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Abstract—Dynamic, cross-linked, biological fiber networks
play major roles in cell and tissue function. They are
challenging structures to model due to the vast number of
components and the complexity of the interactions within the
structure. We present here a particle-based model for fiber
networks inspired from flocking theory, where fibers are
modeled as point particles and cross-link interactions are
modeled via distance-based potential functions. The frictional
potential in flocking models takes on the form of a function
that decays with increasing inter-particle distance, with the
specific form of this function fit for a particular model. We
determined, by conducting full microscopic fiber network
simulations, that for the case of a cross-linked fiber network,
this function takes on the form of a Gaussian. The basic
flockingmodel is alsomodified to include an elastic potential as
well as drag from the surrounding fluid. Conceptually, the
proposed model can be understood as a distributed Kelvin–
Voigt particle model. The model is able to simulate behaviors
such as strain hardening, viscoelastic creep, stress relaxation,
network rupture, and network reformation, which are com-
mon characteristics of biological fiber networks. The numer-
ical experiments shown in this paper utilize
experimentally-derived parameters for actin fiber networks
(as a test case), and produce biologically reasonable results.
The benefits of this particle model over polymer-based models
are that they are computationally simple to implement and can
be easily connected to kinetic and continuum-level models.

Keywords—Biological networks, Actin fiber network, Meso-

scopic scale, Kelvin–Voigt model, Biomechanics, Viscoelas-

ticity, Cytoskeleton.

INTRODUCTION

Biological fiber networks such as the actin filament
network of the cytoskeleton and the collagen-elastin

network of the extracellular matrix are complex cross-
linked structures that provide internal and external
mechanical support to cells.1,6 These networks are of-
ten dynamic, capable of breaking and reforming pro-
tein cross-links to rearrange their structures,1,4,46

giving cells and tissue the ability to substantially
change shape and adapt in response to external and
internal, mechanical and biochemical stimuli.1,20,37

Because of the significance of fibrous networks in
cell and tissue functions, there is a great deal of interest
in modeling these complex structures. However, cre-
ating discrete models is computationally challenging
due to the large number of individual components in
the network. Many research groups have taken one of
three main approaches to model structures of this
nature. The first is to create a detailed discrete model
of all fibers (modeled as beams, semi-flexible polymers,
or even at the level of monomers28), and cross-links
(modeled as springs), but one that represents a small
portion of the whole network, and thus contains a
computationally manageable number of compo-
nents.4,7,12,20,23,28 The second approach is to treat the
network as a continuous medium, modeled in various
ways such as a viscoelastic material,27 a porous or
poroelastic medium,14,42 a two-phase viscous fluid,2 or
an active gel.26,9 The third approach is a compromise
between the first two, where coarse-graining and/or
homogenization methods are utilized to create a less
detailed, regularly-patterned discrete model, that rep-
resents the whole network.32,40,29 The first approach
provides a detailed but spatially limited model of the
fiber structure. The second and third methods can be
utilized to model the network for a larger domain, but
the challenge lies in constructing accurate constitutive
laws or homogenization techniques that encompass the
dynamic and heterogeneous nature of the fiber net-
work.
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In this work, we take a different approach and
present a particle-interaction model for biological, fi-
brous networks that is inspired from flocking the-
ory.19,11 The term flocking refers to individuals moving
together in an ordered motion via interactions with
each other and their environment.19 Cross-linked fiber
networks can be viewed as a flock, with the fibers as the
individuals and the cross-links as means of interaction.
In this mesoscopic model, fibers are represented as
point particles, and the cross-link interactions are
modeled with potentials. The frictional potential in a
basic flocking model19 is a function that decays with
increasing inter-particle distance. It was determined
that in the context of a cross-linked fiber network, a
Gaussian is an appropriate choice for this function’s
shape. An elastic potential and drag term are also
added to the basic flocking model to capture close
neighbor interactions and interstitial fluid friction.

There are several computational and theoretical
advantages to such a model. First of all, through the
use of distance-based potentials, one can avoid the task
of keeping track of which fiber is connected to which
other fiber (which is the case for the polymer models of
Aström et al.,4 Head et al.,20 and Huisman et al.23).
Secondly, in comparison with polymer models where
fibers are represented as multi-segmented chains,4,20,23

the representation of fibers as particles reduces greatly
the number of variables needed to describe each fiber
and thus the system (similar to rigid rods models pre-
viously suggested44,30). As we will demonstrate, this
reduction does not prevent the model from capturing
experimentally observed, fiber network behaviors.
Another advantage is that there is no need for
boundary tracking, thus, a particle model is simple to
couple with other physical phenomena, for example an
exterior membrane or an interior fluid domain. These
advantages make the code development effort rela-
tively low and the code itself computationally inex-
pensive. Theoretically, this model has rigorous
conservation of mass and momentum. Thermal varia-
tions can be easily introduced using Brownian motion
(a thermostat). Also it should be noted that this model
is fully deterministic. Initial conditions are described
for all fibers and external forces, then the system is
evolved forward in time with no further intervention.

We note here that our approach resembles the
method of dissipative particle dynamics (DPD) devel-
oped to simulate meso-scale phenomena, for instance,
polymers solutions, gels and membranes.22,18 In DPD
the particles represent clusters of atoms or molecules,
likewise, our particles represent actin filaments of a fixed
typical length. Computationally speaking, DPD takes
advantage of the soft particle-particle interactions. This
is precisely the case for the biological networks as well
where the interactions between fibers are strong at short

range but decay rapidly at longer distances. However,
our approach differs from DPD in the fact that we
introduce a hybrid model, that is, we use first principles
for the conservative forces and a phenomenological
model11 for the dissipative forces. Below, we will show
that the model presented can be understood as a dis-
tributed Kelvin–Voigt particle model.

