
A New Discontinuous Galerkin Finite Element Method
for Directly Solving the Hamilton-Jacobi Equations∗

Yingda Cheng † Zixuan Wang ‡

March 19, 2014

Abstract

In this paper, we improve upon the discontinuous Galerkin (DG) method for Hamilton-
Jacobi (HJ) equation with convex Hamiltonians in [5] and develop a new DG method
for directly solving the general HJ equations. The new method avoids the reconstruc-
tion of the solution across elements by utilizing the Roe speed at the cell interface.
Besides, we propose an entropy fix by adding penalty terms proportional to the jump
of the normal derivative of the numerical solution. The particular form of the en-
tropy fix was inspired by the Harten and Hyman’s entropy fix [12] for Roe scheme for
the conservation laws. The resulting scheme is compact, simple to implement even
on unstructured meshes, and is demonstrated to work for nonconvex Hamiltonians.
Benchmark numerical experiments in one dimension and two dimensions are provided
to validate the performance of the method.

Keywords: Hamilton-Jacobi equation, discontinuous Galerkin methods, entropy fix,
unstructured mesh.

1 Introduction

In this paper, we consider the numerical solution of the time-dependent Hamilton-Jacobi
(HJ) equation

ϕt +H(∇xϕ, x) = 0, ϕ(x, 0) = ϕ0(x), x ∈ Ω ∈ Rd (1.1)

with suitable boundary conditions on ∂Ω. The HJ equation arises in many applications,
e.g., optimal control, differential games, crystal growth, image processing and calculus of
variations. The solution of such equation may develop discontinuous derivatives in finite
time even when the initial data is smooth. The viscosity solution [8, 7] was introduced as
the unique physically relevant solution, and has been the focus of many numerical methods.

∗Research supported by NSF grants DMS-1217563, DMS-1318186, AFOSR grant FA9550-12-1-0343 and
the startup fund from Michigan State University.
†Department of Mathematics, Michigan State University, East Lansing, MI 48824 U.S.A.

ycheng@math.msu.edu
‡Department of Mathematics, Michigan State University, East Lansing, MI 48824 U.S.A.

wangzix1@msu.edu

1

Starting from [9, 24], finite difference methods such as essentially non-oscillatory (ENO)
[19, 20] or weighted ENO (WENO) methods [14, 27] have been developed to solve the
HJ equation. Those finite difference methods work quite efficiently for Cartesian meshes,
however they lose the advantage of simplicity on unstructured meshes [1, 27].

Alternatively, the Runge-Kutta discontinuous Galerkin (RKDG) method, originally de-
vised to solve the conservation laws [6], is more flexible for arbitrarily unstructured meshes.
The first work of DG methods for HJ equations [13, 17] relies on solving the conservation
law system satisfied by the derivatives of the solution. The methods work well numerically
even on unstructured mesh, with provable stability results for certain special cases, and
were later generalized in eg. [11, 4]. Unfortunately, the procedure of recovering ϕ from
its derivatives has made the algorithm indirect and complicated. In contrast, the design
of DG methods for directly solving the HJ equations is appealing but challenging, because
the HJ equation is not written in the conservative form, for which the framework of DG
methods could easily apply. In [5], a DG method for directly solving the HJ equation was
developed. This scheme has provable stability and error estimates for linear equations and
demonstrates good convergence to the viscosity solutions for nonlinear equations. However,
in entropy violating cells, a correction based on the schemes in [13, 17] is necessary to guar-
antee stability of the method, and moreover, the method in [5] only works for equations with
convex Hamiltonians. Later, this algorithm was applied to solve front propagation prob-
lems [3] and front propagation with obstacles [2], in which simplified implementations of the
entropy fix procedure were proposed. Meanwhile, central DG [18] and local DG [26] meth-
ods were recently developed for the HJ equation. Numerical experiments demonstrate that
both methods work for nonconvex Hamiltonians. In addition, the first order version of the
local DG method [26] reduces to the monotone schemes and thus has provable convergence
properties. However, the central DG methods based on overlapping meshes are difficult to
implement on unstructured meshes, and the local DG methods still need to resort to the
information about the derivatives of ϕ, making the method less direct in computation. L2

error estimates for smooth solutions of the DG method [5] and local DG method [26] have
been established in [25]. For recent developments of high order and DG methods for HJ
equations, one can refer to the review papers [22, 21].

In this paper, we improve upon the DG scheme in [5] and develop a new DG method for
directly solving the general HJ equation. Based on the observation that the method in [5] is
closely related to Roe’s linearization, we use interfacial terms involving the Roe speed and
develop a new entropy fix that was inspired by the Harten and Hyman’s entropy fix [12] for
Roe scheme for the conservation laws. The new method has the following advantages. Firstly,
the scheme is shown to work on unstructured meshes even for nonconvex Hamiltonian.
Secondly, the method is simple to implement. The cumbersome L2 reconstruction of the
solutions’ derivative at the cell interface in [5] is avoided, and the entropy fix is automatically
incorporated by the added jump terms in the derivatives of the numerical solution. Finally,
the scheme is direct and compact, and the computation only needs the information about
the current cell and its immediate neighbors.

The rest of the paper is organized as follows: in Section 2, we introduce the numerical
schemes for one-dimensional and multi-dimensional HJ equations. Section 3 is devoted to the
discussion of the numerical results. We conclude and discuss about future work in Section
4.

2

2 Numerical Methods

In this section, we will describe the numerical methods. We follow the method of lines
approach, and below we will only describe the semi-discrete DG schemes. The resulting
method of lines ODEs can be solved by the total variation diminishing (TVD) Runge-Kutta
methods [23] or strong stability preserving Runge-Kutta methods [10].

2.1 Scheme in one dimension

In this subsection, we will start by designing the scheme for one-dimensional HJ equation.
In this case, (1.1) becomes

ϕt +H(ϕx, x) = 0, ϕ(x, 0) = ϕ0(x). (2.2)

Assume the computational domain is [a, b], we will divide it into N cells as follows

a = x 1
2
< x 3

2
< . . . < xN+ 1

2
= b. (2.3)

Now the cells and their centers are defined as

Ij = (xj− 1
2
, xj+ 1

2
), xj =

1

2

(
xj− 1

2
+ xj+ 1

2

)
, j = 1, · · · , N (2.4)

and the mesh sizes are

∆xj = xj+ 1
2
− xj− 1

2
, h = max

j
∆xj. (2.5)

The DG approximation space is

V k
h = {υ : υ|Ij ∈ P k(Ij), j = 1, · · · , N} (2.6)

where P k(Ij) denotes all polynomials of degree at most k on Ij, and we let H1 = ∂H
∂ϕx

be the
partial derivative of the Hamiltonian with respect to ϕx.

To introduce the scheme, we need to define several quantities at the cell interface where
the DG solution is discontinuous. If x∗ is a point located at the cell interface, then ϕh ∈ V k

h

would be discontinuous at x∗. We can then define the Roe speed at x∗ to be

H̃ϕh
(x∗) :=

{
H((ϕh)x(x

+
∗),x+∗)−H((ϕh)x(x

−
∗),x−∗)

(ϕh)x(x
+
∗)−(ϕh)x(x

−
∗)

, if (ϕh)x(x
+
∗) 6= (ϕh)x(x

−
∗)

1
2
(H1((ϕh)x(x

+
∗), x+∗) +H1((ϕh)x(x

−
∗), x−∗)), if (ϕh)x(x

+
∗) = (ϕh)x(x

−
∗).

In the notations above, we use superscripts +, − to denote the right, and left limits of a
function. Notice that in order for the above definition to make sense, we restrict our attention
to k ≥ 1 case, i.e. piecewise linear polynomials and above.

Similar to Harten and Hyman’s entropy fix [12], to detect entropy violating cell, we
introduce

δϕh
(x∗) := max

(
0, H̃ϕh

(x∗)−H1((ϕh)x(x
−
∗), x−∗), H1((ϕh)x(x

+
∗), x+∗)− H̃ϕh

(x∗)
)

and
Sϕh

(x∗) := max
(
δϕh

(x∗), |H̃ϕh
(x∗)|

)
.

