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In this paper, we present results of a discontinuous Galerkin (DG) scheme applied to deterministic com-
putations of the transients for the Boltzmann-Poisson system describing electron transport in semicon-
ductor devices. The collisional term models optical-phonon interactions which become dominant under
strong energetic conditions corresponding to nano-scale active regions under applied bias. The proposed
numerical technique is a finite element method using discontinuous piecewise polynomials as basis func-
tions on unstructured meshes. It is applied to simulate hot electron transport in bulk silicon, in a silicon
n*—n—n* diode and in a double gated 12 nm MOSFET. Additionally, the obtained results are compared to
those of a high order WENO scheme simulation and DSMC (Discrete Simulation Monte Carlo) solvers.
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1. Introduction

The evolution of the electron distribution function f(t,x,K) in
semiconductors in dependence of time t, position x and electron
wave vector k is governed by the Boltzmann transport equation
(BTE) [24,28,21]
of 1 q
P e- —Z1E. =
where h is the reduced Planck constant, and q denotes the positive
elementary charge. The function (k) is the energy of the considered
crystal conduction band measured from the band minimum;
according to the Kane dispersion relation, ¢ is the positive root of

h’k?

g(1 g) =—
( + & ) Zm* )
where « is the non-parabolicity factor and m* the effective electron
mass. The electric field E is related to the doping density Np and the
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electron density n, which equals the zero-order moment of the elec-
tron distribution function f, by the Poisson equation

Vuler(X)VaV] = 2 [n(t,%) = No (X)),

0

E=-V\V, (1.3)
where ¢ is the dielectric constant of the vacuum, €,(x) labels the
relative dielectric function depending on the material and V the
electrostatic potential. The collision operator Q(f) takes into ac-
count acoustic deformation potential and optical intervalley scat-
tering [31,29]. For low electron densities, it reads

QUf)(t,x, k) = /[R S0 (2%, K) — S(k 1) (¢,%, K] dK (1.4)

with the scattering kernel

Sk, K) = (ng + 1)Kd(e(K) — e(K) + hawy) +ngK(e(K) — (k) — hay)
+Kod(e(K) — &(K)) (1.5)

and K and Ky being constant for silicon. The symbol é indicates the

usual Dirac distribution and w, is the constant phonon frequency.
Moreover,

hw -1
ng = {exp (ﬁ) - 1}

is the occupation number of phonons, k; is the Boltzmann constant
and T is the constant lattice temperature.

Semiclassical description of electron flow in semiconductors is
an equation in six dimensions (plus time if the device is not in
steady state) for a truly 3-D device, and four dimensions for a
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1-D device. This heavy computational cost explains why the BP
system is traditionally simulated by the Direct Simulation Monte
Carlo (DSMC) methods [23]. In recent years, deterministic solvers
to the BP system were proposed [20,27,3,2,4-6,22]. These methods
provide accurate results which, in general, agree well with those
obtained from Monte Carlo (DSMC) simulations, often at a frac-
tional computational time. Moreover, they can resolve transient
details for the pdf, which are difficult to compute with DSMC sim-
ulators. The methods proposed in [4,6] used weighted essentially
non-oscillatory (WENO) finite difference schemes to solve the
Boltzmann-Poisson system. The advantage of the WENO scheme
is that it is relatively simple to code and very stable even on coarse
meshes for solutions containing sharp gradient regions. A disad-
vantage of the WENO finite difference method is that it requires
smooth meshes to achieve high order accuracy, hence it is not very
flexible for adaptive meshes.

On the other hand, motivated by the easy hp-adaptivity and
simple communication pattern of the discontinuous Galerkin
(DG) methods for macroscopic (fluid level) models [7,8,25,26],
we proposed in [11,10] to implement a DG solver to the full Boltz-
mann equation, that is capable of capturing transients of the prob-
ability density function (pdf).

The type of DG method that we will discuss here is a class of fi-
nite element methods originally devised to solve hyperbolic con-
servation laws containing only first order spatial derivatives, e.g.
[16,15,14,13,17]. Using completely discontinuous polynomial
space for both the test and trial functions in the spatial variables
and coupled with explicit and nonlinearly stable high order Run-
ge-Kutta time discretization, the method has the advantage of
flexibility for arbitrarily unstructured meshes, with a compact
stencil, and with the ability to easily accommodate arbitrary hp-
adaptivity. For more details about DG scheme for convection dom-
inated problems, we refer to the review paper [19]. The DG method
was later generalized to the local DG (LDG) method to solve the
convection diffusion equation [18] and elliptic equations [1]. It is
[? stable and locally conservative, which makes it particularly suit-
able to treat the Poisson equation.

In our previous preliminary work [11,10], we proposed the first
DG solver for (1.1) and showed some numerical calculations for
one- and two-dimensional devices. In this paper, we will carefully
formulate the DG-LDG scheme for the Boltzmann-Poisson system
and perform extensive numerical studies to validate our calcula-
tion. In addition, using this new scheme, we are able to implement
a solver to full energy bands [9] that no other deterministic solver
has been able to implement so far. It would be more difficult or
even unpractical to produce the full band computation with other
transport scheme.

This paper is organized as follows: in Section 2, we review the
change of variables in [27,5]. In Section 3, we study the DG-BTE sol-
ver for 1D diodes. Section 4 is devoted to the discussion of the 2D
double gate MOSFET DG solver. Conclusions and final remarks are
presented in Section 5. Some technical implementations of the DG
solver are collected in Appendix A.

2. Change of variables

In this section, we review the change of variables proposed in
[27.4].