Evidently the simplifications used in the model, such
as the fiber rigidity assumption, introduce scale related
limitations to it. The model overlooks fine phenomena
occurring at the fiber scale such as hydrodynamic
interactions between fibers due to fiber deformation
and motion, nonuniform viscous drag in individual
fibers due to hydrodynamic screening which leads to
additional fiber bending,13 and other bending related
phenomena. We stress, however, that the strength of
the proposed model relies in the fact that it is able to
capture cumulative effects of such fine scale at the cell
scale with relatively low computational cost. In this
way, hydrodynamic interactions can accurately be
considered at the cell scale by coupling the model for
example with Stoke’s equation.

In the next section, we present a detailed description
of the particle-potential model equations. To demon-
strate the model’s capabilities we will choose an actin
filament network as a test case. The structure and
parameter values for an actin fiber network will be
described. We then test our model’s ability to capture
behaviors such as strain hardening, viscoelastic creep,
stress relaxation, network rupture and network refor-
mation. The model will also be used to investigate
whether mechanical energy can propagate in an actin
fiber network when external forces are applied. Finally,
an overall discussion of the model, results and future
work will be presented.

MATHEMATICAL MODEL

Our model consists of a cross-linked system of n
fibers evolving in the plane R2: Each fiber is assigned a
length L and mass m, (lumped into two masses (m/2) at
its two end points). Each fiber i, 1 £ i £ n, is described
by its center of mass position vector xi ¼ hx1; x2i 2 R2

and center of mass velocity vector v ¼ hv1; v2i 2 R2:
Fibers also have an orientation angle denoted by
hi 2 �p=2; p=2½ Þ with associated angular velocity
xi 2 R: In the case of fibers moving in the plane, hi is
simply the angle between the filament and the hori-
zontal axis (see Fig. 1 (left)).

In principle, free moving fibers follow simple phys-
ical laws of fluid dynamics, however, what make them
special is their interaction with close neighbors via
cross-links. We propose here a modified Cucker–Smale
model11 for the description of the evolution of the fiber
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network. The equations for the evolution of the center
of mass position xi and velocity vi for the ith-fiber,
1 £ i £ n are:

dxi
dt
¼ vi ð1aÞ

m
dvi
dt
¼� b1vi �

k1
n

Xn

j¼1
UfrðrijÞðvi � vjÞ

� k2
n

Xn

j¼1
U0eðrijÞ

xi � xj

rij
þ Fðt; xiÞ:

ð1bÞ

The term b1 vi represents drag forces from an
interstitial fluid (for example, cytosol within the cell)
on the fiber where b1 is the drag coefficient, computed
using slender body theory. The quantities Ufr(rij) and
Ue(rij) are the friction and elastic potentials, that are
computed based on rij: = |xi � xj|, the distance
between fibers i and j. The sum with Ufr(rij) should be
thought of as representing the total frictional force
from the interaction between neighboring fibers that
produces a tracking phenomenon. That is, the velocity
vi tracks a weighted average of its cross-linked fibers’
velocities. The parameter k1 is related to the friction
coefficient for the fibers. Intuition tells us that the
potential Ufr(rij) should be a function that decays as rij
increases, likely vanishing after several fiber lengths L.
We propose that Ufr(rij) takes the form of a Gaussian:

UfrðrijÞ ¼
1ffiffiffiffiffiffiffiffiffiffi
2pr2
p e�

r2
ij

2r2

where r is the standard deviation. To validate this
choice, we ran a fully microscopic simulation of a fiber
network. By fully microscopic we mean: (1) each fiber
is modeled as a chain of masses and springs, (2) cross-
links between fibers are also modeled as springs and
can form between any two segments of fibers i and j if
these segments are within a given distance R of one
another. We create the initial fiber network by ran-
domly placing and orienting M fibers each with S
segments in a square domain (for this demo,M = 500,

S = 10). Cross-links between fibers are established by
checking the distance between each of the 10 segments
of fiber i and all segments on fiber j where i „ j. In its
initial state the fiber network is assumed to be in
mechanical equilibrium and have a potential energy of
zero (all springs are at their relaxed lengths).

To isolate the effect that one fiber’s movement has
on the rest of the network, we move one centrally lo-
cated fiber (with a random motion) and observe the
network’s reaction to this break from equilibrium. The
motion of the fiber network is determined by setting up
and simulating a large ODE system containing
4 �M � ðSþ 1Þ equations (x and y position equations,
and x and y velocity equations for all fiber segment
endpoints).

To establish the influence of the relocation of this
central fiber with respect to the rest of the fibers in the
system, we create a scatter plot of each fiber’s distance
from the central fiber (utilizing center of mass loca-
tions) vs. the magnitude of the average velocity of each
fiber. The data points appear to take on a Gaussian
shape (see Fig. 2). We performed a Gaussian curve-fit
through the data. The data points and best-fit Gauss-
ian curve are plotted in Fig. 2. This simulation was
performed several hundred times with different initial
random networks, and random motion of a central
fiber. The average Gaussian curve of best fit from these
simulations is shown in Fig. 2, along with the Gaus-
sians that utilize r ± SD (standard deviation of r).
When utilizing a Gaussian curve for the frictional
potential in our mesoscopic model, we will need to
choose an appropriate value for r. In the numerical
experiments shown later in the paper, a value for r was
chosen based on simulations performed with the
microscopic model (as above) where the parameters for
the test case were utilized (see Table 1). In general we
note that r depends on several parameters such as the
network’s density, fiber length, and the upper limit of
cross-link interaction distance R. A full parameter
space investigation will be conducted in future work.
Again for the numerical tests presented later, we ran
the microscopic simulation multiple times (with dif-
ferent random networks) and computed the average r
value from these simulations, and utilized this value in
the particle model simulations.

