical experiments demonstrate that the method is stable
and provides the optimal (k + 1)th order of accuracy for smooth solutions when using piecewise kth degree polynomials.
Singularities in derivatives can also be resolved sharply if the entropy condition is not violated. Special treatment is needed
for the entropy violating cases. Both one and two-dimensional numerical results are provided to demonstrate the good
qualities of the scheme.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

In this paper, we consider the numerical solution of the Hamilton–Jacobi equation
0021-9
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ut þ Hðux1
; . . . ;uxd

; x1; . . . ; xdÞ ¼ 0; uðx; 0Þ ¼ u0ðxÞ ð1:1Þ
Here d is the space dimension. In this paper, we will only consider the linear or convex Hamilton–Jacobi equa-
tions, namely the Hamiltonian H is a linear or convex function of uxi

. The solutions to the above equations are
Lipschitz continuous but may admit discontinuous derivatives. For linear case with discontinuous coefficients
or the nonlinear case, this is true even if the initial condition is smooth, and the solutions are also non-unique.
We are only interested in the viscosity solution [6], which is the unique practically relevant solution and
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satisfies the entropy condition. Fortunately, this entropy condition can be expressed in a simple form when the
Hamiltonian is linear or convex.

Essentially non-oscillatory (ENO) or weighted ENO (WENO) finite difference schemes have been devel-
oped to solve the Hamilton–Jacobi equation (1.1), see, e.g. [16,10,19]. These finite difference methods work
quite efficiently for Cartesian meshes, however, on unstructured meshes the scheme is quite complicated
[19]. Alternatively, the Runge–Kutta discontinuous Galerkin (DG) finite element method, originally devised
to solve the conservation laws [3,4,2,1,5], has the advantage of flexibility for arbitrarily unstructured meshes,
with a compact stencil, and with the ability to easily achieve arbitrary order of accuracy. In [9], Hu and Shu
proposed a discontinuous Galerkin method to solve the Hamilton–Jacobi equation (1.1). They use the fact
that the derivatives of the solution u satisfy a conservation law system, and apply the usual discontinuous
Galerkin method on this system to advance the derivatives of u. The solution u itself is then recovered from
these derivatives by a least square procedure for multi-dimensional cases and with an independent evolution of
the cell averages of u. Later, Li and Shu [14] reinterpreted the method of Hu and Shu by using a curl-free
subspace for the discontinuous Galerkin method. The algorithm in [14] is mathematically equivalent to that
in [9], but the least square procedure is avoided and the computational cost is reduced for multi-dimensional
calculations. The method in [9,14] works well numerically, with provable stability results for certain special
cases [9,12]. However, since this method is based on the conservation law system satisfied by the derivatives
of u, a scalar problem (1.1) is converted to a system for the multi-dimensional case, which is moreover only
weakly hyperbolic at some points. This seems to have made the algorithm indirect and complicated. It is,
therefore, desirable to design a discontinuous Galerkin method which solves directly the solution u to the
Hamilton–Jacobi equation (1.1). In this paper, we develop such a discontinuous Galerkin method.

This paper is organized as follows: in Section 2, we describe the formulation of our scheme for the one-
dimensional case. Theoretical analysis for the linear case is provided. In Section 3, we generalize the scheme
to two space dimensions. Numerical results of both one and two dimensions are presented in Section 4.
Finally, in Section 5, concluding remarks are given.

2. One-dimensional case

For the simple one-dimensional case, (1.1) becomes
ut þ Hðux; xÞ ¼ 0 uðx; 0Þ ¼ u0ðxÞ ð2:1Þ

and we consider only the case where H(ux,x) is a linear or convex function of ux. If we want to solve this
equation on the interval [a,b], first we divide it into N cells as follows:
a ¼ x1
2
< x3

2
< . . . < xNþ1

2
¼ b ð2:2Þ
We denote
Ij ¼ ðxj�1
2
; xjþ1

2
Þ; xj ¼

1

2
xj�1

2
þ xjþ1

2

� �
; Ijþ1=2 ¼ xj; xjþ1

� �
ð2:3Þ
and
Dxj ¼ xjþ1
2
� xj�1

2
; h ¼ max

j
Dxj ð2:4Þ
Now, we define the approximation space as
V k
h ¼ ft : tjIj

2 P kðIjÞ; j ¼ 1; . . . ;Ng ð2:5Þ
where Pk(Ij) denotes all polynomials of degree at most k on Ij. We now formulate our scheme for (2.1) and give
theoretical analysis for the linear case.

2.1. Formulation of the scheme

Let us denote H 1 ¼ oH
oux

. If H1 is always non-negative, then we can define the upwind version of our scheme
as: find uhðx; tÞ 2 V k

h, such that
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Z
Ij

ðotuhðx; tÞ þ Hðoxuhðx; tÞ; xÞÞvhðxÞdxþ max
x2Ij�1=2

H 1ðoxuh; xj�1=2Þ½uh�j�1
2
ðvhÞþj�1

2
¼ 0; j ¼ 1; . . . ;N ð2:6Þ
holds for any vh 2 V k
h. Here ½uh�j�1

2
¼ uhðxþj�1

2

; tÞ � uhðx�j�1
2
; tÞ denotes the jump of uh at the cell interface xj�1

2
.