For the numerical treatment of the system (1.1) and (1.3), it is
convenient to introduce suitable dimensionless quantities and
variables. We assume T; = 300 K. Typical values for length, time
and voltage are ¢, = 10 m,t, = 107 s and V, = 1V, respectively.
Thus, we define the dimensionless variables

X t %4 E

(X7y):Z7 t:E, III:V*7 (EX7Ey70):E

with E, = 0.1V,£,! and

% E*—C@ Cfv*
o’ Y toy VT LES

In correspondence to [27,5], we perform a coordinate transforma-
tion for k according to

k:@m@ J1- 2 cosg.\/1 —uzsiw)
(2.6)

where the new independent variables are the dimensionless en-
ergy w =, the cosine of the polar angle p and the azimuth an-
gle ¢ with ox = kgT;o. The main advantage of the generalized
spherical coordinates (2.6) is the easy treatment of the Dirac dis-
tribution in the kernel (1.5) of the collision term. In fact, this pro-
cedure enables us to transform the integral operator (1.4) with the
nonregular kernel S into an integral-difference operator, as shown
in the following.

We are interested in studying problems that are two-dimen-
sional in real space and three-dimensional in k-space. It would
be useful to consider the new unknown function @ related to the
electron distribution function via

¢(tvx7yv w, U, (,D) = S(W)f(t, X, k)7

where

Ey=—-c,

s(wW) = vVW(1 + axw)(1 + 20w) (2.7)

is proportional to the Jacobian of the change of variables (2.6) and,
apart from a dimensional constant factor, to the density of states.
This allows us to write the free streaming operator of the dimen-
sionless Boltzmann equation in a conservative form, which is
appropriate for applying standard numerical schemes used for
hyperbolic partial differential equations. Due to the symmetry of
the problem and of the collision operator, we have

d)(tvxyvanuvzn_(p) = ds(tvx’yuwnu: QD) (28)
Straightforward but cumbersome calculations end in the following

transport equation for @:

o® 0 o] 0 1s] 0
E"‘a(&q’) +a—y(g2‘1’) +8—W(g34’) +@(g4¢) +%(g5d>) =C(P).
29)

The functions g; (i=1,2,...,5) in the advection terms depend on
the independent variables w, i, ¢ as well as on time and position
via the electric field. They are given by

U/ W(1 + ogw)

&i()=6—7 + 204w
g()=c V1= 12 /w(1 + axw) cos ¢
2 X 1+ 20w ’
_ w(1 + oxw) 5
g()= —chm {ﬂEx(tyan) +4/1—p*cos (pEy(t,x,y)},
v 1Y }
)= T Y= 1- ZEXta7 - Eta? ’
8400 = b |1 BBt 1.y) — pcos 9By 1.1,y
sin @
J=c E,(t,x,
gs(+) k\/w(l-Hwa)\/l—,uZ y(X,Y)
with
t, ZkBTL f*qE
= and ¢ =—F=—.
4, m* « v/ 2m*kgT;

The right hand side of (2.9) is the integral-difference operator
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T 1 where
c@ytxy.wng) =swie [“do [ dworyw o) o
w ptxy)= [ aw [ du [ doatxyw.po) (210)
+/ dq)’/ dfc. ot x,y.w+7, W, ¢) 0 e
0 ! Hence, the dimensionless Poisson equation is
+c_@(t,x,y,w— ), U, q)’)}} — 27[cos(W)
13} i} 4 a oY

+CS(W—7) +c_s(W+)]D(t,x,y, W, i, Q) X (Er 5) oy (Er 8_y> =Gp(t,x,y) — Np(x,)] (2.11)

where with

-3
2mt, how v/ 2mrkgT
(Co,Cy,C ) = Pe V2mekgT (Ko, (ng + 1)K, ngK), 7= ﬁ Np(X,y) = (n;(“> Np(¢.x,0,y) and

are dimensionless parameters. We remark that the ¢ distributions 32

V2mrkgT\ 42

in the kernel S have been eliminated which leads to the shifted = (“) *—q.
. h €o

arguments of @. The parameter y represents the jump constant cor-

responding to the quantum of energy hw,. We have also taken into  Choosing the same values of the physical parameters as in [27], we

account (2.8) in the integration with respect to ¢'. Since the energy obtain

variable w is not negative, we must consider null ¢ and the function

s, if the argument w — 7 is negative. Co ~ 0.26531 | cy =~ 0.16857 | ¢, ~ 1830349

In terms of the new variables the electron density becomes ¢, ~0.50705 | ¢, ~0.32606 |c, = 10
¢ ~0.04432 |y~ 243723 |og ~0.01292

3
V2m kBTL> P(E,X,Y), e =117

n(t.t, 6.x,0.y) :/ f(t.t b.x, 0.y, K)dk = (
R3 h

ff
i fﬁf

2E+17

// 2E+2
0.2 //{/ 3
0
-2E+23
Fig. 3.1. Time evolution of macroscopic quantities using DG method for 400 nm channel at Vy,;,s = 1.0 V. Top left: density in cm~3; top right: mean velocity in cm/s; bottom
left: energy in eV; bottom right: momentum in cm=2s~'.
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Moreover, the dimensional x-component of the velocity is given by In a simplified model, we consider our device in the x—direction
by assuming that the doping profile, the potential and thus the

+00 1 T
Jo Zdw [ du [y dogy(w, ) d(t, x,y,w, i, p) 7 force field are only x-dependent. By cylindrical symmetry, the
p(tX.Y) resulting distribution function does not depend on ¢. In this case,

the dimensional density by the Boltzmann transport equation is reduced to

1.0115 x 10%® x p(t,x,y), 09 0

0 0
o (@1D) + 5 (83P) + - (84P) = C(D). 2.12
and the energy by ot Tox &P+ g, 8P+ oi (849) =C(?) (2.12)

0.025849 » o AW [y du J§ dpwat.x.y. w. it )

