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Introduction

This course is intended to give an introduction to some important variational methods for
certain problems in partial differential equations (PDE) and applications. It is suitable for
graduate students with some knowledge of partial differential equations.

A. Motivating Examples

Variational methods provide a solid basis for the existence theory of PDE and other applied
problems. They are the extension of methods of finding extreme values and crtical points
in Calculus. We use some examples to introduce the main content of the course.

Example 1 – Dirichlet’s Principle. The starting example of variational method for
PDE is the Dirichlet principle for Laplace’s equation:

∆u = 0, u|∂Ω = f,

where Ω is a given bounded domain in Rn and f is a given function on the boundary of Ω.
This principle states that any classical solution u of this problem minimizes the Dirichlet
integral:

I(u) =

∫
Ω
|∇u(x)|2 dx

among all smooth functions taking f on the boundary ∂Ω. Therefore, in order to solve the
problem, one tries to find a minimizer of the functional I among the mentioned class of
smooth functions. One of the most important methods for such a minimization problem is
the direct method of the calculus of variations, which originates from the Weierstrass
theorem. By such a method, we take a minimizing sequence {uj} in the given class; i.e.,

lim
j→∞

I(uj) = inf I(u);

the infimum here is taken over all u in the given class. If this infimum is finite, then we know
that each component of {∇uj} is a bounded sequence in L2(Ω). The weak convergence
theorem implies that there exist subsequence {∇ujk} and G = (g1, · · · , gn) ∈ L2(Ω) such
that

∇ujk ⇀ G weakly in L2(Ω) and hence
∫

Ω |G|
2 dx ≤ inf I(u).

1
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In fact, ∇ujk even converges to G strongly in L2(Ω); that is,

lim
k→∞

‖∇ujk −G‖L2(Ω) = 0.

(Proof: Let µ = inf I(u). Since
ujk+ujm

2 is in the class, one has
∫

Ω |∇(
ujk+ujm

2 )|2 dx ≥ µ.
This implies ∫

Ω
(|∇ujk |

2 + 2∇ujk · ∇ujm + |∇ujm |2) dx ≥ 4µ.

Setting k → ∞ and then m → ∞, we have 2µ + 2
∫

ΩG · Gdx ≥ 4µ; hence
∫

Ω |G|
2 dx ≥ µ

and so ‖G‖L2(Ω) = µ = limk→∞ ‖∇ujk‖L2(Ω). This proves the strong convergence. The main
step is use of the convexity of functional I(u) and the given class.)

However, the main question is whether G renders a function in the given class; that is,
does there exist a function u in the given class such that G = ∇u? Any such function u
would be a minimizer of I(u) in the given class. Since, in principle, G is only in L2(Ω),
it is not clear whether such a u should exist or not. For this problem, the smoothness of
uj or even the fact that ∇uj converges strongly in L2(Ω) to G would not help much. The
class in which we seek the minimizers (i.e., the admissible class) plays an important role
in guaranteeing the existence of a minimizer.

We need to have a larger admissible class where I(u) is defined and a minimizer u can
be found through G as explained above; namely, ∇u = G. As G is only in L2(Ω), this
leads us to the class of functions whose gradients (in certain sense) are in L2(Ω). This
motivates the study of Sobolev spaces such as H1(Ω) = W 1,2(Ω) or general Wm,p(Ω)
spaces. Minimizers in such a generalized function space are only weak solutions to the
Dirichlet problem for Laplace equation. Is it smooth and a classical solution of the Laplace
equation? This is the regularity problem, which will also be covered in this course.

Example 2 – Lax–Milgram Method. The second example is on the Hilbert space
method (energy method) for second-order linear elliptic equations in divergence form:

Lu = f in Ω, u = 0 on ∂Ω,

where f is a given function in L2(Ω) and Lu is a second-order linear elliptic operator:

Lu = −
n∑

i,j=1

(aij(x)uxi)xj +
n∑
i=1

bi(x)uxi + c(x)u,

with ellipticity condition: for a constant θ > 0

n∑
i,j=1

aij(x)ξiξj ≥ θ|ξ|2, ∀x ∈ Ω, ξ ∈ Rn.

A weak solution u is defined to be a function u ∈ H = H1
0 (Ω) for which

B(u, v) = (f, v)L2(Ω) ∀ v ∈ H,

where B is the bilinear form associated with L:

B(u, v) =

∫
Ω

 n∑
i,j=1

aijuxivxj +

n∑
i=1

biuxiv + cuv

 dx, u, v ∈ H.

Note that f can also be assumed in the dual space H∗ = H−1(Ω); in this case, (f, v)L2(Ω)

above is replaced by the pairing 〈f, v〉 between H∗ and H. Note also that B(u, v) satisfies
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the G̊arding’s estimates (energy estimates):

|B(u, v)| ≤ α‖u‖‖v‖, B(u, u) ≥ β‖u‖2 − γ‖u‖2L2(Ω),

where α > 0, β > 0 and γ ≥ 0 are constants (assuming aij , bi, c are L∞(Ω) functions). The
Lax-Milgram theorem says that if γ = 0 in the estimate for B(u, u) above then for each
f ∈ H−1(Ω) there exists a unique u ∈ H such that B(u, v) = 〈f, v〉 for all v ∈ H. If B is
symmetric then the Lax-Milgram theorem is simply the Riesz representation theorem.

Again, once we have the existence of weak solution in H1(Ω), we would like to know
whether it is more regular. This is the regularity problem to be studied for some special
cases.

Example 3 – Mountain Pass Method. Our next example is use of critical point
theory to find a nontrivial solution to the semilinear elliptic equations of the following
type:

∆u+ |u|p−1u = 0 in Ω, u = 0 on ∂Ω,

where 1 < p < n+2
n−2 (we will see why this special exponent is needed here later). If we define

a functional on H = H1
0 (Ω) by

I(u) =

∫
Ω

(
1

2
|∇u|2 − 1

p+ 1
|u|p+1

)
dx,

then any critical point of I on H will be a weak solution of the above problem. It can be
seen that I does not have finite infimum or supremum on H.

Although there is another method of solving this problem based on minimizing func-
tional I on a manifold of H (i.e., via minimization with constraints, to be discussed later
in the class), we use the mountain pass method to study the saddle-point critical points
of I, which is a major contribution in nonlinear functional analysis in 1970s.

Functional I can be proved to be C1 on H with derivative I ′ : H → H being a locally
Lipschitz function. A critical property of this functional is that it satisfies the so-called
Palais-Smale condition: every sequence {uj} in H with {I(uj)} bounded and I ′(uj)→ 0
in H is precompact in H. Furthermore, there exist positive constants r, a such that

I(u) ≥ a if ‖u‖ = r,

and there exists an element v ∈ H such that ‖v‖ > r and I(v) ≤ 0. Note that I(0) = 0.
Therefore, both inside and outside the mountain range ‖u‖ = r there are points where I
takes a smaller value than it takes on the mountain range. Let Γ be the set of all continuous
passes connecting the two lower points 0 and v. Let

c = inf
g∈Γ

max
u∈g

I(u).

Then the mountain pass theorem says that c is a critical value of I; that is, there exists
a critical point u ∈ H at level c; namely, I(u) = c, I ′(u) = 0. Note that c ≥ a and hence
u 6= 0.