3

Now we are ready to formulate our DG scheme for (2.2). We look for ϕh(x, t) ∈ V k
h , such

that ∫
Ij

(∂tϕh(x, t) +H(∂xϕh(x, t), x))vh(x) dx

+ min
(
H̃ϕh

(xj+ 1
2
), 0
)

[ϕh]j+ 1
2
(vh)

−
j+ 1

2

+ max
(
H̃ϕh

(xj− 1
2
), 0
)

[ϕh]j− 1
2
(vh)

+
j− 1

2

− C∆xj(Sϕh
(xj+ 1

2
)− |H̃ϕh

(xj+ 1
2
)|)[(ϕh)x]j+ 1

2
(vh)

−
j+ 1

2

− C∆xj(Sϕh
(xj− 1

2
)− |H̃ϕh

(xj− 1
2
)|)[(ϕh)x]j− 1

2
(vh)

+
j− 1

2

= 0, ∀ j = 1, . . . , N (2.7)

holds for any vh ∈ V k
h with k ≥ 1. Here [u] = u+ − u− denotes the jump of a function at

the cell interface, ∆xj serves as the scaling factor. C is a positive penalty parameter. The
detailed discussion about the choice of C is contained in Section 3. In particular, we find
that C = 0.25 works well in practice. We remark that the main idea of the penalty terms
on the third and fourth line of (2.7) is to add viscosity when H̃ϕh

is close to zero, therefore
to correct those entropy violating cells. This is similar to [12] for conservation laws, and a
detailed interpretation for linear HJ equation is provided below.

Next, we provide interpretation of the scheme (2.7) for the linear HJ equation with
variable coefficient

ϕt + a(x)ϕx = 0

to illustrate the main ideas. Firstly, if a(x) ∈ C1, then

H̃ϕh
(xj+ 1

2
) = a(xj+ 1

2
), δϕh

(xj+ 1
2
) = 0, Sϕh

(xj+ 1
2
) = |a(xj+ 1

2
)| ∀j = 1, . . . , N,

therefore scheme (2.7) reduces to∫
Ij

(∂tϕh(x, t) + a(x)∂xϕh(x, t))vh(x) dx

+ min
(
a(xj+ 1

2
), 0
)

[ϕh]j+ 1
2
(vh)

−
j+ 1

2

+ max
(
a(xj− 1

2
), 0
)

[ϕh]j− 1
2
(vh)

+
j− 1

2

= 0, j = 1, . . . , N.

(2.8)

This is the same DG method as in [5], and it is the standard DG schemes for the conservation
laws with source term

ϕt + (a(x)ϕ)x = ax(x)ϕ

with Roe flux. Therefore, stability and error estimates could be established [5].
On the other hand, when a(x) is no longer smooth, especially when a(x) contains dis-

continuity at cell interfaces. The scheme (2.8) will produce entropy violating shocks in the
solutions’ derivative [5]. In this case, the penalty terms in (2.7) come into play, and the
added viscosity enables us to capture the viscosity solution as demonstrated in Section 3. In
particular, suppose a(x) is discontinuous at xj+ 1

2
, then

H̃ϕh
(xj+ 1

2
) =

[a(x)(ϕh)x]j+1

2

[(ϕh)x]j+1
2

, if (ϕh)x(x
+
j+ 1

2

) 6= (ϕh)x(x
−
j+ 1

2

)

1
2
(a(x+

j+ 1
2

) + a(x−
j+ 1

2

)), if (ϕh)x(x
+
j+ 1

2

) = (ϕh)x(x
−
j+ 1

2

).

4

If the entropy condition is violated at xj+ 1
2
, i.e. a(x−

j+ 1
2

) < 0 < a(x+
j+ 1

2

), then we get

δϕh
(xj+ 1

2
) = max

(
0, H̃ϕh

(xj+ 1
2
)− a(x−

j+ 1
2

), a(x+
j+ 1

2

)− H̃ϕh
(xj+ 1

2
)
)
> 0. (2.9)

Proof of (2.9): If (ϕh)x(x
+
j+ 1

2

) = (ϕh)x(x
−
j+ 1

2

), then δϕh
= 1

2
(a(x+

j+ 1
2

)− a(x−
j+ 1

2

)) > 0.

If (ϕh)x(x
+
j+ 1

2

) 6= (ϕh)x(x
−
j+ 1

2

), we can prove (2.9) by contradiction. In particular, δϕh
= 0

requires both H̃ϕh
(xj+ 1

2
)− a(x−

j+ 1
2

) ≤ 0 and a(x+
j+ 1

2

)− H̃ϕh
(xj+ 1

2
) ≤ 0. This implies

a(x+
j+ 1

2

)(ϕh)x(x
+
j+ 1

2

)− a(x−
j+ 1

2

)(ϕh)x(x
−
j+ 1

2

)− a(x−
j+ 1

2

)((ϕh)x(x
+
j+ 1

2

)− (ϕh)x(x
−
j+ 1

2

))

(ϕh)x(x
+
j+ 1

2

)− (ϕh)x(x
−
j+ 1

2

)
≤ 0

and

a(x+
j+ 1

2

)((ϕh)x(x
+
j+ 1

2

)− (ϕh)x(x
−
j+ 1

2

))− (a(x+
j+ 1

2

)(ϕh)x(x
+
j+ 1

2

)− a(x−
j+ 1

2

)(ϕh)x(x
−
j+ 1

2

))

(ϕh)x(x
+
j+ 1

2

)− (ϕh)x(x
−
j+ 1

2

)
≤ 0.

• If (ϕh)x(x
+
j+ 1

2

) > (ϕh)x(x
−
j+ 1

2

), then we get (a(x+
j+ 1

2

) − a(x−
j+ 1

2

))(ϕh)x(x
+
j+ 1

2

) ≤ 0 and

(−a(x+
j+ 1

2

) + a(x−
j+ 1

2

))(ϕh)x(x
−
j+ 1

2

) ≤ 0. With a(x−
j+ 1

2

) < 0 < a(x+
j+ 1

2

), we have

(ϕh)x(x
+
j+ 1

2

) ≤ 0 and (ϕh)x(x
−
j+ 1

2

) ≥ 0,

which contradicts with (ϕh)x(x
+
j+ 1

2

) > (ϕh)x(x
−
j+ 1

2

).

• The case of (ϕh)x(x
+
j+ 1

2

) < (ϕh)x(x
−
j+ 1

2

) can be proved similarly. #

From (2.9), Sϕh
(xj+ 1

2
) > 0. When |H̃ϕh

(xj+ 1
2
)| < δϕh

(xj+ 1
2
), the penalty term

−C∆xj(Sϕh
(xj+ 1

2
)− |H̃ϕh

(xj+ 1
2
)|)[(ϕh)x]j+ 1

2
(vh)

−
j+ 1

2

will be nonzero.
On the other hand, if a(x−

j+ 1
2

) > 0 > a(x+
j+ 1

2

), corresponding to a shock in ϕx, we know

the Roe scheme (2.8) could correctly capture this behavior. In fact, in this case, we have

δϕh
(xj+ 1

2
) = max

(
0, H̃ϕh

(xj+ 1
2
)− a(x−

j+ 1
2

), a(x+
j+ 1

2

)− H̃ϕh
(xj+ 1

2
)
)
≤ |H̃ϕh

(xj+ 1
2
)| (2.10)

Proof of (2.10): If δϕh
= 0, then (2.10) obviously holds true. If δϕh

> 0, then either
H̃ϕh

(xj+ 1
2
)− a(x−

j+ 1
2

) > 0 or a(x+
j+ 1

2

)− H̃ϕh
(xj+ 1

2
) > 0.