We now return to Eqs. (1a) and (1b) to look at the
third term. The sum with Ue(rij) represents the total
elastic force acting on fiber i based on its direct cross-
link interactions with other fibers. The idea is that a
virtual spring appears between two fibers i and j
whenever rij is below a given threshold distance R. If rij
is greater than R then fibers i and j do not directly
interact elastically, and no contribution is made to the
sum. This‘‘on-off‘‘ switch behavior is reflected in the
structure of the Ue(rij) potential function

FIGURE 1. Model of a fiber as a rigid rod (left). The interac-
tion model (right) is conceptually a Kelvin–Voigt model
between any interacting fiber pair having viscosity k1

n Ufrðrij Þ;
elasticity k2

n U 0eðrij Þ and underlying drag b.
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UeðrijÞ ¼
1
2 k0ðrij � r0Þ2 � 1

2 k0ðR� r0Þ2 rij<R;
0 rij � R;

�

ð2Þ

where k0 is the spring constant of a cross-link, and r0 is
the cross-link equilibrium length. This set-up of the
elastic interaction model easily allows the model to
capture cross-link rupture (if rij transitions from less
than R to greater than R) and cross-link reformation (if
rij transitions from greater than R to less than R). The
cross-link interaction distance R depends in general on
the geometrical properties of the network constituents
such as typical fiber length, fiber orientation and the
typical biding mechanism length (actin-biding protein
typical length). For simplicity, in the numerical simu-
lationsRwill be assumed constant and ranging between
the typical length of binding proteins �50 nm and the
typical length of actin fibers �2 lm. The parameter k2
(like k1) is an adjustable parameter relating to the elastic
behavior of the network. In Fig. 3 we show a plot of the
elastic potential and elastic force generated between fi-
ber i and j. This force function has repulsive, attractive
and rupture zones in the cross-link behavior. InEq. (1b),
the final term F(t, xi) represents any external forces im-
posed on the fiber. Conceptually, Eqs. (1a) and (1b)
represent a Kelvin–Voigt model between any pair of fi-
bers having a viscosity of value k1

n UfrðrijÞ and elasticity of
k2
n U

0
eðrijÞ as depicted in Fig. 1 (right).
The equations for the evolution of hi and xi have a

similar structure to Eqs. (1a) and (1b). To derive the
equation for xi, we use the angular conservation of
momentum equation:

dLi

dt
¼ si:

where Li is the total angular momentum and si is the
torque. Li can be computed as

Li ¼ xi � ðmviÞ þ
X

k¼1;2
xki �

m

2
vki

:¼ xi � ðmviÞ þ Iwi;

ð3Þ

where I is the moment of inertia for the fiber with
respect to xi, its center. The vectors xi

k, vi
k for k = 1,2

are the position and velocity of the fiber’s two ends,
and wi is the angular velocity vector. On the one hand,
differentiating equation (3) in time gives

si ¼
dLi

dt
¼ xi � Ftot þ I

dwi

dt
: ð4Þ

On the other hand, computing the torque directly

si ¼ xi þ
‘i
2

� �
� F1 þ xi �

‘i
2

� �
� F2

¼ xi � ðF1 þ F2Þ þ ‘i
2
� ðF1 � F2Þ

¼ xi � Ftot þ ‘i
2
� ðF1 � F2Þ;

ð5Þ

where Fk, with k 2 f1; 2g; are the total forces exerted
on each end of the fiber and ‘i ¼ x1i � x2i : Comparing
equations (4) and (5) leads to

I
dwi

dt
¼ ‘i

2
� ðF1 � F2Þ:

These forces include both internal and external
forces. For the external force component introduce the
force field F(t, x). Thus,

ðF1 � F2Þext ¼ F t; x1i
� �

� F t; x2i
� �

¼: DFðt; xiÞ:
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FIGURE 2. (Left) Blue points represent the average velocity of each fiber in a network vs. each fiber’s distance to a central fiber.
This central fiber has been randomly displaced to create a perturbation in the network that was originally in a state of mechanical
equilibrium. The curve is the Gaussian best-fit curve through the data. (Right) The Gaussian curves that utilize the average value of
r and r 6 SD (standard deviation), where these statistics were computed from the results of several hundred runs of the exper-
iment depicted in the left plot. The horizontal axis is normalized with respect to fiber length L.
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Therefore,

‘i
2
� ðF1 � F2Þext ¼

L

2
ðcosðhiÞ; sinðhiÞ; 0Þ � DFðt; xiÞ

¼ L

2
DFðt; xiÞ � ð� sinðhiÞ; cosðhiÞ; 0Þ ê3;

where ê3 ¼ ð0; 0; 1Þ: For the internal force component,
we use a friction term analogous to the one used in Eq.
(1b) for the translational movement. That is, we pre-
scribe that

