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1. Introduction

In this paper, we consider the nonlinear Klein–Gordon equation (NLKG){
utt − �u + m(x)u + f (x, u) = 0 in R+ × Ω,
u = 0 on ∂Ω if ∂Ω �= ∅,
u(0, x) = U1(x), ut(0, x) = U2(x),

(1.1)

where m is a real function representing the potential, f is the nonlinear interaction force and is assumed to satisfy f (x, u) =
g(x, |u|)u for some real function g, and Ω denotes Rn or a bounded domain or a compact manifold.

Due to the gauge invariance f (x, eiθ u) = eiθ f (x, u), we can look for the so-called standing wave solutions of (NLKG) of
the form u(t, x) = eiωtφ(x) with appropriate initial conditions in (1.1), where ω is a real number called frequency.

The search for the standing waves of (NLKG) equation (1.1) leads to the following nonlinear elliptic equation{−�φ + (
m(x) − ω2)φ + f (x, φ) = 0,

φ = 0 on ∂Ω if ∂Ω �= ∅.
(1.2)

It is easy to see that every solution φ of Eq. (1.2) is a critical point of energy functional

Jω(φ) = 1

2

∫ (|∇φ|2 + (
m(x) − ω2)|φ|2) +

∫
F
(
x, |φ|) (1.3)

and satisfies the functional identity

Kω(φ) ≡
∫ (|∇φ|2 + (

m(x) − ω2)|φ|2) +
∫

|φ| f
(
x, |φ|) = 0, (1.4)

where F (x, s) = ∫ s
0 f (x, τ )dτ for all x ∈ Ω and all s � 0.
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A natural attempt to find nontrivial solutions to (1.2) is to solve the minimization problem

d(ω) = inf
φ∈Mω

Jω(φ), (1.5)

where

Mω = {
φ ∈ H

∣∣ Kω(φ) = 0, φ �= 0
}
, (1.6)

and H is a suitable Hilbert space to be specified later.
In general, problem (1.5) may not have a solution and even when it has a solution the solution may not solve the

semilinear elliptic equation (1.2). Therefore, we need to introduce some conditions on the nonlinearity f (x, u) and the
potential m(x) that ensure the existence of minimizers of problem (1.5) which are also solutions to the elliptic equation (1.2).
Throughout this paper, we assume the following conditions:

(m) m(x) is a bounded real smooth function on Ω and the greatest lower bound λ1 of the spectrum of the operator −�+m
is positive;

( f1) f ∈ C1(Ω × R) and f ′
u(x, s) and f (x, s) → 0 uniformly as s → 0;

( f2) there exist constants 2 < l < 2n/(n − 2) and C such that | f ′
u(x, s)| � C sl−2 for large s > 0 and for all x ∈ Ω;

( f3) f ′
u(x, s) < 0 and sf ′

u(x, s) � θ f (x, s) for all x ∈ Ω and all s > 0, where θ > 1 is a constant.

Remark 1.1. From the assumptions ( f1)–( f3) the following statements are true:

(1) F (x, s) = ∫ s
0 f (x, τ )dτ < 0 for all x ∈ Ω and s > 0;

(2) sf (x, s) < 0 for all x ∈ Ω and s > 0;
(3) for any given x ∈ Ω , F (x, s) − 1

θ+1 sf (x, s) is a nondecreasing function of s on (0,∞);
(4) the simplest example of such functions f is f (x, u) = −|u|l−2u.

Indeed, under these conditions, we shall show in Section 2 that for every ω2 < λ1, d(ω) is achieved at some nontrivial φ

and all minimizers of (1.5) are also solutions to (1.2), which will be called the least energy solutions or ground states of
Eq. (1.2). However, uniqueness of the ground states is a much different and difficult problem that will not be discussed in
the present paper; see e.g. [3,4,10,12] and [13].

After establishing the existence and compactness of the ground state standing waves (in Theorem 2.5 and Corollary 2.6),
we study their stabilities. It should be pointed out that a strong stability (see e.g. [5,9,11,17,18,20,21]) cannot be expected in
the sense that ‖U1 − φω0‖H + ‖U2 − iω0φω0‖2 < δ implies that∥∥u(., t) − eiω0tφω0

∥∥
H + ∥∥ut(., t) − iω0eiω0tφω0

∥∥
2 < ε

for all t ∈ [0,∞). In fact, for ω close to ω0, we see that φω and φω0 will be close to each other. Furthermore, for eiωt =
−e−iω0t

∥∥eiωtφω − eiω0tφω0

∥∥
H = ‖φω + φω0‖H � 3

2
‖φω0‖H .

The best stability we can hope for of these solutions is the so-called orbital stability in this case. Let us first give a definition
of such a stability that will be used throughout this paper (see e.g. [1,2,8,9,14,15]).

Definition 1.1. Let S be a set in H × L2. We say that S is orbitally stable under the solution flow of (1.1) if for every given
ε > 0 there exists a δ = δ(ε) > 0 such that for any solution u(t) of (1.1)

inf
(φ1,φ2)∈S

(‖U1 − φ1‖H + ‖U2 − φ2‖2
)
� δ

implies

inf
(φ1,φ2)∈S

(∥∥u(t) − φ1
∥∥

H + ∥∥ut(t) − φ2
∥∥

2

)
� ε for all t � 0.

In this paper we are concerned with the orbital stability and instability of the set

Sω = {
(φ, iωφ) ∈ H × L2

∣∣ φ ∈ Gω

}
,

where Gω = {φ ∈ H | Jω(φ) = d(ω), φ ∈ Mω} is usually called the set of ground states with frequency ω. The set Sω is
usually called the ground state orbit with frequency ω.

The main results of this paper are the following two theorems.

Theorem 1.1. Suppose there exists a C1-curve ω �→ φω in Gω near ω = ω0 and suppose 0 < |ω0|2 < λ1. If d(ω) is strictly convex at
ω = ω0 , then Sω0 is orbitally stable.
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Remark 1.2. If Sω0 consists only of finitely many orbits, then each individual orbit Sω0 (φ) = {(eiθφ, iω0eiθ0φ) | θ ∈ [0,2π)}
generated by a φ ∈ Gω0 is orbitally stable.

Theorem 1.2. Let there exist a C2-curve ω �→ φω in Gω near ω = ω0 with 0 < |ω0|2 < λ1. If φω0 is an isolated point in Gω0 and
d′′(ω0) < 0, then Sω0 (φω0) is not orbitally stable under the regular solution flow of (1.1).

As applications of our main results, we obtain the existence of orbitally stable standing waves for some special (NLKG)
equations in Section 6. For example, we prove that under the conditions (m) and ( f1)–( f3) given above the (NLKG) equa-
tion (1.1) has orbitally stable standing waves for some frequency ω with 0 < ω2 < λ1 provided that λ1 > 0 (defined in
condition (m)) is also an eigenvalue; see Theorem 6.1.

Our second example deals with the special (NLKG) equation

utt − �u + u − |u|p−1u = 0 in Rn × R.

We prove that this equation always has orbitally stable ground state standing waves if 1 < p < 1 + 4/n (Theorem 6.2).
It should be pointed out that although our main results are similar to those in [15] and [16], our results apply to both

Ω = Rn and Ω = compact manifold or bounded domain, and our method allows nonlinearity f to depend on space variable
x as well as on u. In the case of bounded domains, the dilation arguments in [15] and [16] cannot be used here. In addition,
our results in this paper hold for all dimensions � 2, while those in [15] and [16] are restricted to dimensions � 3.

2. Existence of the least energy solutions

In this section, we shall prove the existence of a positive least energy solution to (1.2). First of all, we define Hilbert
spaces H and L2. Let

H =

⎧⎪⎨
⎪⎩

H1
r (Rn) if Ω = Rn,

H1
0(Ω) if Ω is a bounded domain,

H1(Ω) if Ω is a compact manifold,

L2 =
{

L2
r (Rn) if Ω = Rn,

L2(Ω) if Ω is a bounded domain or a compact manifold,

where subscript r indicates that the space consists of only radially symmetric functions. When Ω = Rn , we shall also assume
that m(x) = m(|x|) and f (x, u) = f (|x|, u).

