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Abstract

We investigate numerically an inverse problem related to the Boltzmann-Poisson
system of equations for transport of electrons in semiconductor devices. The objective
of the (ill-posed) inverse problem is to recover the doping profile of a device, presented
as a source function in the mathematical model, from its current-voltage character-
istics. To reduce the degree of ill-posedness of the inverse problem, we proposed to
parameterize the unknown doping profile function to limit the number of unknowns
in the inverse problem. We showed by numerical examples that the reconstruction
of a few low moments of the doping profile is possible when relatively accurate time-
dependent or time-independent measurements are available, even though the later
reconstruction is less accurate than the former. We also compare reconstructions from
the Boltzmann-Poisson (BP) model to those from the classical drift-diffusion-Poisson
(DDP) model, assuming that measurements are generated with the BP model. We
show that the two type of reconstructions can be significantly different in regimes
where drift-diffusion-Poisson equation fails to model the physics accurately. However,
when noise presented in measured data is high, no difference in the reconstructions
can be observed.

Key words. Boltzmann-Poisson system, semiconductor devices, doping profile, inverse problems,
parameter identification, inverse doping, drift-diffusion.

1 Introduction

Parameter extraction for semiconductor devices play a key role in modern semiconductor
device design and performance optimization. The aim of parameter extraction is to recover
material parameters of devices from measurement of device characteristics, such as the
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voltage-to-current (I-V) data and the voltage-to-capacitance (C-V) data. The parameters
that are of interests are mainly the doping profile [19, 24, 34, 47] and the carrier mobilities [10,
51, 56], but there are also significant interests in other material parameters such as thermal
and electrical conductivities [30, 31].

In this paper, we are mainly interested in the recovery of the doping profiles of semi-
conductor devices. The most widely used technique in the semiconductor community is the
so-called C-V technique, proposed initially by Kennedy, Murley and Kelinfelder in [36, 37]
and have been extensively studied since then [24, 34, 47, 48, 58, 61, 62, 63, 66, 67]. The
underline mathematical model for the C-V technique is a one-dimensional drift-diffusion-
Poisson system; see (6) below for a simplified multi-dimensional version. The main tech-
nique is based on the depletion region approximation which allows one to build an explicit
relation between the doping profile and the voltage-to-capacity data. The validity and ac-
curacy of the depletion region approximation, however, have been always questioned since
the invention of the technology [34, 40, 46].

Mathematically, the doping profiling problem is an inverse problem of differential equa-
tions. The doping profile is parameterized as a function in a set of differential equations
that describe the transport of charged particles and the distribution of electrical field inside
semiconductor devices; see for example the equations in (1) and (6). The measurement that
is available is usually a linear functional of the solutions of the differential equations; see for
example (9) and (10) for the explicit definition of electric current that is measured. The ob-
jective is to reconstruct the doping function from the measurement. Those inverse problems
related to semiconductor device modeling have been studied recently in the mathematics and
computation community in recent years; see for example [3, 8, 22, 23, 28, 41, 42, 64, 65, 68].

Even though it is generally believed that the transport of charges in semiconductor de-
vices is best modelled by the Boltzmann-Poisson system of equations, in the majority of
recent research on semiconductor inverse problems, the mathematical model for charged
particles transport have been chosen as the drift-diffusion-Poisson system [8, 41, 42, 65],
a simplified model of the Boltzmann-Poisson transport system. The reason for using this
simplified model is because it is mathematically more convenient to analyze and computa-
tionally less expensive to solve. The drift-diffusion-Poisson approximation is valid in specific
situations, mainly when the device is large compared to the mean free path of the electrons
and the applied potential is weak. For devices of small size, with strong applied potential, it
has been shown that current-voltage characteristics simulated with the Boltzmann-Poisson
model and those with drift-diffusion-Poisson model can be significantly different [11]. On
the other hand, how will this difference play a role in the reconstruction is still unknown.
The main objective of this paper is exactly to study numerically reconstruction problems for
the more accurate Boltzmann-Poisson model and to characterize the difference between re-
constructions obtained with the BP model and those obtained with the DDP model. To the
best of our knowledge, the only work related to inverse doping problem in the literature that
goes beyond the drift-diffusion-Poisson model is reference [21] where the energy transport
model, another type of simplification to the Boltzmann-Poisson model, is adopted.

The rest of the paper is organized as follows. In Section 2 we introduce the Boltzmann-
Poisson model of electron transport in semiconductor devices. We also present its drift-
diffusion-Poisson approximation. In Section 3 we formulate the inverse problem mathemat-
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ically and remark briefly some basic properties of the inverse problems. We introduce in
Section 4 numerical procedures that are based on numerical minimization methods to solve
the inverse doping problem and detail some numerical issues in Section 5 on the implemen-
tation of the algorithms. Detailed numerical reconstruction results based on synthetic data
as well as some comparison between Boltzmann-Poisson reconstruction and drift-diffusion-
Poisson reconstruction are presented in Section 6. Conclusions and further remarks are
offered in Section 7.

Notations.

f probability density function (pdf)

g adjoint varaible of f

Φ electric field

Ψ adjoint variable of Φ

n electron density; n =
∫

Rd fdk

η adjoint variable of n

N doping profile

v velocity of electron

K scattering kernel

E energy band function

D diffusivity coefficient

µ mobility coefficient

ε relative dielectric constant

ε0 vacuum dielectric constant

q unit electic charge

~ Planck constant divided by 2π

kB Boltzmann constant

m∗ effective mass of electrons

Sd−1 unit sphere of Rd

T time interval (0, tmax)

Ω× Rd phase space with variables (x,k)

2 The Boltzmann-Poisson system

Let us denote by Ω ⊂ Rd (d ≥ 1) the spatial domain of interest (i.e. the device), ∂Ω its
boundary and R+ = (0, ∞) the time axis. The transport of electrons in the semiconductor
device is well modelled by the Boltzmann-Poisson system, which in semi-classical regime
can be written as

∂tf + v(k) · ∇xf +
q

~
∇xΦ · ∇kf = Q(f), in R+ × Ω× Rd

−∇x · (ε(x)∇xΦ) =
q

ε0
[N (x)− n], in R+ × Ω

(1)

where f(t,x,k) is the probability density function (pdf) of the electrons, ~ is the Planck
constant divided by 2π, and q the positive electric charge. The constant ε0 is the dielectric
constant in vacuum and the function ε(x) is the relative dielectric function. The density of

the electrons is defined as n(t,x) =

∫
Rd

f(t,x,k)dk. The function N (x) is the doping profile.

The energy band function E(k) describes the relation between energy and wavevector k so

that the velocity of the electrons in the band can be written as v =
1

~
∇kE(k). In this work,

we are interested in the so-called parabolic regime where E(k) is expressed as:

E(k) =
~2|k|2

2m∗
, in which case, v(k) =

~k

m∗

with m∗ the effective mass of the electron in the crystal lattice. Note that since v(k) is
independent of x and Φ is independent of k, the transport terms (the second and third
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term on the left-hand-side of the first equation) can be written in conservative form as

∇x · (v(k)f) +∇k · (
q

~
∇xΦf) so that the whole system is in conservative form.

We consider the case of low-density approximations so that we can have linear scattering
term. The scattering operators Q takes the form:

Q(f)(t,x,k) =

∫
Rd

[
K(k′,k)f(t,x,k′)−K(k,k′)f(t,x,k)

]
dk′, (2)

where the scattering kernel K(k,k′) denotes the space-dependent scattering rate which is
chosen to be

K(k,k′) =
∑

α∈{+,0,−}

aαδ(E(k)− E(k′) + cα~ωp), (3)

with δ denoting the usual Dirac distribution, (c+, c0, c−) = (+1, 0, −1) and ωp the constant
phonon frequency. The constants (a+, a0, a−) = ((nq+1)K, K0, nqK) with the occupation

number of phonons nq =
[

exp( ~ωp

kBT
)− 1

]−1
, and K0, K are known constants. Here kB is the

Boltzmann constant, and T is the absolute temperature. Since the energy band function E
depend only on the modulus of k, we conclude that the scattering kernel is isotropic.