• If H̃ϕh
(xj+ 1

2
)− a(x−

j+ 1
2

) > 0, then

H̃ϕh
(xj+ 1

2
) > a(x−

j+ 1
2

) > 0 > a(x+
j+ 1

2

)

and
δϕh

(xj+ 1
2
) = H̃ϕh

(xj+ 1
2
)− a(x−

j+ 1
2

) < |H̃ϕh
(xj+ 1

2
)|.

5

• If a(x+
j+ 1

2

)− H̃ϕh
(xj+ 1

2
) > 0, then

H̃ϕh
(xj+ 1

2
) < a(x+

j+ 1
2

) < 0 < a(x−
j+ 1

2

)

and

δϕh
(xj+ 1

2
) = a(x+

j+ 1
2

)− H̃ϕh
(xj+ 1

2
) = |H̃ϕh

(xj+ 1
2
)| − |a(x+

j+ 1
2

)| < |H̃ϕh
(xj+ 1

2
)|.

#
From (2.10), we have Sϕh

(xj+ 1
2
) − |H̃ϕh

(xj+ 1
2
)| = 0, and method (2.7) will reduce to

(2.8). Similar arguments extend to the nonlinear case for sonic expanding cells for convex
Hamiltonians,

H1(ϕ
−
x (xj+ 1

2
)) < 0 < H1(ϕ

+
x (xj+ 1

2
)).

The penalty term in (2.7) would be turned on automatically.
Finally we remark that the key differences of the scheme (2.7) compared to the method

in [5] are: (1) the L2 reconstruction of ϕh across two elements is avoided, and we use
the Roe speed which could be easily computed. This is advantageous especially for multi-
dimensional problems on unstructured meshes, as illustrated in Sections 2.2 and 2.3. (2)
The added penalty terms automatically treat the sonic points, and the key idea is to add
the viscosity based on the jump in (ϕh)x, but not ϕh itself. This is natural considering the
formation of monotone schemes such as the Lax-Friedrichs scheme for HJ equation. We will
verify in Section 3 that the penalty terms do not degrade the order of the accuracy of the
numerical scheme.

2.2 Scheme on two-dimensional Cartesian meshes

In this subsection, we generalize the scheme to compute on two-dimensional Cartesian
meshes. Now equation (1.1) is written as

ϕt +H(ϕx, ϕy, x, y) = 0, ϕ(x, y, 0) = ϕ0(x, y), (x, y) ∈ [a, b]× [c, d]. (2.11)

The rectangular mesh is defined by

a = x 1
2
< x 3

2
< . . . < xNx+

1
2

= b, c = y 1
2
< y 3

2
< . . . < yNy+

1
2

= d (2.12)

and

Ii,j = [xi− 1
2
, xi+ 1

2
]× [yj− 1

2
, yj+ 1

2
], Ji = [xi−1/2, xi+1/2], Kj = [yj−1/2, yj+1/2]

i = 1, . . . Nx, j = 1, . . . Ny. (2.13)

Let

∆xi = xi+1/2 − xi−1/2, ∆yj = yj+1/2 − yj−1/2, h = max(max
i

∆xi,max
j

∆yj).

We define the approximation space as

V k
h = {υ : υ|Ii,j ∈ P k(Ii,j), i = 1, . . . Nx, j = 1, . . . Ny} (2.14)

6

where P k(Ii,j) denotes all polynomials of degree at most k on Ii,j with k ≥ 1.
Let us denote H1 = ∂H

∂ϕx
and H2 = ∂H

∂ϕy
. Similar to the one-dimensional case, we need to

introduce several numerical quantities at the cell interface.
If x∗ is located at the cell interface in the x direction, then ϕh ∈ V k

h is discontinuous at
(x∗, y) for any y, and we define the Roe speed in the x direction at (x∗, y) to be

H̃1,ϕh
(x∗, y) :={

H((ϕh)x(x
+
∗ ,y),(ϕh)y ,x

+
∗ ,y)−H((ϕh)x(x

−
∗ ,y),(ϕh)y ,x

−
∗ ,y)

(ϕh)x(x
+
∗ ,y)−(ϕh)x(x

−
∗ ,y)

, if (ϕh)x(x
+
∗ , y) 6= (ϕh)x(x

−
∗ , y)

1
2
(H1((ϕh)x(x

+
∗ , y), (ϕh)y, x

+
∗ , y) +H1((ϕh)x(x

−
∗ , y), (ϕh)y, x

−
∗ , y)), if (ϕh)x(x

+
∗ , y) = (ϕh)x(x

−
∗ , y),

where

(ϕh)y =
1

2

(
(ϕh)y(x

+
∗ , y) + (ϕh)y(x

−
∗ , y)

)
is the average of the tangential derivative. Again, we define

δ1,ϕh
(x∗, y) :=

max
(

0, H̃1,ϕh
(x∗, y)−H1((ϕh)x(x

−
∗ , y), (ϕh)y, x

−
∗ , y), H1((ϕh)x(x

+
∗ , y), (ϕh)y, x

+
∗ , y)− H̃1,ϕh

(x∗, y)
)

and
S1,ϕh

(x∗, y) := max
(
δ1,ϕh

(x∗, y), |H̃1,ϕh
(x∗, y)|

)
.

Similarly, for y∗ located at the cell interface in the y direction, ϕh ∈ V k
h is discontinuous at

(x, y∗) for any x, and we define the Roe speed in the y direction at (x, y∗) to be

H̃2,ϕh
(x, y∗) :={

H((ϕh)x,(ϕh)y(x,y
+
∗),x,y+∗)−H((ϕh)x,(ϕh)y(x,y

−
∗),x,y−∗)

(ϕh)y(x,y
+
∗)−(ϕh)y(x,y

−
∗)

, if (ϕh)y(x, y
+
∗) 6= (ϕh)y(x, y

−
∗)

1
2
(H1((ϕh)x, (ϕh)y(x, y

+
∗), x, y+∗) +H1((ϕh)x, (ϕh)y(x, y

−
∗), x, y−∗)), if (ϕh)y(x, y

+
∗) = (ϕh)y(x, y

−
∗),

where

(ϕh)x =
1

2

(
(ϕh)x(x, y

+
∗) + (ϕh)x(x, y

−
∗)
)

is the average of the tangential derivative. Again, we define

δ2,ϕh
(x, y∗) :=

max
(

0, H̃2,ϕh
(x, y∗)−H2((ϕh)x, (ϕh)y(x, y

−
∗), x, y−∗), H2((ϕh)x, (ϕh)y(x, y

+
∗), x, y+∗)− H̃2,ϕh

(x, y∗)
)

and
S2,ϕh

(x, y∗) := max
(
δ2,ϕh

(x, y∗), |H̃2,ϕh
(x, y∗)|

)
.

7

We now formulate our scheme as: find ϕh(x, t) ∈ V k
h , such that∫

Ii,j

(∂tϕh(x, y, t) +H(∂xϕh(x, y, t), ∂yϕh(x, y, t), x, y))vh(x, y)dxdy

+

∫
Kj

min
(
H̃1,ϕh

(xi+ 1
2
, y), 0

)
[ϕh](xi+ 1

2
, y)vh(x

−
i+ 1

2

, y)dy

+

∫
Kj

max
(
H̃1,ϕh

(xi− 1
2
, y), 0

)
[ϕh](xi− 1

2
, y)vh(x

+
i− 1

2

, y)dy

+

∫
Ji

min
(
H̃2,ϕh

(x, yj+ 1
2
), 0
)

[ϕh](x, yj+ 1
2
)vh(x, y

−
j+ 1

2

)dx

+

∫
Ji

max
(
H̃2,ϕh

(x, yj− 1
2
), 0
)

[ϕh](x, yj− 1
2
)vh(x, y

+
j− 1

2

)dx (2.15)

−C∆xi

∫
Kj

(
S1,ϕh

(xi+ 1
2
, y)− |H̃1,ϕh

(xi+ 1
2
, y)|

)
[(ϕh)x](xi+ 1

2
, y)vh(x

−
i+ 1

2

, y)dy

−C∆xi

∫
Kj

(
S1,ϕh

(xi− 1
2
, y)− |H̃1,ϕh

(xi− 1
2
, y)|

)
[(ϕh)x](xi− 1

2
, y)vh(x

+
i− 1

2

, y)dy

−C∆yj

∫
Ji

(
S2,ϕh

(x, yj+ 1
2
)− |H̃2,ϕh

(x, yj+ 1
2
)|
)

[(ϕh)y](x, yj+ 1
2
)vh(x, y

−
j+ 1

2

)dx

−C∆yj

∫
Ji

(
S2,ϕh

(x, yj− 1
2
)− |H̃2,ϕh

(x, yj− 1
2
)|
)

[(ϕh)y](x, yj− 1
2
)vh(x, y

+
j− 1

2

)dx = 0

holds for any vh ∈ V k
h with k ≥ 1. In practice, the volume and line integrals in (2.15) can

be evaluated by Gauss quadrature formulas. The main idea in (2.15) is that in the normal
direction of the interface, we apply the ideas from the one-dimensional case, but tangential
to the interface, we use the average of the tangential derivatives from the two neighboring
cells.