Besides functionals Jω and Kω introduced above, we also consider the functional

Iω(φ) = Jω(φ) − 1

θ + 1
Kω(φ) = θ − 1

2(θ + 1)

∫ (|∇φ|2 + (
m(x) − ω2)|φ|2) +

∫ (
F
(
x, |φ|) − 1

θ + 1
|φ| f

(
x, |φ|)),

and set

M−
ω = {

φ ∈ H
∣∣ Kω(φ) � 0, φ �= 0

}
.

Next we establish several lemmas to lay foundation for existence of the ground states. The first lemma is about the
equivalence between H-norm and quadratic part of Iω .

Lemma 2.1. Let μ < λ1 , define

B(μ) = inf

{∫ (|∇v|2 + (
m(x) − μ

)|v|2) ∣∣∣ ‖v‖H = 1

}
,

then B(μ) is a positive decreasing function of μ.

Proof. B(μ) is a decreasing function since the integral is a decreasing function of μ.
We prove the positivity of B(μ) by contradiction. For μ < λ1, suppose that there exists a sequence {vk} such that

‖vk‖2
H =

∫ (|∇vk|2 + |vk|2
) = 1, (2.1)

(λ1 − μ)

∫
|vk|2 �

∫ (|∇vk|2 + (
m(x) − μ

)|vk|2
) → 0 (2.2)

as k → ∞. From (2.2), ‖vk‖2 → 0 as k → ∞. By boundedness of m and the second part of (2.2), we obtain∫
|∇vk|2 → 0 as k → ∞. (2.3)

Therefore, the combination of (2.3) and ‖vk‖2 → 0 yields a contradiction to (2.1). �
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From the hypotheses ( f1)–( f3), we have the following growth estimate.

Lemma 2.2. For any fixed φ ∈ H, φ � 0 and φ �= 0, let

G(s) = 1

s

∫
Ω

φ(x) f
(
x, sφ(x)

)
dx.

Then

G ′(s) � θ − 1

s
G(s), s > 0; G(s) � G(1)sθ−1, s � 1.

Proof. Note that by Remark 1.1 G(s) < 0 for s > 0 and

G ′(s) = 1

s2

∫
Ω

[
sφ2 f ′

u(x, sφ) − φ f (x, sφ)
]

dx � 1

s2

∫
(θ − 1)φ f (x, sφ) = θ − 1

s
G(s).

Therefore we have, using G(s) < 0 for s > 0,

G ′(s)

G(s)
� θ − 1

s
,

from which it follows that G(s) � G(1)sθ−1 for s � 1. �
It is useful later to relate the minimization problem (1.5) to an equivalent problem.

Proposition 2.3. For any ω2 < λ1 , Mω and M−
ω are nonempty, and

d(ω) = inf
φ∈M−

ω

Iω(φ).

Furthermore, Iω(φ) > d(ω) if Kω(φ) < 0.

Proof. First let us show that M−
ω is nonempty. Choose any φ ∈ H with φ �≡ 0 and consider

g(s) = Kω(sφ) = s2

2

∫ (|∇φ|2 + (
m − ω2)|φ|2)dx + s2G(s),

where G(s) is as defined in Lemma 2.2. Thus we see that g(s) < 0 for sufficiently large s > 1 and hence sφ ∈ M−
ω.

Next, to prove that Mω is nonempty, we choose v ∈ H such that Kω(v) < 0 and consider Kω(sv). Now for s = 1,
Kω(v) < 0; for s > 0 close to zero, Kω(sv) > 0 from the expression for K . Therefore there exists an α0 ∈ (0,1) such that
Kω(α0 v) = 0, i.e., α0 v ∈ Mω.

Finally, by Remark 1.1, Iω(sv) is an increasing function of s ∈ (0,∞), which yields

d(ω) � Iω(α0 v) < Iω(v).

Hence

d(ω) � inf
φ∈M−

ω

Iω(φ).

But by definition

d(ω) = inf
φ∈Mω

Jω(φ) = inf
φ∈Mω

Iω(φ) � inf
φ∈M−

ω

Iω(φ),

which concludes our proof. �
Lemma 2.4. For ω2 < λ1 , Mω is a C1-hypersurface in H, and both Mω and M−

ω are bounded away from zero.

Proof. Hypotheses (f1)–(f3) imply that Kω is a C1-functional in H, which in turn implies that Mω is C1 hypersurface.
For any small ε > 0, from (f1) and (f2) there exists a C(ε) > 0 such that

|φ| f
(
x, |φ|) � −ε|φ|2 − C(ε)|φ|l. (2.4)

Using (2.4), Lemma 2.1 and the Sobolev embedding theorem, we have that for ε < λ1 − ω2
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Kω(φ) � 1

2

∫ (|∇φ|2 + (
m − ω2 − ε

)|φ|2) − C(ε)

∫
|φ|l

� B(ω2 + ε)

2
‖φ‖2

H − C(ε)

∫
|φ|l

� C1‖φ‖2
H − C2‖φ‖l

H ,

which implies that Mω and M−
ω are bounded away from zero. �

Remark 2.1. For Ω = Rn , if the potential m and nonlinear interaction force f are independent of space variable x, then any
nontrivial solution v ∈ H to (1.2) also lies on another C1 hypersurface

M̃ω = {
φ ∈ H

∣∣ K̃ω(φ) = 0, φ �= 0
}
,

where

K̃ω(u) = n − 2

2

∫
|∇u|2 + n

∫ [
1

2

(
m − ω2)|u|2 + F (u)

]
.

Proof. To see this, we use the scaling property of functions in H1
r (Rn). Let u ∈ H1

r (Rn) be a solution of (1.2). Put uμ(x) =
u(x/μ), then

Jω(uμ) = 1

2

∫
|∇uμ|2 + 1

2

∫ (
m − ω2)|uμ|2 +

∫
F (uμ) = μn−2

2

∫
|∇u|2 + μn

2

∫ (
m − ω2)|u|2 + μn

∫
F (u).

Since u is a solution, d( Jω(uμ))/dμ = 0 at μ = 1. An easy computation shows that

d( Jω(uμ))

dμ

∣∣∣∣
μ=1

= n − 2

2

∫
|∇u|2 + n

∫ [
1

2

(
m − ω2)|u|2 + F (u)

]
.

Note that for n = 1 and n = 2, M̃ω is not bounded away from zero, and the minimization problem

min{ Jω | φ ∈ M̃ω}
has no solution. This is why the dimension must be restricted to n � 3 in [15] and [16] by using K̃ω instead of Kω . �

Now we are ready to present our existence theorem for ground states.

Theorem 2.5. Let ω2 ∈ (0, λ1). Then

(1) d(ω) is positive.
(2) Every minimizing sequence of problem (1.5) possesses a convergent subsequence. In particular, d(ω) is attained at some φω ∈ Mω .
(3) This minimizer φω can be chosen positive.
(4) Every minimizer of problem (1.5) is a solution of Eq. (1.2).

Proof. Let {φk} be any minimizing sequence in Mω for problem (1.5). Remark 1.1 and Lemma 2.1 imply that there exists a
constant C(ω, θ) > 0 such that for all φ ∈ Mω

C(ω, θ)‖φ‖2
H � θ − 1

2(θ + 1)

∫
|∇φ|2 + (

m − ω2)|φ|2 � Iω(φ) = Jω(φ), (2.5)

which implies that φk is bounded in H . Thus by the Sobolev embedding theorem (if Ω = Rn we need corresponding
embedding theorem developed in [19]), there exist a φ0 ∈ H and a subsequence, still denoted by {φk}, such that

φk ⇀ φ0 weakly in H,

φk → φ0 strongly in L p(Ω),

φk → φ0 a.e. on Ω,

where 2 < p < 2n/(n − 2) when Ω = Rn , and 1 < p < 2n/(n − 2) otherwise.
Next we want to get a stronger convergence of sequence {φk}. To that end, let 0 < σ = 1

2 (λ1 −ω2) and rewrite Kω(φ) as

Kω(φ) = S(φ) + P (φ)

with

S(φ) =
∫

|∇φ|2 +
∫ (

m − ω2 − σ
)|φ|2,
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and

P (φ) = σ

∫
|φ|2 +

∫
|φ| f

(
x, |φ|).