‘i
2
� ðF1 � F2Þint :¼ � k3

n

Xn

j¼1
UfrðrijÞðwi � wjÞ;

where Ufr(rij) is assumed to have the same Gaussian
form as the translational case. Here we have neglected
the rotational elastic component which could be added
depending on the specific application. This term
models the rotational friction forces between neigh-
boring fibers or the fibers tendency to rotate together
depending on the forces exerted on them. The
parameter k3 is a rotational friction coefficient analo-

gous to the k2 parameter. Noticing that the angular
velocity is defined as w ¼: x ê3 one obtains a complete
system of equations for the particle model of the fiber
network:

dxi
dt
¼ vi; ð6aÞ

dhi
dt
¼ xi; ð6bÞ

m
dvi
dt
¼ �b1vi �

k1
n

Xn

j¼1
UfrðrijÞðvi � vjÞ

� k2
n

Xn

j¼1
U0eðrijÞ

xi � xj

rij
þ Fðt; xiÞ;

ð6cÞ

I
dxi

dt
¼ �b2xi �

k3
n

Xn

j¼1
UfrðrijÞðxi � xjÞ

þ L

2
DFðt; xiÞ � ð� sinðhiÞ; cosðhiÞÞ;

ð6dÞ

where the terms b2 xi represents rotational drag forces
from the surrounding fluid on the fiber. Although only
distance based potentials have been used to define
system (6a, 6b), this is not a restriction of the model
since more complicated ones are perfectly valid. For
instance, angular dynamics of the fibers can strongly
influence the translational dynamics by using aniso-
tropic potentials U

�
rij; hij

�
; in this way it is possible to

consider anisotropic shear and stronger alignment ef-
fects. Furthermore, virtually any microscopic or mac-
roscopic quantity such as fiber velocity, local density or
temperature can be included as a valid variable in the
potentials. This flexibility could potentially resolve
local complex effects appearing in shearing like bend-
ing or bucking without including more degrees of
freedom per fiber.

Qualitative Analysis of Equilibria

The evolution of the ordinary differential equation
(ODE) System (6a, 6b) is highly dependent upon the
shape of the potential functions Ufr(rij) and Ue(rij). In
our case the friction potential Ufr(rij) is nonnegative
and decays as the distance between fibers i and j
increases. The elastic force is similar to that of Fig. 3
with one equilibrium state, meaning there exists a point
r0 > 0 such that Ui

k(r0) = 0 and

UeðrijÞ ¼ Ueðr0Þ þ
k0
2
ðrij � r0Þ2 þ oðrij � r0Þ:

Here we give a qualitative analysis of the free-driven
network’s dynamical behavior (neglecting external

FIGURE 3. Elastic potential and force between fibers i and j.

TABLE 1. Parameter values utilized in the numerical simu-
lations, determined from experimental papers.

Parameter Symbol Value in simulation

Filament length L 1 lm

Filament width a 8 nm

Cross-link equilibrium length r0 70 nm

Cross-link spring constant k0 10�6 N/m

Filament mass m 2.788 9 10�17 g

Fluid viscosity l 2 9 10�2 Pa Æ s

Parameters L, a, l are utilized in computing b1,2.
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forces F(t, xi)). We assume a well-formed network,
that is, any two interacting fibers i, j satisfy |xi � xj|�
r0. We introduce the center of mass xc and momentum
pc of the system:

xc ¼
Xn

i¼1
xi; and pc ¼ m

Xn

i¼1
vi:

We also introduce the kinetic and potential energies,

K :¼ m

2

Xn

i¼1
jvij2; and P :¼ 1

2n

Xn

i;j¼1
jxi � xjj2

¼
Xn

i¼1
jxij2 �

1

n
jxcð0Þj2:

Following the computations in Ha and Tadmor19

one finds, using the even symmetry of the potentials,
that pc(t) = pc(0) = 0, xc(t) = xc(0). Taking equation
(6c) and multiplying it by vi and summing over i, we
obtain:

dK

dt
¼ � b1

Xn

i¼1
jvij2 �

k1
2n

Xn

i;j¼1
Ufrðjxi � xjjÞjvi � vjj2

� k2
2n

Xn

i;j¼1
rUeðjxi � xjjÞ � ðvi � vjÞ: ð7Þ

Understanding the symbol 1f�g as the indicator func-
tion of f�g; we make the following approximations

Ufrðjxi � xjjÞ � Ufrðr0Þ1fjxi�xjj�Rg ¼: m01fjxi�xjj�Rg;

where m0 is the equilibrium friction coefficient and R is
an interaction distance. In addition,

rUeðjxi � xjjÞ � k0 1� r0
jxi � xjj

� �
ðxi � xjÞ 1fjxi�xjj�Rg:

Thus, the first and second terms in Eq. (7) become:

b1

Xn

i¼1
jvij2 ¼

2b1

m
K

k1
2n

Xn

i;j¼1
Ufrðjxi � xjjÞjvi � vjj2 � 2k1

nRm0
nm

K;

where nR is the number of interacting particles which
we have assumed constant in time.