2.3 Scheme on general unstructured meshes

In this subsection, we describe the scheme on general shape-regular unstructured meshes for
(1.1). Let Th = {K} be a partition of Ω, with K being simplices. We define the piecewise
polynomial space

V k
h =

{
v ∈ L2(Ω) : v|K ∈ P k(K), ∀K ∈ Th

}
,

where P k(K) denotes the set of polynomials of total degree at most k on K with k ≥ 1. For
any element K, and edge in ∂K, we define nK to be the outward unit normal to the boundary
of K, and tK is the unit tangential vector such that nK · tK = 0. In higher dimensions, i.e.
d > 2, d− 1 tangential vectors need to be defined. In addition, for any function u ∈ V k

h , and
x ∈ ∂K, we define the traces of uh from outside and inside of the element K to be

u±h (x) = lim
ε↓0

uh(x± εnk),

and [uh](x) = u+h (x)− u−h (x), uh(x) = 1
2
(u+h (x) + u−h (x)). We also let HnK

= ∇∇ϕH · nK .

8

Now following the Cartesian case, we define, for any x ∈ ∂K,

H̃nK ,ϕh
(x) :={

H((∇xϕh·nK)+,∇xϕh·tK ,x+)−H((∇xϕh·nK)−,∇xϕh·tK ,x−)
[∇xϕh·nK](x)

, if [∇xϕh · nK](x) 6= 0
1
2
(HnK

((∇xϕh · nK)+,∇xϕh · tK ,x+) +HnK
((∇xϕh · nK)−,∇xϕh · tK ,x−)), otherwise,

and

δnK ,ϕh
(x) :=

max
(

0, H̃nK ,ϕh
(x)−HnK

((∇xϕh · nK)−,∇xϕh · tK ,x−), HnK
((∇xϕh · nK)+,∇xϕh · tK ,x+)− H̃nK ,ϕh

(x)
)
,

SnK ,ϕh
(x) := max

(
δnK ,ϕh

(x), |H̃nK ,ϕh
(x)|

)
.

Then we look for ϕh ∈ V k
h , such that for each K,∫

K

((ϕh)t +H(∇xϕh, x)) vh dx +

∫
∂K

min
(
H̃nK ,ϕh

(x), 0
)

[ϕh](x)v−h (x)ds

−C ∆K

∆SK

∫
∂K

(SnK ,ϕh
(x)− |H̃nK ,ϕh

(x)|)[∇xϕh · nK](x)v−h (x)ds = 0

for any test function vh ∈ V k
h with k ≥ 1, where ∆K, ∆SK are size of the element K and

edge SK respectively. In practice, the volume and edge integrals need to be evaluated by
quadrature rules with enough accuracy. For example, we use quadrature rules that are exact
for (2k)-th order polynomial for the volume integral, and quadrature rules that are exact for
(2k + 1)-th order polynomial for the edge integrals.

3 Numerical Results

In this section, we provide numerical results to demonstrate the high order accuracy and
reliability of our schemes. In all numerical experiments, we use the third order TVD-RK
method as the temporal discretization [23].

3.1 One-dimensional results

In this subsection, we provide computational results for one-dimensional HJ equations.

Example 3.1 We solve the following linear problem with smooth variable coefficient
ϕt + sin(x)ϕx = 0

ϕ(x, 0) = sin(x)

ϕ(0, t) = ϕ(2π, t)

(3.16)

Since a(x) is smooth in this example, the penalty term automatically vanishes and the choice
of C does not have an effect on the solution. We provide the numerical results for P 1,P 2

and P 3 polynomials in Table 3.1. The CFL numbers used are also listed in this table. For
P 3 polynomials, we set ∆t = O(∆x

4
3) in order to get comparable numerical errors in time

as in space. From the results, we could clearly observe the optimal (k+ 1)-th order accuracy
for P k polynomials.

9

Table 3.1: Errors and numerical orders of accuracy for Example 3.1 when using Pk, k = 1, 2, 3, polynomials and third order
Runge-Kutta time discretization on a uniform mesh of N cells. Final time t = 1.

P 1 CFL = 0.3
N L1 error order L2 error order L∞ error order
40 1.20E-03 2.55E-03 1.52E-02
80 3.07E-04 1.96 6.83E-04 1.90 4.32E-03 1.81
160 7.84E-05 1.97 1.78E-04 1.94 1.14E-03 1.92
320 1.99E-05 1.98 4.56E-05 1.97 2.94E-04 1.96
640 5.03E-06 1.99 1.15E-05 1.98 7.43E-05 1.98

P 2 CFL = 0.1
40 4.76E-05 9.97E-05 5.23E-04
80 5.97E-06 2.99 1.36E-05 2.88 8.77E-05 2.58
160 7.48E-07 3.00 1.82E-06 2.90 1.35E-05 2.70
320 9.38E-08 2.99 2.38E-07 2.93 1.96E-06 2.78
640 1.18E-08 2.99 3.08E-08 2.95 2.72E-07 2.85

P 3 CFL = 0.05
40 2.12E-06 5.13E-06 2.89E-05
80 1.36E-07 3.97 3.49E-07 3.89 2.16E-06 3.75
160 8.71E-09 3.97 2.30E-08 3.93 1.57E-07 3.79
320 5.14E-10 4.09 1.35E-09 4.10 9.47E-09 4.06
640 4.83E-12 6.75 9.06E-12 7.24 4.52E-11 7.73
1280 2.03E-13 4.58 2.96E-13 4.94 1.42E-12 5.00

Example 3.2 We solve the following linear problem with nonsmooth variable coefficient [5]
ϕt + sign(cos(x))ϕx = 0

ϕ(x, 0) = sin(x)

ϕ(0, t) = ϕ(2π, t)

(3.17)

The viscosity solution of this example has a shock forming in ϕx at x = π/2, and a
rarefaction wave at x = 3π/2. We use this example to demonstrate the effect of the choice of
C on the numerical solution. The solutions obtained with different values of C are provided
in Figure 3.1. If we take the penalty constant C = 0, that is, without entropy correction,
the entropy condition is violated at the two cells neighboring x = 3π/2, and the numerical
solution is not convergent towards the exact solution. As we slowly increasing the value of
C, we could observe better and better convergence property. In particular, once C passes
some threshold, its effect on the quality of the solution is minimum, and bigger values of
C only cause slightly larger numerical errors. This is also demonstrated in Table 3.2. For
this problem, the viscosity solution is not smooth, so we do not expect the full (k + 1)-th
order accuracy for this example. However, for different values of C ranging from 0.125 to
1.0, the numerical errors listed in Table 3.2 are all of second order. We have also performed
numerical study of the dependence of C on k by looking into P 1 and P 3 polynomials. To
save space, those results are not listed in the paper, but we would like to comment that
there is no qualitative difference of the results for different values of k. Actually, for all
of the simulations performed in this paper, we find that C = 0.25 to be a good choice of

10

0 1 2 3 4 5 6

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

C=0

0 1 2 3 4 5 6

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

C=0.001

0 1 2 3 4 5 6

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

C=0.25

0 1 2 3 4 5 6

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

C=1

Figure 3.1: Example 3.2. The numerical solution with various values of penalty constant C. t = 1. CFL = 0.1. P 2 polynomials.
N = 80. Solid line: the exact solution; circles: the numerical solution.

the penalty constant. Unless otherwise noted, for the remaining of the paper, we will use
C = 0.25.