By Lemma 2.1,
√

S(φ) is an equivalent norm to ‖φ‖H . We see that φk ⇀ φ0 weakly under the new norm
√

S(φ). By weak
lower semicontinuity of the norm

√
S(·), we have

lim inf
k→∞

∫
|∇φk|2 +

∫ (
m − ω2 − σ

)|φk|2 �
∫

|∇φ0|2 +
∫ (

m − ω2 − σ
)|φ0|2. (2.6)

Without loss of generality, we may assume the existences of lim
∫ |φk|2 and lim P (φk). We choose 0 < ε < σ in (2.4) and

obtain that for some positive constants C1 and C2

σ |φ|2 + |φ| f
(
x, |φ|) � C1|φ|2 − C2|φ|l,

which implies that by Fatou’s lemma

lim
k→∞

[
P (φk) + C2

∫
|φk|l

]
� P (φ0) + C2

∫
|φ0|l.

Since φk → φ0 strongly in L p for 2 < p < 2n/(n − 2), we obtain

lim
k→∞

P (φk) � P (φ0). (2.7)

This combined with (2.6) and Remark 1.1 yields that

Iω(φ0) � lim inf
k→∞

Iω(φk) = d(ω), (2.8)

Kω(φ0) � lim inf
k→∞

Kω(φk) = 0. (2.9)

A strict inequality in (2.6) would imply strict inequalities in both (2.8) and (2.9), which in turn would imply φ0 �= 0 and by
Proposition 2.3 a strict inequality in (2.8) would give us a contradiction

d(ω) < Iω(φ0) < d(ω).

Therefore (2.6) must be an equality, which implies that φk → φ0 under the equivalent norm
√

S(φ). Hence φk → φ0 in H
and φ0 �= 0.

Lemma 2.4 and (2.5) show that φ0 �= 0 and d(ω) > 0. Let φω = |φ0| ∈ H . Then φw � 0, Kω(φω) = Kω(φ0) = 0 and
Jω(φω) = Jω(φ0) = d(ω).

Finally we show that φω is a positive solution of Eq. (1.2). It is known from the Lagrange multiplier that δ Jω(φω) =
λδKω(φω), or

−�φω + (
m(x) − ω2)φω + f (x, φω) = λ

[−2�φω + 2
(
m − ω2)φω + f (x, φω) + φω f ′

u

(
x, |φω|)].

Taking inner product with φω on both sides and using Kω(φω) = 0 lead to

0 = λ

∫ [
φ2

ω f ′
u(x, φω) − φω f (x, φω)

]
dx � λ(θ − 1)

∫
φω f (x, φω)dx,

which implies that λ = 0 since
∫

φω f (x, φω)dx < 0, i.e., φω is a solution of (1.2). The positivity of φω follows from the
strong maximum principle. �

From the proof of Theorem 2.5, we see that

Corollary 2.6. Every minimizing sequence of the minimization problem

inf
φ∈M−

ω

Iω(φ) (2.10)

has a subsequence converging to a φω ∈ Mω . In particular, φω is also a minimizer of (1.5).

3. Standing wave as a function of frequency

In this section, we prove that standing waves are smooth functions of frequency if some additional conditions are as-
sumed.

Lemma 3.1. d(ω) and ‖φω‖H are uniformly bounded for ω2 on compact subsets of (0, λ1).
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Proof. The uniform boundedness of d(ω) follows from the fact that given ω0 ∈ (0, λ1), there exists φ0 ∈ H such that
Kω0 (φ0) < 0 (see the proof of Proposition 2.3); hence there exists an ε > 0 such that

Kω(φ0) < 0 for ω ∈ (ω0 − ε,ω0 + ε),

from which and Proposition 2.3 it follows that

d(ω) � Iω(φ0) � C for ω ∈ (ω0 − ε,ω0 + ε).

By Remark 1.1 and Lemma 2.1, we have

d(ω) = Jω(φω) = Iω(φω) � θ − 1

2(θ + 1)

∫ [|∇φω|2 + (
m − ω2)|φω|2] � B(ω2)(θ − 1)

2(θ + 1)
‖φω‖2

H , (3.1)

which implies the uniform boundedness of ‖φω‖H . �
Lemma 3.2. d(ω) is a decreasing and continuous function of ω for ω ∈ (0,

√
λ1 ).

Proof. Let 0 < ω1 < ω2 <
√

λ1 and d(ω1) = Jω1 (φω1 ), then

Kω2 (φω1 ) = Kω1 (φω1 ) − 1

2

(
ω2

2 − ω2
1

)∫
|φω1 |2 < 0.

Therefore by Proposition 2.3 we have

d(ω2) � Iω2 (φω1 ) < Iω1 (φω1 ) = d(ω1).

This concludes the proof for monotonicity of d. To show the continuity of d(ω) at any ω0 ∈ (0,
√

λ1 ), we show d is left and
right continuous at ω0.

For the left continuity, let 0 < ω < ω0 and A(ω, s) ≡ 1
s2 Kω(sφω0). Then A(ω, s) is a smooth function of s ∈ (0,∞) and

ω. Moreover, we have A(ω0,1) = 0 and A′
s(ω0,1) < 0 from Lemma 2.2. Therefore, by implicit function theorem, there exist

a neighborhood of ω0 and a C1 function α = α(ω) in this neighborhood such that α(ω0) = 1 and A(ω,α(ω)) = 0. Hence
α(ω)φω0 ∈ Mω and we thus have

d(ω0) � d(ω) � Iω
(
α(ω)φω0

) = α2(ω)
θ − 1

2(θ + 1)

(
ω2

0 − ω2)∫
|φω0 |2 + Iω0

(
α(ω)φω0

)
.

Let ω → ω−
0 , then α(ω) → 1 and Iω0 (α(ω)φω0) → d(ω0). Hence d(ω) → d(ω0) as ω → ω−

0 , which concludes the proof of
left continuity.

To show that limω→ω+
0

d(ω) = d(ω0), it suffices to find a function α(ω) � 1 such that

Kω0

(
α(ω)φω

) = 0 and α(ω) → 1 as ω → ω+
0 . (3.2)

In fact, for such a α(ω), from the definition of d(ω),

d(ω0) = Jω0(φω0 ) � Jω0

(
α(ω)φω

) = Jω
(
α(ω)φω

) + α2(ω)

2

(
ω2 − ω2

0

)∫
φ2

ω

= d(ω) + [
Jω

(
α(ω)φω

) − Jω(φω)
] + α2(ω)

2

(
ω2 − ω2

0

) ∫
φ2

ω.

Note also that Jω(tφ) − Jω(φ) → 0 as t → 1+ uniformly for ω in a compact set and φ � 0 in a bounded set of H . Hence
d(ω) → d(ω0) as ω → ω+

0 if α(ω) → 1.
We now come back to find α(ω) satisfying (3.2). Choose an arbitrary ω2 ∈ [ω0,

√
λ1 ) and consider function

B(ω, s) = Kω0 (sφω)

s2
=

∫
|∇φω|2 + (

m − ω2
0

)
φ2

ω + G(ω, s),

where ω ∈ [ω0,ω2] and

G(ω, s) = 1

s

∫
φω f (x, sφω)dx

is the function studied in Lemma 2.2. It is easy to see that B(ω,1) = (ω2 − ω2
0)

∫
φ2

ω > 0 if ω > ω0. Lemma 2.2 tells us that
G(ω, s) is monotonically decreasing as a function of s and G(ω, s) � G(ω,1)sθ−1 → −∞ as s → ∞. Therefore there exists
a unique α(ω) � 1 such that(

α(ω)
)2

B
(
ω,α(ω)

) = Kω0

(
α(ω)φω

) = 0.
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Furthermore, note that

G(ω,1) =
∫

φω f (·, φω) = −
∫ [|∇φω|2 + (

m − ω2)φ2
ω

]
� −2d(ω) � −2d(ω2),

hence we have

0 = B
(
ω,α(ω)

) = B
(
ω,α(ω)

) − B(ω,1) + B(ω,1) � G(ω,1)
[(

α(ω)
)θ−1 − 1

] + B(ω,1)

� −2d(ω2)
[(

α(ω)
)θ−1 − 1

] + B(ω,1),

which implies that

1 �
(
α(ω)

)θ−1 � 1 + B(ω,1)

2d(ω2)
→ 1,

hence α(ω) → 1 as ω → ω+
0 , as desired. �

The following result gives the derivative of d(ω) in the case the curve ω �→ φω is smooth.