. with
p(t,x.y)
i -
4EA1Tf BE+06 -
2 i oy i
2 N : 3 B
Q B o F
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Fig. 3.2. Comparison of macroscopic quantities using DG (symbols) and WENO (solid line) for 400 nm channel at t = 5.0 ps, Vi,s = 1.0 V. Top left: density in cm~3; top right:
mean velocity in cm/s; middle left: energy in eV; middle right: electric field in kV/cm; bottom left: potential in V; bottom right: momentum in cm~2 s~'. Solution has reached
steady state.
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w(1 + axw where
g.() = CXM
14+ 206w too 1
W(T + aw) p(t,x) :n/ dw/ dud(t,x,w, ). (2.13)
g() = *2CI<WHE(LX)7 0 -1
1- 2 Hence, the dimensionless Poisson equation writes
&) = *CkmE(tyx) 9 oY
X 52 (6% ) = Glpe0 = o(x) (2.14)
and
) and
C(¢)(t,x,w,u):s(w){con/ du' ot x,w, 1) 14
-1 E= —Cyp——.
1 OX
+7r/ du’[wﬁ(t,x,ww,u’)+cf¢(t,x,W—v,u’)l}
71 . . 0
Z2T[CoS(W) + €. S(W =) +C_S(W )| D(EX, W, 1), 3. DG-BTE solver for 1D diodes simulation
In terms of the new variables the electron density becomes 3.1. Algorithm description
3
n(t.t, 0.%) :/ Fltut,x, K)dK = V/2mrkgTy (tX) We begin with formulating the DG-BTE solver for 1D diodes.
o e h o These examples have been thoroughly studied and tested by
WENO in [4].
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Fig. 3.3. Comparison of the snapshot for @(xo, w, ) using DG (left) and WENO (right) for 400 nm channel at t = 0.5 ps, Vs = 1.0 V. Top: Xo = 0.3 um; middle: x, = 0.5 pm;
bottom: xo = 0.7 um. Solution has not yet reached steady state.
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The Boltzmann-Poisson system (2.12) and (2.14) will be solved
on the domain

x€[0,L], we0,wnx, pe-1,1],

where L is the dimensionless length of the device and wy,y is the

maximum value of the energy, which is adjusted in the numerical
experiments such that

&(t,x,w, 1) ~0 for w > wpa and every t,x, i.

In (2.12), g; and g5 are completely smooth in the variable w and
i, assuming E is given and smooth. However, g, is singular for the
energy w = 0, although it is compensated by the s(w) factor in the
definition of @.

The initial value of f is a locally Maxwellian distribution at the
temperature Tp,

®(0,x,w, ) = s(W)Np(x)e ™.«

with the numerical parameter .# chosen so that the initial value for
the density is equal to the doping Np(x).

\
\
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0
1
22
8E-06
6E-06 .i
AN
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4E-06 §§§ gg!\
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206 - [N
WY
0 R
< R
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5E-05
0
]
0

20
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0 w

We choose to perform our calculations on the following rectan-
gular grid:

Qikm = [xi—%vxh—%] X [Wk_%vwk+;-] X [Hm—%?ﬂm+%]7 (3.15)

wherei=1,...Ny,k=1,...N,, m=1,...N,, and

AX; Awy A
Xii%:XiiTI7 Wiy = Wi £ —=, Mmi%:ﬂmi%-

It is useful that we pick N, to be even, so the function g; will as-
sume a constant sign in each cell Q.

The approximation space is thus defined as
Vi ={v: vl €P(Qum)}, (3.16)
where P'(Qy) is the set of all polynomials of degree at most ¢ on

Qitm. The DG formulation for the Boltzmann equation (2.12) would
be: to find @, € V¢, such that

0.0003

0.0002

Fig. 3.4. Comparison of the snapshot for @(xo, w, ) using DG (left) and WENO (right) for 400 nm channel at t = 5.0 ps, V;5s = 1.0 V. Top: X, = 0.3 um; middle: x, = 0.5 pm;

bottom: xo = 0.7 um. Solution has reached steady state.
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/ ((ph)tl/hd.Q—/ glcbh(vh)de—/ g3¢>h(vh)wdQ
Qikm Qikm Qikm

—/ uBy(0n), 4 + F; — Fy +F,— Fy + F; — F;

Qikm

:/ C(@y) 0 dQ2 (3.17)
Qikm

for any test function v, € Vj. In (3.17),

FS = /W‘”% /#m'%g éﬁzf(x- 1, W ,u)dwdu
X u 1 h i3 " )

it o~
F;:/ 2 k2g4<py5<x,w,,um+%>dxdW,
X

k-

_ X|+% wk+% ~

F, :/ 8,Pv; (x, w, ,um71>dxdw,
X1 Wk—% ’

where the upwind numerical fluxes &, &, & are chosen according to

the following rules:
H 4E+18
2E+18
0.25
0.2
0.15
0.1

0.05 %

density

0.8

0.6

o The sign of g; only depends on g, if yt,, > 0,® = @~; otherwise,
&=,

o The sign of g; only depends on pE(t, x), if u,E(t, %) < O, O=0;
otherwise, @ = @*. N

e The sign of g, only depends on E(t,x), if E(t,x;) <0, ¢ = &~
otherwise, ® = &*.

At the source and drain contacts, we implement the same
boundary condition as proposed in [6] to realize neutral charges.
In the (w, w)-space, no boundary condition is necessary, since

e Atw=0,8; =0. At W= Wna, ® is machine zero.
o At u=+1,g,=0,
F,.F,, F;,F; are always zero. This saves us the effort of construct-
ing ghost elements in comparison with WENO.