Example 3.3 One-dimensional Burgers’ equation with smooth initial condition
ϕt + 1

2
ϕ2
x = 0

ϕ(x, 0) = sin(x)

ϕ(0, t) = ϕ(2π, t)

(3.18)

At t = 0.5, the solution is still smooth, and the optimal (k + 1)-th accuracy is obtained for
P k polynomials with both uniform and random meshes, see Tables 3.3 and 3.4. At t = 1,
there will be a shock in ϕx, and our scheme could capture the kink sharply as shown in
Figure 3.2.

Example 3.4 One-dimensional Burgers’ equation with a nonsmooth initial condition [5]
ϕt + 1

2
ϕ2
x = 0

ϕ(x, 0) =

{
π − x if 0 ≤ x ≤ π

x− π if 0 ≤ x ≤ 2π

ϕ(0, t) = ϕ(2π, t)

(3.19)

11

Table 3.2: Errors and numerical orders of accuracy for Example 3.2 when using P 2 polynomials and third order Runge-Kutta
time discretization on a uniform mesh of N cells. Final time t = 1. CFL = 0.1.

N L1 error order L2 error order L∞ error order
C = 1.0

40 1.05E-03 1.85E-03 3.49E-03
80 2.71E-04 1.95 4.78E-04 1.95 8.73E-04 2.00
160 6.89E-05 1.98 1.21E-04 1.98 2.18E-04 2.00
320 1.73E-05 1.99 3.06E-05 1.98 5.46E-05 2.00
640 4.34E-06 2.00 7.67E-06 2.00 1.37E-05 2.00

C = 0.5
40 9.92E-04 1.74E-03 3.28E-03
80 2.56E-04 1.95 4.50E-04 1.95 8.22E-04 2.00
160 6.49E-05 1.98 1.14E-04 1.98 2.06E-04 2.00
320 1.63E-05 1.99 2.88E-05 1.98 5.14E-05 2.00
640 4.09E-06 2.00 7.22E-06 2.00 1.29E-05 2.00

C = 0.25
40 8.74E-04 1.53E-03 2.87E-03
80 2.25E-04 1.96 3.95E-04 1.95 7.19E-04 2.00
160 5.69E-05 1.98 1.00E-04 1.98 1.80E-04 2.00
320 1.43E-05 1.99 2.52E-05 1.99 4.50E-05 2.00
640 3.58E-06 2.00 6.32E-06 1.99 1.13E-05 2.00

C = 0.125
40 6.38E-04 1.10E-03 2.05E-03
80 1.62E-04 1.97 2.84E-04 1.96 5.14E-04 2.00
160 4.09E-05 1.98 7.18E-05 1.98 1.29E-04 2.00
320 1.03E-05 1.99 1.81E-05 1.99 3.23E-05 2.00
640 2.57E-06 2.00 4.53E-06 2.00 8.57E-06 1.91

.

The exact solution should have a rarefaction wave forming in its derivative, so the initial
sharp corner at x = π should be smeared out at later times. Since the entropy condition
is violated by the Roe type scheme, the entropy fix is necessary for convergence. Figure
3.3 shows the comparison of our schemes with various values of penalty constant C for this
nonlinear problem. Again, we could see that C = 0.25 is a good choice for this example.

Example 3.5 One-dimensional Eikonal equation
ϕt + |ϕx| = 0

ϕ(x, 0) = sin(x)

ϕ(0, t) = ϕ(2π, t)

(3.20)

The exact solution is the same as the exact solution of Example 3.2. Our scheme could
capture the viscosity solution of this nonsmooth Hamiltonian. The numerical errors and
orders of accuracy using P 2 polynomials are listed in Table 3.5. Since the solution is not
smooth, we do not expect the optimal (k + 1)-th order accuracy for P k polynomials.

12

Table 3.3: Errors and numerical orders of accuracy for Example 3.3 when using P 2 polynomials and third order Runge-Kutta
time discretization on a uniform mesh of N cells. Penalty constant C = 0.25. Final time t = 0.5. CFL = 0.1.

N L1 error order L2 error order L∞ error order
P 1

40 8.45E-04 1.23E-03 5.04E-03
80 2.02E-04 2.07 2.99E-04 2.04 1.27E-03 1.99
160 4.93E-05 2.03 7.42E-05 2.01 3.42E-04 1.89
320 1.22E-05 2.01 1.86E-05 2.00 9.08E-05 1.91
640 3.04E-06 2.01 4.66E-06 2.00 2.36E-05 1.94

P 2

40 1.27E-05 2.33E-05 1.28E-04
80 1.53E-06 3.05 2.93E-06 2.99 2.10E-05 2.61
160 1.91E-07 3.00 3.73E-07 2.98 2.52E-06 3.06
320 2.39E-08 3.00 4.74E-08 2.98 3.56E-07 2.82
640 3.63E-09 2.72 6.23E-09 2.93 4.82E-08 2.88

0 1 2 3 4 5 6
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Figure 3.2: Example 3.3. t = 1.5. CFL = 0.1. P 2 polynomials. N = 40. Penalty constant C = 0.25. Solid line: the exact
solution; circles: the numerical solution.

Example 3.6 One-dimensional equation with a nonconvex Hamiltonian
ϕt − cos(ϕx + 1) = 0

ϕ(x, 0) = − cos(πx)

ϕ(−1, t) = ϕ(1, t)

(3.21)

This example involves a nonconvex Hamiltonian with smooth initial data. At t = 0.5/π2,
the exact solution is still smooth, and numerical results are presented in Table 3.6, demon-
strating the optimal order of accuracy of the scheme. By the time t = 1.5/π2, nonsmooth
features would develop in ϕ, which are reliably captured in Figure 3.4.

13

0 1 2 3 4 5 6

−0.5

0

0.5

1

1.5

2

2.5

C=0

0 1 2 3 4 5 6

−0.5

0

0.5

1

1.5

2

2.5

C=0.001

0 1 2 3 4 5 6

−0.5

0

0.5

1

1.5

2

2.5

C=0.25

0 1 2 3 4 5 6

−0.5

0

0.5

1

1.5

2

2.5

C=1.0

Figure 3.3: Example 3.4. The numerical solution with various values of penalty constant C. t = 1. CFL = 0.1. P 2 polynomials.
N = 80. Solid line: the exact solution; circles: the numerical solution.

14

Table 3.4: Errors and numerical orders of accuracy for Example 3.3 when using P 1 and P 2 polynomials and third order Runge-
Kutta time discretization on a random mesh with 40% perturbation of N cells. Penalty constant C = 0.25. Final time t = 0.5.
CFL = 0.1.

N L1 error order L2 error order L∞ error order
P 1

40 1.23E-03 1.91E-03 1.01E-02
80 2.70E-04 2.19 4.25E-04 2.17 2.59E-03 1.96
160 6.70E-05 2.01 1.05E-04 2.01 6.22E-04 2.06
320 1.62E-05 2.05 2.67E-05 1.97 2.03E-04 1.61
640 3.97E-06 2.03 6.69E-06 2.00 6.52E-05 1.64

P 2

40 2.27E-05 4.52E-05 2.96E-04
80 2.54E-06 3.16 5.84E-06 2.95 5.25E-05 2.50
160 3.19E-07 3.00 6.87E-07 3.09 5.82E-06 3.17
320 4.00E-08 3.00 9.34E-08 2.88 8.96E-07 2.70
640 5.38E-09 2.89 1.16E-08 3.01 1.32E-07 2.77

Table 3.5: Errors and numerical orders of accuracy for Example 3.5 when using P 2 polynomials and third order Runge-Kutta
time discretization on a uniform mesh of N cells. Penalty constant C = 0.25. Final time t = 1. CFL = 0.1.