Our definition of the scheme is motivated by the usual discontinuous Galerkin method for the linear case,

see the next subsection 2.2.

For general H, our scheme is formulated as follows: find uhðx; tÞ 2 V k
h, such that
Z

Ij

ðotuhðx; tÞ þ Hðoxuhðx; tÞ; xÞÞvhðxÞdx

þ 1

2
min

x2Ijþ1=2

H 1ðoxuh; xjþ1=2Þ � min
x2Ijþ1=2

H 1ðoxuh; xjþ1=2Þ
���� ����� �

½uh�jþ1
2
ðvhÞ�jþ1

2

þ 1

2
max

x2Ij�1=2

H 1ðoxuh; xj�1=2Þ þ max
x2Ij�1=2

H 1ðoxuh; xj�1=2Þ
���� ����� �

½uh�j�1
2
ðvhÞþj�1

2

¼ 0; j ¼ 1; . . . ;N ð2:7Þ
holds for any vh 2 V k
h. This is a Roe type generalization of the upwind scheme (2.6).

In the schemes (2.6) and (2.7), we need the reconstructed information of oxuh on the cells Ij�1/2 and Ij+1/2.
Notice that these cells include the points xj�1

2
and xjþ1

2
, respectively, where the numerical solution uh(x, t) is

discontinuous. We use an L2 reconstruction technique as follows. We define a polynomial wjþ1
2
ðxÞ 2 P 2kþ1

on Ij [ Ij+1, such that
Z
Ij

uhvdx ¼
Z

Ij

wjþ1
2
vdx ð2:8Þ
for any v 2 Pk on Ij, and
Z
Ijþ1

uhvdx ¼
Z

Ijþ1

wjþ1
2
vdx ð2:9Þ
for any v 2 Pk on Ij+1. Then we use oxuh ¼ oxwjþ1
2

on Ij+1/2 when taking the maximum or minimum in (2.6) and
(2.7).

In the case of a uniform mesh and piecewise constant polynomials (k = 0), the reconstructed derivative
becomes
oxuh ¼
ujþ1 � uj

h
ð2:10Þ
on Ij+1/2. This agrees with our intuitive definition of oxuh. For a practical implementation, once a local basis is
chosen, the coefficients of wjþ1

2
ðxÞ are linear combinations of the coefficients of uhjIj

and of uhjIjþ1. These linear

combination coefficients can be pre-computed to save computational cost.
We would like to remark that in (2.7), the last two terms involving the jumps of uh are added for stability,

whereas the first integral term guarantees the accuracy of our scheme. The purpose of taking the maximum
and minimum is to obtain better stability by adding more viscosity, while still maintaining accuracy since these
maximum and minimum values are a O(h) perturbation from H1(oxuh(xj+1/2,t),xj+1/2), which guarantees accu-
racy according to truncation error analysis and numerical tests.

For linear Hamiltonians with discontinuous coefficients or nonlinear Hamiltonians, since our scheme is of
Roe type, it may generate entropy violating solutions. We have, therefore, adopted the following entropy cor-
rection procedure:

1. For each cell Ij, determine if it is a potentially entropy violating cell. We will provide the criteria for this
determination in the numerical Section 4.
If the cell Ij is marked as a potentially entropy violating cell, then use Step 2 below to update uh in this cell;
otherwise, update uh by (2.6) or (2.7).
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2. Update uh by the DG method of Hu and Shu [9], namely, recover oxuh by taking the derivative of uh, then
compute ot(oxuh) by the usual DG method for the conservation law satisfied by oxuh. This will determine uh

up to a constant. The missing constant is obtained by requiring
Z
Ij

ðotuhðx; tÞ þ Hðoxuhðx; tÞ; xÞÞdx ¼ 0: ð2:11Þ
The entropy correction in Step 2 bears comparable computational cost as our scheme (2.6) or (2.7) for this
one-dimensional case. It is our experience that such entropy corrections are needed only in very few isolated
cells, see Section 4.
2.2. Theoretical analysis

We first consider a linear Hamilton–Jacobi equation
ut þ aðxÞux ¼ 0 ð2:12Þ
and assume, for the time being, that a(x) is a smooth function. If a(x) > 0, our scheme (2.6), after replacing the
maximum by the point value at xj�1

2
, becomes finding uhðx; tÞ 2 V k

h, such that
Z
Ij

ðotuhðx; tÞ þ aðxÞðoxuhðx; tÞÞÞvhðxÞdxþ aðxj�1
2
Þ½uh�j�1

2
ðvhÞþj�1

2
¼ 0; j ¼ 1; . . . ;N ð2:13Þ
holds for any vh 2 V k
h. After integration by parts, this is equivalent to
Z

Ij

otuhðx; tÞvhðxÞdx�
Z

Ij

aðxÞuhðx; tÞoxvhðxÞdxþ ðauhÞ
�
jþ1

2
ðvhÞ�jþ1

2
� ðauhÞ

�
j�1

2
ðvhÞþj�1

2

¼
Z

Ij

axðxÞuhðx; tÞvhðxÞdx ð2:14Þ
We observe that the scheme (2.14) is the standard DG scheme for conservation laws with source terms using
upwind fluxes [4] for the equation
ut þ ðaðxÞuÞx ¼ axðxÞu ð2:15Þ
which is equivalent to (2.12). Similarly, for general a(x), our scheme (2.7), after replacing the maximum and
minimum by the point value at xj�1

