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optimization problems for primal-dual algorithms

minimize f(x) + g(x) + h(Ax)

f, g, and h are convex.
X and Y are two Hilbert spaces (e.g., R™, R").

f : X — R is differentiable with a 1/8-Lipschitz continuous gradient for
some 3 € (0, 400).

A : X — Y is a bounded linear operator.



applications: statistics

Elastic net regularization (Zou-Hastie '05):
minimize 1i2[x |3 + x|l + [(Ax, b),

where x € RP, A € R™*?, b € R", and [ is the loss function, which may be
nondifferentiable.



applications: statistics

Elastic net regularization (Zou-Hastie '05):
minimize 1i2[x |3 + x|l + [(Ax, b),

where x € RP, A € R™*?, b € R", and [ is the loss function, which may be
nondifferentiable.

Fused lasso (Tibshirani et al. ’05):
. 1
minimize || Ax b3 + prllxs + iz D1,

where x € R, Ac R"*?, be R", and

-1 1

is a matrix in R®~DxP,



applications: decentralized optimization

mmlmlze Z fi(z) + gi(z

= f; and g; is known at node ¢ only.
* Nodes 1,--- ,n are connected in a undirected graph.

= f; is differentiable with a Lipschitz continuous gradient.
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mmlmlze Z fi(z) + gi(z

= f; and g; is known at node ¢ only.
* Nodes 1,--- ,n are connected in a undirected graph.

= f; is differentiable with a Lipschitz continuous gradient.

Introduce a copy x; at node i:

minixmize F(x)+g9(x) = Z fi(z:) + gi(mi) st Wx=x

=z, ERP, x=[T1 T2 - - mn]TGR"Xp.

= W is a symmetric doubly stochastic mixing matrix.



applications: decentralized optimization

mmlmlze Z fi(z) + gi(z

= f; and g; is known at node ¢ only.
* Nodes 1,--- ,n are connected in a undirected graph.

= f; is differentiable with a Lipschitz continuous gradient.

Introduce a copy x; at node i:

minixmize F(x)+g9(x) = Z fi(z:) + gi(mi) st Wx=x

=z, ERP, x=[T1 T2 - - mn]TGR"Xp.

= W is a symmetric doubly stochastic mixing matrix.

The sum of three functions:

minixmize (%) + g(x) + to((T— W)l/zx)



applications: imaging

Image restoration with two regularizations:
AP |
minimize |Ax — b3 + te(x) + p||Dx||1,
xX

where x € R™ is the image to be reconstructed, A € R™*" is the forward
projection matrix, b € R™ is the measured data with noise, D is a discrete
gradient operator, and ¢ is the indicator function that returns zero if x € C
(here, C'is the set of nonnegative vectors in R™) and oo otherwise.



applications: imaging

Image restoration with two regularizations:
AP |
minimize |Ax — b3 + te(x) + p||Dx||1,
xX

where x € R™ is the image to be reconstructed, A € R™*" is the forward
projection matrix, b € R™ is the measured data with noise, D is a discrete
gradient operator, and ¢ is the indicator function that returns zero if x € C
(here, C'is the set of nonnegative vectors in R™) and oo otherwise.

Other problems:

= f: data fitting term (infimal convolution for mixed noise)
= ho A: total variation; other transforms

= ¢: nonnegativity; box constraint



primal-dual formulation

Original problem:

minimize f(x) 4+ g(x) + h(Ax)



primal-dual formulation

Original problem:
minixmize f(x) + g(x) + h(Ax)
Introduce a dual variable s:
minimize rn;le(X) +g(x) + (Ax,s) — h"(s)
Here h* is the conjugate function of h that is defined as

h*(s) = max (s,t) — h(t),



primal-dual formulation

Original problem:
minixmize f(x) + g(x) + h(Ax)
Introduce a dual variable s:
minimize msaxf(x) +g(x) + (Ax,s) — h"(s)
Here h* is the conjugate function of h that is defined as

h*(s) = max (s,t) — h(t),

It is equivalent to (s* € Oh(Ax") <= Ax" € Oh™(s")):