The Poisson equation (2.14) is solved by the LDG method on a
consistent grid of (3.15) in the x-direction. It involves rewriting
the equation into the following form:

q="2%
o (3.18)
% (Erq) = R(t7 X)7
where R(t,x) = cp[p(t,X) — Ap(x)] is a known function that can be
computed at each time step once @ is solved from (3.17), and the
coefficient €, here is a constant. The grid we use is I; = X1, X
withi=1,...,N,. The approximation space is

i+

Wy, ={v: 0|, € P'(l)},

2>
)
o
[
>
1E+07
1.2E+25
9E+24 £
2
c
[
£
o
€
GE+24
0.25

Fig. 3.5. Time evolution of macroscopic quantities using DG method for 50 nm channel at Vy;,; = 1.0 V. Top left: density in cm~3; top right: mean velocity in cm/s; bottom

left: energy in eV; bottom right: momentum in cm=2s~'.
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with P’(I;) denoting the set of all polynomials of degree at most ¢ on
I;. The LDG scheme for (3.18) is given by: to find gy, ¥; € V}, such
that

W, - W, o+ —
/hqh z)hdx—i-/’i VYh(vn),dx — Pho, (x,-+%) + Py (xi7%> =0,

- /1 €rqp (D), X +€Ehp; (x,»%) - Erahpﬁ (’ﬂ%) = /l R(t, x)p, dx
(3.19)

hold true for any vy, p, € Wj. In the above formulation, the flux is
chosen as follows, ¥, = W, G = €@y — [Vh], where [¥y] = V) —
¥, At x=L we need to flip the flux to ¥, =¥, &q,=
€:q, — [¥4] to adapt to the Dirichlet boundary conditions. Solving

4E+18}
2 L
2 7
: -
o L
T L
2E+18|
I B i
0.05 0.1 015 0.2
X
04
.. 03
5 i
S

o L
c L
o 0.2}
01F

======= MR R TR R R SR

0.05 0.1 015 0.2
X

1_
08|
= o6}
S i
= L
8 i
g o4f
02|

Ow\\\l\\\w ST EE R R R SR

005 0.1 015 0.2
X

(3.19), we can obtain the numerical approximation of the electric
potential ¥} and electric field E, = —c,q, on each cell I,.

We include some of the technical details of the implementa-
tions for a 2D device in Appendix A. 1D diodes simulation carries
similar steps and is simpler. We start with an initial value for &,
described in Appendix A.5. The DG-LDG algorithm advances from
t" to t"*! in the following steps:

Step 1: Compute ppt.x)=m gm dwﬂ1 dudy(t,x, w, 1) as

described in Appendix A.6.

Step 2: Use p,(t,x) to solve from (3.19) the electric field, and com-
pute g;,i = 1,3,4 on each computational element.

Step 3: Solve (3.17) and get a method of line ODE for &, see
Appendices A.2, A.3 and A4.

2
g 1E+07
©
>
======= ocooooooog
-100
w [
-2005
-300
A0
0.05 0.1 0.15 0.2
X
€ 8E+24|
=] L
-
S T O 000 o0o04do
£ L
o
£ L
6E+24\\\\l\\\\l\\\\l\\\\l\\\\

0.05 0.1 0.15 0.2
X

Fig. 3.6. Comparison of macroscopic quantities using DG (symbols) and WENO (solid line) for 50 nm channel at t = 3.0 ps, Vy,i.s = 1.0 V. Top left: density in cm~—3; top right:
mean velocity in cm/s; middle left: energy in eV; middle right: electric field in kV/cm; bottom left: potential in V; bottom right: momentum in cm~2 s~'. Solution has reached

steady state.
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Step 4 Evolve this ODE by proper time stepping from t" to t"!, if
partial time step is necessary, then repeat Steps 1-3 as
needed.

Finally, the hydrodynamic moments can be computed at any
time step by the method in Appendix A.6.

We want to remark that, unlike WENO, the DG formulation
above has no restriction on the mesh size. In fact, nonuniform
meshes are more desirable in practice. For small semiconductor
devices with highly doped, non-smooth regions, strong relative
electric fields give high energy to charged particles, so it is ex-
pected to create states whose distribution functions f have high
densities in some regions but low densities in others. Only a non-
uniform grid can guarantee accurate results without using a large
number of grid points. In particular the evolving distribution func-
tion f(t,x,k) has, at some regions points in the physical domain
corresponding to strong force fields, a shape that is very different
from a Maxwellian distribution (the expected equilibrium statisti-
cal state in the absence of electric field), see for example Fig. 3.11.
Moreover, taking into account the rapid decay of f for large value of

|k|, a nonuniform grid is more computational efficient without sac-
rificing accuracy of the calculation.

In the following simulations, we have implemented, without
self-adaptivity, a nonuniform mesh that refines locally near the re-
gions where most of the interesting phenomena happen, that is the
junctions of the channel, addressing one of the main difficulties in
solving the Boltzmann-Poisson system with the presence of the
doping, which creates strong gradients of the solution near its
jumps, and the polar angle direction ¢ = 1, corresponding to the
alignment with the force electric field.

Consequently, for this first computational implementations of
the DG solver, using the ansatz that the doping profile function
Np(x) in the Poisson equation does not depend on time, we have
the advantage to know where we need a fine grid in space to guar-
antee a reasonable accuracy.