Proposition 3.3. Assume that ω �→ φω is a C1 curve in H. Then we have

d′(ω) = −ω

∫
|φω|2.

Proof. From

d(ω) = Jω(φω) = 1

2

∫ (|∇φω|2 + (
m − ω2)|φω|2) +

∫
F (x, φω),

we have

d′(ω) =
∫ (−�φω + (

m − ω2)φω + f (x, φω)
)∂φω

∂ω
− ω

∫
|φω|2. (3.3)

The first integral in (3.3) is zero since φω is a solution of Eq. (1.2). �
We now give a sufficient condition for the smooth dependence of ground states φω on ω. In addition to the previous

structural conditions, we also assume the following condition.

Assumption 3.4. For ω near ω0, assume that φω is the unique positive solution of problem (1.5). Also assume that zero is
not in the spectrum of the linearized operator L0 = −� + m − ω2

0 + f ′
u(·, φω0) at φω0 acting on L2 (real valued).

We now establish following two lemmas using the same procedures as in [16, Theorem 18].

Lemma 3.5. Suppose that Assumption 3.4 holds. Then ω �→ φω is continuous with values in H.

Proof. From Lemmas 3.1 and 3.2, d(ω) = Iω(φω) is continuous in ω and ‖φω‖H is a bounded function of ω. Let {ωk} be
a sequence tending to ω0. Then {φωk } is bounded in H . A subsequence may be chosen converging weakly in H to some v .
Note v � 0 since each φωk is positive and φωk → v a.e. on Ω . From 0 = Kω(φω) and lower semicontinuity of the norm we
have

Kω0 (v) � 0, Iω0(v) � lim inf
k→∞

Iωk (φωk ) = d(ω0).

By similar arguments in the proof of Theorem 2.5, we have Kω0 (v) = 0, Iω0 (v) = d(ω0) and φωk → v strongly in H . Then
by uniqueness, v = φω0 , which completes the proof. �
Lemma 3.6. Let f be C1 . Suppose that Assumption 3.4 holds. Then ω �→ φω is C1 in H near ω = ω0.

Proof. We write (1.2) as

−�φ + m(x)φ + τφ + f (x, φ) = 0,

where τ = −ω2. Let τ0 = −ω2
0 , φ0 = φω0 and let

L(τ , v) = v + (m − � + τ )−1 f (·, v), τ > −λ1, v ∈ H .
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Then L(τ , v) ∈ H since v ∈ H ⊂ L2n/(n−2) , f (·, v) ∈ L2n/(n+2) by (f1) and (f2), and therefore (τ +m−�)−1 f (·, v) ∈ H by ellip-
tic theory. In fact, L(τ , v) is a C1 operator from (−λ1,∞)× H into H . Note that L(τ0, φ0) = 0. Now the operator L0 = −�+
m−ω2

0 + f ′
u(·, φω0) is invertible by assumption. It follows that the compact operator (τ0 + m − �)− 1

2 f ′
u(·, φ0)(τ0 + m − �)− 1

2

on L2 does not have −1 in its spectrum. Hence

∂L
∂v

(τ0, φ0) = I + (τ0 + m − �)−1 f ′
u(·, φ0),

acting from H to H , is invertible. By implicit function theorem, the solutions of L(τ , v) = 0 in a neighborhood of (τ0, φ0)

form a C1 curve in (−λ1,∞) × H . Thus by uniqueness assumption, ω �→ φω is a C1 curve near ω = ω0. �
Remark 3.1. If f is a C2 function, under the same Assumption 3.4 one can also prove that the curve ω �→ φω is a C2 curve
in H near ω = ω0. This follows from a regularity argument of elliptic equations; see [16].

4. Stability of standing waves

We consider (NLKG)⎧⎨
⎩

utt − �u + m(x)u + f (x, u) = 0 in R+ × Ω,

u = 0 on ∂Ω if ∂Ω �= ∅,

u(0, x) = U1(x) ∈ H, ut(0, x) = U2(x) ∈ L2.

(4.1)

For Ω = Rn it is shown in [6,7] that strong solutions u ∈ C([0, T ), H), ut ∈ C([0, T ), L2) exist for nonlinear interaction f (x, u)

satisfying conditions ( f1)–( f3). For other cases of Ω , it is shown in [19] that weak solutions exist and for these solutions
energy inequality holds. In this section, we study stability for the weak solutions of (NLKG); the case for strong solutions is
relatively easier.

Let X = H × L2 and consider the modulated energy functional on X

Eω(v1, v2) = 1

2

∫
|v2|2 + Jω(v1).

Define

Rω = {
(v1, v2) ∈ H × L2

∣∣ Eω(v1, v2) < d(ω)
}
.

Next we introduce two invariant sets which play an important role in establishing stability

R1
ω = {

(v1, v2) ∈ Rω

∣∣ Kω(v1) > 0
} ∪ {

(0, v2) ∈ Rω

}
,

R2
ω = {

(v1, v2) ∈ Rω

∣∣ Kω(v1) < 0
}
.

It is easy to prove the following equivalent expressions

R1
ω = {

(v1, v2) ∈ Rω

∣∣ Iω(v1) < d(ω)
}
,

R2
ω = {

(v1, v2) ∈ Rω

∣∣ Iω(v1) > d(ω)
}
.

Proposition 4.1. R1
ω and R2

ω are invariant regions under the solution flow of the following modulated equation⎧⎨
⎩

vtt + 2iωvt − �v + (
m(x) − ω2)v + f (x, v) = 0 in R+ × Ω,

v = 0 on ∂Ω if ∂Ω �= ∅,

v(0, x) = V 1(x) ∈ H, vt(0, x) = V 2(x) ∈ L2.

(4.2)

Proof. Let (V 1, V 2) ∈ R1
ω and assume that there exists a τ such that (v(τ ), vt(τ )) /∈ R1

ω . Then v(τ ) �= 0 and Kω(v(τ )) � 0,
i.e., v(τ ) ∈ M−

ω . Let

s = inf
{

0 � t � τ
∣∣ (

v(t), vt(t)
)

/∈ R1
ω

}
, (4.3)

then Kω(u(t)) � 0 for all 0 � t < s. Let {sk} be the minimizing sequence for problem (4.3), then v(sk) ∈ M−
ω and, arguing

similarly as in the proof of Theorem 2.5, we have

Kω

(
v(s)

)
� lim inf

k→∞
Kω

(
v(sk)

)
� 0 and v(s) �= 0. (4.4)

On the other hand

Iω
(

v(s)
) = lim inf

t→s−
Iω

(
v(t)

)
� lim inf

t→s−

(
Iω

(
v(t)

) + 1

θ + 1
Kω

(
v(t)

))
� lim inf

t→s−
Eω

(
v(t), vt(t)

)
< d(ω),

which contradicts (4.4) from Proposition 2.3. Therefore R1
ω is invariant.
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To show the invariance of R2
ω , we just need to switch the roles of Iω and Kω . Let (V 1, V 2) ∈ R2

ω and assume that there
exists a τ such that (v(τ ), vt(τ )) /∈ R2

ω , i.e., Iω(u(τ )) � d(ω). Let

s = inf
{

0 � t � τ
∣∣ (

v(t), vt(t)
)

/∈ R2
ω

}
, (4.5)

then Iω(v(s)) � d(ω) and Iω(v(t)) > d(ω) for all 0 < t < s. On the other hand,

Kω

(
v(s)

) = lim inf
t→s−

(θ + 1)
(

Jω
(

v(t)
) − Iω

(
v(t)

))
� lim inf

t→s−
(θ + 1)

(
Eω

(
v(t), vt(t)

) − d(ω)
)

� (θ + 1)
(
Eω(V 1, V 2) − d(ω)

)
< 0,

which contradicts Iω(u(s)) � d(ω) from Proposition 2.3. �
Lemma 4.2. For all ω± near ω0 such that ω− < ω0 < ω+, one has

d
(
ω+)

< Iω± (φω0) < d
(
ω−)

.

