Primal-dual algorithms for the sum of two and three functions¹

Ming Yan
Michigan State University, CMSE/Mathematics

¹This works is partially supported by NSF.

optimization problems for primal-dual algorithms

$$\underset{\mathbf{x}}{\text{minimize}} \, \mathbf{f}(\mathbf{x}) + \mathbf{g}(\mathbf{x}) + \mathbf{h}(\mathbf{A}\mathbf{x})$$

- f, g, and h are convex.
- \mathcal{X} and \mathcal{Y} are two Hilbert spaces (e.g., \mathbf{R}^m , \mathbf{R}^n).
- $f: \mathcal{X} \mapsto \mathbf{R}$ is differentiable with a $1/\beta$ -Lipschitz continuous gradient for some $\beta \in (0, +\infty)$.
- $\mathbf{A}: \mathcal{X} \mapsto \mathcal{Y}$ is a bounded linear operator.

applications: statistics

Elastic net regularization (Zou-Hastie '05):

$$\underset{\mathbf{x}}{\text{minimize}} \ \mu_2 \|\mathbf{x}\|_2^2 + \mu_1 \|\mathbf{x}\|_1 + l(\mathbf{A}\mathbf{x}, \mathbf{b}),$$

where $\mathbf{x} \in \mathbf{R}^p$, $\mathbf{A} \in \mathbf{R}^{n \times p}$, $\mathbf{b} \in \mathbf{R}^n$, and l is the loss function, which may be nondifferentiable.

applications: statistics

Elastic net regularization (Zou-Hastie '05):

$$\underset{\mathbf{x}}{\text{minimize}} \ \mu_2 \|\mathbf{x}\|_2^2 + \mu_1 \|\mathbf{x}\|_1 + l(\mathbf{A}\mathbf{x}, \mathbf{b}),$$

where $\mathbf{x} \in \mathbf{R}^p$, $\mathbf{A} \in \mathbf{R}^{n \times p}$, $\mathbf{b} \in \mathbf{R}^n$, and l is the loss function, which may be nondifferentiable.

Fused lasso (Tibshirani et al. '05):

minimize
$$\frac{1}{2} \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_2^2 + \mu_1 \|\mathbf{x}\|_1 + \mu_2 \|\mathbf{D}\mathbf{x}\|_1,$$

where $\mathbf{x} \in \mathbf{R}^p$, $\mathbf{A} \in \mathbf{R}^{n \times p}$, $\mathbf{b} \in \mathbf{R}^n$, and

$$\mathbf{D} = \left(\begin{array}{cccc} -1 & 1 & & & \\ & -1 & 1 & & \\ & & \dots & \dots & \\ & & & -1 & 1 \end{array} \right)$$

is a matrix in $\mathbf{R}^{(p-1)\times p}$.

applications: decentralized optimization

$$\underset{x}{\text{minimize}} \quad \sum_{i=1}^{n} f_i(x) + g_i(x)$$

- f_i and g_i is known at node i only.
- Nodes $1, \dots, n$ are connected in a undirected graph.
- f_i is differentiable with a Lipschitz continuous gradient.

applications: decentralized optimization

$$\underset{x}{\text{minimize}} \quad \sum_{i=1}^{n} f_i(x) + g_i(x)$$

- f_i and g_i is known at node i only.
- Nodes $1, \dots, n$ are connected in a undirected graph.
- f_i is differentiable with a Lipschitz continuous gradient.

Introduce a copy x_i at node i:

minimize
$$f(\mathbf{x}) + g(\mathbf{x}) := \sum_{i=1}^{n} f_i(x_i) + g_i(x_i)$$
 s.t. $\mathbf{W}\mathbf{x} = \mathbf{x}$

- $x_i \in \mathbb{R}^p$, $\mathbf{x} = [x_1 \ x_2 \ \cdots \ x_n]^\top \in \mathbb{R}^{n \times p}$.
- ullet W is a symmetric doubly stochastic mixing matrix.

applications: decentralized optimization

$$\underset{x}{\text{minimize}} \quad \sum_{i=1}^{n} f_i(x) + g_i(x)$$

- f_i and g_i is known at node i only.
- Nodes $1, \dots, n$ are connected in a undirected graph.
- f_i is differentiable with a Lipschitz continuous gradient.

Introduce a copy x_i at node i:

minimize
$$f(\mathbf{x}) + g(\mathbf{x}) := \sum_{i=1}^{n} f_i(x_i) + g_i(x_i)$$
 s.t. $\mathbf{W}\mathbf{x} = \mathbf{x}$

- $x_i \in \mathbb{R}^p$, $\mathbf{x} = [x_1 \ x_2 \ \cdots \ x_n]^\top \in \mathbb{R}^{n \times p}$.
- W is a symmetric doubly stochastic mixing matrix.

The sum of three functions:

minimize
$$f(\mathbf{x}) + g(\mathbf{x}) + \iota_0((\mathbf{I} - \mathbf{W})^{1/2}\mathbf{x})$$

applications: imaging

Image restoration with two regularizations:

$$\underset{\mathbf{x}}{\text{minimize}} \frac{1}{2} \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_{2}^{2} + \iota_{C}(\mathbf{x}) + \mu \|\mathbf{D}\mathbf{x}\|_{1},$$

where $\mathbf{x} \in \mathbf{R}^n$ is the image to be reconstructed, $\mathbf{A} \in \mathbf{R}^{m \times n}$ is the forward projection matrix, $\mathbf{b} \in \mathbf{R}^m$ is the measured data with noise, \mathbf{D} is a discrete gradient operator, and ι_C is the indicator function that returns zero if $\mathbf{x} \in C$ (here, C is the set of nonnegative vectors in \mathbf{R}^n) and $+\infty$ otherwise.

applications: imaging

Image restoration with two regularizations:

$$\underset{\mathbf{x}}{\text{minimize}} \frac{1}{2} \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_{2}^{2} + \iota_{C}(\mathbf{x}) + \mu \|\mathbf{D}\mathbf{x}\|_{1},$$

where $\mathbf{x} \in \mathbf{R}^n$ is the image to be reconstructed, $\mathbf{A} \in \mathbf{R}^{m \times n}$ is the forward projection matrix, $\mathbf{b} \in \mathbf{R}^m$ is the measured data with noise, \mathbf{D} is a discrete gradient operator, and ι_C is the indicator function that returns zero if $\mathbf{x} \in C$ (here, C is the set of nonnegative vectors in \mathbf{R}^n) and $+\infty$ otherwise.

Other problems:

- *f*: data fitting term (infimal convolution for mixed noise)
- $h \circ A$: total variation; other transforms
- g: nonnegativity; box constraint

primal-dual formulation

Original problem:

$$\underset{\mathbf{x}}{\text{minimize}} \ f(\mathbf{x}) + g(\mathbf{x}) + h(\mathbf{A}\mathbf{x})$$

primal-dual formulation

Original problem:

$$\underset{\mathbf{x}}{\text{minimize}} \ f(\mathbf{x}) + g(\mathbf{x}) + h(\mathbf{A}\mathbf{x})$$

Introduce a dual variable s:

$$\underset{\mathbf{x}}{\text{minimize}}\ \underset{\mathbf{s}}{\text{max}} f(\mathbf{x}) + g(\mathbf{x}) + \langle \mathbf{A}\mathbf{x}, \mathbf{s} \rangle - h^*(\mathbf{s})$$

Here h^* is the conjugate function of h that is defined as

$$h^*(\mathbf{s}) = \max_{\mathbf{t}} \langle \mathbf{s}, \mathbf{t} \rangle - h(\mathbf{t}),$$

primal-dual formulation

Original problem:

$$\underset{\mathbf{x}}{\text{minimize}} f(\mathbf{x}) + g(\mathbf{x}) + h(\mathbf{A}\mathbf{x})$$

Introduce a dual variable s:

minimize
$$\max_{\mathbf{s}} f(\mathbf{x}) + g(\mathbf{x}) + \langle \mathbf{A}\mathbf{x}, \mathbf{s} \rangle - h^*(\mathbf{s})$$

Here h^* is the conjugate function of h that is defined as

$$h^*(\mathbf{s}) = \max_{\mathbf{t}} \langle \mathbf{s}, \mathbf{t} \rangle - h(\mathbf{t}),$$

It is equivalent to $(\mathbf{s}^* \in \partial h(\mathbf{A}\mathbf{x}^*) \iff \mathbf{A}\mathbf{x}^* \in \partial h^*(\mathbf{s}^*))$:

$$\begin{cases} \mathbf{0} \in & \nabla f(\mathbf{x}^*) + \partial g(\mathbf{x}^*) + \mathbf{A}^{\top} \mathbf{s}^* \\ \mathbf{0} \in & \partial h^*(\mathbf{s}^*) - \mathbf{A} \mathbf{x}^* \end{cases}$$

All primal-dual algorithms try to find $(\mathbf{x}^*, \mathbf{s}^*)$.

existing algorithms: Condat-Vu, AFBA, and PDFP

Condat-Vu (Condat '13, Vu '13):