Even in the simplest test problem of the bulk case, the electric
field is constant and the solution is spatially homogeneous. If the
initial condition is a Maxwellian distribution function, then, for
high constant electric field, one observes the overshoot velocity
problem which stabilizes in time. This fact implies that the final

Fig. 3.7. Comparison of the snapshot for ®(xo, w, ) using DG (left) and WENO (right) for 50 nm channel at t = 0.5 ps, Vi,ias = 1.0 V. Top: Xo = 0.1 um; middle: xo = 0.125 pm;

bottom: xo = 0.15 wm. Solution has not yet reached steady state.
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state distribution tails change with respect to the initial one, and
the distribution has also a shift proportional to the potential en-
ergy &, therefore a simple choice a fixed mesh in (w, u) works
for a given constant electric field that depends on a potential bias
at contacts. In general, due to the stabilization nature of the Boltz-
mann-Poisson system, the choice of a fixed nonuniform mesh
works for this preliminary implementation. However, the magni-
tude of the gradient variation of the solutions depends on the ap-
plied bias, ultimately adaptivity will be the most efficient way to
calculate the solution, and so self adaptive DG schemes will be
studied in our future work. Nevertheless, we anticipate that a self
adaptive scheme has the advantage of a smaller number of cells,
but the overhead for the adjustment of the solution to a new grid
might be CPU time consuming.

3.2. Discussions on benchmark test problems
We consider two benchmark test examples: Si n*—n—n* diodes

of a total length of 1 and 0.25 um, with 400 and 50 nm channels
located in the middle of the device, respectively. For the 400 nm

0.0004

0.0002

0

[
——

channel device, the dimensional doping is given by Np=5x
10" cm3 in the n* region and Np = 2 x 10"® cm~3 in the n~ region.
For the 50 nm channel device, the dimensional doping is given by
Np =5 x 10" cm~3 in the n* region and Np = 1 x 10'° cm3 in the
n- region. Both examples were computed by WENO in [5].

In our simulation, we use piecewise linear polynomials, i.e.
¢ =1, and second-order Runge-Kutta time discretization. The dop-
ing Np is smoothed in the following way near the channel junctions
to obtain non-oscillatory solutions. Suppose N, = N, in the n* re-
gion, Np = N, in the n~ region and the length of the transition re-
gion is 2 cells, then the smoothed function is (N, — N;)(1 — y3)?
+N;, where y= (x—xo+ Ax)/(2Ax+107%) is the coordinate
transformation that makes the transition region (xo — Ax,Xo + AX)
varies from 0 to 1 in y.

The nonuniform mesh we use for 400 nm channels is defined as
follows. In the x-direction, if x<02um or x>04pum,
Ax = 0.01 pm. In the region 0.2 pm < x < 0.4 um, Ax = 0.005 pm.
Thus, the total number of cells in x direction is 120. In the w-direc-
tion, we use 60 uniform cells. In the p-direction, we use 24 cells, 12
in the region u < 0.7, 12 in pu > 0.7. Thus, the grid consists of
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e

19 20

w

Fig. 3.8. Comparison of the snapshot for @(xo, w, u) using DG (left) and WENO (right) solution for 50 nm channel at t = 3.0 ps, Vi, = 1.0. Top: Xo = 0.1 pum; middle:

Xo = 0.125 pm; bottom: xo = 0.15 pum. Solution has reached steady state.
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120 x 60 x 24 cells, compared to the WENO grid of 180 x 60 x 24
uniform cells. We should remark that there are more degrees of
freedom per cell for DG than for WENO, hence a more adequate
comparison is the CPU cost to obtain the same level of errors, see
for example [30] in which such a comparison is made for some
simple examples indicating the advantage of DG in certain
situations.

We plot the evolution of density, mean velocity, energy and
momentum in Fig. 3.1. Due to the conservation of mass, which
the DG scheme satisfies for our boundary condition, one can see
that when the momentum becomes constant, the solution is sta-
ble. The solution has already stabilized at t=5.0 ps from the
momentum plots. The macroscopic quantities at steady state
are plotted in Fig. 3.2. The results are compared with the WENO
calculation. They agree with each other in general, with DG offer-
ing more resolution and a higher peak in energy near the junc-
tions. This is crucial to obtain a more agreeable kinetic energy
with experiments and DSMC simulations. Figs. 3.3 and 3.4 show
comparisons for the pdf at transient and steady state. We plot
at different positions of the device, namely, the left, center and
right of the channel. We notice a larger value of pdf especially
at the center of the channel, where the pdf is no longer Maxwell-
ian. Moreover, at t=0.5 ps, xo = 0.5 um, the pdf shows a double
hump structure, which is not captured by the WENO solver. All
of these advantages come from the fact that we are refining more
near i = 1. To have a better idea of the shape of the pdf, we plot
@(t=5.0ps,x = 0.5 um) in the cartesian coordinates in Fig. 3.9.
The coordinate V1 in the plot is the momentum parallel to the
force field k;,V2 is the modulus of the orthogonal component.
The peak is captured very sharply compared to WENO, see Figs.
3 and 4 in [5].

The nonuniform mesh we use for 50 nm channels is defined as
follows. In the x-direction, near the junctions, in 0.09 pm <
X< 0.11 pm and 0.14 pm < x < 0.16 pum,Ax = 0.001 pm; in cen-
ter of the channel 0.11 pm < x < 0.14 um,Ax = 0.005 pm; at
everywhere else, Ax = 0.01 um. Thus, the total number of cells in
x direction is 64. In the w-direction, we use 60 uniform cells. In
the u-direction, we use 20 cells, 10 in the region u < 0.7, 10 in
1> 0.7. Thus, the grid consists of 64 x 60 x 20 cells, compared
to the WENO calculation of 150 x 120 x 16 uniform cells. The evo-
lution and steady state plots are listed in Figs. 3.5-3.7 and 3.8. The
conclusions are similar with 400 nm, that we obtain better resolu-
tions near the channel junctions and the peak for pdfis much high-
er. Fig. 3.10 plots @(t =5.0 ps,x=0.125 um) in the cartesian

J1E-05

18E-06

pdf

Fig. 3.9. PDF for 400 nm channel at t = 5.0 ps, x = 0.5 um. Center of the channel.

pdf

Fig. 3.10. PDF for 50 nm channel at t = 3.0 ps, x = 0.125 pm. Center of the channel.

coordinates. The peak is twice the height of WENO and is very
sharp. Fig. 3.11 plots the pdf near x = 0.15 pum, the drain junction.
We obtain distributions far away from statistical equilibrium, that
reflects the lack of suitability of the classical hydrodynamical mod-
els for the drain region of a small gated device under even moder-
ate voltage bias.