Proof. Set a = θ−1
2(θ+1)

< 1
2 . It is obvious from the definition of Iω(u) that

Iω(φω0) = d(ω0) + a
(
ω2

0 − ω2)∫
|φω0 |2 ≡ h(ω) + d(ω). (4.6)

Since a > 0, by (4.6) and Lemma 3.2,

Iω+ (φω0 ) < d(ω0) < d
(
ω−); Iω− (φω0) > d(ω0) > d

(
ω+)

.

On the other hand, by definition of h(ω) in (4.6) we have

h(ω0) = 0, h′(ω0) = (2a − 1)d′(ω0) = (1 − 2a)ω0

∫
|φω0 |2 > 0,

hence h(ω+) > 0 > h(ω−), which implies

d
(
ω+)

< Iω+ (φω0); d
(
ω−)

> Iω− (φω0 ).

We complete the proof. �
The following result gives an important connection between stability of ground state solutions and convexity of d(ω).

Proposition 4.3. Assume that d(ω) is strictly convex near ω = ω0. Then there exists an M(ω0) � 0 such that for every M > M(ω0)

there exists a δ = δ(M) such that if u(t) is a weak solution of (NLKG) equation (4.1) with initial data satisfying

‖U1 − φω0‖H + ‖U2 − iω0φω0‖2 < δ

for some φω0 ∈ Gω0 , then

d(ω+) � Iω±
(
u(t)

)
� d(ω−) ∀t > 0, (4.7)

and

1

2

∫ ∣∣ut(t) − iω±u(t)
∣∣2 + J±

(
u(t)

)
< d(ω±) ∀t > 0, (4.8)

where ω± = ω0 ± 1/M.

Proof. Set v±(t) = e−iω±t u(t). Then v± satisfies the modulated equation⎧⎪⎨
⎪⎩

v±
tt + 2iω±v±

t − �v± + (
m(x) − ω2±

)
v± + f

(
x, v±) = 0 in R+ × Ω,

v± = 0 on ∂Ω if ∂Ω �= ∅,

v±(0, x) = U1(x) ≡ V 1, v±
t (0, x) = U2(x) − iω±U1 ≡ V 2.

(4.9)

Note that

Jω± (u) = Jω±
(

v±)
,

∫ ∣∣v±
t

∣∣2 =
∫ ∣∣ut(t) − iω±u(t)

∣∣2
.

The energy inequality of modulated equation (4.9) yields

1
∫ ∣∣v±

t (t)
∣∣2 + Jω±

(
u(t)

)
� Eω± (U1, U2 − iω±U1). (4.10)
2
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To show (4.7) and (4.8), by invariance of R1
ω± and R2

ω± under solution flow of modulated equation (4.9) (Proposition 4.1)
and by energy inequality (4.10), it suffices to prove that

d(ω+) < Iω± (U1) < d(ω−), (4.11)

and

Eω± (U1, U2 − iω±U1) < d(ω±). (4.12)

Note that Iω± (U1) = Iω± (φω0) + O (δ). Thus, by Lemma 4.2, δ can be chosen so that (4.11) holds.
Now we turn our attention to (4.12). It is easy to see that

Jω± (U1) = Jω± (φω0 ) + O (δ) = Jω0 (φω0) + ω2
0 − ω2±

2

∫
|φω0 |2 + O (δ), (4.13)

and

‖U2 − iω±U1‖2 � ‖U2 − iω0φω0‖2 + ‖ω0φω0 − ω±φω0‖2 + ‖ω±φω0 − ω±U1‖2 = |ω0 − ω±|‖φω0‖2 + O (δ). (4.14)

Therefore, if δ is chosen sufficiently small,

Eω± (U1, U2 − iω±U1) = 1

2
‖U2 − iω±U1‖2

2 + Jω± (U1) � d(ω0) + (ω± − ω0)d
′(ω0) + O (δ) < d(ω±)

since d(ω) is strictly convex near ω0. Thus (4.12) follows and the proof is completed. �
We are now ready to prove the stability theorem.

Theorem 4.4. If d(ω) is strictly convex near ω = ω0, then Sω0 is orbitally stable.

Proof. Suppose Sω0 is not orbitally stable. Then there exist {(U k
1, U k

2)}, {tk}, weak solutions {uk(t)} and ε0 > 0 such that

inf
φ∈Gω0

(∥∥U k
1 − φ

∥∥
H + ∥∥U k

2 − iω0φ
∥∥

2

) → 0, (4.15)

and

inf
φ∈Gω0

(∥∥uk(tk) − φ
∥∥

H + ∥∥uk
t (tk) − iω0φ

∥∥
2

)
� ε0. (4.16)

Since Gω0 is compact in H , without loss of generality, we may assume that(
U k

1, U k
2

) → (φ, iω0φ) for some φ ∈ Gω0 .

From Proposition 4.3, we may also assume that

d(ω0 + 1/k) � Iω±
(
uk(tk)

)
� d(ω0 − 1/k), (4.17)

and ∥∥uk
t (tk) − iω+uk(tk)

∥∥2
2 + Jω+

(
uk(tk)

)
< d(ω0 + 1/k), (4.18)

where ω± = ω0 ± 1/k. (4.17) and (2.5) imply that uk(tk) is bounded in H , therefore, by continuity of d(ω) and (4.17),

Iω0

(
uk(tk)

) → d(ω0). (4.19)

It follows from (4.18) that

lim inf
k→∞

Jω0

(
uk(tk)

) = d � d(ω0) for some d. (4.20)

Hence (4.20) and (4.19) yield

lim inf
k→∞

Kω0

(
uk(tk)

) = (θ + 1) lim inf
k→∞

(
Jω0

(
uk(tk)

) − Iω0

(
uk(tk)

))
� 0. (4.21)

Next we show that there is a subsequence of {uk(tk)}, still denoted by {uk(tk)} such that ‖uk(tk) − φω0‖H → 0 for some
φω0 ∈ Gω0 . If this is done, we see from (4.18) that

uk
t (tk) → iω0φω0 in L2,

which is a contradiction to (4.16), and thus we complete the proof. To simplify our notation, we let wk = uk(tk). Consider

g(s,k) = 1
2

Kω0 (swk) =
∫ (|∇wk|2 + (

m − ω2
0

)|wk|2
) + G(s,k),
s
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where

G(s,k) = 1

s

∫
wk f (x, swk)dx

is a function we studied in Lemma 2.2, thus G(s,k) � G(1,k)sθ−1 for all s � 1. Note that

G(1,k) = Kω0 (wk) −
∫ (|∇wk|2 + (

m − ω2
0

)|wk|2
)
� Kω0(wk) − M

for some positive M independent of k since ‖wk‖H � M from Iω+ (wk) � d(ω0) + 1
k . Let us choose sk such that

sθ−1
k = 1 + max

{
0,

Kω0 (wk)

M − Kω0(wk)

}
.

Then

s−2
k Kω0 (sk wk) = g(sk,k) = g(sk,k) − g(1,k) + g(1,k) � Kω0 (wk) + G(1,k)

(
sθ−1

k − 1
)
� 0,

and

lim
k→∞

sk = 1; Iω0 (sk wk) → d(ω0).