- Convergence conditions: $\lambda \|\mathbf{A}\mathbf{A}^{\top}\| + \gamma/(2\beta) \le 1$
- Per-iteration computations: **A**, \mathbf{A}^{\top} , ∇f , one $(\mathbf{I} + \gamma \partial g)^{-1}$, $(\mathbf{I} + \frac{\lambda}{\gamma} \partial h^*)^{-1}$

$$(\mathbf{I} + \gamma \partial g)^{-1}(\tilde{\mathbf{x}}) = \arg\min \gamma g(\mathbf{x}) + \frac{1}{2} \|\mathbf{x} - \tilde{\mathbf{x}}\|^2.$$

existing algorithms: Condat-Vu, AFBA, and PDFP

Condat-Vu (Condat '13, Vu '13):

- Convergence conditions: $\lambda \|\mathbf{A}\mathbf{A}^{\top}\| + \gamma/(2\beta) \leq 1$
- Per-iteration computations: \mathbf{A} , \mathbf{A}^{\top} , ∇f , one $(\mathbf{I} + \gamma \partial g)^{-1}$, $(\mathbf{I} + \frac{\lambda}{\gamma} \partial h^*)^{-1}$ ²

AFBA (Latafat-Patrinos '16):

- Convergence conditions: $\lambda \|\mathbf{A}\mathbf{A}^{\top}\|/2 + \sqrt{\lambda \|\mathbf{A}\mathbf{A}^{\top}\|}/2 + \gamma/(2\beta) \leq 1$
- Per-iteration computations: \mathbf{A} , \mathbf{A}^{\top} , ∇f , one $(\mathbf{I} + \gamma \partial g)^{-1}$, $(\mathbf{I} + \frac{\lambda}{\gamma} \partial h^*)^{-1}$

$$(\mathbf{I} + \gamma \partial g)^{-1}(\tilde{\mathbf{x}}) = \arg\min \gamma g(\mathbf{x}) + \frac{1}{2} \|\mathbf{x} - \tilde{\mathbf{x}}\|^2.$$

existing algorithms: Condat-Vu, AFBA, and PDFP

Condat-Vu (Condat '13, Vu '13):

- Convergence conditions: $\lambda \|\mathbf{A}\mathbf{A}^{\top}\| + \gamma/(2\beta) \le 1$
- Per-iteration computations: **A**, \mathbf{A}^{\top} , ∇f , one $(\mathbf{I} + \gamma \partial g)^{-1}$, $(\mathbf{I} + \frac{\lambda}{\gamma} \partial h^*)^{-1}$ ²

AFBA (Latafat-Patrinos '16):

- Convergence conditions: $\lambda \|\mathbf{A}\mathbf{A}^{\top}\|/2 + \sqrt{\lambda \|\mathbf{A}\mathbf{A}^{\top}\|}/2 + \gamma/(2\beta) \leq 1$
- Per-iteration computations: \mathbf{A} , \mathbf{A}^{\top} , ∇f , one $(\mathbf{I} + \gamma \partial g)^{-1}$, $(\mathbf{I} + \frac{\lambda}{\gamma} \partial h^*)^{-1}$

PDFP (Chen-Huang-Zhang '16):

- Convergence conditions: $\lambda \|\mathbf{A}\mathbf{A}^{\top}\| < 1$; $\gamma/(2\beta) < 1$
- Per-iteration computations: \mathbf{A} , \mathbf{A}^{\top} , ∇f , two $(\mathbf{I} + \gamma \partial g)^{-1}$, $(\mathbf{I} + \frac{\lambda}{\gamma} \partial h^*)^{-1}$

$$(\mathbf{I} + \gamma \partial g)^{-1}(\tilde{\mathbf{x}}) = \arg\min \gamma g(\mathbf{x}) + \frac{1}{2} \|\mathbf{x} - \tilde{\mathbf{x}}\|^2.$$

This is a backward step (or implicit step) because $(\mathbf{I} + \gamma \partial g)^{-1}(\tilde{\mathbf{x}}) \in \tilde{\mathbf{x}} - \gamma \partial g((\mathbf{I} + \gamma \partial g)^{-1}(\tilde{\mathbf{x}}))$

When f = 0, we have

$$\left[\begin{array}{cc} \partial g & \mathbf{A}^\top \\ -\mathbf{A} & \partial h^* \end{array}\right] \left[\begin{array}{c} \mathbf{x}^* \\ \mathbf{s}^* \end{array}\right] \ni \mathbf{0}$$

When f = 0, we have

$$\begin{bmatrix} \partial g & \mathbf{A}^{\top} \\ -\mathbf{A} & \partial h^* \end{bmatrix} \begin{bmatrix} \mathbf{x}^* \\ \mathbf{s}^* \end{bmatrix} \ni \mathbf{0}$$

It is equivalent to

$$\left[\begin{array}{cc} \partial g \\ -\mathbf{A} & \partial h^* \end{array}\right] \left[\begin{array}{c} \mathbf{x}^* \\ \mathbf{s}^* \end{array}\right] \ni \left[\begin{array}{cc} \mathbf{0} & -\mathbf{A}^\top \\ \mathbf{0} \end{array}\right] \left[\begin{array}{c} \mathbf{x}^* \\ \mathbf{s}^* \end{array}\right]$$

When f = 0, we have

$$\begin{bmatrix} \partial g & \mathbf{A}^{\top} \\ -\mathbf{A} & \partial h^* \end{bmatrix} \begin{bmatrix} \mathbf{x}^* \\ \mathbf{s}^* \end{bmatrix} \ni \mathbf{0}$$

It is equivalent to

$$\begin{bmatrix} \frac{1}{\gamma} \mathbf{I} + \partial g \\ -\mathbf{A} & \frac{\gamma}{\lambda} \mathbf{I} + \partial h^* \end{bmatrix} \begin{bmatrix} \mathbf{x}^* \\ \mathbf{s}^* \end{bmatrix} \ni \begin{bmatrix} \frac{1}{\gamma} \mathbf{I} & \mathbf{A}^\top \\ & \frac{\gamma}{\lambda} \mathbf{I} \end{bmatrix} \begin{bmatrix} \mathbf{x}^* \\ \mathbf{s}^* \end{bmatrix}$$

When f = 0, we have

$$\begin{bmatrix} \partial g & \mathbf{A}^{\top} \\ -\mathbf{A} & \partial h^* \end{bmatrix} \begin{bmatrix} \mathbf{x}^* \\ \mathbf{s}^* \end{bmatrix} \ni \mathbf{0}$$

It is equivalent to

$$\left[\begin{array}{cc} \frac{1}{\gamma}\mathbf{I} + \partial g & \\ -\mathbf{A} & \frac{\gamma}{\lambda}\mathbf{I} + \partial h^* \end{array}\right] \left[\begin{array}{c} \mathbf{x}^* \\ \mathbf{s}^* \end{array}\right] \ni \left[\begin{array}{cc} \frac{1}{\gamma}\mathbf{I} & \mathbf{A}^\top \\ & \frac{\gamma}{\lambda}\mathbf{I} \end{array}\right] \left[\begin{array}{c} \mathbf{x}^* \\ \mathbf{s}^* \end{array}\right]$$

Primal-dual hybrid gradient (PDHG)

$$\mathbf{x}^{+} = (\mathbf{I} + \gamma \partial g)^{-1} (\mathbf{x} - \gamma \mathbf{A}^{\top} \mathbf{s})$$
$$\mathbf{s}^{+} = \left(\mathbf{I} + \frac{\lambda}{\gamma} \partial h^{*}\right)^{-1} \left(\mathbf{s} + \frac{\lambda}{\gamma} \mathbf{A} \mathbf{x}^{+}\right)$$

When f = 0, we have

$$\begin{bmatrix} \partial g & \mathbf{A}^{\top} \\ -\mathbf{A} & \partial h^* \end{bmatrix} \begin{bmatrix} \mathbf{x}^* \\ \mathbf{s}^* \end{bmatrix} \ni \mathbf{0}$$

It is equivalent to

$$\left[\begin{array}{cc} \frac{1}{\gamma}\mathbf{I} + \partial g & \\ -\mathbf{A} & \frac{\gamma}{\lambda}\mathbf{I} + \partial h^* \end{array}\right] \left[\begin{array}{c} \mathbf{x}^* \\ \mathbf{s}^* \end{array}\right] \ni \left[\begin{array}{cc} \frac{1}{\gamma}\mathbf{I} & \mathbf{A}^\top \\ & \frac{\gamma}{\lambda}\mathbf{I} \end{array}\right] \left[\begin{array}{c} \mathbf{x}^* \\ \mathbf{s}^* \end{array}\right]$$

Chambolle-Pock (Chambolle et.al '09, Esser-Zhang-Chan '10)

$$\mathbf{x}^{+} = (\mathbf{I} + \gamma \partial g)^{-1} (\mathbf{x} - \gamma \mathbf{A}^{\top} \mathbf{s})$$
$$\mathbf{\bar{x}}^{+} = \mathbf{x}^{+} + \mathbf{x}^{+} - \mathbf{x}$$
$$\mathbf{s}^{+} = \left(\mathbf{I} + \frac{\lambda}{\gamma} \partial h^{*}\right)^{-1} \left(\mathbf{s} + \frac{\lambda}{\gamma} \mathbf{A} \mathbf{\bar{x}}^{+}\right)$$

 ${\sf Chambolle\text{-}Pock} \; \big(\mathbf{x} - \mathbf{s} \; \mathsf{order}\big)$

$$\mathbf{x}^{+} = (\mathbf{I} + \gamma \partial g)^{-1} (\mathbf{x} - \gamma \mathbf{A}^{\top} \mathbf{s})$$

$$\mathbf{s}^{+} = \left(\mathbf{I} + \frac{\lambda}{\gamma} \partial h^{*}\right)^{-1} \left(\mathbf{s} + \frac{\lambda}{\gamma} \mathbf{A} (2\mathbf{x}^{+} - \mathbf{x})\right)$$

Chambolle-Pock (x - s order)

$$\mathbf{x}^{+} = (\mathbf{I} + \gamma \partial g)^{-1} (\mathbf{x} - \gamma \mathbf{A}^{\top} \mathbf{s})$$
$$\mathbf{s}^{+} = (\mathbf{I} + \frac{\lambda}{2} \partial h^{*})^{-1} (\mathbf{s} + \frac{\lambda}{2} \mathbf{A} (2\mathbf{x}^{+} - \mathbf{x}))$$

CP is equivalent to the backward operator applied on the KKT system.