Example 4 – Weak Lower Semicontinuity. Direct method also works for the mini-
mization problems of general integral functionals of the type

I(u) =

∫
Ω
F (x, u(x), Du(x)) dx,
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where u may be even a vector valued function. An important question in this regard
is whether and when the functional I is lower semi-continuous with respect to weak
convergence of W 1,p(Ω); that is,

I(u) ≤ lim inf
j→∞

I(uj) whenever uj ⇀ u in W 1,p(Ω).

This motivates the study of various notion of convexity conditions. In the scalar case,
the weak lower semicontinuity of I is equivalent to the convexity of function F (x, u, ξ)
on the variable ξ ∈ Rn. In the vectorial case (where, say, u : Ω → RN for some N ≥
2), the weak lower semicontinuity problem is a difficult problem and involves Morrey’s
notion of quasiconvexity, which will also be discussed in the course. But, a sufficient
condition for the semicontinuity will be given in terms of null-Lagrangians; this will be
the polyconvexity. The vectorial case is closely related to the problems in nonlinear
elasticity, harmonic maps, liquid crystals, and other physical problems.

B. Application to Some Physical Problems

Some problems in nonlinear elasticity, liquid crystals and ferromagnetics will be discussed
as they can be formulated and solved by variational methods.

Problem 1 – Nonlinear Elasticity. In continuum mechanics, a material occupying a
domain Ω ⊂ R3 is deformed by a map u to another domain in the same space. The material
at position x ∈ Ω is deformed to a point u(x) in the deformed domain u(Ω). The nonlinear
elasticity theory postulates that the total stored energy associated with the deformation u
is given by

I(u) =

∫
Ω
F (x, u(x), Du(x)) dx,

where Du(x) = (∂ui/∂xj) is the 3 × 3-matrix of deformation gradient and F is the stored
energy density function. here, adjA and detA denote the cofactor matrix and the deter-
minant of matrix A. For elasticity problems, the constraint detDu(x) > 0 for a.e. x ∈ Ω
is always assumed; this renders an additional difficulty for the variational problems. Also,
material property and frame-indifference often prevent the function F (x, u,A) from being
convex in A. Nevertheless, the density function sometime can be written as (or is often
assumed to be)

F (x, u,A) = W (x, u,A, adjA, detA),

where adjA and detA denote the cofactor matrix and the determinant of matrix A, and
W (x, u,A,B, t) is a convex function of (A,B, t). Exactly, this means F is polyconvex. For
incompressible materials, the constraint detDu(x) = 1 is assumed. The relationship be-
tween weak convergence and determinant involves the compensated compactness, and
we will discuss this using the null-Lagrangians under a higher regularity assumption.

Problem 2 – Liquid Crystals. A liquid crystal is described by the orientation of the line-
like (nematic) molecules. Such an orientation can be modeled by a unit vector n(x) ∈ S2

at each material point x ∈ Ω, the domain occupied by the liquid crystal. The total energy,
based on the Oseen-Frank model, is given by

I(n) =

∫
Ω
WOF (n, Dn) dx =

1

2

∫
Ω

(κ1(div n)2 + κ2(n · curl n)2 + κ3(n× curl n)2) dx

+
1

2

∫
Ω
κ4(tr((Dn)2)− (div n)2) dx,
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where κ1-term is the Frank splay energy, κ2-term twist energy, κ3-term bend energy; the
κ4-term is a null-Lagrangian, depending only on the boundary data of n. If first three
κi > 0, then it can be shown that the first part of WOF (n, A) is convex in A. If all ki are equal
to a positive constant κ, then I(n) reduces to the Dirichlet integral for harmonic maps:
I(n) = 1

2

∫
Ω κ|Dn|2 dx. Note that the constraint |n(x)| = 1 is lower-order in H1(Ω;S2) and

thus presents no problem when using the direct method, but this nonconvex condition is
the main obstacle for uniqueness and regularity.

Problem 3 – Micromagnetics. In the Landau-Lifshitz theory of micromagnetics, one
seeks the magnetization m : Ω ⊂ RN → RN of a body occupying the region Ω that
minimizes the total energy

I(m) =
α

2

∫
Ω
|∇m(x)|2 dx+

∫
Ω
ϕ(m(x)) dx−

∫
Ω
H ·m(x) dx+

1

2

∫
RN
|F (z)|2 dz

among all admissible magnetizations m satisfying

m ∈ L∞(Ω), |m(x)| = 1 a.e. x ∈ Ω,

where F ∈ L2(RN ;RN ) is the unique field determined by the simplified Maxwell’s equations:

curlF = 0, div(−F + mχΩ) = 0 in RN .

Here, α > 0 is a material constant which represents the so-called exchange energy, ϕ
is density of the so-called anisotropy energy and is minimized along certain preferred
crystallographic directions (easy axises), H is a given applied field accounting for the so-
called external interaction energy, and finally F is the magnetic field induced by m
on whole RN via Maxwell’s equations above, representing the so-called magnetostatic
energy.

If α > 0, except the last non-local energy term, the energy I(m) is much similar to the
harmonic map problem. In this case, the natural space for m is H1(Ω;SN−1) and hence
existence of minimizer is relatively easy because I(m) is weakly lower semi-continuous on
H1(Ω;SN−1).

For large domains, the exchange energy is usually dropped from the total energy I(m).
In this case, with α = 0, none of the terms in I(m) is more dominating than others, and the
nonconvex constraint |m(x)| = 1 also becomes more troublesome; the energy I(m) may not
have a minimizer at all. We study a case that a minimizer does not exist, but minimizing
sequences can have special structures. We avoid using the notion of Young measures, but
refer to Young’s monograph [27] and Tartar [24] for an introduction to this important
and useful notion.

C. Plan of Lectures

This lecture note will be made available to all students in the class, which contains more
detailed materials and some useful references. However, the lectures will only emphasize on
some selective topics with more details and additional references; other materials may not
be covered in lecture, but they are important part of the course. Students can truly learn
the materials by reading the whole lecture note and working on some examples.

The following is a detailed list of materials contained in the lecture notes. The core
materials are Chapters 3–5.
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1. Preliminaries.

• Banach spaces

• Bounded linear operators

• Weak convergence and compact operators

• Spectral theory for linear compact operators

• Some useful results in nonlinear functional analysis

2. Sobolev Spaces.

• Weak derivatives and Sobolev spaces

• Approximations and extensions

• Sobolev imbedding theorems

• Additional properties

3. Second-Order Linear Elliptic PDEs in Divergence Form.

• Second-order PDEs and systems in divergence form

• Lax-Milgram theorem

• G̊arding’s inequality and existence theorem

• Regularity of weak solutions

• Symmetric elliptic operators and eigenvalue problems

4. Variational Methods for Nonlinear PDEs.

• Variational problems in PDEs

• Multiple integrals in the calculus of variations

• Direct method for minimization

• Minimization with constraints

• Mountain pass theorem

• Nonexistence and radial symmetry

5. Weak Lower Semicontinuity on Sobolev Spaces.

• The convex case

• Morrey’s quasiconvexity

• Properties of quasiconvex functions

• Polyconvex functions and null-Lagrangians

• Existence in nonlinear elasticity

• Relaxation and existence for nonconvex problems



Chapter 1

Preliminaries

1.1. Banach Spaces

A (real) vector space is a set X, whose elements are called vectors, and in which two
operations, addition and scalar multiplication, are defined as follows:

(a) To every pair of vectors x and y corresponds a vector x+ y in such a way that

x+ y = y + x and x+ (y + z) = (x+ y) + z.

X contains a unique vector 0 (the zero vector or origin of X) such that x+0 = x
for every x ∈ X, and to each x ∈ X corresponds a unique vector −x such that
x+ (−x) = 0.