2
and xjþ1

2
, respectively, becomes finding uhðx; tÞ 2 V k

h, such that
Z
Ij

ðotuhðx; tÞ þ aðxÞðoxuhðx; tÞÞÞvhðxÞdxþ 1

2
ðaðxjþ1

2
Þ � jaðxjþ1

2
ÞjÞ½uh�jþ1

2
ðvhÞ�jþ1

2

þ 1

2
ðaðxj�1

2
Þ þ jaðxj�1

2
ÞjÞ½uh�j�1

2
ðvhÞþj�1

2
¼ 0 ð2:16Þ
holds for any vh 2 V k
h. After integration by parts, this is equivalent to
Z

Ij

otuhðx; tÞvhðxÞdx�
Z

Ij

aðxÞuhðx; tÞoxvhðxÞdxþdauh jþ1
2
ðvhÞ�jþ1

2
�dauh j�1

2
ðvhÞþj�1

2
¼
Z

Ij

axðxÞuhðx; tÞvhðxÞdx

ð2:17Þ
where
dauh jþ1
2
¼ 1

2
ðaðxjþ1

2
Þ þ jaðxjþ1

2
ÞjÞðuhÞ

�
jþ1

2
þ 1

2
ðaðxjþ1

2
Þ � jaðxjþ1

2
ÞjÞðuhÞ

þ
jþ1

2

denotes the Roe flux. This is the standard DG scheme for conservation laws with source terms using Roe
fluxes [4] for Eq. (2.15) which is equivalent to (2.12). We can, therefore, use the standard techniques in the
analysis for the DG schemes to obtain the following theoretical results.



402 Y. Cheng, C.-W. Shu / Journal of Computational Physics 223 (2007) 398–415
Proposition 2.1. Suppose there is a constant b such that the derivative of a(x) satisfies ax(x) < b for x 2 [a,b],

then we have the following L2 stability for our scheme (2.16):
kuhðtÞkL2 6 ebt=2kuhð0ÞkL2
Proof. This follows from the standard proof of the cell entropy inequality for DG schemes applied to scalar
conservation laws [11]. On each cell Ij, we can prove as in [11]
Z

Ij

ðuhÞtuhdx�
Z

Ij

ax
u2

h

2
dxþ F̂ jþ1

2
� F̂ j�1

2
þHj ¼ 0
for some entropy flux F̂ jþ1
2

and Hj P 0. Summing over j, we have
d

dt

Z b

a

u2
h

2
dx 6

Z b

a
ax

u2
h

2
dx
Since ax < b, we have
d

dt

Z b

a
u2

hdx 6 b
Z b

a
u2

hdx
Integrating over t finishes the proof. h

Proposition 2.2. If a(x) and the solution u of (2.12) are smooth and the scheme (2.16) with the finite element space

(2.5) is used, then we have the following optimal L2 error estimate
kuhðtÞ � uðtÞjjL2 6 Chkþ1
Proof. The proof is similar to that for standard DG schemes. The optimal (k + 1)th order of convergence is
obtained through a special projection in the proof, see for example [18] for the details. h

For nonlinear problems, we notice that our scheme is consistent only when k P 1. For example, for the
Burgers’ equation
ut þ
u2

x

2
¼ 0; ð2:18Þ
with ux P 0, our upwind scheme (2.6) with piecewise constant space (the space (2.5) with k = 0) gives
ðujÞt þ
uj � uj�1

Dxj

� �2

¼ 0 ð2:19Þ
where u = uj on cell Ij. This is clearly consistent with a different equation ut þ u2
x ¼ 0 and is inconsistent with

the Burgers’ Eq. (2.18). If k P 1, we can prove that our scheme is consistent, which is also verified by numer-
ical experiments in Section 4. For example, the P1 upwind scheme (2.6) to solve the equation ut + H(ux) = 0 is
u0
j

� �
t
þ H

u1
j

Dxj

 !
þ aj

½uh�j�1
2

Dxj
¼ 0 ð2:20Þ
where u ¼ u0
j þ u1

j
x�xj

Dxj
on cell Ij. Since ½uh�j�1

2
¼ Oðh2Þ for smooth functions, the scheme is consistent.
2.3. Time discretization

Up to now, we have taken the method of lines approach and have left t continuous. We can use total var-
iation diminishing (TVD) high-order Runge–Kutta methods [17] to solve the method of lines ODE
ut ¼ LðuÞ: ð2:21Þ
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The third-order TVD Runge–Kutta method that we use in this paper is given by
uð1Þ ¼ un þ DtLðunÞ

uð2Þ ¼ 3

4
un þ 1

4
uð1Þ þ 1

4
DtLðuð1ÞÞ

unþ1 ¼ 1

3
un þ 2

3
uð2Þ þ 2

3
DtLðuð2ÞÞ

ð2:22Þ
Detailed description of the TVD Runge–Kutta method can be found in [17], see also [7,8].
3. Two-dimensional case