0€ Vf(x*)+0dg(x*)+A's"
0 Oh*(s*) — Ax*

All primal-dual algorithms try to find (x*,s™).



existing algorithms: Condat-Vu, AFBA, and PDFP

Condat-Vu (Condat 13, Vu '13):

= Convergence conditions: A[|[AAT| +~/(28) <1
= Per-iteration computations: A, AT, V£, one (I+~9g)~", I+ %Gh*)_l 2

_ 1
(I +~89)" ' (%) = arg minvg(x) + 3 llx — |2

x

This is a backward step (or implicit step) because (I 4+ v8g) ™1 (%) € % — vAg((I + vdg) (%))
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existing algorithms: Condat-Vu, AFBA, and PDFP

Condat-Vu (Condat 13, Vu '13):

= Convergence conditions: A[|[AAT| +~/(28) <1

= Per-iteration computations: A, AT, V£, one (I+~9g)~", I+ %Oh*)_l 2
AFBA (Latafat-Patrinos '16):

= Convergence conditions: A[|AAT|[/2+ \/W/Q +7/(28) <1

= Per-iteration computations: A, AT, V£, one (I4+~9g)~", (I+ %3}1*)_1
PDFP (Chen-Huang-Zhang '16):

= Convergence conditions: A||AAT| < 1; v/(28) < 1
= Per-iteration computations: A, AT, Vf, two (I4+~dg)™%, (I+ %8}1*)_1

_ 1
I+ 789) ' (%) = arg min yg(x) + 3 llx — x|

x

This is a backward step (or implicit step) because (I 4+ v8g) ™1 (%) € % — vAg((I + vdg) (%))



PDHG (Zhu-Chan '08)

When f = 0, we have
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PDHG (Zhu-Chan '08)

When f = 0, we have
T *
dg A X 50
—A ohn* s*
It is equivalent to
1 * 1 T
L1+dg XA
—-A II+0n” s*
Primal-dual hybrid gradient (PDHG)

x" = (I+799) " (x —7As)
st = (L+20n") " (s + 2Ax")



PDHG (Zhu-Chan '08)

When f = 0, we have

—A Oh”

It is equivalent to
1 * ] 1 T *
;I+ag X 5 ;I A X
—-A  I+oh” s* | ! s*

Chambolle-Pock (Chambolle et.al '09, Esser-Zhang-Chan '10)

X" = (I+799) " (x —7ATs)

+

X :X+—|—X+ — X

st = (I + %811*)71 (s + %Af{*)



Chambolle-Pock '11 as proximal point

Chambolle-Pock (x — s order)

x" = (I+709) ' (x —7ATs)
st = (I + %8h*)_1 (s + %A(2x+ — x))



Chambolle-Pock '11 as proximal point

Chambolle-Pock (x — s order)

x" = (I+709) ' (x —7ATs)
st = (I + %8h*)_1 (s + %A(2x+ — x))

CP is equivalent to the backward operator applied on the KKT system.



Chambolle-Pock '11 as proximal point

Chambolle-Pock (x — s order)

x" = (I+799) '(x—yA's)
S+

(T+20n7) " (s + 2A(2xt - x))

CP is equivalent to the backward operator applied on the KKT system.
1 + 1 T
S n dyg x 5 I —-A x
—-A I —A oh* st -A 11 s

= CP is 1/2-averaged under the metric induced by the matrix if A satisfies
the condition A|JAAT| < 1.



Chambolle-Pock '11 as proximal point

Chambolle-Pock (x — s order)

x" = (I+70g9) '(x —yATs)

st = (I + %8!1")71 (s + %A(2xJr — x))

CP is equivalent to the backward operator applied on the KKT system.
i1 —AT dg AT xT i1

Yy _l’_ 9 ad
-A I —A Oh” st —A

—AT X

I ]

= CP is 1/2-averaged under the metric induced by the matrix if A satisfies
the condition A\JAAT| < 1.

>



Condat-Vu (Condat '13, Vu '13)
The optimality condition:

dg AT x* Vf(x*)
ol b AL

CV is equivalent to the forward-backward applied on the KKT system.