3.3. Comparisons with DSMC simulations

We compare the results from DG-BTE solver with those ob-
tained from DSMC simulations (see Figs. 3.12 and 3.13). Both sim-
ulations show good agreement except for the kinetic energy near
the boundaries.

This mismatch is due to the modeling of the contact boundary
conditions in DSMC simulations, which require the knowledge of
the distribution function f (or the corresponding energy-band
transform @) for entering particles. A classical way to solve this
problem for DSMC simulations is done by the inclusion of a trans-
port kinetic equation for the dynamic of the electron at the metal
junctions. However, this is not realistic due to the complexity of
this new kinetic equation, where the importance of electron-elec-
tron interaction requires a nonlinear collisional operator, similar to
the classical one of the Boltzmann equation for a rarefied perfect
gas.

Nevertheless, traditionally, boundary conditions associated
with these DSMC models for charge electron transport have been
implemented by the following two simplistic rules consisting on
the assumption that the distribution function f, near the contact
but outside the computational domain is, either proportional to a
Maxwellian equilibrium distribution function for incoming veloci-
ties, or related to f evaluated near the contact and inside the com-
putational domain. (For strong electric fields near the boundaries,
these choices are not correct, as they may required a shift Max-
wellian or a condition that generates momentum in the direction
of the field.)

The first option is well accepted when a high doping concentra-
tion near the boundaries yields a very small electric field: so, the
electron gas, in these zones, is almost in the thermal equilibrium
and has a constant velocity approximately. That is, we could use
the ansatz that the distribution function @, in the outer side of
the boundary is taken to be proportional to a energy-band spheri-
cally transformed Maxwellian equilibrium distribution function
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Fig. 3.11. Non-equilibrium PDF states near the drain junction for 50 nm channel at t = 3.0 ps. They exhibit the large deviation from classical statistical states even at places
corresponding to highly doped region. This is a signature of hot electron transport. Top left: x = 0.149 pum. Top right: x = 0.15 pm. Bottom left: x = 0.152 pm. Bottom right:

x=0.16 um.

centered at zero energy, whose average matches the doping profile
function Np(x) at the boundary. However this approach will create
boundary layers of the mean free path order and so the condition
do not secure an absolute charge neutrality.

Hence, we rather use the second option which imposes that
f = four, near the contact and outside the computational domain
(k-n,, < 0)where x, is a boundary point and ,, the outer normal,
is related to f = f;, evaluated near the contact and inside the com-
putational domain (k -, > 0). This approach allows us to get an
exact neutral charge at the source and drain contact boundaries,
which imposes that the probability and doping density must coin-
cide, as well as continuity in velocity space. Then the simple
formula,

.A/D(Xb)
p(tv Xb)
is assumed in our simulations, where @, is the band-energy spher-

ically coordinated transformed f, in the corresponding transform
domain.

¢out(t7 Xp, W, H) = ¢i1’l(t7 Xp, W, H) (320)

This very same boundary type condition (3.20) at the gate and
drain contacts has been used in the deterministic simulations of
Boltzmann-Poisson systems for semiconductor devices by WENO
schemes (see [6]) and are use here for the DG schemes to approx-
imate the same boundary value problem. So the agreement of low-
er moments is very good, even though at the computational level,
(3.20) is approximated in different ways depending on the numer-
ical scheme.

For example, in the case of DSMC simulations, particles must be
created or destroyed. However in the case of finite difference
WENO schemes, we introduced suitable ghost points [4,6]; and
in the case of DG schemes it is enough to give values of ¢ at bound-
aries according to condition (3.20).

Hence, we can not have a unique exact boundary conditions in
the computational experiments, which makes it clear that these
differences in the numerical boundary treatment have an influence
for the solutions at the stationary regime, which explains the dis-
crepancies of the numerical comparisons of moments near the
boundaries. Nevertheless, we stress that, as Figs. 3.5 and 3.6 show
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Fig. 3.12. Comparison of macroscopic quantities using DG (dashed line) and DSMC (solid line) for 400 nm channel at t = 5.0 ps, V s = 1.0 V. Top left: density in cm—3; top
right: mean velocity in cm/s; middle left: energy in eV; middle right: electric field in kV/cm; bottom left: potential in V; bottom right: momentum in cm~2 s~'. Solution has

reached steady state.

in all cases, there is a very good agreement of the comparisons in-
side the device.

3.4. Summary

We have benchmarked the DG algorithm on two test cases: Si
nt—n—n* diodes with 400 and 50 nm channels. The DG scheme
has the ability to quickly stabilize to the steady state and accu-
rately resolve transient details. In particular, the pdf along the
direction of the electric field is captured sharply due to the nonuni-
form mesh we use. For the more energetic device with 50 nm chan-
nel, DG computes a much higher peak and a “donut” shaped tail in
the pdf near the drain junction, thus resulting in an accurate
description of higher order moments in those regions.