We have neglected the sum with cross terms in the
friction term because

Xn

i;j¼1
vi � vj1fjxi�xjj�Rg ¼

Xn

i;j¼1
vi � vj �

Xn

i;j¼1
vi � vj1fjxi�xjj>Rg

¼ �
Xn

i;j¼1
vi � vj1fjxi�xjj>Rg � 0;

In the last line we used the fact that pc(t) = 0 and n�
nR. Similar approximation is valid for nR � n. For the
third sum in Eq. (7)

k2
2n

Xn

i;j¼1
rUeðjxi � xjjÞ � ðvi � vjÞ

� k2k0
2n

Xn

i¼1

Xn

jxi�xjj�R
1� r0
jxi � xjj

� �
ðxi � xjÞ � ðvi � vjÞ

¼ k2k0
4n

Xn

i¼1

Xn

jxi�xjj�R
1� r0
jxi � xjj

� �
d

dt
jxi � xjj2:

This leads to the energy equation,

d

dt
Kþ k2

nRk0
2n

P

� �
þ 2b1

m
þ 2k1

nRm0
nm

� �
K

� k2k0r0
2n

d

dt

Xn

i¼1

Xn

jxi�xjj�R
jxi � xjj:

ð8Þ

This energy relation implies that kinetic energy K
dissipates with exponential rate 2b1

m þ 2k1
nRm0
nm ; where

the first term is the dissipation rate of the surrounding
fluid and the second is the intrinsic fiber network dis-
sipation. Equation (8) also shows that the potential
energy P is bounded. It is possible to say more by
multiplying equation (6c) by xi and summing over i,

m
d

dt

Xn

i¼1
xi � vi ¼ 2K� b1

Xn

i¼1
vi � xi �

k1
2n

Xn

i;j¼1
Ufrðjxi � xjjÞðvi � vjÞ � ðxi � xjÞ �

k2
2n

Xn

i;j¼1
rUeðjxi � xjjÞ � ðxi � xjÞ � 2K� b1

2

d

dt

Xn

i¼1
jxij2 �

k1m0
4n

d

dt

Xn

i¼1

Xn

jxi�xjj�R
jxi � xjj2 �

k2k0
2n

Xn

i¼1

Xn

jxi�xjj�R
1� r0
jxi � xjj

� �
jxi � xjj2:

Expanding the sums one obtains the equation for
the potential energy,

d2P

dt2
þ b1

m
þ k1

nRm0
nm

� �
dP

dt
þ 2k2

nRk0
nm

P

� 4

m
K � �2k2

nRk0
n2m

jxcð0Þj2 þ
k2k0
n m

Xn

i¼1

Xn

jxi�xjj�R

2xi � xj þ r0jxi � xjj
� �

� �2k2
nRk0
n2m

jxcð0Þj2

þ k2k0r20nR
m

þ 2k2k0
n m

Xn

i¼1

Xn

jxi�xjj�R
xi � xj:

ð9Þ
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Equation (9) shows that the dynamics of the network
near equilibrium is described by a damped oscillator as
intuition would suggest. The precise behavior can be
designed with the choice of adjustment parameters k1,2
and the potentials, using Eq. (9). Observe the impor-
tance of the interaction range R for the dynamical
behavior, furthermore, one can take R!1; that is,
nR ! n in Eq. (8) and (9) to obtain the behavior for
long range interactions. In this case, Eq. (9) implies that
the stationary potential energy is given by,

PS :¼ lim
t!1

PðtÞ � nr20
2
:

As a simple test, we can compare simulation results
from System (6a, 6b) (without external force terms),
with the solution to the coupled ODE system in (8) and
(9). Let us examine the simple case when
r0 = 0, xc(0) = 0, and nR = n. In this situation Eqs.
(8) and (9) reduce to:

d

dt
Kþ k2

k0
2
P

� �
þ 2b1

m
þ 2k1

m0
m

� �
K ¼ 0 ð10aÞ

d2P

dt2
þ b1

m
þ k1

m0
m

� �
dP

dt
þ 2k2

k0
m

P� 4

m
K ¼ 0: ð10bÞ

Interpreting equations (10a) and (10b) as an
approximation of a harmonic oscillator one may define
the damping coefficient as

f ¼ bþ m0
2
ffiffiffiffiffiffiffiffiffiffiffi
2mk0
p ;

where we just set k1 = k2 = 1. For the other variables
we utilize typical parameters for an actin fiber network
as a test case (See Table 1). We utilize 300 fibers in the
simulation of System (6a, 6b). These 300 fibers are
initially randomly assigned a position xi within a
square domain centered around (0,0) of dimensions R/
2 9 R/2 with R = 1 lm, so that all particles will
interact with each other. All fibers have initial velocity
vi = 0. With r0 = 0 the equilibrium state for such a
system is for all the particles to collapse down into a
single point, therefore we should expect the potential
energy of the system to eventually settle down to zero
over time. Figure 4 shows graphs comparing the
potential energy found in the solution of the ODE
system in Eqs. (10a) and (10b) and the potential energy
from the particle model in System (6a, 6b) calculated
from particle positions. We ran the comparison for
three cases: (1) where viscosity dominate over elasticity
(f� 1), (2) viscosity and elasticity have similar effect
(f � 1), and (3) elasticity dominates over viscosity
(f	 1). One can see that the results match very well in
all 3 cases. An actin fiber network in a typical animal
cell falls into the first category: an overdamped system,

typically dominated by cytosol fluid drag and internal
friction.