N L1 error order L2 error order L∞ error order
40 6.24E-04 1.09E-03 2.13E-03
80 1.69E-04 1.88 2.98E-04 1.87 5.54E-04 1.94
160 4.35E-05 1.96 7.67E-05 1.96 1.40E-04 1.98
320 1.10E-05 1.99 1.94E-05 1.99 3.51E-05 2.00
640 2.75E-06 2.00 4.88E-06 1.99 8.77E-06 2.00

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.5

0

0.5

1

1.5

Figure 3.4: Example 3.6. t = 1.5/π2. CFL = 0.1. P 2 polynomials. N = 80. Penalty constant C = 0.25. Solid line: the exact
solution; circles: the numerical solution.

Example 3.7 One-dimensional Riemann problem with a nonconvex Hamiltonian{
ϕt + 1

4
(ϕ2

x − 1)(ϕ2
x − 4) = 0

ϕ(x, 0) = −2|x|
(3.22)

15

Table 3.6: Errors and numerical orders of accuracy for Example 3.6 when using P 2 polynomials and third order Runge-Kutta
time discretization on a uniform mesh of N cells. Penalty constants C = 0.25. Final time t = 0.5/π2. CFL = 0.1.

N L1 error order L2 error order L∞ error order
40 1.46E-05 2.16E-05 9.89E-05
80 1.79E-06 3.02 2.87E-06 2.91 1.59E-05 2.64
160 2.22E-07 3.01 3.73E-07 2.95 2.39E-06 2.74
320 2.76E-08 3.01 4.79E-08 2.96 3.39E-07 2.82
640 3.51E-09 2.98 6.13E-09 2.97 4.53E-08 2.90

For this problem, the initial condition has a singularity at x = 0. Similar to [18, 26], a
nonlinear limiter is needed in order to capture the viscosity solution. We use the standard
minmod limiter [6]. This example and Example 3.14 are the only examples needing nonlinear
limiting in this paper.

The numerical solutions with and without the limiter are listed in Figure 3.5 for odd
and even values of N . Those different behaviors are due to the fact that the singular point
x = 0 would be exactly located at the cell interface for even N but not odd N at t = 0. We
note that the method with limiter can correctly capture the viscosity solution for both even
and odd N . The numerical errors and orders of accuracy using P 2 polynomials with limiters
are listed in Table 3.7. We could see that both methods converge, while the odd N giving
slightly smaller errors. However, similar to [18], the method is only first order accurate for
this nonsmooth problem.

Table 3.7: Errors and numerical orders of accuracy for Example 3.7 when using P 2 polynomials and third order Runge-Kutta
time discretization on a uniform mesh of N cells. CFL = 0.05. Penalty constant C = 0.25. Final time t = 1. A minmod limiter
is used.

N L1 error order L2 error order L∞ error order
Even N

40 9.49E-03 2.21E-02 5.96E-02
80 4.64E-03 1.03 1.10E-02 1.00 3.17E-02 0.91
160 2.28E-03 1.03 5.48E-03 1.00 1.64E-02 0.95
320 1.12E-03 1.02 2.73E-03 1.01 8.40E-03 0.97
640 4.72E-04 1.25 1.25E-03 1.13 4.33E-03 0.96
1280 9.37E-05 2.33 3.94E-04 1.67 2.11E-03 1.04

Odd N
41 2.80E-03 6.73E-03 2.94E-02
81 1.33E-03 1.07 3.34E-03 1.01 2.38E-02 0.30
161 6.40E-04 1.05 1.61E-03 1.05 9.89E-03 1.27
321 3.16E-04 1.02 7.98E-04 1.01 4.35E-03 1.18
641 1.32E-04 1.26 3.65E-04 1.13 3.36E-03 0.37
1281 2.63E-05 2.33 1.15E-04 1.66 1.41E-03 1.25

16

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−2

−1.8

−1.6

−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

N=80, without limiter

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−2

−1.9

−1.8

−1.7

−1.6

−1.5

−1.4

−1.3

−1.2

−1.1

−1

N=80, with limiter

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−2

−1.8

−1.6

−1.4

−1.2

−1

−0.8

N=81, without limiter

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−2

−1.9

−1.8

−1.7

−1.6

−1.5

−1.4

−1.3

−1.2

−1.1

−1

N=81, with limiter

Figure 3.5: Example 3.7. Comparison of the numerical solution with and without the limiter. t = 1. P 2 polynomials.
CFL = 0.05. Penalty constant C = 0.25. Left: without limiter; right: with limiter. Solid line: the exact solution; circles: the
numerical solution.

17

3.2 Two-dimensional results

In this subsection, we provide computational results for two-dimensional HJ equations on
both Cartesian and unstructured meshes.

Example 3.8 Two-dimensional linear problem with smooth variable coefficients

ϕt − yϕx + xϕy = 0. (3.23)

The computational domain is [−1, 1]2. The initial condition is given by

ϕ0(x, y) =

0 0.3 ≤ r
0.3− r 0.1 < r < 0.3
0.2 r ≤ 0.1

(3.24)

where r =
√

(x− 0.4)2 + (y − 0.4)2. We impose periodic boundary condition on the domain.
This is a solid body rotation around the origin. The exact solution can be expressed as

ϕ(x, y, t) = ϕ0(x cos(t) + y sin(t),−x sin(t) + y cos(t)). (3.25)

For this problem, same as the argument in Example 3.1, the choice of C does not have
an effect on the scheme. We list the numerical errors and orders in Table 3.8. With this
nonsmooth initial condition, we do not expect to obtain (k + 1)-th order of accuracy. At
t = 2π, i.e. one period of rotation, we take a snapshot at the line y = x in Figure 3.6. It can
be clearly seen that a higher order scheme can yield better results for this nonsmooth initial
condition.

Table 3.8: Errors and numerical orders of accuracy for Example 3.8 when using P 2 polynomials and third order Runge-Kutta
time discretization on a uniform mesh of N ×N cells. Final time t = 1. CFL = 0.1.

N L1 error order L2 error order L∞ error order
10 1.21E-03 3.10E-03 2.21E-02
20 4.13E-04 1.55 1.32E-03 1.23 1.14E-02 0.95
40 1.38E-04 1.58 5.51E-04 1.26 6.49E-03 0.81
80 4.74E-05 1.54 2.36E-04 1.22 3.62E-03 0.84
160 1.54E-05 1.62 1.01E-04 1.23 2.07E-03 0.81

.

Example 3.9 We solve the same equation (3.23) as in Example 3.8, but with a smooth
initial condition as

ϕ0(x, y) = exp

(
−(x− 0.4)2 + (y − 0.4)2

2σ2

)
. (3.26)

The constant σ = 0.05 is chosen such that at the domain boundary, ϕ is very small, hence
imposing the periodic boundary condition will lead to small errors. We then could observe
the optimal order of accuracy in Table 3.9.

18

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−0.05

0

0.05

0.1

0.15

0.2

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−0.05

0

0.05

0.1

0.15

0.2

Figure 3.6: Example 3.8. t = 2π. CFL = 0.1. 80 × 80 uniform mesh. Left: P 1 polynomials; right: P 2 polynomials. One
dimensional cut of 45◦ with the x axis. Solid line: the exact solution; circles: the numerical solution.

Table 3.9: Errors and numerical orders of accuracy for Example 3.9 when using P 2 polynomials and third order Runge-Kutta
time discretization on a uniform mesh of N ×N cells. Final time t = 1. CFL = 0.1.