To impose boundary conditions for the Boltzmann-Poisson system (1), let us first recall
the classical boundary sets of the phase space Ω× Rd, Γ±, defined as

Γ± = {(x,k) ∈ ∂Ω× Rd s.t. ± v(k) · ν(x) > 0}

with ν(x) the unit outer normal vector at x ∈ ∂Ω. We assume that the boundary ∂Ω of the
device splits into two disjoint parts ∂ΩD and ∂ΩN , ∂ΩD ∩ ∂ΩN = ∅ and ∂Ω = ∂ΩD ∪ ∂ΩN ,
where ∂ΩD models the Ohmic contacts of the device and ∂ΩN represents the insulating
parts of the boundary. We can define similarly the boundary sets ΓD± and ΓN± . We can now
introduce the following boundary conditions for the Boltzmann-Poisson system (1):

f(t,x,k) = fD(t,x,k) on R+ × ΓD− , f(t,x,k) = f(t,x,k∗) on R+ × ΓN− ,
Φ(t,x) = ϕD, on R+ × ∂ΩD, ν(x) · ε∇xΦ = 0 on R+ × ∂ΩN ,

(4)

with fD and ϕD given functions and the wave vector k∗ satisfying the condition: v(k∗) =
v(k) − 2(ν(x) · v(k))ν. This means that specular reflection happens on the insulating
boundary.

The initial condition for the Boltzmann-Poisson system is only needed for the f -component
of the system

f(t,x,k) = f0(x,k), in {0} × Ω× Rd. (5)

The initial condition of the system does not play a crucial role in the study of the inverse
problems that we are interested in. In this work, we take the initial condition to be a local
Maxwellian distribution at the lattice temperature normalized so that the initial density
n(0,x) is equal to the chosen doping profile.

The Boltzmann-Poisson system (1) is very complicated to analyze mathematically and
very expensive to solve numerically. It is thus often preferable to replace the system with
the so-called drift-diffusion-Poisson approximation. To be more precise, let us denote by

ET = kBT the thermal energy and v∗ =

√
2ET
m∗

the characteristic speed associated with ET .
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Denote by τ(k) =
( ∫

Rd

K(k,k′)dk′
)−1

the relaxation time, i.e. average time between two

successive collisions at wavevector k, then the mean free path of the electrons is defined
as l(k) = τv∗. Denote by L the characteristic length of the device and [Φ] the maximum
potential drop across the device. We can then define the nondimensionalized parameter
ε = l/L. It can then be shown that, if [Φ] is on the order of thermal voltage VT = ET/q, i.e.
[Φ] ∼ O(VT ), then in the limit of ε→ 0, i.e., when electrons undergo many collisions along
their way through the device, the electron density n and potential Φ solve the following
drift-diffusion-Poisson system:

∂tn+∇ · (−D∇xn+ µn∇xΦ) = 0, in R+ × Ω

−∇x · (ε∇xΦ) =
q

ε0
[N (x)− n], in R+ × Ω, (6)

where the coefficients D and µ are called the diffusivity and the mobility, respectively. They
can be computed using the parameters in the Boltzmann-Poisson system. To keep the flow
of the presentation, we postpone the calculation of those parameters to Section 5.2.

The boundary and initial conditions for the drift-diffusion-Poisson model that correspond
to (4) and (5) can be written, respectively, as

n(t,x) = nD(t,x) on R+ × ∂ΩD, ν · D∇xn(t,x) = 0 on R+ × ∂ΩN ,
Φ(t,x) = ϕD, on R+ × ∂ΩD, ν · ε∇xΦ = 0 on R+ × ∂ΩN ,

(7)

and
n(t,x) = n0(x), in {0} × Ω. (8)

The functions nD and n0 are the averages of the functions fD and f0, respectively, over the
k variable.

For the derivation of the drift-diffusion-Poisson models from the Boltzmann-Poisson sys-
tem, we refer interested reader to the monographs [4, 35, 44]. The scattering kernel K that
we have adopted in this paper is inelastic and thus is not symmetric with respect to the k
and k′ variable. The derivation of drift-diffusion-Poisson model for this type of kernel are
presented in [20, 45, 57] under more general circumstances.

As we have remarked above, the drift-diffusion-Poisson approximation is accurate in
many cases when the size of the device is sufficiently large (> 1 µm usually) compared to
the mean free path of the electrons, and the electric field is relatively weak (� 1 V ) inside
the device. The approximation breaks down in opposite situations. With recent advances in
nanoscale devices, there are considerable interests in going beyond the drift-diffusion-Poisson
model. That’s one of the motivation of the current study. For the applications of different
models in semiconductor modeling, we refer to [4, 7, 11, 13, 14, 15, 16, 32, 33, 44, 59, 60]
and references therein.

We remark finally that the models we consider here are called unipolar models because
we only consider the transport of electrons while neglected the transport of holes. Also,
in real device simulation, both the Boltzmann-Poisson equation system and its boundary
conditions can be more complicated than what we have presented here; see for example the
above-mentioned references and [18, 25, 33, 54].
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3 Inverse Problems

Even though the existence and uniqueness of solution to initial value problems of the non-
linear Boltzmann-Poisson system have been established in [49] in the whole space, the exis-
tence and uniqueness questions for the initial boundary value problem (1), (4) and (5), are
largely open. The only result that we know is [1] where the existence of weak solutions to
Boltzmann-Poisson system in 1×1 phase-space dimension is established with incoming data
with polynomial decay. Extensive numerical studies in the past have, however, showed that
the system, in higher dimension, does admit a unique solution with reasonable initial and
boundary data; see for example [14, 17, 18] and references therein. We thus assume here
that existence and uniqueness of solutions hold.

3.1 Full nonlinear case

We are interested in doping profiling problems with I-V data. We define the electric current
through the boundary ∂ΩD as:

I(ϕD) =

∫
B+

x

v(k) · ν(x)f |∂ΩD
dk, (9)

where B+
x is the set of wave vectors defined as B+

x = {k ∈ Rd : v(k) · ν(x) > 0}. The
corresponding current for the drift-diffusion-Poisson model is

I(ϕD) = ν(x) · (−D∇xn+ µn∇xΦ)|∂ΩD
. (10)

Note that since the current through the boundary depends on the boundary voltage applied,
we have explicitly indicated this dependence in the above definitions.

We have thus constructed a map between boundary applied voltage and boundary electric
current:

Λt : ϕD 7→ I, t ∈ T, (11)

where T = (0, tmax) is the time interval on which measurements are taken. The map is sim-
ilar to Dirichlet-to-Neumann maps in the theory of elliptic PDEs. The map Λt is nonlinear
because the Boltzmann-Poisson (resp. drift-diffusion-Poisson) system is nonlinear. The map
Λt clearly depends on the doping profile N in the Boltzmann-Poisson (resp. drift-diffusion-
Poisson). If we are provided with the doping profile and other necessary parameters for the
Boltzmann-Poisson system, then we can construct the map Λt by solving the systems for
different applied voltages. Here we are interested in the inverse problem. That is, suppose
we can measure data given in the map Λt, i.e., for each boundary applied voltage ϕD, we
can measure the boundary electric current I(ϕD), we want to recover the doping profile
function N (x) from these measurements. This doping profile reconstruction problem can
be formulated as follows.

Inverse Doping Problem (IDP). To reconstruct the doping profile function N (x) in
the Boltzmann-Poisson (resp. the drift-diffusion-Poisson) system from measured voltage-to-
current map Λt defined in (11) with current of the form (9) (resp. (10)).