[ | R e I

V(%)
0

)



Condat-Vu (Condat '13, Vu '13)
The optimality condition:

dg AT x* Vf(x*)
+ >0
X L]
CV is equivalent to the forward-backward applied on the KKT system.
[ A - || o R el | I R
—A %I —A  Oh s —A %I s 0
That is:
x" = (I4+799) " (x—Vf(x) —7ATs)
=1
st = (I + %ah ) (s + %A(2xJr — x))
It is equivalent to (by changing the update order)
-1 _
st = (I + %611 ) (S + %Ax)
xt = (L+799)  (x—1V f(x) — 7ATs")

xT=92xT —x



Condat-Vu (Condat '13, Vu '13)
The optimality condition:

dg AT x* Vf(x*)
+ >0
X L]
CV is equivalent to the forward-backward applied on the KKT system.
[ A - || o R el | I R
—A %I —A  Oh s —A %I s 0
That is:
x" = (I4+799) " (x—Vf(x) —7ATs)
=1
st = (I + %ah ) (s + %A(2xJr — x))
It is equivalent to (by changing the update order)
-1 _
st = (I + %Bh ) (S + %Ax)
xt = (L+799)  (x—1V f(x) — 7ATs")

xT=92xT —x

= CV is non-expansive (forward-backward) under the metric induced by the
matrix if v and \ satisfy the condition A||AAT|| ++/(28) < 1.



PDFP20/PAPC (Loris-Verhoeven '11, Chen-Huang-Zhang '13,
Drori-Sabach-Teboulle '15)

When g = 0, the optimality condition becomes:

0 AT x* Vf(x*)
LK [T e
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Drori-Sabach-Teboulle '15)

When g = 0, the optimality condition becomes:
0 AT x* Vf(x*)
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a e LT

PAPC is equivalent to the forward-backward applied on the KKT system.

11 AT x+ N 11 x | | Vf(x)
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PDFP20/PAPC (Loris-Verhoeven '11, Chen-Huang-Zhang '13,
Drori-Sabach-Teboulle '15)

When g = 0, the optimality condition becomes:
0 AT x* Vf(x*)
+ 50
a e LTS
PAPC is equivalent to the forward-backward applied on the KKT system.

I AT xt %I x Vf(x)
~A  II-yAAT +0h* st |7 I1—~AAT s | 0
1 AT xt S | x| [ Vix)

11+ Oh* st A II—~AAT s YAV f(x)

= PAPC is non-expansive (forward-backward) under the metric induced by
the matrix if v and X satisfy the conditions A||AAT|| < 1 and v/(28) < 1.

2=

2=



PAPC

PAPC can be expressed as

st = (I+200") 7" (- AAAT)s + 2A (x — 1V (%))
xT =x—Vf(x) —yATsT



PAPC

PAPC can be expressed as

=1
st = (I+200") (I-XAAT)s+2A (x — V(%))
xT =x—Vf(x) —yATsT
It is equivalent to
-1 _
st= (I + %ah ) (s + %Ax)
xT=x—Vf(x) —yA s
xT=xT —4Vf(x") —vATs"



PAPC

PAPC can be expressed as

st = (I+200") 7" (- AAAT)s + 2A (x — 1V (%))
xT =x—Vf(x) —yATsT

It is equivalent to

st= (I + %8h*)71 (s + %A)‘()

xT=x—Vf(x) —yA s
xT=xT —4Vf(x") —vATs"

= PAPC is a-averaged under the metric induced by the matrix.

= PAPC converges if v and ) satisfy the conditions A\||AA "|| < 4/3 and
v/(28) < 1 (Li-Yan '17).



PDFP (Chen-Huang-Zhang '16)

Rewrite PDFP20 as
+ _ x| —1 =
sT=(1+20n")  (s+2Ax)
xT =x—4Vf(x) —yATsT



PDFP (Chen-Huang-Zhang '16)

Rewrite PDFP20 as
+ _ x| —1 =
sT=(1+20n")  (s+2Ax)
xT =x—4Vf(x) —yATsT

T =xT —Vf(xt) —yATsT

PDFP, as a generalization of PDFPQO, is

+ _ *\ — =
sT = (I—Q—%ah )y~ (s—ﬁ—%Ax)
x" = (I4+799) ' (x =7V f(x) —7ATs")
X" = (I4+7909) ' (xT —Vf(x") —yATs")

= When g is the indicator function, PDFP reduces to Preconditioned
Alternating Projection Algorithm (PAPA) (Krol-Li-Shen-Xu '12).