That is, {skuk(tk)} is a minimizing sequence of problem (2.10). Therefore, by Corollary 2.6, there exists a subsequence of
{skuk(tk)} such that skuk(tk) → φω0 as k → ∞ for a function φω0 ∈ Gω0 . Since sk → 1, we have uk(tk) → φω0 in H , as
desired. �
5. Instability of ground state orbits

In this section we give a condition which ensures the instability of the orbit Sω(φω) generated by a positive ground state
φω ∈ Gω found in Section 2. Although φω may not be unique, we shall assume in this section that the curve ω �→ φω is C2

in H near a given number ω0 ∈ (0,
√

λ1 ).
It will be helpful to write Eq. (1.1) as a Hamiltonian in a suitable Banach space. To this end, we first introduce some

notation.
Let X = {�u = (u1, u2) | u1 ∈ H, u2 ∈ L2} be the usual Banach space with norm ‖�u‖ = ‖u1‖H + ‖u2‖2. Denote by X∗ the

real dual space of X and 〈l, �u〉 the pairing between l ∈ X∗ and �u ∈ X . Let P : X → X∗ be defined by

〈P �u, �v〉 = Re
∫

(−u2 v̄1 + u1 v̄2) ∀�u, �v ∈ X . (5.1)

We now define some real valued functionals on X . For �u = (u1, u2) ∈ X , set

E(�u) = 1

2

∫ (|u2|2 + |∇u1|2 + m(x)|u1|2
) +

∫
F
(
x, |u1|

)
, (5.2)

Q(�u) = Im
∫

u2ū1. (5.3)

We also consider the corresponding functionals on H . For ω ∈ R, define

Eω(φ) = E( �φω), Q ω(φ) =Q( �φω), �φω = (φ, iωφ) ∈ X ∀φ ∈ H .

Recall

d(ω) = inf
Kω(φ)=0, φ �=0

Jω(φ) = Jω(φω), d′(ω) = −ω

∫
|φω|2 = −Q ω(φω).

It is easy to see that

Lemma 5.1. For all ω ∈ R and �u = (u1, u2) ∈ X, one has E(�u) � Jω(u1) + ωQ(�u).

Lemma 5.2. Q′(�u) = P (i�u) for all �u ∈ X . Furthermore, for regular solutions, Eq. (1.1) is equivalent to the Hamiltonian system⎧⎨
⎩ P

d�u
dt

= E ′(�u), t > 0,

�u(0) = �u0.

(5.4)

The main result of this section is the following
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Theorem 5.3. Assume that ω �→ φω is C2 near ω0 ∈ (0,
√

λ1 ), where φω is a positive ground state with frequency ω, and d′′(ω0) < 0,

then the orbit Sω0 (φω0 ) is not stable under the flow (5.4).

We shall prove this theorem by constructing a bounded C1-functional A defined on a neighborhood of Sω0 (φω0) such
that a sequence �uk

0 and a constant σ0 > 0 can be chosen so that

dist
(�uk

0; Sω0 (φω0 )
) → 0,

dA(�uk(t))

dt
� σ0 > 0 (5.5)

for all t as long as the solution �uk(t) to (5.4) with initial data �uk
0 exists and stays inside that neighborhood. Since we want

the orbital instability, we should require A(eiθ �u) =A(�u). If A′( �φω0) = P �y0 for some �y0 ∈ X , we have

0 = 〈P �y0, i �φω0 〉 = dA(eiθ �φω0)

dθ

∣∣∣∣
θ=0

. (5.6)

Note that A should be close to〈
P �y0, e−iθ(�u)�u〉

in a small neighborhood of Sω0 (φω0), where e−iαe−iθ(�u) = e−iθ(eiα �u) for any α ∈ [0,2π) and θ( �φω0 ) = 0. We can choose,
without loss of generality, that

A(�u) = 〈
P �y0, e−iθ(�u)�u〉

. (5.7)

The problem now is how to choose �y0, θ(�u) and �uk
0 such that (5.5) is satisfied. The choice of θ is relatively easy, and we

will carry out in Lemma 5.4.
Next an easy computation shows that

d

dt
A

(�u(t)
) = 〈

E ′(�u(t)
)
,−P−1A′(�u(t)

)〉
.

Let us define

B(�u) = 〈
E ′(�u),−P−1A′(�u)

〉
(5.8)

for all u ∈ X . We would like that the set

S+ = {�u ∣∣Q(�u) ≡ Q ( �φω0), E(�u) < E( �φω0 ), B(�u) > 0
}

is an invariant set under the flow of the equation. The conditions given in S+ about Q and E are easy to verify from the
conservation of charge and energy of the equation. To see that the condition on B can be preserved under the flow, we
need to choose �y0 carefully by using the condition on d(ω). We follow the idea in [8,16] to work out the choice of �y0
in Proposition 5.5. Note that the arguments in [8] and [16] using spatial dilations do not work in the case when domain
Ω is bounded. After we specify the choice of �y0 and prove the invariance of S+ , the proof of our main instability result
(Theorem 5.3) follows from the standard argument and will be carried out in Proposition 5.12.

We now construct a neighborhood of Sω0 (φω0 ) and a function θ(�u) on this set, which is motivated by [16, Lemma 9].
Let

N (�u) =
∫

(Im u1 − ω0 Re u2)φω0 ∀�u = (u1, u2) ∈ X .

Note that by definition N ( �φω0) = 0 and

N (i �φω0 ) = (
1 + ω2

0

) ∫
φ2

ω0
> 0, N

(
e−iθ �u) = (cos θ)N (�u) − (sin θ)N (i�u). (5.9)

Lemma 5.4. Let Lδ = {�u ∈ X |N (�u) = 0, ‖�u − �φω0‖ < δ}. If δ is small enough then

(i) (eiθ Lδ) ∩ Lδ = ∅ for θ ∈ (0,2π);

(ii) �Uδ = ⋃
θ∈[0,2π) eiθ Lδ is an open neighborhood of Sω0 (φω0) in X ; and

(iii) for any �u ∈ Uδ , there is a unique θ = θ(�u) ∈ [0,2π) such that e−iθ u ∈ Lδ .

Proof. (i) Let �v ∈ (eiθ Lδ)∩ Lδ for some θ ∈ (0,2π). Then �v and e−iθ �v both belong to Lδ. By (5.9), (sin θ)N (i�v) = 0. However,
if ‖�v − �φω0‖ < δ is small enough, then N (i�v) �= 0 since N (i �φω0) �= 0, thus sin θ = 0 and θ = π . This implies −�v ∈ Lδ, thus
δ > ‖−�v − �φω0‖X � 2‖ �φω0‖ − δ, which is impossible if δ > 0 is small enough. This proves (i).
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(ii) We only need to show that any point �u ∈ Lδ is an interior point of Uδ . From (i), there exists a δ1 > 0 such that
‖�v − �u‖X < δ1 implies that N (i�v) �= 0. For any such v , let

α = α(�v) = tan−1 N (�v)

N (i�v)
. (5.10)

Then by (5.9) N (e−iα �v) = 0. Hence e−α �v ∈ Lδ , i.e., �v ∈ �Uδ by definition.
(iii) It follows immediately from (i). �
The characterization of �y0 is given in the following lemma and the proof of which will be given at the end of this section

for the clarity of the argument.

Proposition 5.5. If d′′(ω0) < 0, then there exists a �y0 = (y1, y2) ∈ X such that

(i) 〈P �y0, i �φω0 〉 = 〈Q′( �φω0 ), �y0〉 = 0,

(ii) 〈[E ′′( �φω0 ) − ω0Q′′( �φω0)]�y0, �y0〉 � d′′(ω0) < 0,

(iii) 〈K ′
ω0

(φω0 ), y1〉 �= 0; here the pairing is in H∗ and H .

Using this vector �y0 ∈ X and the angle θ(�u) determined in (iii) of Lemma 5.4, we define A(�u) on �Uδ by formula (5.7).
Before we go to details of the proof of Theorem 5.3, we summarize some properties of A which are useful in our argument.