6



The inverse doping problem is a highly nonlinear inverse problem because the voltage-
to-current map Λt is a nonlinear functional of the doping profile N (x). Moreover, the
forward models, either the Boltzmann-Poisson system or the drift-diffusion-Poisson system,
are nonlinear systems for given doping profiles. Due to its analytical and computational
advantages, past studies on the inverse problems have focused on the drift-diffusion-Poisson
model (6); see for example [8, 9, 21, 28]. Both time-dependent and stationary data have
been considered [8, 41, 65]. As we have pointed out, current developments in nanoscale
semiconductor devices have demonstrated that it is necessary now to use the more accurate
Boltzmann-Poisson model for device simulation [11]. The identification problems for the
Boltzmann-Poisson model, however, have not been studied to the best of our knowledge,
although inverse problems related to other linear transport models have been extensively
studied in recent years; see for example [6] for recent reviews on analytical aspect and [38,
39, 52] for numerical aspect of nonlinear inverse problems related to the transport equation.
This is the main motivation for the current study of the inverse problem.

The fact that analytical results on the inverse problem are too difficult to obtain forces
us to resort to numerical methods in this study. Our main objective is (i) to show nu-
merically that the reconstruction of the doping profile is possible when appropriate a prior
information is available and (ii) to show numerically that the reconstructions in transport
regime using the Boltzmann-Poisson system are indeed more accurate than the reconstruc-
tions with the drift-diffusion-Poisson system. The assumption we made for (ii) to be true
is that the physical process that generated the measured data is accurately modeled by the
Boltzmann-Poisson system. However, as we will show in Section 6, the reconstructions with
the Boltzmann-Poisson system is significantly slower than those with the drift-diffusion-
Poisson system.

Computationally, the nonlinear inverse doping problems are solved by reformulating
them into optimization problems. We attempt to minimize the discrepancy between model
predictions and measurements. More precisely, we look for the doping profile function N (x)
that minimizes the mismatch functional

F(N , f1, · · · , fs, · · · , fNS
) =

1

2

NS∑
s=1

∫
T

∫
∂ΩD

(
Is(ϕsD)− I∗s

)2
dσ(x)dt, (12)

where dσ denotes the surface measure on ∂ΩD. The subscript s is used to denote quantities
coming from the s-th applied voltage and NS is the total number of voltages applied. The
measurement data is denoted by I∗s . Let us emphasize here that although the function N
does not appear explicitly in the above functional (12), it does enter through the probability
densities fs (1 ≤ s ≤ Ns).

When the original inverse problem has a unique solution, the global minimizer of the
objective functional (12) is the solution to the inverse problem. The difficulty in mini-
mizing (12) lies in the fact that the functional is in general highly non-convex. There are
thus multiple minimizers. Also, the unknown to be recovered, the doping profile N , is an
infinite-dimensional object, a function of space. This means that we have to deal with a
large number of optimization variables when solving the problem numerically.

The mismatch functional we selected here is the L2 norm of difference between measure
current data and current data predicted by the Boltzmann-Poisson model. We are aware
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of the fact that when the measured data is noisy-free, L1 norm may be a more physically-
relevant norm to use. For the study initialized in this paper, we focus on the L2 case for
its computational simplicity. Detail discussions and comparison of the results with the two
different norms will be presented elsewhere.

3.2 Linearized case

The nonlinear inverse problem we have just formulated is difficult to deal with. We now
look at a simplified version of the reconstruction problem. We linearize the inverse problem
around some known background doping profile N 0 to obtain a linear inverse problem. We
assume that we know the doping profile is

N = N 0 + Ñ (13)

where Ñ is small (in appropriate norm) compared to N0. Then the solution of the system
can thus also be, formally, written as

f = f 0 + f̃ , Φ = Φ0 + Φ̃, (14)

where f 0 and Φ0 are solutions of the Boltzmann-Poisson system (1) with background dop-
ing profile N 0. This assumption is in general valid as observed from previous numerical
simulations. The solution depends on doping profile in a continuous way unless we are in
the runaway regime. It is then easy to show formally that (f̃ , Φ̃) solves, up to a high order
correction, the following equation

∂tf̃ + v(k) · ∇xf̃ +
q

~
∇xΦ̃ · ∇kf

0 +
q

~
∇xΦ0 · ∇kf̃ = Q(f̃), in T× Ω× Rd

−∇x · (ε(x)∇xΦ̃) =
q

ε0
[Ñ (x)− ñ], in T× Ω

(15)
with boundary and initial conditions given by

f̃(t,x,k) = 0 on T× ΓD− , f̃(t,x,k) = f̃(t,x,k∗) on T× ΓN− ,

Φ̃(t,x) = 0, on T× ∂ΩD, ν(x) · ε∇xΦ̃ = 0 on T× ∂ΩN ,

f̃(0,x,k) = 0, in Ω× Rd

(16)

The problem now is to reconstruct Ñ from measurement

Ĩ(ϕD) =

∫
B+

x

v(k) · ν(x)f̃ |∂ΩD
dk, (t,x) ∈ T× ∂ΩD (17)

It is easy to see that the problem is now linear because the solution f̃ of (15) (thus the
current in (17)) depends on Ñ in a linear way.

The linearized problem can be solved as follows. Let (g,Ψ) be the solution of the following
adjoint problem

−∂tg − v(k) · ∇xg −
q

~
∇xΦ0 · ∇kg = Q(g) +

q

ε0
Ψ, in T× Ω× Rd

−∇x · (ε(x)∇xΨ) = − q
~
∇kf

0 · ∇xg, in T× Ω
(18)
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with boundary and final conditions given by

g(t,x,k) = −δ(x− y), on T× ΓD+ , g(t,x,k) = 0 on T× ΓN± ,
Ψ(t,x) = 0, on T× ∂ΩD, ν(x) · ε∇xΨ = 0 on T× ∂ΩN ,
g(tmax,x,k) = 0, in Ω× Rd

(19)

It is important to note that the boundary conditions for g is now posed on ΓD+ ∪ ΓN± due to
reciprocity. Besides, the adjoint system evolves backward in time from tmax to 0, thus the
final condition is given instead of the initial condition.

One can then check, using integration by parts and the assumption that lim
|k|→∞

g(t,x,k) =

0, that ∫
Ω

( q
ε0

∫
T

Ψ(t,x; y)dt
)
Ñ (x)dx =

∫
T
Ĩ(y)dt. (20)

This is linear map between the unknown Ñ and the (time averaged) measured data. The
kernel of the map,

∫
T Ψ(t,x)dt, is known. It remains to solve (20) to reconstruct the unknown

Ñ . More details on the reconstruction procedure is presented in Section 4.3.
Let us conclude Section 3 by the following remark. The Boltzmann-Poisson system (1) is

a system of nonlinear evolution equations. The solution of the system depends the boundary
potential applied in a nonlinear way. In choosing applied potential, we have to make sure
that the solution of the problem does not blow up under this applied potential. We thus
have a small range of ϕD that we can use in practice. This fact limits the amount of data
that we can collect for the solution of the reconstruction problems.

4 Reconstruction Methods

We now present the numerical method we used to solve the inverse problems we just formu-
lated in the previous section. Our main interest is to solve the nonlinear inverse problems
by solving the following constrained minimization problem:

min
N ,f1,··· ,fs,··· ,fNS

F(N , f1, · · · , fs, · · · , fNS
) (21)

subject to, 1 ≤ s ≤ NS,

∂tfs + v(k) · ∇xfs +
q

~
∇xΦs · ∇kfs = Q(fs), in T× Ω× Rd

−∇x · (ε(x)∇xΦs) =
q

ε0
[N (x)− ns], in T× Ω

(22)

fs(t,x,k) = fD(t,x,k) on T× ΓD− , fs(t,x,k) = fs(t,x,k
∗) on T× ΓN− ,

Φs(t,x) = ϕsD, on T× ∂ΩD, ν(x) · ε∇xΦs = 0 on T× ∂ΩN ,
fs(0,x,k) = f0(x,k), in Ω× Rd.