N L1 error order L2 error order L∞ error order
20 1.42E-03 1.03E-02 2.79E-01
40 1.54E-04 3.20 1.47E-03 2.81 5.25E-02 2.41
80 1.10E-05 3.81 1.10E-04 3.73 5.77E-03 3.19
160 1.12E-06 3.30 1.15E-05 3.26 8.96E-04 2.69

Example 3.10 Two-dimensional Burgers’ equation
ϕt +

(ϕx + ϕy + 1)2

2
= 0

ϕ(x, y, 0) = − cos

(
π(x+ y)

2

) (3.27)

with periodic boundary condition on the domain [−2, 2]2.
In this example, we test the performance of our method on unstructured meshes. A

sample mesh used with characteristic length h = 1/4 is given in Figure 3.7. At t = 0.5/π2, the
solution is still smooth. Numerical errors and order of accuracy using P 1, P 2, P 3 polynomials
are listed in Table 3.10, demonstrating the optimal order of accuracy. At t = 1.5/π2, the
solution is no longer smooth. Our scheme could capture the viscosity solution as shown in
Figure 3.8.

Example 3.11 Two-dimensional nonlinear equation [18]{
ϕt + ϕxϕy = 0
ϕ(x, y, 0) = sin(x) + cos(y)

(3.28)

with periodic boundary condition on the domain [−π, π]2.
At t = 0.8, the solution is still smooth, as shown in the left figure of Figure 3.9. Numerical

errors and order of accuracy using P 2 polynomials are listed in Table 3.11, demonstrating
the optimal order of accuracy. At t = 1.5, singular features would form in the solution, as
shown in the right figure of Figure 3.9.

19

X

Y

2 1 0 1 2
2

1

0

1

2

Figure 3.7: Examples 3.10 and 3.13. The unstructured mesh used with characteristic length h = 1/4.

Figure 3.8: Example 3.10. CFL = 0.1. P 2 polynomials. Triangular mesh with characteristic length 1/8. 2816 elements.
Penalty constant C = 0.25. Left: t = 0.5/π2; right: t = 1.5/π2.

Example 3.12 An example related to controlling optimal cost determination [20]{
ϕt + sin(y)ϕx + (sin(x) + sign(ϕy))ϕy −

1

2
sin2(y) + cos(x)− 1 = 0

ϕ(x, y, 0) = 0
(3.29)

with periodic boundary condition on the domain [−π, π]2.
The Hamiltonian is not smooth in this example. Our scheme can capture the features

of the viscosity solution well. The numerical solution (left) and the optimal control term
sign(ϕy) (right) at t = 1 are shown in Figure 3.10.

20

−4

−3

−2

−1

0

1

2

3

4
−3

−2

−1

0

1

2

3

4

−2

−1

0

1

2

−4

−3

−2

−1

0

1

2

3

4
−3

−2

−1

0

1

2

3

4

−2

−1

0

1

2

Figure 3.9: Example 3.11. CFL = 0.1. P 2 polynomials on a 80× 80 uniform mesh. Penalty constant: C = 0.25. Left: t = 0.8;
right: t = 1.5.

−3−2−101234

−5

0

5

0

0.5

1

1.5

2

2.5

−3

−2

−1

0

1

2

3

4

−4

−2

0

2

4

−1

−0.5

0

0.5

1

Figure 3.10: Example 3.12. t = 1. CFL = 0.1. P 2 polynomials on a 40× 40 uniform mesh. Penalty constant: C = 0.25. Left:
the numerical solution; right: sign(ϕy).

21

Table 3.10: Errors and numerical orders of accuracy for Example 3.10 when using P 2 polynomials and third order Runge-Kutta
time discretization on triangular meshes with characteristic length h. Penalty constant C = 0.25. Final time t = 0.5/π2.
CFL = 0.1.

h L1 error order L2 error order L∞ error order
P 1

1/2 1.75E-02 2.99E-03 2.26E-01
1/4 4.40E-03 1.99 7.54E-03 1.99 6.24E-02 1.85
1/8 1.10E-03 2.00 1.89E-03 2.00 1.62E-02 1.95
1/16 2.76E-04 2.00 4.73E-04 2.00 4.08E-03 1.99
1/32 6.89E-05 2.00 1.18E-04 2.00 1.02E-03 2.00

P 2

1/2 1.03E-03 1.79E-03 2.01E-02
1/4 1.30E-04 3.00 2.25E-04 2.99 2.57E-03 2.97
1/8 1.63E-05 3.00 2.82E-05 3.00 3.23E-04 2.99
1/16 2.03E-06 3.00 3.53E-06 3.00 4.04E-05 3.00
1/32 2.54E-07 3.00 4.41E-07 3.00 5.05E-06 3.00

P 3 ∆t = O(h
4
3)

1/2 2.23E-04 6.14E-04 2.00E-02
1/4 1.62E-05 3.79 4.39E-05 3.81 1.78E-03 3.49
1/8 1.26E-06 3.68 3.36E-06 3.71 1.58E-04 3.50
1/16 1.03E-07 3.61 2.73E-07 3.62 1.25E-05 3.66
1/32 9.06E-09 3.51 2.46E-08 3.47 8.82E-07 3.82

Table 3.11: Errors and numerical orders of accuracy for Example 3.11 when using P 2 polynomials and third order Runge-Kutta
time discretization on a uniform mesh of N ×N cells. Penalty constant C = 0.25. Final time t = 0.8. CFL = 0.1.

N L1 error order L2 error order L∞ error order
10 2.22E-03 3.95E-03 4.78E-02
20 2.75E-04 2.98 4.50E-04 2.98 7.79E-03 2.62
40 3.70E-05 2.89 7.33E-05 2.77 1.50E-03 2.38
80 4.80E-06 2.95 9.83E-06 2.90 2.40E-04 2.64

.

Example 3.13 Two-dimensional equation with a nonconvex Hamiltonian{
ϕt − cos(ϕx + ϕy + 1) = 0

ϕ(x, y, 0) = − cos(
π

2
(x+ y))

(3.30)

with periodic boundary condition on the domain [−2, 2]2.
We use the same unstructured mesh as in Example 3.10, see for example Figure 3.7.

At t = 0.5/π2, the solution is still smooth, see Table 3.12 for numerical errors and order
of accuracy using P 2 polynomials. At t = 1.5/π2, singular features would develop in the
solution, as shown in Figure 3.11.

Example 3.14 Two-dimensional Riemann problem{
ϕt + sin(ϕx + ϕy) = 0
ϕ(x, y, 0) = π(|y| − |x|) (3.31)

22

Table 3.12: Errors and numerical orders of accuracy for Example 3.13 when using P 2 polynomials and third order Runge-Kutta
time discretization on triangular meshes with characteristic length h. Penalty constant C = 0.25. Final time t = 0.5/π2.
CFL = 0.1.

h L2 error order L2 error order L∞ error order
1 1.05E-02 1.65E-02 1.48E-01

1/2 1.59E-03 2.71 2.49E-03 2.73 3.11E-02 2.25
1/4 2.42E-04 2.71 4.02E-04 2.63 6.35E-03 2.29
1/8 3.28E-05 2.89 5.84E-05 2.78 1.03E-03 2.62
1/16 3.96E-06 3.05 7.45E-06 2.97 1.72E-04 2.58

Figure 3.11: Example 3.13. CFL = 0.1. P 2 polynomials. Triangular mesh with characteristic length 1/8. 2816 elements.
Penalty constant: C = 0.25. Left: t = 0.5/π2. Right: t = 1.5/π2.

on the domain [−1, 1]2.
Similar to [13, 26], a nonlinear limiter is needed for convergence in this example. We use

the moment limiter [16] and the numerical solution obtained by P 2 polynomial at t = 1 is
provided in Figure 3.12.

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1

−3

−2

−1

0

1

2

3

Figure 3.12: Example 3.14. t = 1. CFL = 0.1. P 2 polynomials on a 41× 41 uniform mesh. Penalty constant: C = 0.25.