BIOLOGICAL PARAMETERS FOR ACTIN

NETWORKS

In the numerical tests presented below, we will uti-
lize an actin fiber network as our test case. We now
present the relevant biological parameters that will be
utilized in these numerical experiments. Actin filaments
are typically 0.2–20 lm long and 8 nm wide,6,10,25 with
cross-links to other filaments appearing approximately
every 100 nm along the filament’s length.4,20,36 Indi-
vidual actin filaments have a spring constant in the
range of 4.5–6.5 9 10�2 N/m,21,31 and typically only
stretch 0.2–0.3% before rupturing.24,43 However the
cross-linking proteins that create the network, tend to
have lower spring constants, giving the overall network
spring constants in the range of 10�6–10�3 N/m
depending on cross-link type.6 Also, the cross-linking
proteins are normally in convoluted configurations
when initially attached, so when force is applied to the
network, these proteins can unfold, increasing their
contour lengths and reducing tension.6,17

Based on the molecular weight (42,000 Da) and size
(125 nm3) of an actin monomer, the mass density of the
filament material is approximately 0.55 g/cm3.6 The
density of filaments per unit volume, based on the
number of filaments in a typical cell (1–5 9 105)6,10

and the thickness of the actin network around the cell’s
periphery (0.2–2 lm),41 is estimated to be in the range
50 � 1000 filaments/lm3. The fluid cytosol in which an
actin network is suspended has a viscosity of
1� 10�3 � 2� 10�1Pa � s; with this wide range stem-
ming from different measurement techniques and cell
types.5,14,35 Table 1 shows a list of parameter values
utilized in the simulations.

NUMERICAL TESTING

For the computational experiments presented below
on strain hardening, network rupture, viscoelastic
creep, stress relaxation, frequency response and net-
work reformation, 300 fibers are instantiated in a do-
main region of dimension L 9 L where L = 1 lm.
Each particle is assigned a random initial position
vector xi within the confines of the domain. Each
particle is also randomly assigned an orientation angle
hi 2 �p=2; p=2½ Þ: The velocity vector vi, as well as the
angular velocity xi are initialized to zero. The ODE
system in Eqs. (5)–(8) is evolved in time using a
MATLAB solver. Prior to applying any external for-
ces, the system is allowed to evolve to a state of
mechanical equilibrium.
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Strain Hardening

Strain hardening of actin networks has been dem-
onstrated experimentally,15,45 and also by other com-
putational models.4,16 There are several mechanisms
for mechanical hardening, here we recreate two of
them: (1) when the fiber block is strained say in the
horizontal direction, the typical vertical distance
between fibers tends to decrease. Consequently, cross-
links are created mostly in the vertical direction which
generates a configuration with more interconnected
‘‘parallel springs’’ than the initial configuration. In this
way stiffness of the network increases in the strain
direction, (2) consider again the situation in which the
fiber block is strained in the horizontal direction, then
the filaments tend to align themselves with the direc-
tion of strain in order to minimize their stored energy.
This rearrangement creates a more parallel set of fibers
and hence, the region of interaction between fibers
increases. As a consequence, vertical cross-links are
created generating again a configuration with more
interconnected ‘‘parallel springs’’ than the original
configuration.39

Mechanism (1) is based on fiber’s vertical separation
while mechanism (2) is based on the fiber’s orientation.
Since a distance based elastic potential is used in the
numerical experiments, only the effect of mechanism
(1) is modeled. To demonstrate that our model exhibits
such behavior, we begin with a block (size L 9 L) of
randomly placed and oriented fibers, that have been
evolved to an equilibrium state. To insure that this first
test does not include cross-link rupture, the threshold
interaction distance is chosen of the same magnitude as
the domain size R = L. The network is extensionally
stretched in the horizontal direction, via the applica-
tion of a constant, external force. During each step of
the ODE evolution, the network’s strain and stored
energy are computed. It has been shown in other
models that at large strains, stretching is the dominant

contribution to network potential energy (as opposed
to bending or torsion).39 Thus the stored energy of the
system at time step m is computed as:

Em ¼
Xn

i¼1

Xn

j¼1;j6¼i

1

2
k0ðrij � r0Þ2:

To estimate the overall spring constant jm of the
block at time step m, an overall displacement Dm for
the block is computed based on the average location of
filaments near the left and right boundaries. We then
estimate the network’s spring constant to be: jm = 2
Em/(Dm

2 ). A plot of the stored energy vs. strain is shown
in Fig. 5, as well as a plot of the estimated spring
constant jm of the network vs. strain. As expected the
overall spring constant increases with the strain. Val-
ues for the overall network stiffness are in the 10�4

range, which falls in the range of measured values from
Boal.6 As evidence that the model is also able to
recreate mechanism (2) for strain hardening, Fig. 6
shows the initial distribution of filament angles, rang-
ing from �p=2; p=2½ Þ; and the angle distribution at
100% strain. The angles in this second histogram are
grouped closer to zero, which is the angle at which the
extensional force is being applied.

Network Rupture

To test the model’s ability to capture network rup-
ture, which has been observed experimentally46 and in
other computational models,4 a similar experiment as
the one described above is done, with the only modi-
fication that R is reduced to 140 nm. We begin again
with a randomly positioned and oriented set of fibers
in an L 9 L domain. The system is evolved to an
equilibrium state and then the network is stretched
with the same external force as above. The energy vs.
strain plot and the network spring constant vs. strain
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FIGURE 4. Comparison of the total potential energy computed for a simulation of System (6a, 6b) with 300 fibers, vs. the potential
energy found as a solution to the ODE system in Eqs. (10a) and (10b) for the 3 cases of (from left to right) (1) viscosity dominates
elasticity (f� 1), (2) viscosity similar to elasticity (f � 1), and (3) elasticity dominates viscosity (f	 1). For an actin network, we
have case (1), an overdamped system dominated by fluid drag and internal friction. (For visualization purposes, note the difference
in time scales).
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plot shown in Fig. 7 are quite different from Fig. 5. At
first energy increases with strain, but then it begins to
level off and decrease at larger strains, when cross-links
between filaments begin to break. The overall spring
constant of the network follows a similar pattern,
increasing at first and then dropping as cross-links
rupture at higher strains. Note that the energy stored
in the network is considerably reduced with respect to
that of previous experiment because of the choice of a
smaller threshold interaction distance R, yet the esti-
mated spring constant jm is remarkably similar before
the network rupture as intuition suggests. Addition-
ally, observe the network capability of enduring large
strains without breaking apart, around 40% as shown
in Fig. 7 (right). Such network’s ability can be ex-
plained by the relatively large concentration of fibers
which relocate to fill empty spaces making the average
fiber separation relatively small in comparison to the
overall strain. Figure 8 shows a series of snapshots of
the network during this simulation.