In this section, we consider the case of two spatial dimensions. The equation is given by
ut þ Hðux;uy ; x; yÞ ¼ 0; uðx; y; 0Þ ¼ u0ðx; yÞ ð3:1Þ
and we again only consider the case where H(ux,uy,x,y) is a linear or convex function of ux and uy. For sim-
plicity of presentation, we consider in this paper only rectangular domains and cells, although our method can
be easily defined on general triangulations as other DG methods. Suppose Eq. (3.1) is solved on the domain
[a,b] · [c,d]. We use rectangular meshes defined as
a ¼ x1
2
< x3

2
< . . . < xNxþ1

2
¼ b; c ¼ y1

2
< y3

2
< . . . < yNyþ1

2
¼ d ð3:2Þ
and
I i;j ¼ ½xi�1
2
; xiþ1

2
� � ½yj�1

2
; yjþ1

2
�; J i ¼ ½xi�1=2; xiþ1=2�; Kj ¼ ½yj�1=2; yjþ1=2�

J iþ1=2 ¼ ½xi; xiþ1�; Kjþ1=2 ¼ ½yj; yjþ1�; i ¼ 1; . . . ;Nx; j ¼ 1; . . . ;Ny

ð3:3Þ
We define the approximation space as
V k
h ¼ ft : tjI i;j

2 P kðI i;jÞ; i ¼ 1; . . . ;N x; j ¼ 1; . . . ;Nyg ð3:4Þ
where Pk(Ii,j) denotes all polynomials of degree at most k on Ii,j.
Let us denote H 1 ¼ oH

oux
and H 2 ¼ oH

ouy
. We define our scheme as: find uhðx; tÞ 2 V k

h, such that
Z
I i;j

ðotuhðx; y; tÞ þ Hðoxuhðx; y; tÞ; oyuhðx; y; tÞ; x; yÞÞvhðx; yÞdxdy

þ 1

2

Z
Kj

min
x2J iþ1=2

H 1ðoxuh; oyuh; xiþ1=2; yÞ � min
x2J iþ1=2

H 1ðoxuh; oyuh; xiþ1=2; yÞ
���� ����� �

½uh�ðxiþ1
2
; yÞvhðx�iþ1

2
; yÞdy

þ 1

2

Z
Kj

max
x2J i�1=2

H 1ðoxuh; oyuh; xi�1=2; yÞ þ max
x2J i�1=2

H 1ðoxuh; oyuh; xi�1=2; yÞ
���� ����� �

½uh�ðxi�1
2
; yÞvhðxþi�1

2
; yÞdy

þ 1

2

Z
J i

min
y2Kjþ1=2

H 2ðoxuh; oyuh; x; yjþ1=2Þ � min
y2Kjþ1=2

H 2ðoxuh; oyuh; x; yjþ1=2Þ
���� ����� �

½uh�ðx; yjþ1
2
Þvhðx; y�jþ1

2
Þdx

þ 1

2

Z
J i

max
y2Kj�1=2

H 2ðoxuh; oyuh; x; yj�1=2Þ þ max
y2Kj�1=2

H 2ðoxuh; oyuh; x; yj�1=2Þ
���� ����� �

½uh�ðx; yj�1
2
Þvhðx; yþj�1

2
Þdx ¼ 0

ð3:5Þ
holds for any vh 2 V k
h. In the above formula, we define
oxuh ¼
1

2
ððoxuhÞ

þ þ ðoxuhÞ
�Þ; oyuh ¼

1

2
ððoyuhÞ

þ þ ðoyuhÞ
�Þ
The main idea is that, on the interfaces of cells, along the normal direction we would use the reconstructed
information of the partial derivatives as in the one-dimensional case. Tangential to the interface, the average
of the partial derivatives from the two neighboring cells is used. The reconstruction process is the same as that
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in the one-dimensional case, except that we need to fix x or y, then perform the reconstruction on the other
spatial variable. If H1 > 0 or H2 > 0, we can apply the corresponding upwind scheme in that direction.

A similar entropy correction procedure as in the one-dimensional case is adopted here as well for the cases
with linear Hamiltonians with discontinuous coefficients or nonlinear Hamiltonians:

1. For each cell Ii,j, determine if it is a potentially entropy violating cell. We will again provide the criteria for
this determination in the numerical Section 4.
If the cell Ii,j is marked as a potentially entropy violating cell, then use Step 2 below to update uh in this cell;
otherwise, update uh by (3.5).

2. Update uh by the DG method of Hu and Shu [9] as reinterpreted by Li and Shu [14], namely, recover oxuh

and oyuh by taking the derivatives of uh, then compute ot(oxuh) and ot(oyuh) by the usual DG method for
the conservation laws satisfied by oxuh and oyuh in a locally curl-free discontinuous Galerkin space. This
will determine uh up to a constant. The missing constant is obtained by requiring
Table
Errors
on a u

N

40
80

160
320
640

Final t
Z
I i;j

ðotuh þ Hðoxuh; oyuh; x; yÞÞdxdy ¼ 0: ð3:6Þ
4. Numerical results

In this section, we provide numerical experimental results to demonstrate the behavior of our schemes.

4.1. Linear smooth problems

In this subsection, linear smooth problems are computed using our scheme. In this case, our scheme is
equivalent to the standard DG scheme for conservation laws with source terms.