AFBA (Latafat-Patrinos '16)

Rewrite PAPC as

st = (I+20n") " (s + 2A%)
xT=x—yAT(sT —5s)
+

XT=x" = Vf(x) —yATs"



AFBA (Latafat-Patrinos '16)

Rewrite PAPC as
+ _ Agp*) L AA g
sT=(1+20n") (s+2Ax)
xT=x—yAT(sT —5s)
t=xT —AVf(xT) —yATs*
AFBA, as a generalization of PAPC, is
sT=(1+20n")7" (s + 2A%)
xT=x—~vAT(s" —s)

%" = (I4+709) '(x" —7Vf(x") —yATs")

Convergence conditions: A\|AAT||/2+ /A|AAT||/2+~/(28) <1



Chambolle-Pock and PAPC
Chambolle-Pock:
st = (I+200) " (s + 2Ax%)
x" = (I+70g9) ' (x—yATs")

xT=2xT —x



Chambolle-Pock and PAPC
Chambolle-Pock:

o —1 _
sT=(1+20n") (s+2Ax)
x" = (I+799) '(x —yA's")
xT=2xT —x

PAPC:

o —1 _
sT=(1+20n")  (s+2Ax)
xT =x—Vf(x) —vA's"
gt =xT —Vf(xt) —7ATsT



Chambolle-Pock and PAPC
Chambolle-Pock:
st = (I+200) " (s + 2Ax%)
x" = (I+70g9) ' (x—yATs")

xT=2xT —x

PAPC:
+ _ Agp+) L AA %
st = (I+5007) " (s + 5A%)
xt =x-V/f(x) —yATsT
xt =2xT —x—Vf(x") + 1V f(x)



Chambolle-Pock and PAPC
Chambolle-Pock:
st = (I+200) " (s + 2Ax%)
x" = (I+70g9) ' (x—yATs")

T =2xT —x

PAPC:
+ _ Agp+) L AA %
st = (I+200") " (s+ 2Ax)
xt =x—Vf(x) —yATs"
%t =o2xt —x—V/[(x") +1V[f(x)

PD30 (Yan '16):
st = (L+20n7) " (s + 2A%)
xt = (I+709) ' (x—Vf(x)—yATsT)
T =2xT —xVf(x") + V(%)



Chambolle-Pock

Chambolle-Pock (x — s order):
+ _ Agp*) L A A%
sT=(I4+20n")  (s+2Ax)
x" = (I+799) ' (x —yA"s™)

xT=2xT —x



Chambolle-Pock

z,s zt, st

Chambolle-Pock (x — s order):
Z=X— ’}/ATS
xt = (I+799) " (2)
st = (I+200) " (I-AAAT)s + 2A(2x" — 2))

zT =z + 2% fszATs —x*



C-P and PAPC

PAPC:

st = (I + %8h*)71 (s + %A)‘()

xT =x—Vf(x) - +ATsT
—x—Vf(xT) +Vf(x)



C-P and PAPC

2xt —z s 2xt —z—Vf(xt),s
/
/
/
/
/
xt,s/ 2xt —z—Vf(xT) —yATst, st
// //
/ /
/ /
/ /
—
z,s zt st

PAPC:
xt=z=x—Vf(x) - YA s
=1
sT=(1+2007) (I-XAAT)s+2A(2x" —2—V[(x")))

2t =z24+2x — 2 Vfx") —7A'sT —xT



PD30

2xt —z,s 2xt —z—Vf(xH),s

2xt —z—yVf(xT) —yATst, st

PD30:
o —1 _
st = (I + %811 ) (s + %Ax)
x" = (T+709) ' (x—yVf(x) —yATs")
%" =2xt —xVf(x") + 1V f(x)