(23)

where ϕsD is the s-th applied potential while the incoming electron flux fD is fixed for all
cases.
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4.1 Quasi-Newton method

There are many ways to solve this PDE-constrained minimization problem. For example, one
can adopt the method of Lagrange multipliers such as those in [2, 29]. Here we solve the prob-
lem by transforming it into an unconstrained problem. The procedure is as follows. We elim-
inate the constraints by first solving the Boltzmann-Poisson system to obtain the relations
fs = fs(N ), 1 ≤ s ≤ NS. We then put these relations into the objective functional so that
the mismatch is now only functional of N , F̃(N ) = F(N , f1(N ), · · · , fs(N ), · · · , fNS

(N )).
We thus just need to minimize F̃(N ) to obtain the solution of the inverse problem.

The minimization problem is solved by a quasi-Newton method. The method requires
the computation of the gradient of the objective function with respective to the unknown
N . This is done by the adjoint state method. As before, we denote by (gs,Ψs) the adjoint
variables corresponding to (fs,Φs), that solve the adjoint equations, 1 ≤ s ≤ NS:

−∂tgs − v(k) · ∇xgs −
q

~
∇xΦs · ∇kgs = Q(gs) +

q

ε0
Ψs, in T× Ω× Rd

−∇x · (ε(x)∇xΨs) = − q
~
∇kfs · ∇xgs, in T× Ω

(24)

with boundary and final conditions given by

gs(t,x,k) = −v(k) · ν(x)(Is − I∗s ), on T× ΓD+ , gs(t,x,k) = 0 on T× ΓN± ,
Ψs(t,x) = 0, on T× ∂ΩD, ν(x) · ε∇xΨs = 0 on T× ∂ΩN ,
gs(tmax,x,k) = 0, in Ω× Rd

(25)
Here in the adjoint equation (24), the variables fs and Φs are solutions of the Boltzmann-
Poisson system with the s-th applied potential. Note that the solution of the s-th adjoint
problem depends only on the solution of the s-th forward problem, not the other NS − 1
forward problems. We can then show that the Fréchet derivative of the objective function
F̃(N ) with respect to N , when applied to perturbation h, can be written as

F̃ ′(N )h =
q

ε0

NS∑
s=1

∫
Ω

( ∫
T

Ψs(t,x)dt
)
h(x)dx. (26)

The same procedure can be employed to calculate the gradient of the objective functional
with respect to the doping profile in the drift-diffusion-Poisson formulation. In this case,
the adjoint problems read, still denoting by (ηs,Ψs) the adjoint variables, 1 ≤ s ≤ NS,

−∂tηs −∇ · D∇xηs − µ∇xΦs · ∇ηs =
q

ε0
Ψs, in T× Ω

−∇x · (ε∇xΨs) = ∇x · µns∇xηs, in T× Ω.
(27)

with the boundary and final conditions

ηs(t,x) = −(Is − I∗s ) on T× ∂ΩD, ν · ∇ηs(t,x) = 0 on T× ∂ΩN ,
Ψs(t,x) = 0, on T× ∂ΩD, ν · ε∇xΨs = 0 on T× ∂ΩN ,
ηs(tmax,x) = 0, on Ω.

(28)
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The Fréchet derivative of the objective functional takes the same form as in (26), except
that the Ψs (1 ≤ s ≤ NS) is now the solution of the drift-diffusion-Poisson system with
applied potential ϕsD.

Once we are able to compute the gradient of the objective functional with respect to the
change of the unknowns, we use the quasi-Newton method with BFGS rule to update the
Hessian operator. The method is classical so we would not present the details here but refer
interested reader to [52, 53] for the application of the method in other inverse transport
calculations.

4.2 Iterative quasi-Newton method

In the quasi-Newton method we just described, we linearize the inverse problem at each
Newton iteration. The forward model we have to deal with is the nonlinear Boltzmann-
Poisson system. We now propose a slightly different scheme for the reconstruction. The
method is based on the observation that the measurement is taken on only the f -component
of the system. We observe that if we linearize the forward problem by fixing the density in the
Poisson equation, we reduce the reconstruction problem to an inverse coefficient problem,
still nonlinear though, for the linearized transport equation. The method starts with an
initial guess N 0. To obtain initial guesses for the density functions, we solve the following
linearized problem, 1 ≤ s ≤ NS,

∂tfs + v(k) · ∇xfs +
q

~
∇xΦ · ∇kfs = Q(fs), in T× Ω× Rd

−∇x · (ε(x)∇xΦ) =
q

ε0
N 0, in T× Ω

(29)

using the same boundary and initial conditions as those in the original nonlinear problem,
i.e., (23). Compared to the original Boltzmann-Poisson system, the nonlinear coupling
between the two equations in the system now becomes linear because we dropped the term
ns in the Poisson equation. The reconstruction procedure then proceeds as follows. At
iteration k, we solve the inverse problem with measured data using the following linearized
model to find (N k, {fks }

NS
s=1)

min
N ,f1,··· ,fs,··· ,fNS

F(N , f1, · · · , fs, · · · , fNS
) (30)

subject to, 1 ≤ s ≤ NS,

∂tfs + v(k) · ∇xfs +
q

~
∇xΦs · ∇kfs = Q(fs), in T× Ω× Rd

−∇x · (ε(x)∇xΦs) =
q

ε0
[N (x)− nk−1

s ], in T× Ω
(31)

with again the same initial and boundary conditions as in (23). System (31) is linear because
the electron density in the Poisson equation is now replaced with its value from the previous
iteration step. The iteration continues until it converges. The advantage of this iteration
is that we only need to deal with linear forward problems at each iteration. However, this
fixed point type of iteration converges slower (in terms of number of iterations) in general
than Newton type of iteration.
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In each iteration, we need to solve the minimization problem (30). We can then use the
quasi-Newton method that we presented in the previous section. To compute the Fréchet
derivatives of the objective functional with respect to the unknown for this minimization
problem, we can adopt the same strategy of adjoint equations. It turns out that the adjoint
problems are almost identical to the adjoint problems in (24) and (25). To save spaces, we
do not present those equations here.

4.3 Linearized reconstruction

To solve the linearized inverse problem, we first solve the Boltzmann-Poisson system with
background doping profile N 0 to get f 0 and Φ0. We then put (f 0, Φ0) in the adjoint
equation (18) and solve the equation to obtain Ψ. We have thus constructed the kernel
of the integral equation (20). It remains to solve this integral equation to reconstruct the
perturbation Ñ .

Let us assume that we discretize Ñ on a spatial mesh of NΩ nodes. Then, after collect-
ing the discretization for all NS applied potentials, we obtain a linear system of algebraic
equation of the form

AÑ = Z, (32)

with the matrix A and the column vector Z of the form

A = [AT
1 , · · · ,AT

NS
]T Z = [ZT

1 , · · · ,ZT
NS

]T, (33)

with As and Zs the discretization of the integral and the measurement, respectively and the
superscript T denoting the transpose of a quantity. The Ñ now denotes the column vector
that contains the value of the function Ñ on the mesh nodes.