Creep, Stress Relaxation and Frequency Response

We now perform some standard rheological tests to
the square-shaped piece of material (of size L 9 L)
used in the previous sections. More specifically, we
show creep, stress relaxation and frequency response of
the model. A translational elastic quartic potential

UeðrijÞ ¼
k0
2

�
rij � r0

�2 þ k1
�
rij � r0

�4 ð11Þ

is used for the numerical experiments instead of the
quadratic potential (2) employed previously. Such
approach was applied in Majumdar et al.34 to enhance
the nonlinear creep behavior in a semi-flexible chain
and observe weak power law response ~ ta. The in-

crease of cell stiffness can be appreciated by computing
the parameter a for systematically higher levels of
mechanical stress and observing the decrease of such
parameter. We recall here that a is an indicative of cell
transition from elastic solid-like (a = 0) to viscous
fluid-like (a = 1). In Fig. 9 (left) the creep response of
a small piece of square-shaped viscoelastic material
(size L 9 L) is depicted for different tensile stresses
applied in the horizontal direction using k1 = 10 k0.

Three regimes are differentiated: An initial fast
response followed by a slower power law intermediate
regime. Finally, the material reaches a steady state. In
Fig. 9 (right) the transition to a solid-like material
occurs as the mechanical stress is systematically
increased. The parameter a can be easily manipulated
by changing the size of the linear and nonlinear spring
constants k0, k1 in the elastic potential.

In Fig. 10 (left) we show the stress relaxation
response of the same square-shaped piece of material
using again the quartic potential (11); in such experi-
ment the strain is maintained constant until the net-
work has reached a new stationary state as shown in
Fig. 10. The relaxation is displayed using the normal-
ized average stored potential energy of the material.
The response is fitted with one of a standard linear
solid (SLS) obtaining excellent agreement. This
behavior does not contradict the nonlinear binding
mechanism between fibers since we are displaying the
collective (macro) response of these fibers. Similar
exponential relaxation have been obtained in the lit-
erature (Fig. 4).33

Figure 11 shows a low pass non-linear frequency
response of the square-shaped viscoelastic material.
This response is plotted over a large range of fre-
quencies. In Fig. 11 (left) the ratio Strain

Stress is plotted given
a sinusoidal tensile stress input. In Fig. 11 (right) the
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FIGURE 5. Energy vs. strain (left) and network spring constant vs. strain (right) as a demonstration of strain hardening of the
network. In this simulation, cross-links are permanent (non-rupturing).
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phase delay between strain and stress is presented for
the same experiment. The cut-off frequency of the
magnitude response (�0.2 Hz) is a measure of the
transition from elastic to a viscous network.

Cytoskeletal Reformation

Since the potential functions are distance based, this
model allows for the formation of new cross-links
when two filaments get close enough to one another.
To demonstrate this, we begin with two networks de-
scribed with the elastic potential (2) and separated by a
large enough distance (> R = 140 nm) to ensure
there is no initial interaction between the two net-
works. These two networks are then moved towards
each other by an external compressive force. Figure 12
shows snapshots of the two networks combining,
forming new cross-links as they merge. Figure 13
shows the number of cross-links in the system over
time as the two networks form one network.

Energy Transfer

The final scenario explored with this model was to
investigate the mechanical transfer of energy through
the network. Cellular activities such as blebbing,
crawling and mechanotransduction rely on mechanical
signals to initiate structural changes in the cytoskeletal
network.14,38 Can mechanical changes such as con-
tractions in the network propagate passively through
the fiber network or must other active processes (e.g.,
chemical reactions, molecular motor processes) be
involved in order to propagate energy?

To investigate this issue with our model, we begin
with 400 fibers in a block of dimensions L 9 L. To
make this numerical experiment visually and quanti-

tatively clear, the 400 fibers are divided into 10 groups
of 40 fibers. Each fiber in group j = 1,…,10 is assigned
the same x position, and a random y position, so that
all fibers in group j fall into a column. These 10 col-
umns are spaced 110 nm apart, and R is set to 100 nm.
This means that the fibers only interact initially with
the fibers in their column. To simulate the transfer of
energy in this network, the first column of fibers at the
far left of the block, is moved to the right by 100 nm,
so that it is now only 10 nm to the left of the second
column of fibers.

The fibers in these two columns are now close en-
ough to interact and form cross-links. The distance
between the two columns is shorter than the equilib-
rium length of a cross-link so the two columns will
repel one another. This will start a chain reaction,
where the second column will move towards the third,
the third towards the fourth, etc. This simulation
represents a compression wave in the network and is
done for two cases: (1) viscosity dominate over elas-
ticity f>1 (values in Table 1 used) and (2) elasticity
dominates over viscosity f<1 (values in Table 1 used,
except viscosity reduced). Figure 14 contains several
snapshots of the fibers in the two cases as the wave
passes through. What should be noted is that the wave
fully passes through the elastic dominated system, but
gets halted in the viscous dominated system. To
determine if the wave in case (1) was simply slower (but
still propagating) we simulated this case for a longer
period of time, and found that column 4 is the furthest
the wave goes. Table 2 gives the wave arrival time in
column 4 and the maximum total kinetic energy of the
particles in columns 2 and 4 between the two cases.
The wave takes longer to arrive in column 4 for case (1)
vs. case (2), which makes intuitive sense since the
compressive wave is slowed down by drag and internal
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friction. The kinetic energy in case (1) is much lower
than in case (2), for columns 2 and 4, which again
makes sense due to the greater energy dissipation in
case (1).