4. DG-BTE solver for 2D double gate MOSFET simulation

In this section, we turn to a 2D double gate MOSFET device. The
algorithm is similar to those described in the previous section. For
the benefit of the reader, we repeat some of the procedures in Sec-
tion 3. We will use a simple rectangular grid and let

Qi]km" = {Xif%vxi%] X [yj—%’yj+%] X [ka%vwk%] X [.umf%uumﬁ—]
x [(pn—%v (PDY'H’%] )
where

i=1,...Ny, j=1,...Ny, k=1,...Ny, m=1,...Ny, n=1,...N,,
and
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Fig. 4.14. Schematic representation of a 2D double gate MOSFET device.
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The approximation space is defined as

Vi, ={v: Vlgym € P (Qyjtmn) }- (4.21)

Here, P(Qjjmn) is the set of all polynomials of degree at most ¢ on
Qjjmn. The DG formulation for the Boltzmann equation (2.9) would
be: to find ¢, € V¢, such that
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Fig. 4.15. Macroscopic quantities of double gate MOSFET device at t = 0.5 ps. Top left: density in cm~—3; top right: energy in eV; bottom left: x-component of velocity in cm/s;
bottom right: y-component of velocity in cm/s. Solution reached steady state.
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Fig. 4.16. Macroscopic quantities of double gate MOSFET device at t = 0.5 ps. Top left: x-component of electric field in kV/cm; top right: y-component of electric field in kV/
cm; bottom: electric potential in V. Solution has reached steady state.
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F, :/ / / gs0v; (x,y, w, U, (pnil)dxdydwd,u,
X y 1 :

. w, 1 1
- k- -2

=

where the upwind numerical fluxes @, @, g3/5, g/471>, ¢ are defined in
the following way:

o The sign of g, only depends on g, if g, > 0, then ® = @~; other-
wise, ¢ = ¢,

o The sign of g, only depends on cos ¢, if cos ¢, > 0, then @ = ¢ ;
otherwise, ¢ = ¢*. Note that in our simulation, N,, is always
even.
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8:® =26k 1+ 20w

[HE(tx)B /1= cosgE, (008

If gt Ex(t,xi,y;) <0, then =0 ; otherwise, & = ot If
(cos @, )Ey(t, x;,y;) <0, then & = &~; otherwise, & = &
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o The sign of g5 only depends on E,(t,x,y), if E,(t,x;,y;) > 0, then
¢ = &~ ; otherwise, ¢ = o+,

The schematic plot of the double gate MOSFET device is given in
Fig. 4.14. The shadowed region denotes the oxide-silicon region,
whereas the rest is the silicon region. Since the problem is sym-
metric about the x-axis, we will only need to compute for y > 0.
At the source and drain contacts, we implement the same bound-
ary condition as proposed in [6] to realize neutral charges. A buffer
layer of ghost points of i = 0 and i = N, + 1 is used to make

o Np(i=1)
¢(z_0)_¢(1_1)ﬁ,
and

Np(i = Ny)

d(i=Ny+1)=P(i=Ny) =Ny
At the top and bottom of the computational domain (the silicon
region), we impose the classical elastic specular boundary
reflection.
In the (w, i, @)-space, no boundary condition is necessary be-
cause of similar reason as in the 1D case,

e at w=0,g; = 0. At W = Wy, @ is machine zero;
e at u=+1,g,=0;
e at p=0,7,85 =0,

so at those boundaries, the numerical flux always vanishes, hence
no ghost point is necessary.

For the boundary condition of the Poisson equation, ¥ =
0.52354 at source, ¥ = 1.5235 at drain and ¥ = 1.06 at gate. For
the rest of boundaries, we impose homogeneous Neumann bound-
ary condition, i.e., ¥ = 0. The relative dielectric constant in the
oxide-silicon region is €, = 3.9, in the silicon region is €, = 11.7.

The Poisson equation (2.11) is solved by the LDG method. It in-
volves rewriting the equation into the following form:

— ¥ — oY
{q(‘)x’ S=%

. ) 423
2(6,0) + 2(65) = R(t1.Y), 423

where R(t,x,y) = ¢p[p(t,x,y) — A'p(x,y)] is a known function that
can be computed at each time step once @ is solved from (4.22),
and the coefficient €, depends on x,y. The Poisson system is only

on the (x,y) domain. Hence, we use the grid [; = [x,-,%7x,-+%]x

[yjf%,yﬁ%]. with i=1,...,Ny,j=1,...,N,+M,, where j=N,+
1,...,Ny + M, denotes the oxide-silicon region, and the grid in
j=1,...,N,is consistent with the five-dimensional rectangular grid

for the Boltzmann equation in the silicon region. The approximation
space is defined as

W ={v: vy, € P'(I;)}. (4.24)

Here P'(I;;) denotes the set of all polynomials of degree at most ¢ on
Ij. The LDG scheme for (4.23) is: to find gy, sy, P» € V}, such that

Vil <
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X X

i1 1

2
= / R(t,x,y)p,dxdy
I
hold true for any vy, wy,p, € W}. In the above formulation, we
choose the flux as follows, in the x-direction, we use
Py =¥, 6qn=6q; — [Py In the
Y, = Wy, €Sy = €Sy — [¥r]. On some part of the domain boundary,
the above flux needs to be changed to accommodate various bound-
ary conditions [12]. Near the drain, we are given Dirichlet boundary

condition, so we need to flip the flux in x-direction: let
Pi(xupy) = i (xpy)  and  E@n(xipy) = €dy (xipy) -

[Y’h](xi+%7y>, if the point (xi%,y) is at the drain. For the gate, we

y-direction, we use

need to flip the flux in y-direction: let ¥, (x,yﬁ%) =Y <x7yj+%)

and €5y (x,yj%) = €S, (x,yj%) — [P (x,yj%), if the point (x,yj+%>
is at the gate. For the bottom, we need to use the Neumann condi-
tion, and flip the flux in y-direction, i.e., ¥, = ¥y €Sy = €S, This
scheme described above will enforce the continuity of ¥ and er%—f
across the interface of silicon and oxide-silicon interface. The solu-
tion of (4.25) gives us approximations to both the potential ¥, and
the electric field (Ey), = —c,qy, (Ey), = —CuSh.