It remains to solve (32) in regularized least-square sense to obtain Ñ . We employ here
the Tikhonov regularization so that Ñ can be found as the solution to

min
Ñ

1

2
‖AÑ − Z‖2

2 +
β

2
‖Ñ ‖2

2, (34)

with β been the strength of the regularization. The minimizer of (34) is the solution of the
normal equation

(ATA+ β Id)Ñ = ATZ, (35)

Id being the identity matrix of size NΩ ×NΩ, that is

Ñ = (ATA+ β Id)−1ATZ. (36)

In principle, when the number of unknowns (discretized optical properties or sources) is
large, the inverse matrix (ATA + β Id)−1 is usually not formed directly. Instead, iterative
methods are used to solve (35). For the study in this work, we will introduce in Section 5.3
a parameterization scheme to reduce the number of unknowns in this problem so that the
matrix (ATA+ β Id)−1 can indeed be formed.
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5 Implementation Issues

The reconstruction strategies that we have presented have to be realized with computation.
We present here very briefly some issues related to the implementations, including the dis-
cretization of the Boltzmann-Poisson system using the discontinuous Galerkin method and
the parameterization of the unknown doping profile function to reduce the ill-posedness of
the inverse problem.

5.1 Numerical discretization

We have seen that in each Newton iteration of the reconstruction algorithms, we need to
solve numerically the Boltzmann-Poisson system (1) and the adjoint problem (6) repeatedly
over different applied potentials.

One of the difficulties associated with the numerical solution of the Boltzmann-Poisson
system is that the kernel K(k,k′) of the scattering operator is the summation of three
delta functions. To deal with this, we first notice that K depend only on the modulus |k|
and |k′|. This allows us to integrate out the delta functions in the scattering kernel by
passing the scattering integral to the spherical coordinate, using dk′ = |k′|d−1d|k′|dk̂′ with
k̂′ = k′/|k′| ∈ Sd−1, to obtain

Q+(f) =

∫
Rd

∑
α∈{+,0,−}

aαδ(E(|k′|)− E(|k|) + cα~ωp)f(t,x, |k′|k̂′)|k′|d−1d|k′|dk̂′ (37)

=
∑

α∈{+,0,−}

aα
2

(
~2

2m∗
)−1
(
|k|2 − c̃α

) d−2
2

∫
Sd−1

f(t,x,
√
|k|2 − c̃αk̂′)dk̂′ (38)

and

Q−(f) =
∑

α∈{+,0,−}

Adaα
2

(
~2

2m∗
)−1
(
|k|2 + c̃α

) d−2
2 f(t,x, |k|k̂), (39)

where we have used the decomposition Rd = R+ × Sd−1 with Sd−1 the unit sphere in Rd

and Ad =
2πd/2

Γ(d/2)
the surface area of Sd−1, Γ being the usual Gamma function. The new

constants c̃α = (
~2

2m∗
)−1cα~ωp.

We now non-dimensionalize the Boltzmann-Poisson system using the scaling introduced
in [12, 43]. We take the lattice temperature T = 300 K and introduce the following charac-
teristic quantities: length l∗ = 10−6 m, time t∗ = 10−12 s, density n∗ = max

x
N and potential

Φ∗ = VT V , VT being the thermal voltage. The thermal energy ET induces a characteristic

speed v∗ =

√
2ET
m∗

which then induces a characteristic wavenumber k∗ =

√
2m∗kBT

~
. We

can now introduce non-dimensionalized quantities by the following change of variables

x→ l∗x, t→ t∗t, Φ→ Φ∗Φ, k→ k∗k, f → n∗f. (40)
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and the rescaled Boltzmann-Poisson system reads,

∂tf +∇x · (ϑ1|k|k̂f) +∇k ·
(
ϑ2∇xΦf

)
= Q∗(f),

−∇x · (λ2(x)∇xΦ) = N (x)− n, (41)

where the nondimensionalized parameters are defined as ϑ1 =
~k∗t∗
l∗m∗

, ϑ2 =
qΦ∗t∗
~l∗k∗

, and

λ =
1

l∗

√
ε0εΦ∗
qn∗

is the local rescaled Debye length. The scattering operator now reads,

Q∗(f) =
∑

α∈{+,0,−}

M+
α

∫
Sd−1

f(t,x, k∗
√
|k|2 − c̃αk̂′)dk̂′ − AdM−

αf(t,x, k∗|k|k̂),

with the constants M±
α = t∗

aα
2

(
~2

2m∗
)−1(k2

∗|k|2 ± c̃α
) d−2

2 .

The rescaled Boltzmann-Poisson system (41) is intentionally written in conservative form
so that it can be easily passed to a discontinuous Galerkin discretization strategy. In our
implementation, we focus on the three-dimensional case (d = 3) so that we can parameterize
the direction variable k̂ by, with the abuse of the notations µ and ϕ,

k̂ = (µ,
√

1− µ2 cosϕ,
√

1− µ2 sinϕ). (42)

Here µ is the cosine of the polar angle and ϕ is the azimuth angle. The divergence op-
erator ∇k· is now replaced with its equivalence in the spherical coordinate. To simplify
the numerical computation, we also assume that the system we have is invariant in the
z−direction so that the ∇x = (∂x, ∂y, 0). We refer to [18] for details on the discretization of
the Boltzmann-Poisson system with the discontinuous Galerkin scheme and some forward
simulation results [18].

To discretize the adjoint problems, we employ the same strategy. Since the adjoint
problems are backward evolution equations, i.e., final value problems, we first perform a
change of variable t → tmax − t to change the adjoint problems into usual initial value
problems. For example, the adjoint problem in (24) is transformed to

∂tg − v(k) · ∇xg −
q

~
∇xΦ0 · ∇kg = Q(g) +

q

ε0
Ψ, in T× Ω× Rd

−∇x · (ε(x)∇xΨ) = − q
~
∇kf

0 · ∇xg, in T× Ω
(43)

with initial condition g(0,x,k) = 0 and same boundary conditions as in (25). We then fol-
lowing the same procedure as we have described above and discretize using the discontinuous
Galerkin method.

5.2 Diffusivity and mobility coefficients

We recall briefly here how the two coefficients are calculated. We first notices that because
the two constants a+ and a− are different in (3), the scattering kernel adopted in this paper,
K, is not symmetric in the sense that K(k,k′) 6= K(k′,k). This means that the microscopic
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scattering process is not reversible. The classical ways to derive drift-diffusion-Poisson model
from Boltzmann-Poisson model (1), such as those presented in [4, 35, 44] have to be modified
to take into account this irreversibility effect. Following the presentation in [20, 45] but
noticing that our scattering kernel is independent of the spatial variable x, let us denote by
F (k) a function in the kernel of the scattering operator

Q(F ) = 0, normalized in the sense that,

∫
Rd

F (k)dk = 1. (44)

We also introduce a vector function ξ(k) that solves

Q(ξ) = v(k)F (k), normalized in the sense that,

∫
Rd

ξ(k)dk = 0. (45)

Then the diffusivity and mobility coefficients are defined as

D Id =

∫
Rd

v(k)F (k)dk, and − µ Id =

∫
Rd

v(k)⊗ ξ(k)dk, (46)

respectively, where Id denotes the identity matrix in dimension Rd. Note that in general,
we would obtain anisotropic diffusion and mobility tensor. Here due to the fact that the
scattering kernel (3) is isotropic, we obtain isotropic diffusion and mobility coefficients.

Due to the normalization conditions, solutions to (44) and (45) are unique. We can then
solve the two integral equations with the same numerical discretization that we just men-
tioned in Section 5.1. We then use (46) to obtain the diffusivity and the mobility coefficients.
Later on, we will compare numerical reconstruction results based on the Boltzmann-Poisson
model with those based on the drift-diffusion-Poisson model. For the comparison to make
sense, the coefficients in the two models have to be calculated from the same set of material
parameters. That is the main reason for us formalize the computation of those coefficients
in such a way.

5.3 Regularization by parameterization

To reduce the ill-posedness of the inverse problems, we have to regularize the problem.
Classical regularization strategy for numerical solution of inverse problems is to add a
regularization term in the objective functional (12). Tikhonov and total variation (TV)
regularization are two strategies that are mostly used in the past in inverse transport calcu-
lations [26, 27, 52]. In this work, we impose regularization by parameterizing the unknowns
with a small number of coefficients. We then attempt to reconstruct these coefficients. We
consider mainly two type of settings.