(b) To every pair (α, x), with α ∈ R and x ∈ X, corresponds a vector αx in such a
way that

1x = x, α(βx) = (αβ)x

and such that the two distributive laws

α(x+ y) = αx+ αy, (α+ β)x = αx+ βx

hold.

A nonempty subset M of a vector space X is called a subspace of X if αx+ βy ∈ M
for all x, y ∈ M and all α, β ∈ R. A subset M of a vector space X is said to be convex if
tx+ (1− t)y ∈M whenever t ∈ (0, 1), x, y ∈M . (Clearly, every subspace of X is convex.)

Let x1, . . . , xn be elements of a vector space X. The set of all α1x1 + · · ·+ αnxn, with
αi ∈ R, is called the span of x1, . . . , xn and is denoted by span{x1, . . . , xn}. The elements
x1, . . . , xn are said to be linearly independent if α1x1+· · ·+αnxn = 0 implies that αi = 0
for each i; otherwise, they are said to be linearly dependent. An arbitrary collection of
vectors is said to be linearly independent if every finite subset of distinct elements is linearly
independent.

The dimension of a vector space X, denoted by dimX, is either 0, a positive integer
or ∞. If X = {0} then dimX = 0; if there exist linearly independent {u1, . . . , un} such
that each x ∈ X has a (unique) representation of the form

x = α1u1 + · · ·+ αnun with αi ∈ R

7
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then dimX = n and {u1, . . . , un} is a basis for X; in all other cases dimX =∞.

A (real) vector space X is said to be a normed space if to every x ∈ X there is
associated a nonnegative real number ‖x‖, called the norm of x, in such a way that

(a) ‖x+ y‖ ≤ ‖x‖+ ‖y‖ for all x and y in X (Triangle inequality)

(b) ‖αx‖ = |α|‖x‖ for all x ∈ X and all α ∈ R
(c) ‖x‖ > 0 if x 6= 0.

Note that (b) and (c) imply that ‖x‖ = 0 iff x = 0. Moreover, it easily follows from (a) that

|‖x‖ − ‖y‖| ≤ ‖x− y‖ for all x, y ∈ X.

A sequence {xn} in a normed space X is called a Cauchy sequence if, for each ε > 0,
there exists an integer N such that ‖xm−xn‖ < ε for all m,n ≥ N . We say xn → x in X if
limn→∞ ‖xn − x‖ = 0 and, in this case, x is called the limit of {xn}. X is called complete
if every Cauchy sequence in X converges to a limit in X.

A complete (real) normed space is called a (real) Banach space. A Banach space
is separable if it contains a countable dense set. It can be shown that a subspace of a
separable Banach space is itself separable.

Example 1.1. Let Ω be an open subset of Rn, n ≥ 1. The set C(Ω) of (real-valued)
continuous functions defined on Ω is an infinite dimensional vector space with the usual
definitions of addition and scalar multiplication:

(f + g)(x) = f(x) + g(x) for f, g ∈ C(Ω), x ∈ Ω

(αf)(x) = αf(x) for α ∈ R, f ∈ C(Ω), x ∈ Ω.

C(Ω̄) consists of those functions which are uniformly continuous on Ω. Each such function
has a continuous extension to Ω̄. C0(Ω) consists of those functions which are continuous
in Ω and have compact support in Ω. (The support of a function f defined on Ω is the
closure of the set {x ∈ Ω : f(x) 6= 0} and is denoted by supp(f).) The latter two spaces are
clearly subspaces of C(Ω).

For each n-tuple α = (α1, . . . , αn) of nonnegative integers, we denote by Dα the partial
derivative

Dα1
1 · · ·D

αn
n , Di = ∂/∂xi

of order |α| = α1 + · · ·+ αn. If |α| = 0, then D0 = I(identity).

For integers m ≥ 0, let Cm(Ω) be the collection of all f ∈ C(Ω) such that Dαf ∈ C(Ω)
for all α with |α| ≤ m. We write f ∈ C∞(Ω) iff f ∈ Cm(Ω) for all m ≥ 0. For
m ≥ 0, define Cm0 (Ω) = C0(Ω) ∩ Cm(Ω) and let C∞0 (Ω) = C0(Ω) ∩ C∞(Ω). The spaces
Cm(Ω), C∞(Ω), Cm0 (Ω), C∞0 (Ω) are all subspaces of the vector space C(Ω). Similar defini-
tions can be given for Cm(Ω̄) etc.

For m ≥ 0, define X to be the set of all f ∈ Cm(Ω) for which

‖f‖m,∞ ≡
∑
|α|≤m

sup
Ω
|Dαf(x)| <∞.

Then X is a Banach space with norm ‖ · ‖m,∞. To prove, for example, the completeness
when m = 0, we let {fn} be a Cauchy sequence in X, i.e., assume for any ε > 0 there is a
number N(ε) such that for all x ∈ Ω

sup
x∈Ω
|fn(x)− fm(x)| < ε if m,n > N(ε).
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But this means that {fn(x)} is a uniformly Cauchy sequence of bounded continuous func-
tions, and thus converges uniformly to a bounded continuous function f(x). Letting m→∞
in the above inequality shows that ‖fn − f‖m,∞ → 0.

Note that the same proof is valid for the set of bounded continuous scalar-valued func-
tions defined on a nonempty subset of a normed space X.

Example 1.2. Let Ω be a nonempty Lebesgue measurable set in Rn. For p ∈ [1,∞), we
denote by Lp(Ω) the set of equivalence classes of Lebesgue measurable functions on Ω for
which

‖f‖p ≡
(∫

Ω
|f(x)|pdx

) 1
p

<∞.

(Two functions belong to the same equivalence class, i.e., are equivalent, if they differ
only on a set of measure 0.) Let L∞(Ω) denote the set of equivalence classes of Lebesgue
measurable functions on Ω for which

‖f‖∞ ≡ ess-supx∈Ω|f(x)| <∞.
Then Lp(Ω), 1 ≤ p ≤ ∞, are Banach spaces with norms ‖ · ‖p. For p ∈ [1,∞] we write
f ∈ Lploc(Ω) iff f ∈ Lp(K) for each compact set K ⊂ Ω.

For the sake of convenience, we will also consider Lp(Ω) as a set of functions. With this
convention in mind, we can assert that C0(Ω) ⊂ Lp(Ω). In fact, if p ∈ [1,∞), then as we shall
show later, C0(Ω) is dense in Lp(Ω). The space Lp(Ω) is also separable if p ∈ [1,∞). This
follows easily, when Ω is compact, from the last remark and the Weierstrass approximation
theorem.

Example 1.3. (Hölder’s inequality) We recall that if p, q, r ∈ [1,∞] with p−1+q−1 = r−1,
then Hölder’s inequality implies that if f ∈ Lp(Ω) and g ∈ Lq(Ω), then fg ∈ Lr(Ω) and

‖fg‖r ≤ ‖f‖p‖g‖q.
By induction, we also have the following generalized Hölder’s inequality:

(1.1) ‖f1f2 · · · fk‖r ≤ ‖f1‖p1‖f2‖p2 · · · ‖fk‖pk
for fi ∈ Lpi(Ω), i = 1, 2, · · · , k, with pi, r ∈ [1,∞] satisfying p−1

1 + p−1
2 + · · ·+ p−1

k = r−1.