Naturally, the speed of propagation and distance
of energy propagation will depend on factors such as
initial compressive strain placed on the block, density
of fibers within the block, density of cross-links and
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network. In this simulation, R is set to 140 nm.

FIGURE 8. Snapshots of the network as its cross-links rupture when an extensional strain is applied to its left and right edges, at
a slow strain rate. The red points are the center of mass positions of each fiber, and the blue lines represent cross-link connections
between these fibers. As the network is extensionally strained, cross-links disappear as they are extended beyond the threshold
interaction distance R = 140 nm.
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the overall connectivity of the network. However, the
main conclusion we draw from case (1), (where
realistic actin network parameters have been used) is
that viscosity and internal friction quickly damp
energy waves, and this is not an efficient way for

energy to propagate across the cell. Energy can
propagate locally within the network, but active
processes such as biochemically induced acto-myosin
contraction are needed for long-range energy
transfer.
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FIGURE 12. Snapshots of the network reformation, as two networks merge into one, as a compressive strain is applied at a slow
strain rate to the left edge of the left network and the right edge of the right network. The red and blue points are the center of mass
positions of each fiber for the left and right networks respectively. The black lines represent cross-link connections between fibers
within the same network (left or right). The red lines represent cross-links that form between fibers from opposite networks. Cross-
links form when two fibers become within R = 140 nm distance of each other.
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DISCUSSION AND PERSPECTIVE

A particle-interaction model for biological fiber
networks has been developed. A ‘‘particle‘‘ in this
model is a fiber, and the fiber’s position, velocity, ori-
entation angle, and angular velocity are the variables
associated with each particle. In biological networks,
fibers interact via cross-links and these connections can

often break and reform based on the cell or tissue’s
need to reshape itself to perform various actions. These
connections are represented in the model by distance-
based potentials. The model is based on first principles
for the conservative terms, and on a phenomenological
model for the dissipative terms. The form of the fric-
tion potential term was chosen to be a Gaussian, and
this choice was validated via a fully microscopic sim-
ulation of a fiber network.

To demonstrate the model’s ability to capture typ-
ical fiber network behaviors, an actin fiber network
was chosen as a test case since there is a great deal of
experimental data and results from other computa-
tional models available for this structure. The model
was able to capture strain hardening, as filaments
realign themselves to accommodate external stresses
imposed on the network as well as meaningful visco-
elastic response such as creep and stress relaxation.
The model accounts for cross-link rupture and refor-
mation, exhibiting similar behavior seen in polymer-
based models.4 Finally we utilized the model to simu-
late the propagation of an energy wave across the
network. For the actin network case, viscosity of the
interstitial fluid and the network’s internal friction
dominates, thus mechanical energy does not propagate
very far from the source.

The major advantages of this mesoscale particle
model over the fully microscopic polymer-based
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models is three-fold. First of all, in our model one does
not need to store in memory which fiber is attached to
which other fibers, since this is taken care of by the
potential functions which monitor current distances
between all fibers. Secondly, all pertinent information
about each fiber is incapsulated in six variable values
(position, velocity, orientation) assigned to the particle
that represents this fiber. In a polymer model, one
would have many more degrees of freedom per fiber,
slowing down the computation. Another advantage is
that a particle model will be simple to couple with
other physical phenomena, for example an exterior
membrane or an interior fluid domain. These three
advantages make the particle model computationally
inexpensive to implement and run.

A final and important observation is that the par-
ticle model described by Eqs. (6a, 6b) possesses a mean
field limit, that is, the model obtained for the distri-
bution function of fibers f(t, x, h, v, w) as the number
of fibers is sent to infinity n!1: It is well known that
such model is given by the Boltzmann-like equation
(see Bolley et al.8 and Ha and Tadmor19 for deriva-
tion),

@tfþ v � rxfþ w@hf ¼ b1rv � ðvfÞ þ b2@wðwfÞ
þ rv �QTðf; fÞ þ @wQRðf; fÞ;

for appropriate translational and rotational interaction
operators QT(f, f) and QR(f, f). This equation models
an infinite network where each fiber pair interact with
a chosen friction and elastic potentials such as the ones
used in this manuscript. The mean field limit have
several practical and theoretical advantages such as:
(1) networks with large number of fibers can be re-
solved with little additional computational cost relative
to the particle model, (2) maintains accuracy in dilute
regimes as oppose to continuous models, (3) it can be
naturally coupled with a background fluid equations
through the viscosity coefficients b1 and b2, therefore,
accurate macro-scale simulations are achievable. Such
scales are important to study for instance network
buoyancy or cell scale phenomena such as blebbing, (4)
thermal effects can be readily added with a Laplacian
operator. Furthermore, active interactions can also be
included by adding an interaction jump process oper-
ator of the type found in Aranson and Tsimring,3 and

(5) a continuous and simpler model enjoying
(approximately) the properties presented in the
numerical experiments can be derived from such mean
field model in a classical and rigorous way.
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