Example 4.1.1. We solve the one-dimensional problem
ut þ sinðxÞux ¼ 0

uðx; 0Þ ¼ sinðxÞ
uð0; tÞ ¼ uð2p; tÞ

8><>: ð4:1Þ
The exact solution is
uðx; tÞ ¼ sin 2 tan�1 e�t tan
x
2

� �� �� �
ð4:2Þ
We use the general scheme (2.16) and list the results in Tables 4.1–4.4 for P0, P1, P2 and P3, respectively. We
clearly observe (k + 1)th order of accuracy for Pk polynomials.

Example 4.1.2. We solve the two-dimensional linear Hamilton–Jacobi equation with variable coefficients
ut � yux þ xuy ¼ 0: ð4:3Þ
4.1
and numerical orders of accuracy for Example 4.1.1 when using P0 polynomials and Runge–Kutta third order time discretization
niform mesh of N cells

L1 error Order L2 error Order L1 error Order

0.49E�01 0.62E�01 0.29E+00
0.25E�01 0.95 0.32E�01 0.93 0.16E+00 0.86
0.13E�01 0.97 0.17E�01 0.96 0.83E�01 0.96
0.65E�02 0.98 0.84E�02 0.98 0.42E�01 0.99
0.33E�02 0.99 0.42E�02 0.99 0.21E�01 1.00

ime t = 1. CFL = 0.9.



Table 4.2
Errors and numerical orders of accuracy for Example 4.1.1 when using P1 polynomials and Runge–Kutta third order time discretization
on a uniform mesh of N cells

N L1 error Order L2 error Order L1 error Order

40 0.12E�02 0.25E�02 0.15E�01
80 0.31E�03 1.96 0.68E�03 1.90 0.43E�02 1.81

160 0.78E�04 1.97 0.18E�03 1.94 0.11E�02 1.92
320 0.20E�04 1.98 0.46E�04 1.97 0.29E�03 1.96
640 0.50E�05 1.99 0.12E�04 1.98 0.74E�04 1.98

Final time t = 1. CFL = 0.3.

Table 4.3
Errors and numerical orders of accuracy for Example 4.1.1 when using P2 polynomials and Runge–Kutta third order time discretization
on a uniform mesh of N cells

N L1 error Order L2 error Order L1 error Order

40 0.48E�04 0.10E�03 0.52E�03
80 0.60E�05 2.99 0.14E�04 2.88 0.88E�04 2.58

160 0.75E�06 3.00 0.18E�05 2.90 0.14E�04 2.70
320 0.94E�07 2.99 0.24E�06 2.93 0.20E�05 2.78
640 0.12E�07 2.99 0.31E�07 2.95 0.27E�06 2.85

Final time t = 1. CFL = 0.1.

Table 4.4
Errors and numerical orders of accuracy for Example 4.1.1 when using P3 polynomials and Runge–Kutta third order time discretization
on a uniform mesh of N cells

N L1 error Order L2 error Order L1 error Order

40 0.21E�05 0.51E�05 0.29E�04
80 0.14E�06 3.96 0.35E�06 3.88 0.22E�05 3.75
160 0.87E�08 3.97 0.23E�07 3.93 0.16E�06 3.78
320 0.55E�09 3.97 0.15E�08 3.96 0.10E�07 3.91
640 0.35E�10 3.98 0.94E�10 3.98 0.68E�09 3.95

Final time t = 1. CFL = 0.05.
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The computational domain is [�1,1]2. The initial condition is given by
u0ðx; yÞ ¼
0 0:3 6 r

0:3� r 0:1 < r < 0:3

0:2 r 6 0:1

8><>: ð4:4Þ
where r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� 0:4Þ2 þ ðy � 0:4Þ2

q
. We also impose periodic boundary condition on the domain. This is a so-

lid body rotation around the origin. The exact solution can be expressed as
uðx; y; tÞ ¼ u0ðx cosðtÞ þ y sinðtÞ;�x sinðtÞ þ y cosðtÞÞ ð4:5Þ

For this problem, the derivatives of u are not continuous. Therefore, we do not expect to obtain (k + 1)th

order of accuracy for Pk polynomials, see Table 4.5.
At t = 2p, i.e. the period of rotation, we take a snapshot at the line x = y in Fig. 4.1. We can see that a

higher order scheme can yield better results for this nonsmooth initial condition.
Example 4.1.3. We solve the same Eq. (4.3) as that in Example 4.1.2, but with a different initial condition as
u0ðx; yÞ ¼ exp �ðx� 0:4Þ2 þ ðy � 0:4Þ2

2r2

 !
ð4:6Þ



Table 4.5
Errors and numerical orders of accuracy for Example 4.1.2 when using P2 polynomials and Runge–Kutta third order time discretization
on a uniform mesh of N · N cells

N · N L1 error Order L2 error Order L1 error Order

20 · 20 0.41E�03 0.13E�02 0.11E�01
40 · 40 0.14E�03 1.58 0.55E�03 1.26 0.65E�02 0.82
80 · 80 0.47E�04 1.54 0.24E�03 1.22 0.36E�02 0.84
160 · 160 0.15E�04 1.62 0.10E�03 1.23 0.21E�02 0.81

Final time t = 1. CFL = 0.1.
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Fig. 4.1. Example 4.1.2. 80 · 80 uniform mesh. t = 2p. Solid line: the exact solution; rectangles: the numerical solution. One-dimensional
cut of 45� with the x axis. Left: P1 polynomial; right: P2 polynomial.
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We take r = 0.05 such that at the domain boundary, u is very small, hence imposing a periodic boundary con-
dition will lead to small non-smoothness errors. We then observe the desired order of accuracy in Table 4.6.