Example 1.4. The Cartesian product X × Y , of two vector spaces X and Y , is itself a
vector space under the following operations of addition and scalar multiplication:

[x1, y1] + [x2, y2] = [x1 + x2, y1 + y2]

α[x, y] = [αx, αy].

If in addition, X and Y are normed spaces with norms ‖ ·‖X , ‖ ·‖Y respectively, then X×Y
becomes a normed space under the norm

‖[x, y]‖ = ‖x‖X + ‖y‖Y .
Moreover, under this norm, X × Y becomes a Banach space provided X and Y are Banach
spaces.

Let H be a real vector space. H is said to be an inner product space if to every pair
of vectors x and y in H there corresponds a real-valued function (x, y), called the inner
product of x and y, such that

(a) (x, y) = (y, x) for all x, y ∈ H
(b) (x+ y, z) = (x, z) + (y, z) for all x, y, z ∈ H
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(c) (λx, y) = λ(x, y) for all x, y ∈ H, λ ∈ R
(d) (x, x) ≥ 0 for all x ∈ H, and (x, x) = 0 if and only if x = 0.

For x ∈ H we set

(1.2) ‖x‖ = (x, x)1/2.

Theorem 1.5. If H is an inner product space, then for all x and y in H, it follows that

(a) |(x, y)| ≤ ‖x‖ ‖y‖ (Cauchy-Schwarz inequality);

(b) ‖x+ y‖ ≤ ‖x‖+ ‖y‖ (Triangle inequality);

(c) ‖x+ y‖2 + ‖x− y‖2 = 2(‖x‖2 + ‖y‖2) (Parallelogram law).

Proof. (a) is obvious if x = 0, and otherwise it follows by taking δ = −(x, y)/‖x‖2 in

0 ≤ ‖δx+ y‖2 = |δ|2‖x‖2 + 2δ(x, y) + ‖y‖2.

This identity, with δ = 1, and (a) imply (b). (c) follows easily by using (1.2). �

Furthermore, by (d), equation (1.2) defines a norm on an inner product space H. If H
is complete under this norm, then H is said to be a Hilbert space.

Example 1.6. The space L2(Ω) is a Hilbert space with inner product

(f, g) =

∫
Ω
f(x)g(x) dx for all f, g ∈ L2(Ω).

Theorem 1.7. Every nonempty closed convex subset S of a Hilbert space H contains a
unique element of minimal norm.

Proof. Choose xn ∈ S so that ‖xn‖ → d ≡ inf{‖x‖ : x ∈ S}. Since (1/2)(xn + xm) ∈ S,
we have ‖xn + xm‖2 ≥ 4d2. Using the parallelogram law, we see that

(1.3) ‖xn − xm‖2 ≤ 2(‖xn‖2 − d2) + 2(‖xm‖2 − d2)

and therefore {xn} is a Cauchy sequence in H. Since S is closed, {xn} converges to some
x ∈ S and ‖x‖ = d. If y ∈ S and ‖y‖ = d, then the parallelogram law implies, as in (1.3),
that x = y. �

If (x, y) = 0, then x and y are said to be orthogonal, written sometimes as x ⊥ y. For
M ⊂ H, the orthogonal complement of M , denoted by M⊥, is defined to be the set of
all x ∈ H such that (x, y) = 0 for all y ∈M . It is easily seen that M⊥ is a closed subspace
of H. Moreover, if M is a dense subset of H and if x ∈ M⊥, then in fact, x ∈ H⊥ which
implies x = 0.

Theorem 1.8. (Projection) Suppose M is a closed subspace of a Hilbert space H. Then
for each x ∈ H there exist unique y ∈ M , z ∈ M⊥ such that x = y + z. The element y is
called the projection of x onto M .

Proof. Let S = {x−y : y ∈M}. It is easy to see that S is convex and closed. Theorem 1.7
implies that there exists a y ∈M such that ‖x−y‖ ≤ ‖x−w‖ for all w ∈M . Let z = x−y.
For an arbitrary w ∈M , w 6= 0, let α = (z, w)/‖w‖2 and note that

‖z‖2 ≤ ‖z − αw‖2 = ‖z‖2 − |(z, w)/‖w‖|2

which implies (z, w) = 0. Therefore z ∈M⊥. If x = y′+ z′ for some y′ ∈M , z′ ∈M⊥, then
y′ − y = z − z′ ∈M ∩M⊥ = {0}, which implies uniqueness. �
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Remark. In particular, if M is a proper closed subspace of H, then there is a nonzero
element in M⊥. Indeed, for x ∈ H\M , let y be the projection of x on M . Then z = x− y
is a nonzero element of M⊥.

1.2. Bounded Linear Operators

Let X,Y be real vector spaces. A map T : X → Y is said to be a linear operator from X
to Y if

T (αx+ βy) = αTx+ βTy

for all x, y ∈ D(T ) and all α, β ∈ R.
Let X,Y be normed spaces. A linear operator T from X to Y is said to be bounded if
there exists a constant m > 0 such that

(1.4) ‖Tx‖ ≤ m‖x‖ for all x ∈ X.

We define the operator norm ‖T‖ of T by

(1.5) ‖T‖ = sup
x∈X, ‖x‖=1

‖Tx‖ = sup
x∈X, ‖x‖≤1

‖Tx‖.

The collection of all bounded linear operators T : X → Y will be denoted by B(X,Y ). We
shall also set B(X) = B(X,X) when X = Y . Observe that

‖TS‖ ≤ ‖T‖‖S‖ if S ∈ B(X,Y ), T ∈ B(Y,Z).

Theorem 1.9. If X and Y are normed spaces, then B(X,Y ) is a normed space with norm
defined by equation (1.5). If Y is a Banach space, then B(X,Y ) is also a Banach space.

Proof. It is easy to see that B(X,Y ) is a normed space. To prove completeness, assume
that {Tn} is a Cauchy sequence in B(X,Y ). Since

(1.6) ‖Tnx− Tmx‖ ≤ ‖Tn − Tm‖‖x‖

we see that, for fixed x ∈ X, {Tnx} is a Cauchy sequence in Y and therefore we can define
a linear operator T by

Tx = lim
n→∞

Tnx for all x ∈ X.

If ε > 0, then the right side of (1.6) is smaller than ε‖x‖ provided that m and n are large
enough. Thus, (letting n→∞)

‖Tx− Tmx‖ ≤ ε‖x‖ for all large enough m.

Hence, ‖Tx‖ ≤ (‖Tm‖ + ε)‖x‖, which shows that T ∈ B(X,Y ). Moreover, ‖T − Tm‖ < ε
for all large enough m. Hence, limn→∞ Tn = T . �

The following theorems are important and can be found in any standard texbook of real
analysis or functional analysis; e.g., [3, 26].

Theorem 1.10. (Banach-Steinhaus) Let X be a Banach space and Y a normed space.
If A ⊂ B(X,Y ) is such that supT∈A ‖Tx‖ <∞ for each fixed x ∈ X, then supT∈A ‖T‖ <∞.

Theorem 1.11. (Bounded Inverse) If X and Y are Banach spaces and if T ∈ B(X,Y )
is one-to-one and onto, then T−1 ∈ B(Y,X).
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When X is a (real) normed space, the Banach space B(X,R) will be called the (normed)
dual space of X and will be denoted by X*. Elements of X* are called bounded lin-
ear functionals or continuous linear functionals on X. Frequently, we shall use the
notation 〈f, x〉 to denote the value of f ∈ X* at x ∈ X. Using this notation we note that
|〈f, x〉| ≤ ‖f‖ ‖x‖ for all f ∈ X*, x ∈ X.