23

Example 3.15 The problem of a propagating surface ϕt −
√
ϕ2
x + ϕ2

y + 1 = 0

ϕ(x, y, 0) = 1− 1

4
(cos(2πx)− 1)(cos(2πy)− 1)

(3.32)

with periodic boundary condition on the domain [0, 1]2. This is a special case of the example
used in [19], and is also the two-dimensional Eikonal equation arising from geometric optics
[15]. We use an unstructured mesh shown in Figure 3.13 with refinements near the center
of the domain where the solution develops singularity. The numerical solutions at different
times are displayed in Figure 3.14. Notice that the solution at t = 0 is shifted downward by
0.35 to show the detail of the solutions at later times.

X

Y

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Figure 3.13: Example 3.15. The unstructured mesh used in the computation. Number of elements: 3480.

Example 3.16 The problem of a propagating surface on the unit disk {(x, y) : x2 +y2 ≤ 1} ϕt −
√
ϕ2
x + ϕ2

y + 1 = 0

ϕ(x, y, 0) = − sin(
π(x2 + y2)

2
).

(3.33)

We use an unstructured mesh as depicted in Figure 3.15 with refinements near the origin
where solution develops singularity. The numerical solutions at different times are displayed
in Figure 3.16. Notice that the solution at t = 0 is shifted downward by 0.2 to show the
detail of the solutions at later times.

In this section, we demonstrate numerically that the scheme could obtain the optimal
order of accuracy for smooth solutions on both structured and unstructured meshes and could

24

X
00.51

Y

0
0.5

1

Z

0.6

0.4

0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
t=0.9

t=0.6

t=0.3

t=0.0

ϕ0.35

Figure 3.14: Example 3.15. CFL = 0.1. P 2 polynomials. Penalty constant: C = 0.25. The numerical solution at the indicated
times.

X

Y

1 0.5 0 0.5 1
1

0.5

0

0.5

1

Figure 3.15: Example 3.16. The unstructured mesh used in the computation. Number of elements: 5890.

reliably capture the viscosity solution for both convex and non convex Hamiltonians. The
penalty terms in the scheme play an important role in several examples, such as Examples
3.2, 3.4, 3.5, 3.14. In the 1D and 2D Riemann problems, Examples 3.7 and 3.14, a nonlinear

25

X
10.500.51

Y

1
0

1

Z

0

0.5

1

1.5

2

2.5

t=1.8

t=1.2

t=0.6

t=0

ϕ0.2

Figure 3.16: Example 3.16. CFL = 0.1. P 2 polynomials. Penalty constant: C = 0.25. The numerical solution at the indicated
times.

limiter is needed to capture the viscosity solution similarly as observed in [18, 26].

4 Concluding Remarks

In this paper, we propose a new DG method for directly solving the HJ equation. The
scheme is direct and robust, and is demonstrated to work on unstructured meshes even with
nonconvex Hamiltonians. The theoretical aspects of this method are subjects of future study.

References

[1] R. Abgrall. Numerical discretization of the first-order Hamilton-Jacobi equation on
triangular meshes. Commun. Pur. Appl. Math., 49(12):1339–1373, 1996.

[2] O. Bokanowski, Y. Cheng, and C.-W. Shu. A discontinuous Galerkin solver for front
propagation with obstacles. Numer. Math. to appear.

[3] O. Bokanowski, Y. Cheng, and C.-W. Shu. A discontinuous Galerkin solver for front
propagation. SIAM J. Sci. Comput., 33:923–938, 2011.

[4] Y. Chen and B. Cockburn. An adaptive high-order discontinuous Galerkin method with
error control for the Hamilton-Jacobi equations. Part I: The one-dimensional steady
state case. J. Comput. Phys., 226(1):1027–1058, 2007.

26

[5] Y. Cheng and C.-W. Shu. A discontinuous Galerkin finite element method for directly
solving the Hamilton-Jacobi equations. J. Comput. Phys., 223:398–415, 2007.

[6] B. Cockburn and C.-W. Shu. Runge-Kutta discontinuous Galerkin methods for
convection-dominated problems. J. Sci. Comput., 16:173–261, 2001.

[7] M. G. Crandall, L. C. Evans, and P.-L. Lions. Some properties of viscosity solutions of
hamilton-jacobi equations. Trans. Amer. Math. Soc., 282(2):487–502, 1984.

[8] M. G. Crandall and P.-L. Lions. Viscosity solutions of Hamilton-Jacobi equations.
Transactions of the American Mathematical Society, 277:1–42, 1983.

[9] M. G. Crandall and P.-L. Lions. Two approximations of solutions of Hamilton-Jacobi
equations. Math. Comp., 43:1–19, 1984.

[10] S. Gottlieb, C.-W. Shu, and E. Tadmor. Strong stability preserving high order time
discretization methods. SIAM Review, 43:89–112, 2001.

[11] W. Guo, F. Li, and J. Qiu. Local-structure-preserving discontinuous Galerkin methods
with Lax-Wendroff type time discretizations for Hamilton-Jacobi equations. J. Sci.
Comput., 47(2):239–257, 2011.

[12] A. Harten and J. M. Hyman. Self adjusting grid methods for one-dimensional hyperbolic
conservation laws. J. Comput. Phys., 50(2):235–269, 1983.

[13] C. Hu and C.-W. Shu. A discontinuous Galerkin finite element method for Hamilton-
Jacobi equations. SIAM J. Sci. Comput., 21:666–690, 1999.

[14] G. Jiang and D. Peng. Weighted ENO schemes for Hamilton-Jacobi equations. SIAM
J. Sci. Comput., 21:2126–2143, 1999.

[15] S. Jin and Z. Xin. Numerical passage from systems of conservation laws to Hamilton-
Jacobi equations, and relaxation schemes. SIAM J. Numer. Anal., 35(6):2385–2404,
1998.

[16] L. Krivodonova. Limiters for high-order discontinuous Galerkin methods. J. Comput.
Phys., 226(1):879–896, 2007.

[17] F. Li and C.-W. Shu. Reinterpretation and simplified implementation of a discontinuous
Galerkin method for Hamilton-Jacobi equations. Appl. Math. Lett., 18:1204–1209, 2005.

[18] F. Li and S. Yakovlev. A central discontinuous Galerkin method for Hamilton-Jacobi
equations. J. Sci. Comput., 45(1-3):404–428, 2010.

[19] S. Osher and J. A. Sethian. Fronts propagating with curvature-dependent speed: algo-
rithms based on Hamilton-Jacobi formulations. J. Comput. Phys., 79(1):12–49, 1988.

[20] S. Osher and C.-W. Shu. High order essentially non-oscillatory schemes for Hamilton-
Jacobi equations. SIAM J. Numer. Anal., 28:907–922, 1991.

27

[21] C.-W. Shu. High order numerical methods for time dependent Hamilton-Jacobi equa-
tions. Mathematics and Computation in Imaging Science and Information Processing,
Lect. Notes Ser. Inst. Math. Sci. Natl. Univ. Singap, 11:47–91, 2007.

[22] C.-W. Shu. Survey on discontinuous Galerkin methods for Hamilton-Jacobi equations.
Recent Advances in Scientific Computing and Applications, 586:323, 2013.

[23] C.-W. Shu and S. Osher. Efficient implementation of essentially non-oscillatory shock-
capturing schemes. J. Comput. Phys., 77:439–471, 1988.

[24] P. E. Souganidis. Approximation schemes for viscosity solutions of Hamilton-Jacobi
equations. J. Differ. Equations, 59(1):1–43, 1985.

[25] T. Xiong, C.-W. Shu, and M. Zhang. A priori error estimates for semi-discrete discon-
tinuous Galerkin methods solving nonlinear Hamilton-Jacobi equations with smooth
solutions. Int. J. Numer. Anal. Mod., 2013.

[26] J. Yan and S. Osher. A local discontinuous Galerkin method for directly solving
Hamilton-Jacobi equations. J. Comput. Phys., 230(1):232–244, 2011.

[27] Y.-T. Zhang and C.-W. Shu. High order WENO schemes for Hamilton-Jacobi equations
on triangular meshes. SIAM J. Sci. Comput., 24:1005–1030, 2003.

28