Proposition 5.6. A is a C1 functional on �Uδ and satisfies that

(i) A(eiθ �u) =A(�u) for all �u ∈ �Uδ,

(ii) A′( �φω0 ) = P �y0,

(iii) A′(�u) ∈ Range(P ) ⊂ X∗ for all �u ∈ �Uδ,

(iv) 〈Q′(�u), P−1A′(�u)〉 = 0 for all �u ∈ �Uδ.

Proof. (i)–(iii) are direct consequences of the definition of A. (iv) follows from differentiating (i) with respect to θ at
θ = 0. �

For any given �u ∈ �Uδ , we can solve the differential equation⎧⎨
⎩

d�S(λ)

dλ
= −P−1A′(�S(λ)

)
,

�S(0) = �u.

(5.11)

Since P−1A′ is Lipschitz continuous from �Uδ to X , a unique solution �S(λ) = �S(λ, �u) of (5.11) exists in |λ| < σ(�u) for all
�u ∈ �Uδ and it can be shown that σ(�u) � σ0 > 0 for all �u ∈ �Uγ if 0 < γ < δ.

Proposition 5.7. There exists a smooth deformation �S = (S1, S2): (−σ0, σ0) × �Uγ → �Uδ such that

(i) �S(0, �u) = �u,

(ii) ∂ �S
∂λ

(0, �u) = −P−1A′(�u),

(iii) Q(�S(λ, �u)) =Q(�u),

(iv) Kω0 (S1(λ(�u), �u)) = 0 for a curve λ = λ(�u), �u ∈ �Uγ .

Proof. That (iii) is true follows from (iv) of Proposition 5.6 by differentiating with respect to λ. We only need to prove (iv).
Using (ii) and −P−1A′( �φω0 ) = −�y0 = −(y1, y2), we have

∂ S1

∂λ
(0, �φω0 ) = −y1.

By (iii) of Proposition 5.5 we have

∂ Kω0 (S1(λ, �u))

∂λ

∣∣∣∣
λ=0,�u=�φω0

= −〈
K ′

ω0
(φω0 ), y1

〉 �= 0.

By the implicit function theorem, we know that for �u near �φω0 there is a solution λ = λ(�u) such that

Kω0

(
S1

(
λ(�u), �u)) = Kω0

(
S1(0, �φω0 )

) = Kω0 (φω0 ) = 0.
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This λ(�u) can be extended to �Uγ from the invariance of �Uγ under {eiθ }. �
We now compute the energy along the deformation flow �S(λ, �u). Let E(λ, �u) = E(�S(λ, �u)). Then by (ii) of Proposition 5.7

∂ E

∂λ
(0, �u) = 〈

E ′(�u),−P−1A′(�u)
〉 = B(�u), �u ∈ �Uγ . (5.12)

Lemma 5.8. For γ > 0 and σ0 > 0 small enough we have

E(λ, �u) < E(�u) + λB(�u), 0 < |λ| < σ0, �u ∈ �Uγ . (5.13)

Proof. A simple calculation of second derivatives ∂2
λ E(λ, �u) and ∂2

λQ(�S(λ, �u)) shows that at λ = 0 and �u = �φω0

∂2
λ E(0, �φω0 ) = 〈[

E ′′( �φω0 ) − ω0Q′′( �φω0 )
]�y0, �y0

〉
� d′′(ω0) < 0

from part (ii) of Proposition 5.5. Therefore, (5.12) and the Taylor expansion give

E(λ, �u) < E(�u) + λB(�u)

for �u near �φω0 and λ near 0. This proves (5.13) again from the invariance under eiθ . �
Proposition 5.9. Let λ = λ(�u) be the curve determined in (iv) of Proposition 5.6. For all �u ∈ �Uγ with E(�u) < E( �φω0 ) and Q(�u) =
Q( �φω0), we have λ(�u) �= 0 and

E( �φω0 ) < E(�u) + λ(�u)B(�u). (5.14)

Proof. By Lemma 5.1,

E(λ, �u) � Jω0

(
S1(λ, �u)

) + ω0Q
(�S(λ, �u)

) = Jω0

(
S1(λ, �u)

) + ω0Q( �φω0). (5.15)

By (iv) of Proposition 5.7 and definition of d(ω) we have Jω0 (S1(λ, �u)) � d(ω0), thus

E(λ, �u) � d(ω0) + ω0Q( �φω0 ) = E( �φω0 ).

We claim that λ(�u) �= 0. In fact, if λ(�u) = 0, we would have

E(λ, �u) = E(�u) < E( �φω0 ),

which is a contradiction to (5.15). The proof is done by combining (5.15) with the previous lemma. �
In what follows, let e0 = E( �φω0 ), q0 =Q( �φω0 ) and �Gω0 = Sω0 (φω0). Define

S± = {�u ∈ �Uγ \ �Gω0

∣∣ E(�u) < e0, Q(�u) = q0, ±B(�u) > 0
}
.

Lemma 5.10. The sets S± are invariant under the flow (5.4). In particular, if �u0 ∈ S±, then ±B(�u(t)) > 0 for all t > 0 such that
�u(s) ∈ �Uγ \ �Gω0 for 0 � s � t.

Proof. For strong solutions, E and Q are conserved, thus if �u(s) ∈ �Uγ \ �Gω0 for all 0 � s � t we have

0 < e0 − E
(�u(t)

)
< λ

(�u(t)
)
B

(�u(t)
)
,

hence B(�u(t)) �= 0. By continuity of the solution, curve B(�u(t)) has one sign and the same as that of B(�u0). Thus S± each
is invariant. �
Lemma 5.11. Let �u0 ∈ S+ and let

T0 = sup
{

t
∣∣ �u(s) ∈ �Uγ \ �Gω0 , 0 � s < t

}
� ∞

be the exit time. Then there is ε0 > 0 such that B(�u(t)) � ε0 for all t < T0.

Proof. We have

ε0 ≡ e0 − E(�u0) � e0 − E
(�u(t)

)
� λ

(�u(t)
)
B

(�u(t)
) ∀t ∈ [0, T0).

Thus λ(�u(t))B(�u(t)) � ε0 > 0. Since we can choose λ(�u) so that |λ(�u)| < σ0 � 1
2 , thus it follows that B(�u(t)) � 2ε0 for all

t < T0. �



996 B. Yan et al. / J. Math. Anal. Appl. 344 (2008) 981–998
Proposition 5.12. If �u0 ∈ S+, the solution to (5.4) with initial condition �u(0) = �u0 exits �Uγ \ �Gω0 in finite time T0 < ∞.

Proof. Apply Eq. (5.4) to −P−1A′(�u(t)) ∈ X and we obtain

d

dt
A

(�u(t)
) =

〈
P

d�u(t)

dt
,−P−1A′(�u(t)

)〉 = 〈
E ′(�u(t)

)
,−P−1A′(�u(t)

)〉 = B
(�u(t)

)
.

By Lemma 5.11 above, B(�u(t)) � ε0 as long as �u(t) ∈ �Uγ \ �Gω0 . So

A
(�u(t)

) −A(�u0) � ε0t.

Since �Uγ is bounded and A is bounded on �Uγ , the solution must exit from �Uγ \ �Gω0 in a finite time. �
To complete the proof of the instability theorem, Theorem 5.3, by Proposition 5.12, we have to show that S+ is nonempty

and contain points arbitrarily close to the orbit �Gω0 . This will follow from the proof of the only remaining result: Proposi-
tion 5.5.

Proof of Proposition 5.5. To construct �y0, we let

�ψ(ω) = (
ψ1(ω),ψ2(ω)

) = a(ω) �φω,

where a(ω) > 0 is chosen so that Q( �ψ(ω)) =Q( �φω0 ) = q0, i.e.,

ωa2(ω)

∫
|φω|2 = ω0

∫
|φω0 |2, i.e., a2(ω)d′(ω) = d′(ω0). (5.16)

From this we easily have

2a′(ω)d′(ω) = −a(ω)d′′(ω). (5.17)

With �ψ(ω) so defined, we set

�y0 = (y1, y2) = d

dω
�ψ(ω)

∣∣∣
ω=ω0

. (5.18)

Since E( �ψ(ω)) = Jω(a(ω)φω) − ωd′(ω0), we consider the function

g(ω) = Jω
(
a(ω)φω

) − d(ω) = E
( �ψ(ω)

) + ωd′(ω0) − d(ω). (5.19)

Then g(ω0) = 0, g′(ω0) = 0, and simple but long calculations by expanding the term Jω(a(ω)φω) in g(ω) show that

g′′(ω0) = (
a′(ω0)

)2
∫

φω0

(
φω0 f ′

u(x, φω0) − f (x, φω0)
)
.