Example 1.12. Suppose 1 < p, q < ∞ satisfy 1/p + 1/q = 1 and let Ω be a nonempty
Lebesgue measurable set in Rn. Then Lp(Ω)∗ = Lq(Ω). The case of p =∞ is different. The
dual of L∞ is much larger then L1.

The following results are also standard.

Theorem 1.13. (Hahn-Banach) Let X be a normed space and Y a subspace of X. As-

sume f ∈ Y ∗. Then there exists a bounded linear functional f̃ ∈ X∗ such that

〈f̃ , y〉 = 〈f, y〉 ∀ y ∈ Y, ‖f̃‖X∗ = ‖f‖Y ∗ .

Corollary 1.14. Let X be a normed space and x0 6= 0 in X. Then there exists f ∈ X∗
such that

‖f‖ = 1, 〈f, x0〉 = ‖x0‖.

The dual space X∗∗ of X∗ is called the second dual space of X and is again a Banach
space. Note that to each x ∈ X we can associate a unique element Fx ∈ X∗∗ defined by
Fx(f) = 〈f, x〉 for all f ∈ X∗. From Corollary 1.14, one can also show that ‖Fx‖ = ‖x‖.
Thus, the (canonical) mapping J : X → X**, given by Jx = Fx, is a linear isometry of X
onto the subspace J(X) of X∗∗. Since J is one-to-one, we can identify X with J(X).

A Banach space X is called reflexive if its canonical map J is onto X∗∗. For example,
all Lp spaces with 1 < p <∞ are reflexive.

We shall need the following properties of reflexive spaces.

Theorem 1.15. Let X and Y be Banach spaces.

(a) X is reflexive iff X* is reflexive.

(b) If X is reflexive, then a closed subspace of X is reflexive.

(c) Let T : X → Y be a linear bijective isometry. If Y is reflexive, then X is
reflexive.

The following theorem characterizes all bounded linear functionals on a Hilbert space.

Theorem 1.16. (Riesz Representation) If H is a Hilbert space and f ∈ H*, then there
exists a unique y ∈ H such that

f(x) = 〈f, x〉 = (x, y) for all x ∈ H.
Moreover, ‖f‖ = ‖y‖.

Proof. If f(x) = 0 for all x, take y = 0. Otherwise, there is an element z ∈ N (f)⊥ such
that ‖z‖ = 1. (Note that the linearity and continuity of f implies that N (f) is a closed
subspace of H.) Put u = f(x)z−f(z)x. Since f(u) = 0, we have u ∈ N (f). Thus (u, z) = 0,
which implies

f(x) = f(x)(z, z) = f(z)(x, z) = (x, f(z)z) = (x, y),

where y = f(z)z. To prove uniqueness, suppose (x, y) = (x, y′) for all x ∈ H. Then in
particular, (y − y′, y − y′) = 0, which implies y = y′. From the Cauchy-Schwarz inequality
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we get |f(x)| ≤ ‖x‖‖y‖, which yields ‖f‖ ≤ ‖y‖. The reverse inequality follows by choosing
x = y in the representation. �

Corollary 1.17. H is reflexive.

Let T : H → H be an operator on the Hilbert space H. We define the Hilbert space
adjoint T* : H → H as follows:

(Tx, y) = (x, T*y) for all x, y ∈ H.

The adjoint operator is easily seen to be linear.

Theorem 1.18. Let H be a Hilbert space. If T ∈ B(H), then T* ∈ B(H) and ‖T‖ = ‖T*‖.

Proof. For any y ∈ H and all x ∈ H, set f(x) = (Tx, y). Then it is easily seen that
f ∈ H∗. Hence by the Riesz representation theorem, there exists a unique z ∈ H such that
(Tx, y) = (x, z) for all x ∈ H, i.e., D(T ∗) = H. Moreover, ‖T ∗y‖ = ‖z‖ = ‖f‖ ≤ ‖T‖‖y‖,
i.e., T ∗ ∈ B(H) and ‖T ∗‖ ≤ ‖T‖. The reverse inequality follows easily from ‖Tx‖2 =
(Tx, Tx) = (x, T ∗Tx) ≤ ‖Tx‖‖T ∗‖‖x‖. �

1.3. Weak Convergence and Compact Operators

Let X be a normed space. A sequence xn ∈ X is said to be weakly convergent to an
element x ∈ X, written xn ⇀ x, if 〈f, xn〉 → 〈f, x〉 for all f ∈ X∗.

Theorem 1.19. Let {xn} be a sequence in X.

(a) Weak limits are unique.

(b) If xn → x, then xn ⇀ x.

(c) If xn ⇀ x, then {xn} is bounded and ‖x‖ ≤ lim inf ‖xn‖.

Proof. To prove (a), suppose that x and y are both weak limits of the sequence {xn} and
set z = x− y. Then 〈f, z〉 = 0 for every f ∈ X∗ and by Corollary 1.14, z = 0. To prove (b),
let f ∈ X∗ and note that xn → x implies 〈f, xn〉 → 〈f, x〉 since f is continuous. To prove (c),
assume xn ⇀ x and consider the sequence {Jxn} of elements of X∗∗, where J : X → X∗∗

is the bounded operator defined above. For each f ∈ X∗, sup |Jxn(f)| = sup |〈f, xn〉| <∞
(since 〈f, xn〉 converges). By the Banach-Steinhaus Theorem, there exists a constant c such
that ‖xn‖ = ‖Jxn‖ ≤ c which implies {xn} is bounded. Finally, for f ∈ X∗

|〈f, x〉| = lim |〈f, xn〉| ≤ lim inf ‖f‖‖xn‖ = ‖f‖ lim inf ‖xn‖

which implies the desired inequality since ‖x‖ = sup‖f‖=1 |〈f, x〉|. �

We note that in a Hilbert space H, the Riesz representation theorem implies that xn ⇀ x
means (xn, y)→ (x, y) for all y ∈ H. Moreover, we have

(xn, yn)→ (x, y) if xn ⇀ x, yn → y.

This follows from the estimate

|(x, y)− (xn, yn)| = |(x− xn, y)− (xn, yn − y)| ≤ |(x− xn, y)|+ ‖xn‖‖y − yn‖

and the fact that ‖xn‖ is bounded.

The main result of this section is given by:
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Theorem 1.20. If X is a reflexive Banach space, then the closed unit ball is weakly
compact, i.e., the sequence {xn} with ‖xn‖ ≤ 1 has a subsequence which converges weakly
to an x with ‖x‖ ≤ 1.

Let X and Y be normed spaces. An operator T : X → Y is said to be compact if
it maps bounded sets in X into relatively compact sets in Y , i.e., if for every bounded
sequence {xn} in X, {Txn} has a subsequence which converges to some element of Y .

Since relatively compact sets are bounded, it follows that a compact operator is bounded.
On the other hand, since bounded sets in finite-dimensional spaces are relatively compact, it
follows that a bounded operator with finite dimensional range is compact. It can be shown
that the identity map I : X → X (‖Ix‖ = ‖x‖) is compact iff X is finite-dimensional.
Finally we note that the operator ST is compact if (a) T : X → Y is compact and S : Y → Z
is continuous or (b) T is bounded and S is compact.

One of the main methods of proving the compactness of certain operators is based upon
the Ascoli theorem.

Let Ω be a subset of the normed space X. A set S ⊂ C(Ω) is said to be equicontinuous
if for each ε > 0 there exists a δ > 0 such that |f(x) − f(y)| < ε for all x, y ∈ Ω with
‖x− y‖ < δ and for all f ∈ S.