In the first setting, we consider the reconstruction of smooth doping profiles. We use the
method of Fourier coefficients. For example, in a two-dimensional rectangular domain, we
decompose the unknown function into Fourier modes as

N (x) ≈
∑
ζ∈M

cζe
−i2πζ·x, (47)
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with c−ζ = cζ to ensure that N (x) is real. Here ζ = ( ζx
Lx
, ζy

Ly
)t, with (ζx, ζy) ∈ M =

[−Mx Mx] × [−My My], and Lx and Ly the size of the domain in x- and y- direction
respectively. Mx and My are the numbers of Fourier modes to be reconstructed in x- and y-
directions. To compute the gradients of the objective function with respective to {cζ}ζ∈M,
we use the chain rule. Because the gradient with respect to N is already computed using
the adjoint method in (26), we just need to compute the gradients of N (x) with respect to
{cζ}ζ∈M. These gradients are given analytically by {cos 2πζ · x}ζ∈M.

In the second setting, we consider the reconstruction of discontinuous doping profiles.
Here we only need to reconstruct the interface of the discontinuity (which is a co-dimension
one object) and the values of the doping profile, sayN i andN o, in the regions on both sides of
the interface. We regard the interface as the intersection of the domain with a closed curve Σ,
centered at the origin and parameterized as Σ = {x : x = (r cos θ, r sin θ), r defined in (48)},

r(θ) =
∑
k∈M

cke
−i2πkθ, (48)

where M = [−M M ] and again c−k = ck. The doping profile in this case can be written as

N (x) =

{
N i, x ∈ ΩI

N o, x ∈ Ωo (49)

where ΩI and Ωo = Ω\ΩI denote the regions of the device that are enclosed inside and
outside Σ, respectively. The gradient of N with respect to {ck}k∈M can then be computed
following the strategy in [55]. Using the fact that the outer normal direction at (r, θ) is

(dr/dθ
r

sin θ + cos θ,−dr/dθ
r

cos θ + sin θ)T, we obtain, k ∈M,

dN
dck

(x) =

{
(N i −N o) cos 2πkθ, x ∈ Σ

0, x /∈ Σ.
(50)

The above parameterization schemes have also been used in other inverse transport
problems in slightly different settings [5]. The parameterization introduces a regularization
mechanism for the inverse problem. More precisely, the number of unknowns |M|, |M| =
MxMy + 1 in (47) and |M| = M + 1 in (48), play the role of the regularization parameter:
large |M| corresponds to weak regularization strength while small |M| corresponds to strong
regularization. Even though Tikhonov and TV regularization can be used respectively when
reconstructing smooth and discontinuous doping profiles, the parameterization schemes here
provide alternatives that can reduce the size of the space where the optimal doping profiles
are searched from, and thus reduce some computational cost.

5.4 Generating synthetic measurements

We will present in next section some numerical simulation with synthetic measurement data
to demonstrate the performance of the reconstruction methods. By synthetic measurement
data, we mean data that are generated by the Boltzmann-Poisson system (1) with the true
doping profile. To avoid “inverse crimes”, referring to the trivial inversion of linear systems,
we generate all measurements using the forward solver with finer mesh than the mesh we
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used for the inverse problems. We have also generated data with a different code that is
based on first order finite volume method we adapted from the discretization presented
in [53]. In that finite volume discretization, we also use the Gummel iteration for the
alternation between the Boltzmann equation and the Poisson equation. The mesh used in
the finite volume discretization is triangular instead of the rectangular ones that are used
in the discontinuous Galerkin discretization we described above. Either way, the synthetic
“measurement” created this way contains discretization noise already. The noise level is
roughly 1% ∼ 2% according to our estimation. For the reconstructions with the drift-
diffusion-Poisson model, the “measurement” data are also generated with the Boltzmann-
Poisson model. In other words, we are assuming that the Boltzmann-Poisson model is the
correct model for charge transport in semiconductor devices. Our conclusion on transport
and diffusion comparison in Section 6 is thus based on such an assumption.

We will also present numerical results with stationary (i.e. time-independent) measured
data. To generate stationary data, we run the model until the system has reach its equilib-
rium state. We understand that this might not be the best method to solve the stationary
problem. However, it is very convenient for us since we have time-dependent code that
works very well. Besides, the relaxation time from initial state to stationary state is not
notoriously long in our simulation. So it is convenient for us to use the current code that
we have benchmarked.

6 Numerical Examples

We now present some numerical simulations with synthetic measurement data. To reduce
computational costs of the study, we consider quasi two-dimensional settings only. The
spatial domain of interest the rectangular cylinder Ω×R = (0, 2)× (0, 1)×R with the unit
of length 400 nm. We assume the problem is invariant in z- direction so that we only need
to solve the problem in the cross-section Ω. The velocity space is still three-dimensional
though.

We cover the spatial domain with a uniform rectangular grid system of 81×41 nodes.The
velocity space, after being parameterized (and rescaled) using (|k|, µ, ϕ) is also covered with
a uniform rectangular grid. Note that because |k| can take values in (0, ∞), we need to
truncate to get a finite of interval. This is done by a sophisticated searching process. We
refer to [18] for more details in this aspect.

The measurements are taken on the boundary of Ω. The Dirichlet and Neumann parts of
the boundary vary case by case and will be detailed below. We consider mainly three different
categories of doping profile configurations: smooth functions, piecewise constant functions
and specially arranged channel structures. Specific parameters used will be provided below
in different cases. We emphasize here that to avoid oscillatory behavior in solutions of the
BP and DDP models, we always regularize a little bit the doping profile near the jumps.
The general settings for the geometry and the doping profiles are depicted in Fig. 1 where
n+ denotes the regions that are highly doped. The unit of the doping density is 1016 cm−1

in all of the following simulations. There are a total number of NS = 20 boundary applied
potentials used. For practical reasons, we limited the applied potential ϕD on each part
of the boundary to be multiples of hat functions centered at the middle of the part of the
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Figure 1: Domain and typical doping profiles in the numerical simulations. From left to
right are continuous doping profile, piecewise constant doping profile and the doping profile
that forms a n+ − n− n+ channel.

boundary. The multiplication constant is in the range [0.5 2.0] V . The reconstruction, unless
specified, are done with time-dependent data in the time interval (0, 3) picoseconds.

6.1 Recovering smooth doping profiles

We start with the reconstructions of smooth doping profiles. By smooth, we simply mean
regular enough. Even though smooth doping profile is of less interest in many literature
on semiconductor modeling, reconstruction of those profiles can indeed help us to test the
validity of the reconstruction algorithms. The reconstructions are done by parameterizing
the unknown profile by Fourier coefficients as in (47) and only reconstructing the first 15×15
Fourier modes (Mx = My = 15 in (47)). We performed reconstructions on two profiles. They
are, respectively,

N 1(x) = 10 + 3 exp(−
( x
Lx
− 1)2 + ( y

Ly
− 0.5)2

0.05
) and N 2(x) = 10 + 2 sin(

2π(x+ 0.15Lx)

Lx
).