Since by assumption ( f3)

s
(
sf ′

s(x, s) − f (x, s)
)
� (θ − 1)sf (x, s) < 0 ∀s > 0.

Therefore, by (5.17), g′′(ω0) < 0. Hence by (5.19), d
dωE( �ψ(ω))|ω=ω0 = 0 and

〈[
E ′′( �φω0) − ω0Q′′( �φω0 )

]�y0, �y0
〉 = d2

dω2
E
( �ψ(ω)

)∣∣∣
ω=ω0

< d′′(ω0) < 0. (5.20)

Thus, for ω close but not equal to ω0,

E
( �ψ(ω)

)
< E( �φω0 ) = e0. (5.21)

We now consider Kω0 (ψ1(ω)) = Kω0 (a(ω)φω). Further calculations show that

d

dω
Kω0

(
ψ1(ω)

)∣∣∣
ω=ω0

= −2d′(ω0) + a′(ω0)

∫
φω0

(
φω0 f ′

u(x, φω0) − f (x, φω0 )
)
.

The term on the right-hand side is not zero since by (5.17) a′(ω0) and d′(ω0) have the same nonzero sign. This implies that

〈
K ′

ω0
(φω0), y1

〉 = d

dω
Kω0

(
ψ1(ω)

)∣∣∣
ω=ω0

�= 0. (5.22)

Lastly, we need prove that the set S+ is nonempty and contain points arbitrarily close to �Gω0 . By (5.16) and (5.21) we
have only to prove B( �ψ(ω)) changes sign as ω passes ω0. Since by Proposition 5.9 and (5.16), (5.21),

λ
( �ψ(ω)

)
B

( �ψ(ω)
)
> 0
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for all ω �= ω0 but near ω0. Differentiating

Kω0

(
S1

(
λ
( �ψ(ω)

)
, �ψ(ω)

)) = 0

with respect to ω yields that

d

dω
λ
( �ψ(ω)

)∣∣∣
ω=ω0

= 1 �= 0.

So λ( �ψ(ω)) changes sign when ω passes ω0 since λ( �ψ(ω0)) = 0. This implies that B( �ψ(ω)) changes sign as ω
passes ω0. �
6. Applications

In this section, we consider several cases of nonlinearity f or domain Ω where we have orbitally stable standing waves.

Theorem 6.1. Suppose the lower bound λ1 of spectrum of operator −� + m is a positive eigenvalue. (This is certainly true if the
underlying domain Ω is a bounded domain in Rn or a compact manifold. It is also true if m(x) is a potential, and the operator −� + m
has discrete spectrum to the left of a continuous spectrum.) Then the (NLKG) equation (1.1) has orbitally stable standing waves for some
frequency ω with ω2 ∈ (0, λ1).

Proof. By Theorem 1.1, it suffices to show that there exists a ω0 such that d′′(ω0) > 0. Suppose not, then d′′(ω) � 0 for all
ω ∈ (0,

√
λ1 ), which implies that d′(ω) = −ω

∫ |φω|2 is decreasing for ω ∈ (0,
√

λ1 ). Hence for any 0 < ε <
√

λ1 there exists
a positive constant C = C(ε) such that

∫ |φω|2 � C for ω ∈ (ε,
√

λ1 ). By the definition of d(ω), we have

d(ω) = Iω(φω) � θ − 1

2(θ + 1)

∫ (|∇φω|2 + (
m − ω2)|φω|2) � A1(θ, C)

(
λ1 − ω2), (6.1)

where A1 = A1(θ, C) is a positive constant independent of ω ∈ (ε,
√

λ1 ). Next we estimate an upper bound for d(ω). Let
v(x) be the first eigenfunction of −� + m, and vδ(x) = δv(x). We define δ = δ(ω) so that

Kω(vδ) = δ2
∫ (|∇v|2 + (

m − ω2)|v|2) + δ

∫
v f (x, δv) = 0,

or (
λ1 − ω2) ∫

v2 = −1

δ

∫
v f (x, δv).

Then from Lemma 2.2 we have

δ = δ(ω) → 0 as ω2 → λ1. (6.2)

Using ( f3) and the alternative expression for d(ω) we get

d(ω) � Jω(δv) � δ2

2

∫ (|∇v|2 + (
m − ω2)|v|2) = λ1 − ω2

2
δ2

∫
|v|2 = A2(θ, v)δ2(λ1 − ω2),

where A2(θ, v) is a positive constant independent of ω. Combining (6.1) and (6.3) gives

0 <
A1

A2
� δ2,

a contradiction to (6.2), and the theorem is proved. �
The second application we consider is for the case Ω = Rn with n � 2. We investigate the stability of standing waves for

the special (NLKG)

utt − �u + u − |u|p−1u = 0 in Rn × R, (6.3)

which corresponds to m(x) ≡ 1 and f (x, u) = −|u|p−1u.

Theorem 6.2. Let 1 < p < n+2
n−2 . Then (NLKG) equation (6.3) always has orbitally unstable ground state standing waves, and it has

orbitally stable ground state standing waves if 1 < p < 1 + 4/n.

Proof. Since 1 < p < n+2
n−2 , the semilinear elliptic equation

−�v + v − v p = 0 (6.4)
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has a unique positive radial symmetric solution v = φ0 ∈ H on the whole space Rn [10]. For any real ω with 0 < |ω| < 1, let

φω(x) = (
1 − ω2) 1

p−1 φ0
(√

1 − ω2x
)
, x ∈ Rn.

Then φω is the unique positive radial symmetric solution of equation

−�φω + (
1 − ω2)φω − φ

p
ω = 0

on Rn. Thus we can use it to calculate the minimal energy d(ω) defined by (1.5) as follows

d(ω) = Jω(φω) = 1

2

∫ (|∇φω|2 + φ2
ω

) − 1

p + 1

∫
φ

p+1
ω

= (1 − ω2)
p+1
p−1

2

∫ (∣∣∇φ0
(√

1 − ω2x
)∣∣2 + φ2

0

(√
1 − ω2x

))
dx − (1 − ω2)

p+1
p−1

p + 1

∫
φ

p+1
0

(√
1 − ω2x

)
dx

= (
1 − ω2) p+1

p−1 − n
2

∫ ( |∇φ0(x)|2 + φ2
0(x)

2
− 1

1 + p

∣∣φ0(x)
∣∣p+1

)
dx

= (
1 − ω2) p+1

p−1 − n
2 d(0) = (

1 − ω2)αd(0),

where α = p+1
p−1 − n

2 . Taking the second derivative, we find

d′′(ω) = 2α
[−1 + (2α − 1)ω2](1 − ω2)α−2

d(0).

Note that d(0) = ( 1
2 − 1

p+1 )‖φ0‖2
H > 0, and α > 1 since 1 < p < n+2

n−2 . Therefore d′′(ω) < 0 if |ω| is small enough, which

shows that the orbit Sω(φω) is not orbitally stable. Now, if ω2 < 1, then

{
ω

∣∣ d′′(ω) > 0
} =

{
ω

∣∣∣ 0 <
1

2α − 1
< ω2 < 1

}
.

If 1 < p < 1 + 4/n, the set on right-hand side is nonempty, and hence we have orbitally stable ground state standing
waves. �
Remark 6.1. The same stability result for standing waves of (NLKG) equation (6.3) was obtained by Shatah in [14], but the
approach in [14] cannot handle the case n = 2 due to the usage of a different functional Kω which is not well defined when
n = 2.
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