Theorem 1.21. (Ascoli) Let Ω be a relatively compact subset of a normed space X and
let S ⊂ C(Ω). Then S is relatively compact if it is bounded and equicontinuous.

Remark. In other words, every bounded equicontinuous sequence of functions has a uni-
formly convergent subsequence.

Theorem 1.22. Let X and Y be Banach spaces. If Tn : X → Y are linear and compact
for n ≥ 1 and if limn→∞ ‖Tn − T‖ = 0, then T is compact. Thus, linear compact operators
form a closed subspace of B(X,Y ).

Proof. Let {xn} be a sequence in X with M = supn ‖xn‖ <∞. Let A1 denote an infinite
set of integers such the sequence {T1xn}n∈A1 converges. For k ≥ 2 let Ak ⊂ Ak−1 denote
an infinite set of integers such that the sequence {Tkxn}n∈Ak converges. Choose n1 ∈ A1

and nk ∈ Ak, nk > nk−1 for k ≥ 2. Choose ε > 0. Let k be such that ‖T − Tk‖M < ε/4
and note that

‖Txni − Txnj‖ ≤ ‖(T − Tk)(xni − xnj )‖+ ‖Tkxni − Tkxnj‖ < ε/2 + ‖Tkxni − Tkxnj‖.

Since {Tkxni}∞i=1 converges, {Txni}∞i=1 is a Cauchy sequence. �

Theorem 1.23. Let X and Y be normed spaces.

(a) If T ∈ B(X,Y ), then T is weakly continuous, i.e.,

xn ⇀ x implies Txn ⇀ Tx.

(b) If T : X → Y is weakly continuous and X is a reflexive Banach space, then T
is bounded.

(c) If T ∈ B(X,Y ) is compact, then T is strongly continuous, i.e.,

xn ⇀ x implies Txn → Tx.

(d) If T : X → Y is strongly continuous and X is a reflexive Banach space, then T
is compact.
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Proof. (a) Let xn ⇀ x. Then for every g ∈ Y ∗

〈g, Txn〉 = 〈T ∗g, xn〉 → 〈T ∗g, x〉 = 〈g, Tx〉.

(b) If not, there is a bounded sequence {xn} such that ‖Txn‖ → ∞. Since X is reflexive,
{xn} has a weakly convergent subsequence, {xn′}, and so {Txn′} also converges weakly. But
then {Txn′} is bounded, which is a contradiction.

(c) Let xn ⇀ x. Since T is compact and {xn} is bounded, there is a subsequence {xn′}
such that Txn′ → z, and thus Txn′ ⇀ z. By (a), Txn ⇀ Tx, and so Txn′ → Tx. Now
it is easily seen that every subsequence of {xn} has a subsequence, say {xn′}, such that
Txn′ → Tx. But this implies the whole sequence Txn → Tx (See the appendix).

(d) Let {xn} be a bounded sequence. Since X is reflexive, there is a subsequence {xn′}
such that xn′ ⇀ x. Hence Txn′ → Tx, which implies T is compact. �

Theorem 1.24. Let H be a Hilbert space. If T : H → H is linear and compact, then T* is
compact.

Proof. Let {xn} be a sequence in H satisfying ‖xn‖ ≤ m. The sequence {T*xn} is therefore
bounded, since T* is bounded. Since T is compact, by passing to a subsequence if necessary,
we may assume that the sequence {TT*xn} converges. But then

‖T*(xn − xm)‖2 = (xn − xm, TT*(xn − xm))

≤ 2m‖TT*(xn − xm)‖ → 0 as m,n→∞.

Since H is complete, the sequence {T*xn} is convergent and hence T* is compact. �

1.4. Spectral Theory for Linear Compact Operators

Theorem 1.25. (Fredholm Alternative) Let T : H → H be a linear compact operator
on the Hilbert space H. Then equations (I − T )x = 0, (I − T ∗)x∗ = 0 have the same finite
number of linearly independent solutions. Moreover,

(a) For y ∈ H, the equation (I − T )x = y has a solution iff (y, x∗) = 0 for every
solution x∗ of (I − T ∗)x∗ = 0.

(b) For z ∈ H, the equation (I − T ∗)x∗ = z has a solution iff (z, x) = 0 for every
solution x of (I − T )x = 0.

(c) The inverse operator (I − T )−1 ∈ B(H) whenever it exists.

A subset S of a Hilbert space H is said to be an orthonormal set if each element of S
has norm 1 and if every pair of distinct elements in S is orthogonal. It easily follows that
an orthonormal set is linearly independent. An orthonormal set S is said to be complete if
x =

∑
φ∈S(x, φ)φ for all x ∈ H. It can be shown that (x, φ) 6= 0 for at most countably many

φ ∈ S. This series is called the Fourier series for x with respect to the orthonormal set {φ}.
Let {φi}∞i=1 be a countable orthonormal set in H. Upon expanding ‖x−

∑N
n=1(x, φn)φn‖2,

we arrive at Bessel’s inequality:
∞∑
n=1

|(x, φn)|2 ≤ ‖x‖2.

Let T : D(T ) ⊂ H → H be a linear operator on the real Hilbert space H. The set ρ(T )
of all scalars λ ∈ R for which (T − λI)−1 ∈ B(H) is called the resolvent set of T . The
operator R(λ) = (T − λI)−1 is known as the resolvent of T . σ(T ) = R \ ρ(T ) is called the
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spectrum of T . It can be shown that ρ(T ) is an open set and σ(T ) is a closed set. The
set of λ ∈ R for which there exists a nonzero x ∈ N (T − λI) is called the point spectrum
of T and is denoted by σp(T ). The elements of σp(T ) are called the eigenvalues of T and
the nonzero members of N (T − λI) are called the eigenvectors (or eigenfunctions if X
is a function space) of T .

If T is compact and λ 6= 0, then by the Fredholm alternative, either λ ∈ σp(T ) or
λ ∈ ρ(T ). Moreover, if H is infinite-dimensional, then 0 6∈ ρ(T ); otherwise, T−1 ∈ B(H)
and T−1T = I is compact. As a consequence, σ(T ) consists of the nonzero eigenvalues of T
together with the point 0. The next result shows that σp(T ) is either finite or a countably
infinite sequence tending to zero.

Theorem 1.26. Let T : X → X be a linear compact operator on the normed space X.
Then for each r > 0 there exist at most finitely many λ ∈ σp(T ) for which |λ| > r.

Let H be a real Hilbert space. An operator T ∈ B(H) is said to be symmetric if
(Tx, y) = (x, Ty) for all x, y ∈ H. The next result implies that a symmetric compact
operator on a Hilbert space has at least one eigenvalue. On the other hand, an arbitrary
bounded, linear, symmetric operator need not have any eigenvalues. As an example, let
T : L2(0, 1)→ L2(0, 1) be defined by Tu(x) = xu(x).

Theorem 1.27. Suppose T ∈ B(H) is symmetric, i.e., (Tx, y) = (x, Ty) for all x, y ∈ H.
Then

‖T‖ = sup
‖x‖=1

|(Tx, x)|.

Moreover, if H 6= {0}, then there exists a real number λ ∈ σ(T ) such that |λ| = ‖T‖. If
λ ∈ σp(T ), then in absolute value λ is the largest eigenvalue of T .