(51)
where Lx = 2 and Ly = 1. The maximum value of N 1 is N 1

max = 13 units and the minimum
value is N 1

min ≈ 10 units. The maximum value of N 2 is N 2
max = 12 units and the minimum

value is N 2
min = 8 units. The shifting factor 0.15Lx is intentionally presented to make sure

that the doping profile has more than a single non-zero Fourier modes in the domain.
We show in Fig. 2 and Fig. 3 the reconstruction results with measurements collected

on the whole boundary of the domain. We observe that in this setting, the reconstructions
are very accurate when the data used contain no random noise; see Fig. 2. The relative L2

error, defined as L2 norm of the difference between true profile and reconstructed profile
over L2 norm of the true doping profile, in the reconstructions are 2.2% for N 1 and 2.4%
for N 2. When the data used contain a moderate amount of noise, the reconstructions of the
low Fourier modes are still relatively accurate but higher Fourier modes start to deviate;
see Fig. 3. The relative error in the reconstructions are 5.8% for N 1 and 5.7% for N 2

respectively.
To study the reconstruction with less data, we repeat the simulations in Fig. 2 with

measurements taken only on the top and bottom parts of the boundary. The results are
presented in Fig. 4. The quality of the reconstructions are not as high as the previous cases
with full boundary measurements. However, the reconstructions are still reasonably accu-
rate, with relative errors 5.6% for N 1 and 7.8% for N 2 when noise-free data are used. When
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Figure 2: The reconstructions of the two continuous doping profiles N 1 and N 2(x) with full
boundary measurements. Top row: reconstructed profiles with noise-free data; Bottom row:
difference between reconstructed profiles and true profiles.

noisy data with 5% noise is used, the quality of the reconstructions degenerate significantly.
Typical relative errors that are around 11%∼13%. However, in special cases when the real-
ization of the noise is very non-typical, the relative errors in the reconstruction can be very
large. For example, in the reconstructions presented in Fig. 5, the relative errors are 18.7%
for N 1 and 21.3% for N 2 respectively.

6.2 Recovering discontinuous doping profiles

We now investigate the reconstruction of discontinuous doping profiles with full and partial
boundary measurements. We emphasize here again that, to avoid highly oscillatory solutions
of the Boltzmann-Poisson system, we regularize the doping profiles across the discontinuities
to make the transition smooth. The regularization is weak so that the gradient of the doping
profiles is still very large in the transition region that overall the doping function looks like
a piecewise continuous function.

In the first numerical test here, we assume that the values of the doping profile is known
on both sides of the discontinuity. We thus only need to reconstruct the interface of the
discontinuity. We present in Fig. 6 two typical reconstructions with measurements on the
whole boundary. The relative errors, in this case computed as the relative L2 norm of the
curve that form the interface, are 1.6% and 1.8% respectively with noise-free data while
2.7% and 2.9% respectively with noisy data contain 5% random noise. The same numerical
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Figure 3: Same as Fig. 2 except that the reconstructions are done with a typical realization
of noisy data containing 5% random noise.

test is then repeated with measured data only on the top and bottom boundaries. The
result is presented in Fig. 7. We observe by comparing results in Fig. 6 and Fig. 7 that
the reconstruction is very stable when the measurement is everywhere on the boundary.
Otherwise, the reconstruction is very sensitive to the noise in data; as we can see from the
plots in Fig. 7. Keep in mind that this result is obtained in the case where only the interface
of discontinuity is to be reconstructed.

Two more numerical simulations are presented in Fig. 8 where both the interface of
discontinuity and the values of the doping profile on both sides of the interface reconstructed
simultaneously. The reconstructions of the boundaries look very similar to those in Fig. 7,
with quality that is a little bit lower. The values of the constant profiles are reconstructed
relatively accurately in the two cases also. The true doping values for the n+ and n regions
are (N 1,i, N 1,o) = (11.0, 9.0) for both cases in Fig. 8 and the reconstructed values (when
noise-free data are used) are (N 1,i, N 1,o) = (10.8, 9.1) and (N 1,i, N 1,o) = (10.9, 9.2)
respectively for the two configurations. Note that the reconstructed total doping, the product
of the area of the region multiplied by the value inside the region is recovered almost exactly.
This indicates that the reconstruction process preserve the first moment of the profile, which
is important in practice.

The above numerical experiments show that the reconstruction of discontinuous doping
profile can be achieved with reasonable accuracy if we parameterize the unknown appropri-
ately as in Section 5.3 and measure the data with little noise. When full measurements are
available, our numerical experience shows that we can reconstruct the profile very stably.
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Figure 4: The reconstructions of the two continuous doping profiles N 1 and N 2 with mea-
surements only on the top and bottom parts of the boundary. Top row: reconstructed
profiles with noise-free data; Bottom row: difference between reconstructed profiles and
true profiles.

6.3 Drift-diffusion versus Boltzmann

We have seen that the reconstructions based on the Boltzmann-Poisson model are relatively
accurate in many cases. We now compare reconstructions based on the BP model and the
reconstructions based on DDP model. The idea is to view the BP model as the “right” model
for electron transport in semiconductor device and treat the DDP model as an approximation
to it (and thus less accurate). There have been numerical simulations showing that the two
models can generate results that are significantly different. However, it is not clear so
far how this difference will have effect on the reconstruction results. This motivates the
comparison. The measurements used in the following simulations are all generated using
the Boltzmann-Poisson system.

We present two sets of comparisons in Fig. 9: the reconstructions with full boundary
measurements and the reconstructions with partial boundary measurements. It is clear from
the top-left plot of Fig. 9 that there are significant difference between the reconstructions
and the BP-based reconstruction is closer to the true interface. The difference disappear
when we the noise in the measurement is high enough; see the top-right plot in Fig. 9.
Similar results are observed when we have only partial measurements, though in this case
the difference between the reconstructions are smaller even when noise-free data are used.

It is well-known that when the doping is strong in a small region of the device and
the applied potential is very strong, the DDP model fails significantly to approximate the

21



0
10

20
30

40
50

0
20

40
60

80
100

11

11.5

12

12.5

13

13.5

14

14.5

15

0
10

20
30

40
50

0
20

40
60

80
100

9

10

11

12

13

14

0
10

20
30

40
50

0

50

100
1.85

1.9

1.95

2

0
10

20
30

40
50

0

50

100
1.1

1.2

1.3

1.4

1.5

Figure 5: Same as Fig. 4 except that the reconstructions are done with a realization of noisy
data containing 5% random noise. The noise presented in the data set is chosen specially
with non-zero mean.

transport phenomenon. To see how this fact is reflected on the reconstructions, we now
compare the reconstructions in this setting. As before, we avoid oscillation of the solutions
to the DDP and BP models, we regularize the doping profile slightly to get a smooth
transition. The reconstructions are shown in Fig. 10. In all the reconstructions, we assume
the profile is translational invariant along x-direction so that we need only to reconstruct the
distribution in y-direction. Thus the data measured along x-direction is averaged to get the
data for the one-dimensional problem. Same as in Section 5.3, we parameterize the profile
with Fourier modes (since the profile is regularized), so that we need only to reconstruct a
few Fourier coefficients. The profiles are then constructed by summation of all reconstructed
Fourier modes.

6.4 Reconstructions with stationary data

In the last set of numerical experiments, we present some reconstructions with stationary
data based on the Boltzmann-Poisson model. Stationary data have been used in most of the
previous studies on the subject of recovering doping profiles. It is well-known that stationary
data contains much less information than time-dependent data. So we can expect that the
reconstructions with stationary data is less accurate than those with time-dependent data
that we just presented.

We first consider the reconstruction of the two doping profiles in (51) with noise-free sta-
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Figure 6: Two typical reconstructions of jump interfaces of piecewise constant doping profiles
with measurements on the whole boundary. Plotted are real jump interface (black solid),
reconstruction with noise-free data (red dashed) and reconstruction with data containing
5% random noise (blue dotted).

tionary data. We show the reconstructions with data on the whole boundary of the domain
in Fig. 11. The relative errors in the two reconstructions are 9.7% and 8.9%, respectively,
larger than those in the results of Fig. 2. We observe from our numerical experiments that
when noise data are used, or when data only on part of the boundary are used, the difference
between time-dependent and stationary reconstructions is even larger. This concludes that
stationary data indeed give less accurate reconstructions when we attempt to reconstruct
continuous doping profiles.