Chambolle-Pock (x - s order)

$$\mathbf{x}^{+} = (\mathbf{I} + \gamma \partial g)^{-1} (\mathbf{x} - \gamma \mathbf{A}^{\top} \mathbf{s})$$
$$\mathbf{s}^{+} = \left(\mathbf{I} + \frac{\lambda}{\gamma} \partial h^{*}\right)^{-1} \left(\mathbf{s} + \frac{\lambda}{\gamma} \mathbf{A} (2\mathbf{x}^{+} - \mathbf{x})\right)$$

CP is equivalent to the backward operator applied on the KKT system.

$$\left[\left[\begin{array}{cc} \frac{1}{\gamma} \mathbf{I} \\ -\mathbf{A} & \frac{\gamma}{\lambda} \mathbf{I} \end{array} \right] + \left[\begin{array}{cc} \partial g \\ -\mathbf{A} & \partial h^* \end{array} \right] \right] \left[\begin{array}{cc} \mathbf{x}^+ \\ \mathbf{s}^+ \end{array} \right] \ni \left[\begin{array}{cc} \frac{1}{\gamma} \mathbf{I} & -\mathbf{A}^\top \\ -\mathbf{A} & \frac{\gamma}{\lambda} \mathbf{I} \end{array} \right] \left[\begin{array}{cc} \mathbf{x} \\ \mathbf{s} \end{array} \right]$$

CP is 1/2-averaged under the metric induced by the matrix if λ satisfies
the condition λ||AA^T|| < 1.

Chambolle-Pock (x - s order)

$$\mathbf{x}^{+} = (\mathbf{I} + \gamma \partial g)^{-1} (\mathbf{x} - \gamma \mathbf{A}^{\top} \mathbf{s})$$
$$\mathbf{s}^{+} = \left(\mathbf{I} + \frac{\lambda}{\gamma} \partial h^{*}\right)^{-1} \left(\mathbf{s} + \frac{\lambda}{\gamma} \mathbf{A} (2\mathbf{x}^{+} - \mathbf{x})\right)$$

CP is equivalent to the backward operator applied on the KKT system.

$$\left[\left[\begin{array}{cc} \frac{1}{\gamma} \mathbf{I} & -\mathbf{A}^\top \\ -\mathbf{A} & \frac{\gamma}{\lambda} \mathbf{I} \end{array} \right] + \left[\begin{array}{cc} \partial g & \mathbf{A}^\top \\ -\mathbf{A} & \partial h^* \end{array} \right] \right] \left[\begin{array}{cc} \mathbf{x}^+ \\ \mathbf{s}^+ \end{array} \right] \ni \left[\begin{array}{cc} \frac{1}{\gamma} \mathbf{I} & -\mathbf{A}^\top \\ -\mathbf{A} & \frac{\gamma}{\lambda} \mathbf{I} \end{array} \right] \left[\begin{array}{cc} \mathbf{x} \\ \mathbf{s} \end{array} \right]$$

• CP is 1/2-averaged under the metric induced by the matrix if λ satisfies the condition $\lambda \|\mathbf{A}\mathbf{A}^{\top}\| \leq 1$.

Condat-Vu (Condat '13, Vu '13)

The optimality condition:

$$\left[egin{array}{cc} \partial g & \mathbf{A}^{ op} \ -\mathbf{A} & \partial h^* \end{array}
ight] \left[egin{array}{c} \mathbf{x}^* \ \mathbf{s}^* \end{array}
ight] + \left[egin{array}{c}
abla f(\mathbf{x}^*) \ 0 \end{array}
ight]
ightarrow \mathbf{0}$$

CV is equivalent to the forward-backward applied on the KKT system.

$$\left[\left[\begin{array}{cc} \frac{1}{\gamma} \mathbf{I} & -\mathbf{A}^\top \\ -\mathbf{A} & \frac{\gamma}{\lambda} \mathbf{I} \end{array} \right] + \left[\begin{array}{cc} \partial g & \mathbf{A}^\top \\ -\mathbf{A} & \partial h^* \end{array} \right] \right] \left[\begin{array}{c} \mathbf{x}^+ \\ \mathbf{s}^+ \end{array} \right] \ni \left[\begin{array}{cc} \frac{1}{\gamma} \mathbf{I} & -\mathbf{A}^\top \\ -\mathbf{A} & \frac{\gamma}{\lambda} \mathbf{I} \end{array} \right] \left[\begin{array}{c} \mathbf{x} \\ \mathbf{s} \end{array} \right] - \left[\begin{array}{c} \nabla f(\mathbf{x}) \\ \mathbf{0} \end{array} \right]$$

Condat-Vu (Condat '13, Vu '13)

The optimality condition:

$$\begin{bmatrix} \partial g & \mathbf{A}^\top \\ -\mathbf{A} & \partial h^* \end{bmatrix} \begin{bmatrix} \mathbf{x}^* \\ \mathbf{s}^* \end{bmatrix} + \begin{bmatrix} \nabla f(\mathbf{x}^*) \\ 0 \end{bmatrix} \ni \mathbf{0}$$

CV is equivalent to the forward-backward applied on the KKT system.

$$\begin{bmatrix} \begin{bmatrix} \frac{1}{\gamma} \mathbf{I} & -\mathbf{A}^{\top} \\ -\mathbf{A} & \frac{\gamma}{\lambda} \mathbf{I} \end{bmatrix} + \begin{bmatrix} \partial g & \mathbf{A}^{\top} \\ -\mathbf{A} & \partial h^{*} \end{bmatrix} \end{bmatrix} \begin{bmatrix} \mathbf{x}^{+} \\ \mathbf{s}^{+} \end{bmatrix} \ni \begin{bmatrix} \frac{1}{\gamma} \mathbf{I} & -\mathbf{A}^{\top} \\ -\mathbf{A} & \frac{\gamma}{\lambda} \mathbf{I} \end{bmatrix} \begin{bmatrix} \mathbf{x} \\ \mathbf{s} \end{bmatrix} - \begin{bmatrix} \nabla f(\mathbf{x}) \\ \mathbf{0} \end{bmatrix}$$

That is:

$$\mathbf{x}^{+} = (\mathbf{I} + \gamma \partial g)^{-1} (\mathbf{x} - \gamma \nabla f(\mathbf{x}) - \gamma \mathbf{A}^{\top} \mathbf{s})$$

$$\mathbf{s}^{+} = (\mathbf{I} + \frac{\lambda}{\gamma} \partial h^{*})^{-1} (\mathbf{s} + \frac{\lambda}{\gamma} \mathbf{A} (2\mathbf{x}^{+} - \mathbf{x}))$$

It is equivalent to (by changing the update order)

$$\mathbf{s}^{+} = \left(\mathbf{I} + \frac{\lambda}{\gamma} \partial h^{*}\right)^{-1} \left(\mathbf{s} + \frac{\lambda}{\gamma} \mathbf{A} \bar{\mathbf{x}}\right)$$
$$\mathbf{x}^{+} = \left(\mathbf{I} + \gamma \partial g\right)^{-1} \left(\mathbf{x} - \gamma \nabla f(\mathbf{x}) - \gamma \mathbf{A}^{\top} \mathbf{s}^{+}\right)$$
$$\bar{\mathbf{y}}^{+} = 2\mathbf{x}^{+} - \mathbf{x}$$

Condat-Vu (Condat '13, Vu '13)

The optimality condition:

$$\begin{bmatrix} \partial g & \mathbf{A}^\top \\ -\mathbf{A} & \partial h^* \end{bmatrix} \begin{bmatrix} \mathbf{x}^* \\ \mathbf{s}^* \end{bmatrix} + \begin{bmatrix} \nabla f(\mathbf{x}^*) \\ 0 \end{bmatrix} \ni \mathbf{0}$$

CV is equivalent to the forward-backward applied on the KKT system.