Proof. Clearly m ≡ sup‖x‖=1 |(Tx, x)| ≤ ‖T‖. To show ‖T‖ ≤ m, observe that for all
x, y ∈ H

2(Tx, y) + 2(Ty, x) = (T (x+ y), x+ y)− (T (x− y), x− y)

≤ m(‖x+ y‖2 + ‖x− y‖2)

= 2m(‖x‖2 + ‖y‖2)

where the last step follows from the paralleogram law. Hence, if Tx 6= 0 and y =
(‖x‖/‖Tx‖)Tx, then

2‖x‖‖Tx‖ = (Tx, y) + (y, Tx) ≤ m(‖x‖2 + ‖y‖2) = 2m‖x‖2

which implies ‖Tx‖ ≤ m‖x‖. Since this is also valid when Tx = 0, we have ‖T‖ ≤ m. To
prove the ‘moreover’ part, choose xn ∈ H such that ‖xn‖ = 1 and ‖T‖ = limn→∞ |(Txn, xn)|.
By renaming a subsequence of {xn}, we may assume that (Txn, xn) converge to some real
number λ with |λ| = ‖T‖. Observe that

‖(T − λ)xn‖2 = ‖Txn‖2 − 2λ(Txn, xn) + λ2‖xn‖2

≤ 2λ2 − 2λ(Txn, xn)→ 0.

We now claim that λ ∈ σ(T ). Otherwise, we arrive at the contradiction

1 = ‖xn‖ = ‖(T − λ)−1(T − λ)xn‖ ≤ ‖(T − λ)−1‖ ‖(T − λ)xn‖ → 0.

Finally, we note that if Tφ = µφ, with ‖φ‖ = 1, then |µ| = |(Tφ, φ)| ≤ ‖T‖ which implies
the last assertion of the theorem. �
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Finally we have the following result.

Theorem 1.28. Let H be a separable Hilbert space and suppose T : H → H is linear,
symmetric and compact. Then there exists a countable complete orthonormal set in H
consisting of eigenvectors of T .

1.5. Some Useful Results in Nonlinear Functional Analysis

In this final preliminary section, we list some useful results in nonlinear functional anal-
ysis. Proofs and other results can be found in the volumes of Zeidler’s book.

1.5.1. Contraction Mapping Theorem. Let X be a normed space. A map T : X → X
is called a contraction if there exists a number k < 1 such that

(1.7) ‖Tx− Ty‖ ≤ k‖x− y‖ for all x, y ∈ X.

Theorem 1.29. (Contraction Mapping) Let T : S ⊂ X → S be a contraction on the
closed nonempty subset S of the Banach space X. Then T has a unique fixed point, i.e.,
there exists a unique solution x ∈ S of the equation Tx = x. Moreover, x = limn→∞ T

nx0

for any choice of x0 ∈ S.

Proof. To prove uniqueness, suppose Tx = x, Ty = y. Since k < 1, we get x = y from

‖x− y‖ = ‖Tx− Ty‖ ≤ k‖x− y‖.

To show that T has a fixed point we set up an iteration procedure. For any x0 ∈ S set

xn+1 = Txn, n = 0, 1, ...

Note that xn+1 ∈ S and xn+1 = Tn+1x0. We now claim that {xn} is a Cauchy sequence.
Indeed, for any integers n, p

‖xn+p − xn‖ = ‖Tn+px0 − Tnx0‖ ≤
n+p−1∑
j=n

‖T j+1x0 − T jx0‖

≤
n+p−1∑
j=n

kj‖Tx0 − x0‖ ≤
kn

1− k
‖Tx0 − x0‖.

Hence as n→∞, ‖xn+p− xn‖ → 0 independently of p, so that {xn} is a Cauchy sequence
with limit x ∈ S. Since T is continuous, we have

Tx = lim
n→∞

Txn = lim
n→∞

xn+1 = x

and thus x is the unique fixed point. Note that the fixed point x is independent of x0 since
x is a fixed point and fixed points are unique. �

The following result is the so-called method of continuity or continuation method.

Theorem 1.30. Let T0, T1 ∈ B(X,Y ), where X is a Banach space and Y is a normed
space. For each t ∈ [0, 1] set

Tt = (1− t)T0 + tT1

and suppose there exists a constant c > 0 such that for all t ∈ [0, 1] and x ∈ X

(1.8) ‖x‖X ≤ c‖Ttx‖Y .

Then R(T1) = Y if R(T0) = Y .
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Proof. Set S = {t ∈ [0, 1] : R(Tt) = Y }. By hypothesis, 0 ∈ S. We need to show that
1 ∈ S. In this direction we will show that if τ > 0 and τc(‖T1‖+ ‖T0‖) < 1, then

(1.9) [0, s] ⊂ S implies [0, s+ τ ] ⊂ S.

(Note that any smaller τ works.) Since τ can be chosen independently of s, (1.9) applied
finitely many times gets us from 0 ∈ S to 1 ∈ S.

Let s ∈ S. For t = s+ τ, Ttx = f is equivalent to the equation

(1.10) Tsx = f + τT0x− τT1x.

By (1.8), T−1
s : Y → X exists and ‖T−1

s ‖ ≤ c. Hence (1.10) is equivalent to

(1.11) x = T−1
s (f + τT0x− τT1x) ≡ Ax

and for A : X → X we have for all x, y ∈ X

‖Ax−Ay‖ ≤ τc(‖T1‖+ ‖T0‖)‖x− y‖.

By the contraction mapping theorem, (1.11) has a solution and this completes the proof. �

1.5.2. Nemytskii Operators. Let Ω be a nonempty measurable set in Rn and let f : Ω×
Rm → R be a given function, where m ≥ 1. Assume

(i) for every ξ ∈ Rm, f(x, ξ) (as a function of x) is measurable on Ω

(ii) for almost all x ∈ Ω, f(x, ξ) (as a function of ξ) is continuous on Rm

(iii) for all (x, ξ) ∈ Ω× Rm

|f(x, ξ)| ≤ a(x) + b|ξ|p/q,

where b is a fixed nonnegative number, a ∈ Lq(Ω) is nonnegative and 1 < p, q < ∞. Then
the Nemytskii operator N is defined by

Nu(x) = f(x, u(x)), x ∈ Ω ∀ u : Ω→ Rm.

We have the following result needed later.

Lemma 1.31. N : Lp(Ω;Rm)→ Lq(Ω) is continuous and bounded with

(1.12) ‖Nu‖q ≤ const (‖a‖q + ‖u‖p/qp ) for all u ∈ Lp(Ω;Rm).

Proof. If u ∈ Lp(Ω;Rm), then each component function of u(x) is measurable on Ω and
thus, by (i) and (ii), the function f(x, u(x)) is also measurable on Ω. From (iii) we get

|f(x, u(x))|q ≤ const(|a(x)|q + |u(x)|p).

Integrating over Ω yields (1.12), which shows that N is bounded.

To show that N is continuous, let un → u in Lp(Ω;Rm). Then there is a subsequence
{un′} and a function v ∈ Lp(Ω) such that un′(x) → u(x) a.e. and |un′(x)| ≤ v(x) a.e. for
all n′. Hence

‖Nun′ −Nu‖qq =

∫
Ω
|f(x, un′(x))− f(x, u(x))|qdx

≤ const

∫
Ω

(|f(x, un′(x))|q + |f(x, u(x))|q)dx

≤ const

∫
Ω

(|a(x)|q + |v(x)|p + |u(x)|p)dx.
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By (ii), f(x, un′(x)) − f(x, u(x)) → 0 as n → ∞ for almost all x ∈ Ω. The dominating
convergence theorem implies that ‖Nun′ −Nu‖q → 0. By repeating this procedure for any
subsequence of un′ , it follows that ‖Nun−Nu‖q → 0 which implies that N is continuous. �

1.5.3. Differentiability. Let S be an open subset of the Banach space X. The functional
f : S ⊂ X → R is said to be Gateaux differentiable (G-diff) at a point u ∈ S if there
exists a functional g ∈ X* (often denoted by f ′(u)) such that

d

dt
f(u+ tv)

∣∣∣∣
t=0

= lim
t→0

f(u+ tv)− f(u)

t
= [f ′(u)]v for all v ∈ X.