We observe also slightly less accurate reconstructions when we recover discontinuous
doping profiles. In Fig. 12, we present the several reconstructions of interfaces of disconti-
nuity with stationary data. We see that in both the case when data are measured on the
whole boundary and the case when data are measured only on the top and bottom parts of
the boundary, the reconstructions are not as accurate as those done with stationary data as
presented in the previous sections. More specifically, the relative errors computed in the left
plots of Fig. 12 are 6.7% (noise-free data) and 7.9% (noisy data) when measurements on the
whole boundary are available and 7.4% (noise-free data) and 8.8% (noisy data) when only
measurements on the top and bottom boundary are available. The numbers for the right
plots in Fig. 12 are very similar.

6.5 Computational costs

The numerical simulations we presented above are computationally very expensive. This is
due to two facts: the forward and inverse problems are nonlinear, and the Boltzmann-Poisson
system is posed in phase space of very high dimensions. In the time-dependent simulations
in this section, we have six-dimensional problems (two dimensions in space, three dimensions
in velocity and one dimension in time). Typical simulations of the forward problem takes
about 30 ∼ 60 minutes on a Dell OptiPlex XE desktop with Pentium Dual Core (E5300)
Processors. Simulations in this work are done on several machines simultaneously. Each
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Figure 7: Same as in Fig. 6 except that the reconstructions are now performed with measured
data only on the top and bottom parts of the boundary.

reconstruction with the BP model takes 2 ∼ 4 days, depending on the exact configuration
of the problem. In practical applications, the computational speed has to be significantly
accelerated (for example, by using efficient parallel computation techniques). For this proof-
of-concept type of research, our focus is not on the computational efficiency at the moment.

The quasi-Newton iteration scheme converges usually in about 15 ∼ 20 iterations to
achieve an relative residual of 10−8. The iterative quasi-Newton scheme converges slower,
usually in about 120 iterations to achieve the same relative residual. However, in the iterative
quasi-Newton scheme, the forward problems we solve in each iteration is the linearized
Boltzmann-Poisson system which is computationally cheaper, so the overall computational
cost for the two reconstruction algorithm remains roughly the same (within 20% difference
for all the simulations that we have performed).

The reconstructions with the drift-diffusion-Poisson model are significantly faster com-
pared with those with the Boltzmann-Poisson model. For the simulations we have performed,
we observe a consistent ∼ 150 times reduction of computational cost when we keep the sim-
ulations parameters similar between the two models. The difference comes mainly from
the forward solver since we observe that the quasi-Newton iteration converges after approxi-
mately the same number of iterations for the two models (so does the iterative quasi-Newton
scheme). The exact amount of computational times saved might be different when a differ-
ent discretization strategy is employed for the forward models. We did not investigate in
detail in this direction.

7 Conclusions and Remarks

We studied an inverse problem related to the Boltzmann-Poisson system of equations for
transport of electrons in semiconductor devices. We presented linear reconstructions algo-
rithms as well as nonlinear algorithms of Newton type to recover numerically the doping
profile function from measurements of device characteristics, that is the voltage-to-current
map. To reduce the degree of ill-posedness of the inverse problem, we proposed to parame-
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Figure 8: Reconstructions of jump interfaces of piecewise constant doping profiles with
measurements on the top and bottom boundary. Plotted are real jump interface (black solid),
reconstruction with noise-free data (red dashed) and reconstruction with data containing 5%
random noise (blue dotted).

terize the unknown doping profile function to reduce the number of unknowns in the inverse
problem. We showed by numerical examples that the reconstruction of a few low moments of
the doping profile is possible when accurate measurements are available. We have discussed
the reconstruction of both piecewise constant and more smooth doping profiles.

We have compared the reconstruction with the reconstructions based on the drift-diffusion
model. In the settings that we are interested, the two reconstructions are sufficiently differ-
ent. However, as the size of the device getting larger and larger, or the noise level in the data
getting higher and higher, the differences in the reconstructions are indistinguishable. The
reconstruction with the transport model is significantly slower than reconstructions with the
drift-diffusion-Poisson model. In general, hundreds of forward and adjoint models need to
be solved before the reconstruction algorithms converge.

One may argue that the reconstructions based the drift-diffusion-Poisson equation can
be improved if we also look for the best diffusion and mobility coefficients that match the
measured data. We intentionally avoid such a scenario because the reconstruction problem
become overwhelmingly complicated in that scenario. It is highly possible that the problem
of reconstructingD(x), µ(x) andN (x) simultaneously has no unique solution at all even with
full time-dependent boundary measurements. Even if there is uniqueness, the reconstruction
must be extremely unstable as we have seen from this paper that the reconstruction of one
unknown N (x) is already very ill-posed. We acknowledge, however, that the diffusivity
and mobility parameters can indeed be fitted from experimental data under much simplified
setting; see for example the discussion in [10, 51, 56].

To deal with the ill-posedness of the inverse problem, we parameterized the doping profile
to reduce the number of unknowns to be reconstructed. The number of modes kept in the
parameterization, say |M|, can be viewed as the regularization parameter. When 1/|M| is
large, we have a small number of unknown to be reconstructed. The problem is strongly
regularized in this case. On the other hand, when 1/|M| is small, the problem is less
strongly regularized. The classical regularization strategy, such as the Tikhonov and the
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Figure 9: Comparison of reconstructions with Boltzmann-Poisson model (red dashed) and
those with drift-diffusion-Poisson model (blue dotted) with the true profiles (black solid).
Top row: measurements on whole boundary; Bottom row: measurement only on top and
bottom parts of the boundary. Left: noise-free data; Right: data with 5% noise.

total variation regularizations can also be adopted in our computation. Detail comparison
between various regularization strategies in the settings of smooth and discontinuous doping
profiles are currently under investigation.

The mismatch term in the objective functional (12) can be replaced by the L1 norm of the
difference between model prediction and measurement. The resulted minimization problem,
however, has to be solved using methods that are different from what is presented in this
paper. Also, the norm used in the mismatch term and the one used in the regularization
term need not be the same. For example, one can minimize (12) with L1 in the first term
and L2 (Tikhonov) in the regularization term as we was proposed in [26, 27]. How would
the combinations of different norms affect the results of the doping reconstruction is a topic
deserves further investigation.

The Boltzmann-Poisson model we employed in this study is a simplified version of the
full Boltzmann-Poisson system for semiconductor device that include another Boltzmann
equation for transport of holes. Furthermore, the two Boltzmann equations are coupled
through recombination and generation of electron-hole pairs. Further study with full model
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Figure 10: Reconstruction of two doping profiles that display channel effect. Top: the
channel is 0.08 unit in width; Bottom: the channel is 0.4 unit in width; Left: reconstructions
with noise-free data. Right: Reconstructions with noisy data of 5% noise.

will be discussed in the future. Although the full system is more complicated than the
current system we are using, the numerical techniques we have here can still be applied in a
straightforward way. Whether or not we can observe similar phenomenon for this full model
is something under investigation. Reconstructions with more complicated macroscopic mod-
els, such as the high-field drift-diffusion-Poisson model [15, 50] can also be considered.

Let us remark finally that the numerical minimization scheme that we adopted in this
study can be slightly modified to study a closely related problem for the Boltzmann-Poisson
system: optimal design of doping profiles. The objective in this problem is to design doping
profiles that can produce certain desired device characteristics; see [9, 21] and references
there. Optimal design problems are usually posed as very similar numerical minimization
problems as what we have in this paper. We are currently attempt to apply the numerical
methods we have to investigate the optimal design problem (also a nonlinear minimization
problem).
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Figure 11: Reconstructions of two continuous doping profiles with noise-free stationary data.
Top row: the reconstructions; Bottom row: the differences between reconstructed and true
profiles.
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