Example 4.1.4. We solve the two-dimensional linear Hamilton–Jacobi equation with variable coefficients
Table
Errors
on a u

N · N

20 · 20
40 · 40
80 · 80
160 · 1

Final t
ut þ f ðx; y; tÞux þ gðx; y; tÞuy ¼ 0 ð4:7Þ
The computational domain is still [� 1,1]2, and the advection coefficients are
f ðx; y; tÞ ¼ sin2ðpxÞ sinð2pyÞ cos
t
T

p
� �

; gðx; y; tÞ ¼ � sin2ðpyÞ sinð2pxÞ cos
t
T

p
� �
where T is the period of deformation. The initial condition is given by
4.6
and numerical orders of accuracy for Example 4.1.3 when using P2 polynomials and Runge–Kutta third order time discretization
niform mesh of N · N cells

L1 error Order L2 error Order L1 error Order

0.14E�02 0.10E�01 0.28E+00
0.15E�03 3.21 0.15E�02 2.81 0.53E�01 2.41
0.11E�04 3.82 0.11E�03 3.73 0.58E�02 3.19

60 0.11E�05 3.30 0.12E�04 3.26 0.90E�03 2.69

ime t = 1. CFL = 0.1.
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u0ðx; yÞ ¼
0 0:3 6 r

0:3� r 0:1 < r < 0:3

0:2 r 6 0:1

8><>: ð4:8Þ
where r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� 0:4Þ2 þ ðy � 0:4Þ2

q
. This is a numerical test for incompressible flow first introduced by LeVe-

que in [13]. During the evolution, the initial data are severely deformed, then it returns to the original shape
after one period. At t = 1.5, i.e. the period of rotation, we take a snapshot at the line x = y in Fig. 4.2. We can
clearly observe that a higher order scheme yields better results for this nonsmooth initial condition.
4.2. Linear nonsmooth problems

In this subsection, the Hamiltonian H is a linear function of $u with nonsmooth coefficients.

Example 4.2.1. We solve the model problem
ut þ signðcosðxÞÞux ¼ 0

uðx; 0Þ ¼ sinðxÞ
uð0; tÞ ¼ uð2p; tÞ

8><>: ð4:9Þ
The exact solution is given by

� if 0 6 t 6 p/2
uðx; tÞ ¼

sinðx� tÞ if 0 6 x 6 p
2

sinðxþ tÞ if p
2
< x 6 3p

2
� t

�1 if 3p
2
� t < x 6 3p

2
þ t

sinðx� tÞ if 3p
2
þ t < x 6 2p

8>>><>>>: ð4:10Þ
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2. Example 4.1.4. 80 · 80 uniform mesh. t = 1.5. Solid line: the exact solution; rectangles: the numerical solution. One-dimensional
45� with the x axis. Left: P1 polynomial; right: P2 polynomial.
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Fig. 4.3. Example 4.2.1. t = 1, CFL = 0.1, using P2 polynomials. Solid line: the exact solution; rectangles: the numerical solution. Left:
N = 80; right: N = 81.
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� if p/2 6 t 6 p
uðx; tÞ ¼

�1 if 0 6 x 6 t � p
2

sinðx� tÞ if t � p
2
< x 6 p

2

sinðxþ tÞ if p
2
< x 6 3p

2
� t

�1 if 3p
2
� t < x 6 2p

8>>><>>>: ð4:11Þ
� if t P p
uðx; tÞ ¼ �1: ð4:12Þ
For the viscosity solution, at x ¼ p
2
, there will be a shock forming in ux, and at x ¼ 3p

2
, there is a rarefaction

wave.

We first test the scheme without any entropy correction. If we take N to be a multiple of 4, then the dis-
continuity of a(x) is exactly located at a cell interface. In this case, the entropy condition is violated by our
scheme at the two cells neighboring 3p

2
, and the numerical solution obtained is not close to the viscosity solu-

tion, see Fig. 4.3, left. If instead, we take other values of N such that the discontinuity of a(x) is not at the cell
interface, then the entropy condition is not violated and the numerical solution obtained approximates the
viscosity solution very well, see Fig. 4.3, right.

The test above indicates the necessity of an entropy correction in this case. The criteria for the entropy cor-
rection is as follows. For the cell Ij = (xj-1/2,xj+1/2), if
a�ðxj�1=2Þ < 0 < aþðxj�1=2Þ ð4:13Þ

or
a�ðxjþ1=2Þ < 0 < aþðxjþ1=2Þ ð4:14Þ
is satisfied, we will compute (ux)t on the cell Ij by solving the conservation law for ux = u as
ut þ ðsignðcosðxÞÞuÞx ¼ 0 ð4:15Þ
using the standard DG method with polynomials in Pk-1, and then recover u by requiring
Z
Ij

ðut þ signðcosðxÞÞuxÞdx ¼ 0: ð4:16Þ
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For this one-dimensional example it does not increase the computational cost. We can see in Fig. 4.4 that,
after this entropy correction, the numerical solution approximates the viscosity solution very well.