To summarize, start with an initial condition for &, (Appendix
A.5), the DG-LDG algorithm for the 2D double gate MOSFET ad-
vances from t" to t"! in the following steps similar to the 1D
diodes simulation:

Step 1: Compute Pu(t,X,y) = J” dw‘[f1 du [g dody(t,x,y,w,

U, @) as described in Appendix A.6.

Step 2: Use p,(t,x,y) to solve from (4.25) the electric field (Ey),
and (E,),, and compute g;,i=1,...,5.

Step 3: Solve (4.22) and get a method of line ODE for &, see
Appendices A.2, A.3 and A4.
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Fig. 4.18. PDF for 2D double gate  MOSFET at t=0.5ps,

(x,y) = (0.9375 um,0.10 pm).
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Step 4: Evolve this ODE by proper time stepping from t" to t"*1, if
partial time step is necessary, then repeat Steps 1-3 as
needed.

Finally, the hydrodynamic moments can be computed at any time
step by the method in Appendix A.6.

All numerical results are obtained with a piecewise linear
approximation space and first order Euler time stepping. The dissi-
pative nature of the collision term makes the Euler forward time
stepping stable. We use a 24 x 14 grid in space, 120 points in w,
8 points in u and 6 points in ¢. In Figs. 4.15 and 4.16, we show
the results of the macroscopic quantities. We also show the pdf
at six different locations in the device in Fig. 4.17. These pdf's have
been computed by averaging the values of @, over ¢. In Fig. 4.18,
we present the cartesian plot for pdf at (x,y)= (0.125 um,
0.012 pm), where a very non-equilibrium pdf is observed.

5. Conclusions and final remarks

We have developed a DG scheme for BTEs of type (1.1),
which takes into account optical-phonon interactions that be-
come dominant under strong energetic conditions. We used the
coordinate transformation proposed in [27,4] and changed the
collision into an integral-difference operator by using energy
band as one of the variables. The Poisson equation is treated
by LDG on a mesh that is consistent with the mesh of the DG-
BTE scheme. The results are compared to those obtained from
a high order WENO scheme simulation. By a local refinement
in mesh, we were able to capture the subtle kinetic effects
including very non-equilibrium distributions without a great in-
crease of memory allocation and CPU time. The advantage of the
DG scheme lies in its potential for implementation on unstruc-
tured meshes and for full hp-adaptivity. The simple communica-
tion pattern of the DG method also makes it a good candidate
for the domain decomposition method for the coupled kinetic
and macroscopic models.

Appendix A

In this appendix, we collect some technical details for the
implementation of the 2D DG-BTE solver. The discussion for 1D
solver is similar and omitted here.

A.1. The basis of the finite dimensional function space

In every cell Qjm,, We use piecewise linear polynomials and
assume

2 X Xi y - y
‘I’h(f;X,y, w, ,uv QD) = Tijkmn(t) +Xijkmn(t) (Tl) + Yukmn( )(TJJ)
w200 )
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2(¢ - ,)
4 Pyn (£) 22— ) (A1
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It will be useful to note that
(t XYW, 1L, Q)
2=x) . 20-¥)
—Z |: ykmn +Xukmn( ) AX,' +Yukmn(t) ij
) 2Ww—wy) o 20—l | 2(0—9,)
+Wijiamn (£) AWy + Mijimn (£) Al + Pijimn (t) A, Le(W)

for every (x,y,w, i, @) € U’,:’g] Qjjkmn. Here, y,(w) is the characteristic

function in the interval [wkfl,wk +1].
2 2

A.2. Treatment of the collision operator

The gain term of the collisional operator is
Gan(exyw) =swa [ do' [ Ly it 0)
+/Ond<p’ /1 du'[c. ®n(t, .y, W+, 1, @)
seditxy.w- o)) (A2)

Now, we define

(Dn)n (%, Y, W /
P

and, for o0 =

N

/ Zdpv(x,y,w, 1, @),

n Hn

(e
Nl

-7, 0, 7, we have

T 1
/ vh(X,Y, W, i, Q) {s(w) / do' / du'o(t,x,y,w+o, 1, ")
ijkmn 0 -1

x dxdydwdudgp

/ dgo/ d,u/ /jzdy/ww%dws(w)

D(t,x,y, W+ a,u @)( h)m,l(X-,y,W)

N# Nf/’ /
m'=1 n'=1 ‘Qijkm’n’

X (U)X, y, W)dxdy dwdp' do'.

Now we discuss the following integral for different test function
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Hﬂm 1_0

o For vp(x,y,w, 1, @) = “’“’" ,I=0.
The lost term in the colllslon operator is

o For vh(x,y,w, i, @) =

27[cos(W) + . S(W — )) + c_S(W + P)]D(E,X, Y, W, {1, P). (A3)
Let
V(W) = 27[CoS(W) + C.S(W — 7) + c_s(w + )],
then we need to evaluate numerically,
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A.3. Integrals related to the collisional operator

We need to evaluate (some numerically) the following integrals

[ stwew+ oy,
W 1

Wil 2(W+ 0 —wy)
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| s TR v 0)
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If we evaluate these integrals by means of numerical quadrature
formulas, then it is appropriate to eliminate the singularity of the
function s(w) at w = 0 by change of variables.
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A.4. Integrals related to the free streaming operator

We recall that
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Z(W_Wk)rd which gives a relationship between F(x,y) and the initial charge

/bs W) 2(W — wy) / !
0 Awy /w(T + axw) Awy density p.

_ /‘/E 2 {2(1’2 — Wk)} Zdr A.6. Hydrodynamical variables
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Analogously, the energy multiplied by the charge density p,(t,x,y)
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