$$\begin{bmatrix} \begin{bmatrix} \frac{1}{\gamma} \mathbf{I} & -\mathbf{A}^{\top} \\ -\mathbf{A} & \frac{\gamma}{\lambda} \mathbf{I} \end{bmatrix} + \begin{bmatrix} \partial g & \mathbf{A}^{\top} \\ -\mathbf{A} & \partial h^{*} \end{bmatrix} \end{bmatrix} \begin{bmatrix} \mathbf{x}^{+} \\ \mathbf{s}^{+} \end{bmatrix} \ni \begin{bmatrix} \frac{1}{\gamma} \mathbf{I} & -\mathbf{A}^{\top} \\ -\mathbf{A} & \frac{\gamma}{\lambda} \mathbf{I} \end{bmatrix} \begin{bmatrix} \mathbf{x} \\ \mathbf{s} \end{bmatrix} - \begin{bmatrix} \nabla f(\mathbf{x}) \\ 0 \end{bmatrix}$$

That is:

$$\mathbf{x}^{+} = (\mathbf{I} + \gamma \partial g)^{-1} (\mathbf{x} - \gamma \nabla f(\mathbf{x}) - \gamma \mathbf{A}^{\top} \mathbf{s})$$
$$\mathbf{s}^{+} = (\mathbf{I} + \frac{\lambda}{\gamma} \partial h^{*})^{-1} (\mathbf{s} + \frac{\lambda}{\gamma} \mathbf{A} (2\mathbf{x}^{+} - \mathbf{x}))$$

It is equivalent to (by changing the update order)

$$\mathbf{s}^{+} = \left(\mathbf{I} + \frac{\lambda}{\gamma} \partial h^{*}\right)^{-1} \left(\mathbf{s} + \frac{\lambda}{\gamma} \mathbf{A} \bar{\mathbf{x}}\right)$$
$$\mathbf{x}^{+} = \left(\mathbf{I} + \gamma \partial g\right)^{-1} \left(\mathbf{x} - \gamma \nabla f(\mathbf{x}) - \gamma \mathbf{A}^{\top} \mathbf{s}^{+}\right)$$
$$\bar{\mathbf{x}}^{+} = 2\mathbf{x}^{+} - \mathbf{x}$$

• CV is non-expansive (forward-backward) under the metric induced by the matrix if γ and λ satisfy the condition $\lambda \|\mathbf{A}\mathbf{A}^{\top}\| + \gamma/(2\beta) \leq 1$.

PDFP²O/PAPC (Loris-Verhoeven '11, Chen-Huang-Zhang '13, Drori-Sabach-Teboulle '15)

When g = 0, the optimality condition becomes:

$$\begin{bmatrix} 0 & \mathbf{A}^{\top} \\ -\mathbf{A} & \partial h^* \end{bmatrix} \begin{bmatrix} \mathbf{x}^* \\ \mathbf{s}^* \end{bmatrix} + \begin{bmatrix} \nabla f(\mathbf{x}^*) \\ 0 \end{bmatrix} \ni \mathbf{0}$$

PDFP²O/PAPC (Loris-Verhoeven '11, Chen-Huang-Zhang '13, Drori-Sabach-Teboulle '15)

When g = 0, the optimality condition becomes:

$$\begin{bmatrix} 0 & \mathbf{A}^{\top} \\ -\mathbf{A} & \partial h^* \end{bmatrix} \begin{bmatrix} \mathbf{x}^* \\ \mathbf{s}^* \end{bmatrix} + \begin{bmatrix} \nabla f(\mathbf{x}^*) \\ 0 \end{bmatrix} \ni \mathbf{0}$$

PAPC is equivalent to the forward-backward applied on the KKT system.

$$\begin{bmatrix} \frac{1}{\gamma} \mathbf{I} & \mathbf{A}^{\top} \\ -\mathbf{A} & \frac{\gamma}{\lambda} \mathbf{I} - \gamma \mathbf{A} \mathbf{A}^{\top} + \partial h^* \end{bmatrix} \begin{bmatrix} \mathbf{x}^{+} \\ \mathbf{s}^{+} \end{bmatrix} \ni \begin{bmatrix} \frac{1}{\gamma} \mathbf{I} \\ \mathbf{x}^{+} \end{bmatrix} - \begin{bmatrix} \mathbf{x} \\ \mathbf{s} \end{bmatrix} - \begin{bmatrix} \nabla f(\mathbf{x}) \\ \mathbf{0} \end{bmatrix}$$

PDFP²O/PAPC (Loris-Verhoeven '11, Chen-Huang-Zhang '13, Drori-Sabach-Teboulle '15)

When g=0, the optimality condition becomes:

$$\left[\begin{array}{cc} 0 & \mathbf{A}^{\top} \\ -\mathbf{A} & \partial h^* \end{array}\right] \left[\begin{array}{c} \mathbf{x}^* \\ \mathbf{s}^* \end{array}\right] + \left[\begin{array}{c} \nabla f(\mathbf{x}^*) \\ 0 \end{array}\right] \ni \mathbf{0}$$

PAPC is equivalent to the forward-backward applied on the KKT system.

$$\begin{bmatrix} \frac{1}{\gamma} \mathbf{I} & \mathbf{A}^{\top} \\ -\mathbf{A} & \frac{\gamma}{\lambda} \mathbf{I} - \gamma \mathbf{A} \mathbf{A}^{\top} + \partial h^* \end{bmatrix} \begin{bmatrix} \mathbf{x}^{+} \\ \mathbf{s}^{+} \end{bmatrix} \ni \begin{bmatrix} \frac{1}{\gamma} \mathbf{I} \\ \mathbf{x}^{\top} \end{bmatrix} - \gamma \mathbf{A} \mathbf{A}^{\top} \end{bmatrix} \begin{bmatrix} \mathbf{x} \\ \mathbf{s} \end{bmatrix} - \begin{bmatrix} \nabla f(\mathbf{x}) \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} \frac{1}{\gamma} \mathbf{I} & \mathbf{A}^{\top} \\ & \frac{\gamma}{\lambda} \mathbf{I} + \partial h^* \end{bmatrix} \begin{bmatrix} \mathbf{x}^+ \\ \mathbf{s}^+ \end{bmatrix} \ni \begin{bmatrix} \frac{1}{\gamma} \mathbf{I} \\ \mathbf{A} & \frac{\gamma}{\lambda} \mathbf{I} - \gamma \mathbf{A} \mathbf{A}^{\top} \end{bmatrix} \begin{bmatrix} \mathbf{x} \\ \mathbf{s} \end{bmatrix} - \begin{bmatrix} \nabla f(\mathbf{x}) \\ \gamma \mathbf{A} \nabla f(\mathbf{x}) \end{bmatrix}$$

• PAPC is non-expansive (forward-backward) under the metric induced by the matrix if γ and λ satisfy the conditions $\lambda \|\mathbf{A}\mathbf{A}^\top\| \leq 1$ and $\gamma/(2\beta) \leq 1$.

PAPC

PAPC can be expressed as

$$\mathbf{s}^{+} = \left(\mathbf{I} + \frac{\lambda}{\gamma} \partial h^{*}\right)^{-1} \left((\mathbf{I} - \lambda \mathbf{A} \mathbf{A}^{\top}) \mathbf{s} + \frac{\lambda}{\gamma} \mathbf{A} \left(\mathbf{x} - \gamma \nabla f(\mathbf{x}) \right) \right)$$
$$\mathbf{x}^{+} = \mathbf{x} - \gamma \nabla f(\mathbf{x}) - \gamma \mathbf{A}^{\top} \mathbf{s}^{+}$$

PAPC

PAPC can be expressed as

$$\mathbf{s}^{+} = \left(\mathbf{I} + \frac{\lambda}{\gamma} \partial h^{*}\right)^{-1} \left((\mathbf{I} - \lambda \mathbf{A} \mathbf{A}^{\top}) \mathbf{s} + \frac{\lambda}{\gamma} \mathbf{A} \left(\mathbf{x} - \gamma \nabla f(\mathbf{x}) \right) \right)$$
$$\mathbf{x}^{+} = \mathbf{x} - \gamma \nabla f(\mathbf{x}) - \gamma \mathbf{A}^{\top} \mathbf{s}^{+}$$

It is equivalent to

$$\mathbf{s}^{+} = \left(\mathbf{I} + \frac{\lambda}{\gamma} \partial h^{*}\right)^{-1} \left(\mathbf{s} + \frac{\lambda}{\gamma} \mathbf{A} \bar{\mathbf{x}}\right)$$
$$\mathbf{x}^{+} = \mathbf{x} - \gamma \nabla f(\mathbf{x}) - \gamma \mathbf{A}^{\top} \mathbf{s}^{+}$$
$$\bar{\mathbf{x}}^{+} = \mathbf{x}^{+} - \gamma \nabla f(\mathbf{x}^{+}) - \gamma \mathbf{A}^{\top} \mathbf{s}^{+}$$

PAPC

PAPC can be expressed as

$$\mathbf{s}^{+} = \left(\mathbf{I} + \frac{\lambda}{\gamma} \partial h^{*}\right)^{-1} \left((\mathbf{I} - \lambda \mathbf{A} \mathbf{A}^{\top}) \mathbf{s} + \frac{\lambda}{\gamma} \mathbf{A} \left(\mathbf{x} - \gamma \nabla f(\mathbf{x}) \right) \right)$$
$$\mathbf{x}^{+} = \mathbf{x} - \gamma \nabla f(\mathbf{x}) - \gamma \mathbf{A}^{\top} \mathbf{s}^{+}$$

It is equivalent to

$$\mathbf{s}^{+} = \left(\mathbf{I} + \frac{\lambda}{\gamma} \partial h^{*}\right)^{-1} \left(\mathbf{s} + \frac{\lambda}{\gamma} \mathbf{A} \bar{\mathbf{x}}\right)$$
$$\mathbf{x}^{+} = \mathbf{x} - \gamma \nabla f(\mathbf{x}) - \gamma \mathbf{A}^{\top} \mathbf{s}^{+}$$
$$\bar{\mathbf{x}}^{+} = \mathbf{x}^{+} - \gamma \nabla f(\mathbf{x}^{+}) - \gamma \mathbf{A}^{\top} \mathbf{s}^{+}$$

- PAPC is α -averaged under the metric induced by the matrix.
- PAPC converges if γ and λ satisfy the conditions $\lambda \|\mathbf{A}\mathbf{A}^{\top}\| < 4/3$ and $\gamma/(2\beta) < 1$ (Li-Yan '17).