The numerical errors and order of accuracy are shown in Table 4.7. Since the exact solution is not smooth,
we do not expect the full (k + 1)th order accuracy.

4.3. Nonlinear smooth problems

In this subsection, the Hamiltonian H is a nonlinear smooth function of $u.

Example 4.3.1. One-dimensional Burgers’ equation
ϕ

-

-0.

0.

Fig. 4.
Left: w

Table
Errors
on a u

N

40
80

160
320
640

Final t
ut þ
u2

x
2
¼ 0

uðx; 0Þ ¼ sinðxÞ
uð0; tÞ ¼ uð2p; tÞ

8><>: ð4:17Þ
The exact solution when u is still smooth is obtained by the characteristics methods. First solve x0 from
x ¼ x0 þ cosðx0Þt ð4:18Þ

then get u as
x
1 2 3 4 5 6

1
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0
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ϕ
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-1

-0.5
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0.5

4. Example 4.2.1. t = 1, CFL = 0.1, N = 80, using P2 polynomials. Solid line: the exact solution; rectangles: the numerical solution.
ithout entropy correction; right: with entropy correction.

4.7
and numerical orders of accuracy for Example 4.2.1 when using P2 polynomials and Runge–Kutta third order time discretization
niform mesh of N cells

L1 error Order L2 error Order L1 error Order

0.64E�03 0.15E�02 0.41E�02
0.16E�03 1.97 0.40E�03 1.94 0.10E�02 2.00
0.41E�04 1.99 0.10E�03 1.97 0.26E�03 2.00
0.10E�04 2.00 0.25E�04 1.99 0.64E�04 2.00
0.26E�05 2.00 0.64E�05 2.00 0.16E�04 2.00

ime t = 1. CFL = 0.1.



Table
Errors
on a u

N

40
80

160
320
640

Final t

Fig. 4
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uðx; tÞ ¼ sinðx0Þ þ
cosðx0Þ2

2
t ð4:19Þ
When t = 0.5, the solution is still smooth, and the expected third order accuracy is obtained for P2 polynomi-
als, see Table 4.8. After t = 1, a shock will form in ux, our scheme can resolve the derivative singularity shar-
ply, see Fig. 4.5.

Example 4.3.2. One-dimensional Burgers’ equation with a nonsmooth initial condition
ut þ
u2

x
2
¼ 0

uðx; 0Þ ¼
p� x if 0 6 x 6 p

x� p else where in ½0; 2p�;



uð0; tÞ ¼ uð2p; tÞ

8>>><>>>: ð4:20Þ
For the viscosity solution, the sharp corner at p will be smoothed out, and a rarefaction wave will form in the
derivative. Since the entropy condition is violated by our Roe type scheme, we need to apply the entropy cor-
rection procedure. Fig. 4.6 shows the comparison of the numerical solution with and without the entropy cor-
rection. Clearly the entropy correction is needed to obtain a good approximation to the entropy solution. The
criteria for the entropy correction is as follows. For the cell Ij = (xj-1/2,xj+1/2), if either
u�x ðxj�1=2Þ < 0 < uþx ðxj�1=2Þ ð4:21Þ
4.8
and numerical orders of accuracy for Example 4.3.1 when using P2 polynomials and Runge–Kutta third order time discretization
niform mesh of N cells

L1 error Order L2 error Order L1 error Order

0.13E�04 0.22E�04 0.84E�04
0.17E�05 2.97 0.29E�05 2.93 0.12E�04 2.86
0.22E�06 2.98 0.37E�06 2.96 0.15E�05 2.92
0.27E�07 2.98 0.47E�07 2.97 0.20E�06 2.95
0.34E�08 2.99 0.59E�08 2.99 0.25E�07 2.97

ime t = 0.5. CFL = 0.1.
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.5. Example 4.3.1. Numerical solution. Solid line: N = 500; rectangles: N = 40. Final time t = 1.5, CFL = 0.05, P2 polynomials.
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Fig. 4.6. Example 4.3.2. t = 1, CFL = 0.05, N = 80, using P2 polynomials. Solid line: the exact solution; rectangles: the numerical
solution. Left: without entropy correction; right: with entropy correction.
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or
Table
Errors
on a u

N · N

10 · 10
20 · 20
40 · 40
80 · 80

Final t
u�x ðxjþ1=2Þ < 0 < uþx ðxjþ1=2Þ ð4:22Þ
is satisfied, then the entropy correction is needed.