PD30

2xt —z,s 2xt —z—yVf(xt),s

2xt —z—Vf(xT) —yATst, st

PD30:
z=xV[(x)—vA's
x* = (T+409)"(2)
st = (I + %8h*)71 ((I —AAAT)s + %A(Zx+ — zfﬂ,fo(x*)))

2t =z +2x" —z2—VfxT) - vATsT —xt



PD30 vs Condat-Vu vs AFBA vs PDFP

Algorithms:
+ _ Agpx) L ANz
sT=(I+30n") (s+3Ax)
x" = (I4+799) " (x =7Vf(x) —7ATsT)
PDFP xT =T +79g) ' (xt =V f(xT)—7yATsT)
Condat-Vu | Xt =2xT —x
PD30 xt =2xt —x +Vf(x) — 7V F(xT)




PD30 vs Condat-Vu vs AFBA vs PDFP

Algorithms:
+ Agp*) L AAg
st = (I + ;Bh ) (s + ;Ax)
x" = (I+709) ' (x =V f(x) —7ATs")
PDFP xT =T +79g) ' (xt =V f(xT)—7yATsT)
Condat-Vu | xT =2xT —x
PD30 xt =2xt —x +Vf(x) — 7V F(xT)
Parameters:
f#0,g#0 f=0]g=0
PDFP AMAAT || < 1;9/(28) < 1 PAPC
Condat-Vu MAAT| ++/(28) < 1 Cc-P
AFBA | AJAAT|/2+ /AJAAT|/2+~/(28) <1 PAPC
PD30 MAAT| < 1;v/(28) < 1 C-P | PAPC




convergence results: summary

Let z=x —yVf(x) —vATs and x* — x:
x = (I+799) 'z
st = (L+20n*) " (- AAAT)s + 2A (2x — 2 — 4V f(x)))
2" =x—Vf(x)—vA sT



convergence results: summary

Let z=x —yVf(x) —vATs and x* — x:
x = (I+799) 'z
st = (L+20n*) " (- AAAT)s + 2A (2x — 2 — 4V f(x)))
2" =x—Vf(x)—vA sT

- 1@ — (2" ) R = o (

fixed point (z*,s™)

1 k ok
TH) and (z",s") weakly converges to a



convergence results: summary

Let z=x —yVf(x) —vATs and x* — x:

x = (I+799) 'z
o —1
T=(I420n7) (I-XAAT)s+ 2A (2x -2V /(%))
27 =x—yVf(x) —7ATs"
o [[(Z* P = (28, 88) |1/ = 0 (25). and (2", ") weakly converges to a
fixed point (z*,s™)
= Let £(x,8) = f(x) + g(x) + (Ax,s) — h*(s), then

Zlvsl) - (ZvS)H2
k

L(x"s) - L£(x,8"T) < it

where (x*,8"1) = %Zle(xi,s”l), and z = x — YV f(x) — yAs.



convergence results: summary

Let z=x —yVf(x) —vATs and x* — x:

x = (I+~99) 'z
T = (I+20n") 7 (T-AAAT)s + 2A (2x — 2 — 7V f(x)))
2" =x—Vf(x) —yATsT

(25, ¥ 1) — (2%, 8%) |1} = 0 (27). and (2", ") weakly converges to a
fixed point (z*,s™)
Let L(x,s) = f(x) + g(x) + (Ax,s) — h*(s), then

Zlvsl) - (ZvS)H2
k

L(x"s) - L£(x,8"T) < it

where (x*,8**1) =1 Zl L(x s, and z = x — YV f(x) —7A s,

Linear convergence with additional assumptions on f, g, and h



convergence analysis: the general case

= Let M = ?(I — AMAT) be positive definite. Define

Isllve = /(s 8)m = /{5, Ms) and ||(z,5)[lm = /][2[| + [Is]3s.

Lemma
The iteration T mapping (z,s) to (z*,s™) is a nonexpansive operator under

the metric defined by M if v < 2/3. Furthermore, it is a-averaged with

28
4=y

o=

= Chambolle-Pock is firmly non-expansive under the new metric, which is

different from the previous metric.



convergence analysis: the general case

Theorem
1) Let (z*,s*) be any fixed point of T. Then (||(z",s") — (z*,s%)||m)r>0 is
monotonically nonincreasing.