PDFP (Chen-Huang-Zhang '16)

Rewrite PDFP²O as

$$\mathbf{s}^{+} = \left(\mathbf{I} + \frac{\lambda}{\gamma} \partial h^{*}\right)^{-1} \left(\mathbf{s} + \frac{\lambda}{\gamma} \mathbf{A} \bar{\mathbf{x}}\right)$$
$$\mathbf{x}^{+} = \mathbf{x} - \gamma \nabla f(\mathbf{x}) - \gamma \mathbf{A}^{\top} \mathbf{s}^{+}$$
$$\bar{\mathbf{x}}^{+} = \mathbf{x}^{+} - \gamma \nabla f(\mathbf{x}^{+}) - \gamma \mathbf{A}^{\top} \mathbf{s}^{+}$$

PDFP (Chen-Huang-Zhang '16)

Rewrite PDFP²O as

$$\mathbf{s}^{+} = \left(\mathbf{I} + \frac{\lambda}{\gamma} \partial h^{*}\right)^{-1} \left(\mathbf{s} + \frac{\lambda}{\gamma} \mathbf{A} \bar{\mathbf{x}}\right)$$
$$\mathbf{x}^{+} = \mathbf{x} - \gamma \nabla f(\mathbf{x}) - \gamma \mathbf{A}^{\top} \mathbf{s}^{+}$$
$$\bar{\mathbf{x}}^{+} = \mathbf{x}^{+} - \gamma \nabla f(\mathbf{x}^{+}) - \gamma \mathbf{A}^{\top} \mathbf{s}^{+}$$

PDFP, as a generalization of PDFP²O, is

$$\begin{split} \mathbf{s}^+ &= (\mathbf{I} + \frac{\lambda}{\gamma} \partial h^*)^{-1} \left(\mathbf{s} + \frac{\lambda}{\gamma} \mathbf{A} \bar{\mathbf{x}} \right) \\ \mathbf{x}^+ &= (\mathbf{I} + \gamma \partial g)^{-1} (\mathbf{x} - \gamma \nabla f(\mathbf{x}) - \gamma \mathbf{A}^\top \mathbf{s}^+) \\ \bar{\mathbf{x}}^+ &= (\mathbf{I} + \gamma \partial g)^{-1} (\mathbf{x}^+ - \gamma \nabla f(\mathbf{x}^+) - \gamma \mathbf{A}^\top \mathbf{s}^+) \end{split}$$

 When g is the indicator function, PDFP reduces to Preconditioned Alternating Projection Algorithm (PAPA) (Krol-Li-Shen-Xu '12).

AFBA (Latafat-Patrinos '16)

Rewrite PAPC as

$$\mathbf{s}^{+} = \left(\mathbf{I} + \frac{\lambda}{\gamma} \partial h^{*}\right)^{-1} \left(\mathbf{s} + \frac{\lambda}{\gamma} \mathbf{A} \bar{\mathbf{x}}\right)$$
$$\mathbf{x}^{+} = \bar{\mathbf{x}} - \gamma \mathbf{A}^{\top} (\mathbf{s}^{+} - \mathbf{s})$$
$$\bar{\mathbf{x}}^{+} = \mathbf{x}^{+} - \gamma \nabla f(\mathbf{x}^{+}) - \gamma \mathbf{A}^{\top} \mathbf{s}^{+}$$

AFBA (Latafat-Patrinos '16)

Rewrite PAPC as

$$\mathbf{s}^{+} = \left(\mathbf{I} + \frac{\lambda}{\gamma} \partial h^{*}\right)^{-1} \left(\mathbf{s} + \frac{\lambda}{\gamma} \mathbf{A} \bar{\mathbf{x}}\right)$$
$$\mathbf{x}^{+} = \bar{\mathbf{x}} - \gamma \mathbf{A}^{\top} (\mathbf{s}^{+} - \mathbf{s})$$
$$\bar{\mathbf{x}}^{+} = \mathbf{x}^{+} - \gamma \nabla f(\mathbf{x}^{+}) - \gamma \mathbf{A}^{\top} \mathbf{s}^{+}$$

AFBA, as a generalization of PAPC, is

$$\begin{split} \mathbf{s}^+ &= (\mathbf{I} + \frac{\lambda}{\gamma} \partial h^*)^{-1} \left(\mathbf{s} + \frac{\lambda}{\gamma} \mathbf{A} \bar{\mathbf{x}} \right) \\ \mathbf{x}^+ &= \bar{\mathbf{x}} - \gamma \mathbf{A}^\top (\mathbf{s}^+ - \mathbf{s}) \\ \bar{\mathbf{x}}^+ &= (\mathbf{I} + \gamma \partial g)^{-1} (\mathbf{x}^+ - \gamma \nabla f(\mathbf{x}^+) - \gamma \mathbf{A}^\top \mathbf{s}^+) \end{split}$$

Convergence conditions: $\lambda \|\mathbf{A}\mathbf{A}^{\top}\|/2 + \sqrt{\lambda \|\mathbf{A}\mathbf{A}^{\top}\|}/2 + \gamma/(2\beta) \leq 1$

Chambolle-Pock:

$$\mathbf{s}^{+} = \left(\mathbf{I} + \frac{\lambda}{\gamma} \partial h^{*}\right)^{-1} \left(\mathbf{s} + \frac{\lambda}{\gamma} \mathbf{A} \bar{\mathbf{x}}\right)$$
$$\mathbf{x}^{+} = \left(\mathbf{I} + \gamma \partial g\right)^{-1} (\mathbf{x} - \gamma \mathbf{A}^{\top} \mathbf{s}^{+})$$
$$\bar{\mathbf{x}}^{+} = 2\mathbf{x}^{+} - \mathbf{x}$$

Chambolle-Pock:

$$\mathbf{s}^{+} = \left(\mathbf{I} + \frac{\lambda}{\gamma} \partial h^{*}\right)^{-1} \left(\mathbf{s} + \frac{\lambda}{\gamma} \mathbf{A} \bar{\mathbf{x}}\right)$$
$$\mathbf{x}^{+} = \left(\mathbf{I} + \gamma \partial g\right)^{-1} (\mathbf{x} - \gamma \mathbf{A}^{\top} \mathbf{s}^{+})$$
$$\bar{\mathbf{x}}^{+} = 2\mathbf{x}^{+} - \mathbf{x}$$

PAPC:

$$\mathbf{s}^{+} = \left(\mathbf{I} + \frac{\lambda}{\gamma} \partial h^{*}\right)^{-1} \left(\mathbf{s} + \frac{\lambda}{\gamma} \mathbf{A} \bar{\mathbf{x}}\right)$$
$$\mathbf{x}^{+} = \mathbf{x} - \gamma \nabla f(\mathbf{x}) - \gamma \mathbf{A}^{\top} \mathbf{s}^{+}$$
$$\bar{\mathbf{x}}^{+} = \mathbf{x}^{+} - \gamma \nabla f(\mathbf{x}^{+}) - \gamma \mathbf{A}^{\top} \mathbf{s}^{+}$$

Chambolle-Pock:

$$\mathbf{s}^{+} = \left(\mathbf{I} + \frac{\lambda}{\gamma} \partial h^{*}\right)^{-1} \left(\mathbf{s} + \frac{\lambda}{\gamma} \mathbf{A} \bar{\mathbf{x}}\right)$$
$$\mathbf{x}^{+} = \left(\mathbf{I} + \gamma \partial g\right)^{-1} (\mathbf{x} - \gamma \mathbf{A}^{\top} \mathbf{s}^{+})$$
$$\bar{\mathbf{x}}^{+} = 2\mathbf{x}^{+} - \mathbf{x}$$

PAPC:

$$\mathbf{s}^{+} = \left(\mathbf{I} + \frac{\lambda}{\gamma} \partial h^{*}\right)^{-1} \left(\mathbf{s} + \frac{\lambda}{\gamma} \mathbf{A} \bar{\mathbf{x}}\right)$$
$$\mathbf{x}^{+} = \mathbf{x} - \gamma \nabla f(\mathbf{x}) - \gamma \mathbf{A}^{\top} \mathbf{s}^{+}$$
$$\bar{\mathbf{x}}^{+} = 2\mathbf{x}^{+} - \mathbf{x} - \gamma \nabla f(\mathbf{x}^{+}) + \gamma \nabla f(\mathbf{x})$$