Example 4.3.3. Two-dimensional Burgers’ equation.
ut þ
ðuxþuyþ1Þ2

2
¼ 0

uðx; y; 0Þ ¼ � cosðxþ yÞ

(
ð4:23Þ
with periodic boundary condition on the domain [0,2p]2.
We use a uniform rectangular mesh. At t = 0.1, the solution is still smooth. Numerical errors and order of

accuracy are listed in Table 4.9, demonstrating the expected order of accuracy. At t = 1, the solution is no
longer smooth. We plot the numerical solution in Fig. 4.7. We observe good resolution of the kinks in the
solution.
4.4. Nonlinear nonsmooth problems

In this subsection, the Hamiltonian H is a nonlinear nonsmooth function of $u.
4.9
and numerical orders of accuracy for Example 4.3.3 when using P2 polynomials and Runge–Kutta third order time discretization
niform mesh of N · N cells

L1 error Order L2 error Order L1 error Order

0.30E�02 0.43E�02 0.35E�01
0.38E�03 2.98 0.58E�03 2.90 0.56E�02 2.64
0.48E�04 2.97 0.77E�04 2.91 0.80E�03 2.81
0.66E�05 2.87 0.11E�04 2.83 0.14E�03 2.55

ime t = 0.1. CFL = 0.1.
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Fig. 4.7. Example 4.3.3. Numerical solution when t = 1, CFL = 0.1, 40 · 40 uniform mesh, using P2 polynomials.
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Fig. 4.8. Example 4.4.1. t = 10, CFL = 0.1, N = 160 uniform mesh, using P2 polynomials. e = 10�10. Rectangular symbols mark the cells
in which the entropy correction is performed. Those cells are plotted every five time steps.
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Example 4.4.1. We solve the Eikonal equation given by
ut þ juxj ¼ 0

uðx; 0Þ ¼ sinðxÞ
uð0; tÞ ¼ uð2p; tÞ

8><>: ð4:24Þ
The exact solution is the same as the exact solution of Example 4.2.1, given by (4.10)–(4.12). Because the en-
tropy condition is violated by our scheme in some cells, we need to apply the entropy correction technique.
The criteria are as follows. If we denote u = ux, then for the cell Ij = (xj-1/2,xj+1/2), if
u�ðxj�1=2Þ < �e and e < uþðxj�1=2Þ ð4:25Þ
or
u�ðxjþ1=2Þ < �e and e < uþðxjþ1=2Þ ð4:26Þ
are satisfied, we use the entropy correction on Ij. We take the parameter e = 10�10 in the calculation, which is
introduced to avoid unnecessary entropy corrections due to small numerical errors in the computation.



Table 4.10
Errors and numerical orders of accuracy for Example 4.4.1 when using P2 polynomials and Runge–Kutta third order time discretization
on a uniform mesh of N cells

N L1 error Order L2 error Order L1 error Order

40 0.87E�03 0.15E�02 0.28E�02
80 0.23E�03 1.89 0.41E�03 1.88 0.76E�03 1.89

160 0.64E�04 1.86 0.11E�03 1.86 0.21E�03 1.85
320 0.18E�04 1.85 0.31E�04 1.84 0.59E�04 1.85

Final time t = 1. CFL = 0.1.
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Fig. 4.9. Example 4.4.2. Steady state solution with 40 · 40 uniform mesh, using P2 polynomials. Left: three-dimensional plot; right:
contour plot.
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Fig. 4.8 shows the space–time location where the entropy correction is applied. We observe that the correc-
tion is mostly applied at a few cells neighboring the boundary of the rarefaction wave. The number of cells in
which the correction is performed is relatively small compared to the total number of cells.

The numerical errors and the order of accuracy are listed in Table 4.10. Since the solution is not smooth, we
do not expect the full (k + 1)th order accuracy.

Example 4.4.2. We solve the two-dimensional Eikonal equation
ut þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2

x þ u2
y

q
¼ 1 ð4:27Þ
First of all, we consider the case of the computational domain being [0, 1]2n[0.4,0.6]2. For the inner boundary
along [0.4,0.6]2, we impose the boundary condition u = 0. On the other hand, we impose free outflow bound-
ary conditions on the outer boundary. The initial condition is taken as u0(x,y) = max{jx � 0.5j,
jy � 0.5j} � 0.1. The steady state solution should give us a function that is equal to the distance of the point
to the inner boundary. For the outer boundary cells, we use the upwind version of our scheme according to the
direction of the local wind. For all other cells, the general scheme (3.5) is used. We plot the numerical steady
state solution in Fig. 4.9.

Next, we consider this example with a point source condition; namely, we take the inner boundary to be the
center point (0.5,0.5). In this case, we would need u in the center cell to be the L2 projection of the exact
distance function. For all other cells, the computation is the same as for the previous case. The initial
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Fig. 4.10. Example 4.4.2. Steady state solution with 39 · 39 uniform mesh, using P2 polynomials. Left: three-dimensional plot; right:
contour plot.
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condition is taken as u0(x,y) = max{jx � 0.5j, jy � 0.5j}. We plot the numerical steady state solution in
Fig. 4.10. We can see that in both cases we obtain very good resolution to the viscosity solution.
5. Concluding remarks

We have developed a discontinuous Galerkin finite element method for solving Hamilton–Jacobi equations
approximating directly the solution variable rather than its derivatives as in the earlier work in [9,14]. Both
linear and convex nonlinear Hamiltonians are considered in this paper, while the case for non-convex Ham-
iltonians is left for future study. One and two-dimensional numerical results demonstrate that the method
approximates the viscosity solutions very well. In the future, we will also explore more direct entropy correc-
tion techniques without resorting to the techniques in [9,14]. We remark that Osher and Yan [15] has recently
developed another class of discontinuous Galerkin type scheme for solving Hamilton–Jacobi equations, which
also approximates directly the solution variable rather than its derivatives. A comparison of these two different
approaches would be interesting.
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