2) The sequence (|| T(z",s*) — (z*,s")||m)x>0 is monotonically

nonincreasing and converges to 0.

3) We have the following convergence rate
IT (2", s*) — (2*,")IIs = 0 (&)

4) (2" s") weakly converges to a fixed point of T, and if X has finite

dimension (e.g., R™), then it is strongly convergent.



convergence analysis: linear convergent

Denote:
u, =2(I-AAAT)s + Az — Ist € on*(s),
Uy —%(Z —x) € 9g(x),
u;, =A(z" — yATs*) = Ax* € Oh*(s*),
=1 (2" — x7) € dg(x).

and

Vg(x) — Vay)ll <Lgl|lx -yl
(s" = 8", —up) >mllsT — 8",
(x —x",uy — u;) >7gllx — X*||27

(x —x", Vf(x) = Vf(x")) 27¢[x = x7.



convergence analysis: linear convergent

Theorem
We have

Iz —2*[1* + (1 +2y7) ™ = 8*|Ra < p (|2 —2*|I° + (1 +297) lIs — s*[1%4)

where

72
L 27—7 Tr+2v7g
p=max | 71— e . (5)

When, in addition, v < 23, T, > 0, and 15 + 74 > 0, we have that p < 1 and
the algorithm converges linearly.



numerical experiment: fused lasso

1 —
o 2
minimize §||Ax — bl + pa||x|l1 + pe E |Tit1 — x4l
X
i=1
X
= x=(z1,,zp) ERP, A€ R"P, beR"
4— i 4
True True
3 PD30 3 PD30
PDFP PDFP
2 Condat-Vu 2 Condat-Vu
] ly H ]
o ‘ o
1l N| ‘ | U 1 i
2 2
3 3
740 2000 4000 6000 8000 TUUUU VZ?UUU 3500 4000 4500 5000

Figure: The true sparse signal and the reconstructed results using PD30, PDFP, and
Condat-Vu. The right figure is a zoom-in of the signal in [3000, 5500].



numerical experiment: fused lasso

0 200 400 600 800 1000 0 200 400 600 800 1000

iteration iteration

Figure: In the left figure, we fix A =1/8 and let v = 8, 1.53, 1.98. In the right
figure, we fix v = 1.98 and let A =1/80, 1/8, 1/4.



applications: decentralized optimization

mmlmlze Z fi(z) + gi(z

= f; and g; is known at node ¢ only.
* Nodes 1,--- ,n are connected in a undirected graph.

= f; is differentiable with a Lipschitz continuous gradient.



applications: decentralized optimization

mmlmlze Z fi(z) + gi(z

= f; and g; is known at node ¢ only.
* Nodes 1,--- ,n are connected in a undirected graph.

= f; is differentiable with a Lipschitz continuous gradient.

Introduce a copy x; at node i:
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= f; and g; is known at node ¢ only.
* Nodes 1,--- ,n are connected in a undirected graph.

= f; is differentiable with a Lipschitz continuous gradient.

Introduce a copy x; at node i:

minixmize F(x)+g9(x) = Z fi(z:) + gi(mi) st Wx=x

=z, ERP, x=[T1 T2 - - mn]TGR"Xp.

= W is a symmetric doubly stochastic mixing matrix.

The sum of three functions:

minixmize (%) + g(x) + to((T— W)l/zx)
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conclusion

a new primal-dual algorithm for minimizing the sum of three functions.

a new interpretation of Chambolle-Pock: Douglas-Rachford splitting on
the KKT system under a new metric induced by a block diagonal matrix.

PAPC is forward-backward splitting applied on the KKT system under the
same metric; we proved the optimal bound for the parameters (dual
stepsize).

PD30 is a generalization of both Chambolle-Pock and PAPC, and it has
the advantages of both Condat-Vu (a generalization of Chambolle-Pock),
and AFBA and PDFP (two generalizations of PAPC).

In decentralized consensus optimization, we derive a fast method whose
stepsize does not depend on the network structure; we provide an optimal
bound for the stepsize in PG-EXTRA (Shi et al. '15).
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