Chambolle-Pock:

$$\mathbf{s}^{+} = \left(\mathbf{I} + \frac{\lambda}{\gamma} \partial h^{*}\right)^{-1} \left(\mathbf{s} + \frac{\lambda}{\gamma} \mathbf{A} \bar{\mathbf{x}}\right)$$
$$\mathbf{x}^{+} = \left(\mathbf{I} + \gamma \partial g\right)^{-1} (\mathbf{x} - \gamma \mathbf{A}^{\top} \mathbf{s}^{+})$$
$$\bar{\mathbf{x}}^{+} = 2\mathbf{x}^{+} - \mathbf{x}$$

PAPC:

$$\mathbf{s}^{+} = \left(\mathbf{I} + \frac{\lambda}{\gamma} \partial h^{*}\right)^{-1} \left(\mathbf{s} + \frac{\lambda}{\gamma} \mathbf{A} \bar{\mathbf{x}}\right)$$
$$\mathbf{x}^{+} = \mathbf{x} - \gamma \nabla f(\mathbf{x}) - \gamma \mathbf{A}^{\top} \mathbf{s}^{+}$$
$$\bar{\mathbf{x}}^{+} = 2\mathbf{x}^{+} - \mathbf{x} - \gamma \nabla f(\mathbf{x}^{+}) + \gamma \nabla f(\mathbf{x})$$

PD30 (Yan '16):

$$\mathbf{s}^{+} = \left(\mathbf{I} + \frac{\lambda}{\gamma} \partial h^{*}\right)^{-1} \left(\mathbf{s} + \frac{\lambda}{\gamma} \mathbf{A} \bar{\mathbf{x}}\right)$$
$$\mathbf{x}^{+} = \left(\mathbf{I} + \gamma \partial g\right)^{-1} (\mathbf{x} - \gamma \nabla f(\mathbf{x}) - \gamma \mathbf{A}^{\top} \mathbf{s}^{+})$$
$$\bar{\mathbf{x}}^{+} = 2\mathbf{x}^{+} - \mathbf{x} - \gamma \nabla f(\mathbf{x}^{+}) + \gamma \nabla f(\mathbf{x})$$

Chambolle-Pock

Chambolle-Pock (x - s order):

$$\mathbf{s}^{+} = \left(\mathbf{I} + \frac{\lambda}{\gamma} \partial h^{*}\right)^{-1} \left(\mathbf{s} + \frac{\lambda}{\gamma} \mathbf{A} \bar{\mathbf{x}}\right)$$
$$\mathbf{x}^{+} = \left(\mathbf{I} + \gamma \partial g\right)^{-1} (\mathbf{x} - \gamma \mathbf{A}^{\top} \mathbf{s}^{+})$$
$$\bar{\mathbf{x}}^{+} = 2\mathbf{x}^{+} - \mathbf{x}$$

Chambolle-Pock

Chambolle-Pock (x - s order):

$$\mathbf{z} = \mathbf{x} - \gamma \mathbf{A}^{\top} \mathbf{s}$$

$$\mathbf{x}^{+} = (\mathbf{I} + \gamma \partial g)^{-1} (\mathbf{z})$$

$$\mathbf{s}^{+} = \left(\mathbf{I} + \frac{\lambda}{\gamma} \partial h^{*}\right)^{-1} \left((\mathbf{I} - \lambda \mathbf{A} \mathbf{A}^{\top}) \mathbf{s} + \frac{\lambda}{\gamma} \mathbf{A} (2\mathbf{x}^{+} - \mathbf{z}) \right)$$

$$\mathbf{z}^{+} = \mathbf{z} + 2\mathbf{x}^{+} - \mathbf{z} - \gamma \mathbf{A}^{\top} \mathbf{s}^{+} - \mathbf{x}^{+}$$

C-P and PAPC

PAPC:

$$\mathbf{s}^{+} = \left(\mathbf{I} + \frac{\lambda}{\gamma} \partial h^{*}\right)^{-1} \left(\mathbf{s} + \frac{\lambda}{\gamma} \mathbf{A} \bar{\mathbf{x}}\right)$$
$$\mathbf{x}^{+} = \mathbf{x} - \gamma \nabla f(\mathbf{x}) - \gamma \mathbf{A}^{\top} \mathbf{s}^{+}$$
$$\bar{\mathbf{x}}^{+} = 2\mathbf{x}^{+} - \mathbf{x} - \gamma \nabla f(\mathbf{x}^{+}) + \gamma \nabla f(\mathbf{x})$$

C-P and PAPC

PAPC:

$$\begin{split} \mathbf{x}^+ &= \mathbf{z} = \mathbf{x} - \gamma \nabla f(\mathbf{x}) - \gamma \mathbf{A}^\top \mathbf{s} \\ \mathbf{s}^+ &= \left(\mathbf{I} + \frac{\lambda}{\gamma} \partial h^* \right)^{-1} \left((\mathbf{I} - \lambda \mathbf{A} \mathbf{A}^\top) \mathbf{s} + \frac{\lambda}{\gamma} \mathbf{A} (2\mathbf{x}^+ - \mathbf{z} - \gamma \nabla f(\mathbf{x}^+)) \right) \\ \mathbf{z}^+ &= \mathbf{z} + 2\mathbf{x}^+ - \mathbf{z} - \gamma \nabla f(\mathbf{x}^+) - \gamma \mathbf{A}^\top \mathbf{s}^+ - \mathbf{x}^+ \end{split}$$

PD30

PD30:

$$\mathbf{s}^{+} = \left(\mathbf{I} + \frac{\lambda}{\gamma} \partial h^{*}\right)^{-1} \left(\mathbf{s} + \frac{\lambda}{\gamma} \mathbf{A} \bar{\mathbf{x}}\right)$$
$$\mathbf{x}^{+} = \left(\mathbf{I} + \gamma \partial g\right)^{-1} (\mathbf{x} - \gamma \nabla f(\mathbf{x}) - \gamma \mathbf{A}^{\top} \mathbf{s}^{+})$$
$$\bar{\mathbf{x}}^{+} = 2\mathbf{x}^{+} - \mathbf{x} - \gamma \nabla f(\mathbf{x}^{+}) + \gamma \nabla f(\mathbf{x})$$

PD30

PD30:

$$\mathbf{z} = \mathbf{x} - \gamma \nabla f(\mathbf{x}) - \gamma \mathbf{A}^{\top} \mathbf{s}$$

$$\mathbf{x}^{+} = (\mathbf{I} + \gamma \partial g)^{-1}(\mathbf{z})$$

$$\mathbf{s}^{+} = \left(\mathbf{I} + \frac{\lambda}{\gamma} \partial h^{*}\right)^{-1} \left((\mathbf{I} - \lambda \mathbf{A} \mathbf{A}^{\top}) \mathbf{s} + \frac{\lambda}{\gamma} \mathbf{A} (2\mathbf{x}^{+} - \mathbf{z} - \gamma \nabla f(\mathbf{x}^{+})) \right)$$

$$\mathbf{z}^{+} = \mathbf{z} + 2\mathbf{x}^{+} - \mathbf{z} - \gamma \nabla f(\mathbf{x}^{+}) - \gamma \mathbf{A}^{\top} \mathbf{s}^{+} - \mathbf{x}^{+}$$

PD30 vs Condat-Vu vs AFBA vs PDFP

Algorithms:

$$\mathbf{s}^{+} = \left(\mathbf{I} + \frac{\lambda}{\gamma} \partial h^{*}\right)^{-1} \left(\mathbf{s} + \frac{\lambda}{\gamma} \mathbf{A} \bar{\mathbf{x}}\right)$$
$$\mathbf{x}^{+} = \left(\mathbf{I} + \gamma \partial g\right)^{-1} (\mathbf{x} - \gamma \nabla f(\mathbf{x}) - \gamma \mathbf{A}^{\top} \mathbf{s}^{+})$$

PDFP	$\bar{\mathbf{x}}^+ = (\mathbf{I} + \gamma \partial g)^{-1} (\mathbf{x}^+ - \gamma \nabla f(\mathbf{x}^+) - \gamma \mathbf{A}^\top \mathbf{s}^+)$
Condat-Vu	$\bar{\mathbf{x}}^+ = 2\mathbf{x}^+ - \mathbf{x}$
PD3O	$\bar{\mathbf{x}}^+ = 2\mathbf{x}^+ - \mathbf{x} + \gamma \nabla f(\mathbf{x}) - \gamma \nabla f(\mathbf{x}^+)$

PD30 vs Condat-Vu vs AFBA vs PDFP

Algorithms:

$$\mathbf{s}^{+} = \left(\mathbf{I} + \frac{\lambda}{\gamma} \partial h^{*}\right)^{-1} \left(\mathbf{s} + \frac{\lambda}{\gamma} \mathbf{A} \bar{\mathbf{x}}\right)$$
$$\mathbf{x}^{+} = \left(\mathbf{I} + \gamma \partial g\right)^{-1} \left(\mathbf{x} - \gamma \nabla f(\mathbf{x}) - \gamma \mathbf{A}^{\top} \mathbf{s}^{+}\right)$$

PDFP	$\bar{\mathbf{x}}^+ = (\mathbf{I} + \gamma \partial g)^{-1} (\mathbf{x}^+ - \gamma \nabla f(\mathbf{x}^+) - \gamma \mathbf{A}^\top \mathbf{s}^+)$
Condat-Vu	$\bar{\mathbf{x}}^+ = 2\mathbf{x}^+ - \mathbf{x}$
PD3O	$\bar{\mathbf{x}}^+ = 2\mathbf{x}^+ - \mathbf{x} + \gamma \nabla f(\mathbf{x}) - \gamma \nabla f(\mathbf{x}^+)$

Parameters:

	$f \neq 0, \ g \neq 0$	f = 0	g = 0
PDFP	$\lambda \ \mathbf{A}\mathbf{A}^{\top}\ < 1; \gamma/(2\beta) < 1$		PAPC
Condat-Vu	$\lambda \ \mathbf{A}\mathbf{A}^{\top}\ + \gamma/(2\beta) \le 1$	C-P	
AFBA	$\lambda \ \mathbf{A}\mathbf{A}^{\top}\ /2 + \sqrt{\lambda \ \mathbf{A}\mathbf{A}^{\top}\ }/2 + \gamma/(2\beta) \le 1$		PAPC
PD3O	$\lambda \ \mathbf{A}\mathbf{A}^{\top}\ \le 1; \gamma/(2\beta) < 1$	C-P	PAPC

Let
$$\mathbf{z} = \mathbf{x} - \gamma \nabla f(\mathbf{x}) - \gamma \mathbf{A}^{\top} \mathbf{s}$$
 and $\mathbf{x}^{+} \to \mathbf{x}$:

$$\mathbf{x} = (\mathbf{I} + \gamma \partial g)^{-1} \mathbf{z}$$

$$\mathbf{s}^{+} = \left(\mathbf{I} + \frac{\lambda}{\gamma} \partial h^{*}\right)^{-1} \left((\mathbf{I} - \lambda \mathbf{A} \mathbf{A}^{\top}) \mathbf{s} + \frac{\lambda}{\gamma} \mathbf{A} \left(2\mathbf{x} - \mathbf{z} - \gamma \nabla f(\mathbf{x}) \right) \right)$$

$$\mathbf{z}^{+} = \mathbf{x} - \gamma \nabla f(\mathbf{x}) - \gamma \mathbf{A}^{\top} \mathbf{s}^{+}$$

Let
$$\mathbf{z} = \mathbf{x} - \gamma \nabla f(\mathbf{x}) - \gamma \mathbf{A}^{\top} \mathbf{s}$$
 and $\mathbf{x}^{+} \to \mathbf{x}$:

$$\mathbf{x} = (\mathbf{I} + \gamma \partial g)^{-1} \mathbf{z}$$

$$\mathbf{s}^{+} = \left(\mathbf{I} + \frac{\lambda}{\gamma} \partial h^{*}\right)^{-1} \left((\mathbf{I} - \lambda \mathbf{A} \mathbf{A}^{\top}) \mathbf{s} + \frac{\lambda}{\gamma} \mathbf{A} \left(2\mathbf{x} - \mathbf{z} - \gamma \nabla f(\mathbf{x}) \right) \right)$$

$$\mathbf{z}^{+} = \mathbf{x} - \gamma \nabla f(\mathbf{x}) - \gamma \mathbf{A}^{\top} \mathbf{s}^{+}$$

• $\|(\mathbf{z}^{k+1}, \mathbf{s}^{k+1}) - (\mathbf{z}^k, \mathbf{s}^k)\|_{\mathbf{M}}^2 = o\left(\frac{1}{k+1}\right)$, and $(\mathbf{z}^k, \mathbf{s}^k)$ weakly converges to a fixed point $(\mathbf{z}^*, \mathbf{s}^*)$

Let
$$\mathbf{z} = \mathbf{x} - \gamma \nabla f(\mathbf{x}) - \gamma \mathbf{A}^{\top} \mathbf{s}$$
 and $\mathbf{x}^{+} \to \mathbf{x}$:

$$\mathbf{x} = (\mathbf{I} + \gamma \partial g)^{-1} \mathbf{z}$$

$$\mathbf{s}^{+} = \left(\mathbf{I} + \frac{\lambda}{\gamma} \partial h^{*}\right)^{-1} \left((\mathbf{I} - \lambda \mathbf{A} \mathbf{A}^{\top}) \mathbf{s} + \frac{\lambda}{\gamma} \mathbf{A} \left(2\mathbf{x} - \mathbf{z} - \gamma \nabla f(\mathbf{x}) \right) \right)$$

$$\mathbf{z}^{+} = \mathbf{x} - \gamma \nabla f(\mathbf{x}) - \gamma \mathbf{A}^{\top} \mathbf{s}^{+}$$

- $\|(\mathbf{z}^{k+1}, \mathbf{s}^{k+1}) (\mathbf{z}^k, \mathbf{s}^k)\|_{\mathbf{M}}^2 = o\left(\frac{1}{k+1}\right)$, and $(\mathbf{z}^k, \mathbf{s}^k)$ weakly converges to a fixed point $(\mathbf{z}^*, \mathbf{s}^*)$
- Let $\mathcal{L}(\mathbf{x}, \mathbf{s}) = f(\mathbf{x}) + g(\mathbf{x}) + \langle \mathbf{A}\mathbf{x}, \mathbf{s} \rangle h^*(\mathbf{s})$, then

$$\mathcal{L}(\bar{\mathbf{x}}^k, \mathbf{s}) - \mathcal{L}(\mathbf{x}, \bar{\mathbf{s}}^{k+1}) \le \frac{\|(\mathbf{z}^1, \mathbf{s}^1) - (\mathbf{z}, \mathbf{s})\|^2}{k}$$

where $(\bar{\mathbf{x}}^k, \bar{\mathbf{s}}^{k+1}) = \frac{1}{k} \sum_{i=1}^k (\mathbf{x}^i, \mathbf{s}^{i+1})$, and $\mathbf{z} = \mathbf{x} - \gamma \nabla f(\mathbf{x}) - \gamma \mathbf{A}^{\top} \mathbf{s}$.

Let
$$\mathbf{z} = \mathbf{x} - \gamma \nabla f(\mathbf{x}) - \gamma \mathbf{A}^{\top} \mathbf{s}$$
 and $\mathbf{x}^{+} \to \mathbf{x}$:

$$\mathbf{x} = (\mathbf{I} + \gamma \partial g)^{-1} \mathbf{z}$$

$$\mathbf{s}^{+} = \left(\mathbf{I} + \frac{\lambda}{\gamma} \partial h^{*}\right)^{-1} \left((\mathbf{I} - \lambda \mathbf{A} \mathbf{A}^{\top}) \mathbf{s} + \frac{\lambda}{\gamma} \mathbf{A} \left(2\mathbf{x} - \mathbf{z} - \gamma \nabla f(\mathbf{x}) \right) \right)$$

$$\mathbf{z}^{+} = \mathbf{x} - \gamma \nabla f(\mathbf{x}) - \gamma \mathbf{A}^{\top} \mathbf{s}^{+}$$

- $\|(\mathbf{z}^{k+1}, \mathbf{s}^{k+1}) (\mathbf{z}^k, \mathbf{s}^k)\|_{\mathbf{M}}^2 = o\left(\frac{1}{k+1}\right)$, and $(\mathbf{z}^k, \mathbf{s}^k)$ weakly converges to a fixed point $(\mathbf{z}^*, \mathbf{s}^*)$
- Let $\mathcal{L}(\mathbf{x}, \mathbf{s}) = f(\mathbf{x}) + g(\mathbf{x}) + \langle \mathbf{A}\mathbf{x}, \mathbf{s} \rangle h^*(\mathbf{s})$, then

$$\mathcal{L}(\bar{\mathbf{x}}^k, \mathbf{s}) - \mathcal{L}(\mathbf{x}, \bar{\mathbf{s}}^{k+1}) \le \frac{\|(\mathbf{z}^1, \mathbf{s}^1) - (\mathbf{z}, \mathbf{s})\|^2}{k}$$

where $(\bar{\mathbf{x}}^k, \bar{\mathbf{s}}^{k+1}) = \frac{1}{k} \sum_{i=1}^k (\mathbf{x}^i, \mathbf{s}^{i+1})$, and $\mathbf{z} = \mathbf{x} - \gamma \nabla f(\mathbf{x}) - \gamma \mathbf{A}^{\top} \mathbf{s}$.

ullet Linear convergence with additional assumptions on f, g, and h

convergence analysis: the general case

• Let $\mathbf{M} = \frac{\gamma^2}{\lambda} (\mathbf{I} - \lambda \mathbf{A} \mathbf{A}^{\top})$ be positive definite. Define $\|\mathbf{s}\|_{\mathbf{M}} = \sqrt{\langle \mathbf{s}, \mathbf{s} \rangle_{\mathbf{M}}} = \sqrt{\langle \mathbf{s}, \mathbf{M} \mathbf{s} \rangle}$ and $\|(\mathbf{z}, \mathbf{s})\|_{\mathbf{M}} = \sqrt{\|\mathbf{z}\|^2 + \|\mathbf{s}\|^2_{\mathbf{M}}}$.

Lemma

The iteration T mapping (\mathbf{z},\mathbf{s}) to $(\mathbf{z}^+,\mathbf{s}^+)$ is a nonexpansive operator under the metric defined by \mathbf{M} if $\gamma \leq 2\beta$. Furthermore, it is α -averaged with $\alpha = \frac{2\beta}{4\beta - \gamma}$.

 Chambolle-Pock is firmly non-expansive under the new metric, which is different from the previous metric.

convergence analysis: the general case

Theorem

- 1) Let $(\mathbf{z}^*, \mathbf{s}^*)$ be any fixed point of \mathbf{T} . Then $(\|(\mathbf{z}^k, \mathbf{s}^k) (\mathbf{z}^*, \mathbf{s}^*)\|_{\mathbf{M}})_{k \geq 0}$ is monotonically nonincreasing.
- 2) The sequence $(\|\mathbf{T}(\mathbf{z}^k, \mathbf{s}^k) (\mathbf{z}^k, \mathbf{s}^k)\|_{\mathbf{M}})_{k \geq 0}$ is monotonically nonincreasing and converges to 0.
- 3) We have the following convergence rate

$$\|\mathbf{T}(\mathbf{z}^k, \mathbf{s}^k) - (\mathbf{z}^k, \mathbf{s}^k)\|_{\mathbf{M}}^2 = o\left(\frac{1}{k+1}\right)$$

4) $(\mathbf{z}^k, \mathbf{s}^k)$ weakly converges to a fixed point of \mathbf{T} , and if \mathcal{X} has finite dimension (e.g., \mathbf{R}^m), then it is strongly convergent.

convergence analysis: linear convergent

Denote:

$$\mathbf{u}_{h} = \frac{\gamma}{\lambda} (\mathbf{I} - \lambda \mathbf{A} \mathbf{A}^{\top}) \mathbf{s} + \mathbf{A} \tilde{\mathbf{z}} - \frac{\gamma}{\lambda} \mathbf{s}^{+} \in \partial h^{*}(\mathbf{s}^{+}),$$

$$\mathbf{u}_{g} = \frac{1}{\gamma} (\mathbf{z} - \mathbf{x}) \in \partial g(\mathbf{x}),$$

$$\mathbf{u}_{h}^{*} = \mathbf{A} (\tilde{\mathbf{z}}^{*} - \gamma \mathbf{A}^{\top} \mathbf{s}^{*}) = \mathbf{A} \mathbf{x}^{*} \in \partial h^{*}(\mathbf{s}^{*}),$$

$$\mathbf{u}_{g}^{*} = \frac{1}{\gamma} (\mathbf{z}^{*} - \mathbf{x}^{*}) \in \partial g(\mathbf{x}^{*}).$$

and

$$\|\nabla g(\mathbf{x}) - \nabla g(\mathbf{y})\| \le L_g \|\mathbf{x} - \mathbf{y}\|,$$

$$\langle \mathbf{s}^+ - \mathbf{s}^*, \mathbf{u}_h - \mathbf{u}_h^* \rangle \ge \tau_h \|\mathbf{s}^+ - \mathbf{s}^*\|_{\mathbf{M}}^2,$$

$$\langle \mathbf{x} - \mathbf{x}^*, \mathbf{u}_g - \mathbf{u}_g^* \rangle \ge \tau_g \|\mathbf{x} - \mathbf{x}^*\|^2,$$

$$\langle \mathbf{x} - \mathbf{x}^*, \nabla f(\mathbf{x}) - \nabla f(\mathbf{x}^*) \rangle \ge \tau_f \|\mathbf{x} - \mathbf{x}^*\|.$$

convergence analysis: linear convergent

Theorem

We have

$$\|\mathbf{z}^{+} - \mathbf{z}^{*}\|^{2} + (1 + 2\gamma\tau_{h}) \|\mathbf{s}^{+} - \mathbf{s}^{*}\|_{\mathbf{M}}^{2} \le \rho (\|\mathbf{z} - \mathbf{z}^{*}\|^{2} + (1 + 2\gamma\tau_{h}) \|\mathbf{s} - \mathbf{s}^{*}\|_{\mathbf{M}}^{2})$$

where

$$\rho = \max\left(\frac{1}{1+2\gamma\tau_h}, 1 - \frac{\left(\left(2\gamma - \frac{\gamma^2}{\beta}\right)\tau_f + 2\gamma\tau_g\right)}{1+\gamma L_g}\right). \tag{5}$$

When, in addition, $\gamma < 2\beta$, $\tau_h > 0$, and $\tau_f + \tau_g > 0$, we have that $\rho < 1$ and the algorithm converges linearly.

numerical experiment: fused lasso

minimize
$$\frac{1}{2} \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_{2}^{2} + \mu_{1} \|\mathbf{x}\|_{1} + \mu_{2} \sum_{i=1}^{p-1} |x_{i+1} - x_{i}|,$$

•
$$\mathbf{x} = (x_1, \dots, x_p) \in \mathbf{R}^p$$
, $\mathbf{A} \in \mathbf{R}^{n \times p}$, $\mathbf{b} \in \mathbf{R}^n$

Figure: The true sparse signal and the reconstructed results using PD3O, PDFP, and Condat-Vu. The right figure is a zoom-in of the signal in [3000, 5500].

numerical experiment: fused lasso

Figure: In the left figure, we fix $\lambda=1/8$ and let $\gamma=\beta,\ 1.5\beta,\ 1.9\beta.$ In the right figure, we fix $\gamma=1.9\beta$ and let $\lambda=1/80,\ 1/8,\ 1/4.$

applications: decentralized optimization

$$\underset{x}{\text{minimize}} \quad \sum_{i=1}^{n} f_i(x) + g_i(x)$$

- f_i and g_i is known at node i only.
- Nodes $1, \dots, n$ are connected in a undirected graph.
- f_i is differentiable with a Lipschitz continuous gradient.

applications: decentralized optimization

$$\underset{x}{\text{minimize}} \quad \sum_{i=1}^{n} f_i(x) + g_i(x)$$

- f_i and g_i is known at node i only.
- Nodes $1, \dots, n$ are connected in a undirected graph.
- f_i is differentiable with a Lipschitz continuous gradient.

Introduce a copy x_i at node i:

minimize
$$f(\mathbf{x}) + g(\mathbf{x}) := \sum_{i=1}^{n} f_i(x_i) + g_i(x_i)$$
 s.t. $\mathbf{W}\mathbf{x} = \mathbf{x}$

- $x_i \in \mathbb{R}^p$, $\mathbf{x} = [x_1 \ x_2 \ \cdots \ x_n]^\top \in \mathbb{R}^{n \times p}$.
- ullet W is a symmetric doubly stochastic mixing matrix.

applications: decentralized optimization

$$\underset{x}{\text{minimize}} \quad \sum_{i=1}^{n} f_i(x) + g_i(x)$$

- f_i and g_i is known at node i only.
- Nodes $1, \dots, n$ are connected in a undirected graph.
- f_i is differentiable with a Lipschitz continuous gradient.

Introduce a copy x_i at node i:

minimize
$$f(\mathbf{x}) + g(\mathbf{x}) := \sum_{i=1}^{n} f_i(x_i) + g_i(x_i)$$
 s.t. $\mathbf{W}\mathbf{x} = \mathbf{x}$

- $x_i \in \mathbb{R}^p$, $\mathbf{x} = [x_1 \ x_2 \ \cdots \ x_n]^\top \in \mathbb{R}^{n \times p}$.
- W is a symmetric doubly stochastic mixing matrix.

The sum of three functions:

minimize
$$f(\mathbf{x}) + g(\mathbf{x}) + \iota_0((\mathbf{I} - \mathbf{W})^{1/2}\mathbf{x})$$

comparing PG-EXTRA and NIDS (Li-Shi-Yan '17)

minimize
$$\frac{1}{2} \sum_{i=1}^{n} \|\mathbf{A}_{i} \mathbf{x}_{i} - \mathbf{b}_{i}\|^{2} + \mu_{1} \sum_{i=1}^{n} \|\mathbf{x}_{i}\|_{1} + \iota_{0}((\mathbf{I} - \mathbf{W})^{1/2} \mathbf{x})$$

comparing PG-EXTRA and NIDS (Li-Shi-Yan '17)

conclusion

- a new primal-dual algorithm for minimizing the sum of three functions.
- a new interpretation of Chambolle-Pock: Douglas-Rachford splitting on the KKT system under a new metric induced by a block diagonal matrix.
- PAPC is forward-backward splitting applied on the KKT system under the same metric; we proved the optimal bound for the parameters (dual stepsize).
- PD3O is a generalization of both Chambolle-Pock and PAPC, and it has the advantages of both Condat-Vu (a generalization of Chambolle-Pock), and AFBA and PDFP (two generalizations of PAPC).
- In decentralized consensus optimization, we derive a fast method whose stepsize does not depend on the network structure; we provide an optimal bound for the stepsize in PG-EXTRA (Shi et al. '15).

Thank You!

Paper 1 M. Yan, A new primal-dual method for minimizing the sum of three functions with a linear operator, Arxiv: arXiv:1611.09805

Code https://github.com/mingyan08/PD30

Paper 2 Z. Li, W. Shi and M. Yan, A decentralized proximal-gradient method with network independent step-sizes and separated convergence rates, arXiv:1704.07807

Code https://github.com/mingyan08/NIDS

Paper 3 Z. Li and M. Yan, A primal-dual algorithm with optimal stepsizes and its application in decentralized consensus optimization, arXiv:1711.06785