The functional f ′(u) is called the Gateaux derivative of f at the point u ∈ S. If f is
G-diff at each point of S, the map f ′ : S ⊂ X → X* is called the Gateaux derivative of
f on S. In addition, if f ′ is continuous at u (in the operator norm), then we say that f
is C1 at u. Note that in the case of a real-valued function of several real variables, the
Gateaux derivative is nothing more than the directional derivative of the function at u in
the direction v.

Let X,Y be Banach spaces and let A : S ⊂ X → Y be an arbitrary operator. A is
said to be Frechet differentiable (F-diff) at the point u ∈ S if there exists an operator
B ∈ B(X,Y ) such that

lim
‖v‖→0

‖A(u+ v)−Au−Bv‖/‖v‖ = 0.

The operator B, often denoted by A′(u), is called the Frechet derivative of A at u. Note
that if A is Frechet differentiable on S, then A′ : S → B(X,Y ). In addition, if A′ is
continuous at u (in the operator norm), we say that A is C1 at u.

Remark. If the functional f is F-diff at u ∈ S, then it is also G-diff at u, and the two
derivatives are equal. This follows easily from the definition of the Frechet derivative. The
converse is not always true as may be easily verified by simple examples from several variable
calculus. However, if the Gateaux derivative exists in a neighborhood of u and if f ∈ C1 at
u, then the Frechet derivative exists at u, and the two derivatives are equal.

Example 1.32. (a) Let f(ξ) ∈ C(R). Then for k ≥ 0, the corresponding Nemytskii operator
N : Ck(Ω̄)→ C(Ω̄) is bounded and continuous. If in addition f(ξ) ∈ C1(R), then N ∈ C1

and the Frechet derivative N ′(u) is given by

[N ′(u)v](x) = f ′(u(x))v(x).

Note that for u, v ∈ Ck(Ω̄), |N ′(u)v|0 ≤ |f ′(u)|0|v|k and so N ′(u) ∈ B(Ck(Ω̄), C(Ω̄)) with
‖N ′(u)‖ ≤ |f ′(u)|0. Clearly N ′(u) is continuous at each point u ∈ Ck(Ω̄). Moreover,

|N(u+ v)−Nu−N ′(u)v|0 = sup
x
|
∫ 1

0
[
d

dt
f(u(x) + tv(x))− f ′(u(x))v(x)]dt|

≤ |v|0 sup
x

∫ 1

0
|f ′(u(x) + tv(x))− f ′(u(x))|dt.

The last integral tends to zero since f ′ is uniformly continuous on compact subsets of R.

More generally, let f(ξ) ∈ Ck(R). Then the corresponding Nemytskii operator N :
Ck(Ω̄) → Ck(Ω̄) is bounded and continuous. If in addition f(ξ) ∈ Ck+1(R), then N ∈ C1

with Frechet derivative given by [N ′(u)v](x) = f ′(u(x))v(x). Note that |uv|k ≤ |u|k|v|k for
u, v ∈ Ck(Ω̄), and since Ck(Ω̄) ⊂ C(Ω̄), the Frechet derivative must be of the stated form.



1.5. Some Useful Results in Nonlinear Functional Analysis 20

(b) Let f(ξ) ∈ Ck+1(R), where k > n/2. Then we claim that the corresponding Ne-
mytskii operator N : Hk(Ω) → Hk(Ω) is of class C1 with Frechet derivative given by
[N ′(u)v](x) = f ′(u(x))v(x).

First, suppose u ∈ Ck(Ω̄). Then N(u) ∈ Ck(Ω̄) by the usual chain rule. If u ∈ Hk(Ω),
let um ∈ Ck(Ω̄) with ‖um − u‖k,2 → 0. Since the imbedding Hk(Ω) ⊂ C(Ω̄) is continuous,
um → u uniformly, and thus f(um)→ f(u) and f ′(um)→ f ′(u) uniformly and hence in L2.
Furthermore, Dif(um) = f ′(um)Dium → f ′(u)Diu in L1. Consequently, by Theorem 2.10,
we have

Dif(u) = f ′(u)Diu.

In a similar fashion we find

Dijf(u) = f ′′(u)DiuDju+ f ′(u)Diju

with corresponding formulas for higher derivatives.

1.5.4. Implicit Function Theorem. The following lemmas are needed in the proof of
the implicit function theorem.

Lemma 1.33. Let S be a closed nonempty subset of the Banach space X and let M be a
metric space. Suppose A(x, λ) : S ×M → S is continuous and there is a constant k < 1
such that, uniformly for all λ ∈M

‖A(x, λ)−A(y, λ)‖ ≤ k‖x− y‖ for all x, y ∈ S.
Then for each λ ∈ M, A(x, λ) has a unique fixed point x(λ) ∈ S and moreover, x(λ)
depends continuously on λ.

Proof. The existence and uniqueness of the fixed point x(λ) is of course a consequence of
the contraction mapping theorem. To prove continuity, suppose λn → λ. Then

‖x(λn)− x(λ)‖ = ‖A(x(λn), λn)−A(x(λ), λ)‖
≤ ‖A(x(λn), λn)−A(x(λ), λn)‖+ ‖A(x(λ), λn)−A(x(λ), λ)‖
≤ k‖x(λn)− x(λ)‖+ ‖A(x(λ), λn)−A(x(λ), λ)‖.

Therefore

‖x(λn)− x(λ)‖ ≤ 1

1− k
‖A(x(λ), λn)−A(x(λ), λ)‖.

By the assumed continuity of A, the right side tends to zero as n → ∞, and therefore
x(λn)→ x(λ). �

Lemma 1.34. Suppose X,Y are Banach spaces. Let S ⊂ X be convex and assume A :
S → Y is Frechet differentiable at every point of S. Then

‖Au−Av‖ ≤ ‖u− v‖ sup
w∈S
‖A′(w)‖.

In other words, A satisfies a Lipschitz condition with constant q = supw∈S ‖A′(w)‖.

Proof. For fixed u, v ∈ S, set g(t) = A(u+ t(v − u)), where t ∈ [0, 1]. Using the definition
of Frechet derivative, we have

g′(t) = lim
h→0

(
A(u+ (t+ h)(v − u))−A(u+ t(v − u))

h

)
= lim

h→0

(
hA′(u+ t(v − u))(v − u) + ‖h(v − u)‖E

h

)
= A′(u+ t(v − u))(v − u).
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Hence

‖g(0)− g(1)‖ = ‖Au−Av‖ ≤ sup
t∈[0,1]

‖g′(t)‖

which implies the desired result. �

Lemma 1.35. Let X be a Banach space. Suppose A : B(u0, r) ⊂ X → X is a contraction,
with Lipschitz constant q < 1, where

r ≥ (1− q)−1‖Au0 − u0‖.

Then A has a unique fixed point u ∈ B(u0, r).

Proof. For u ∈ B(u0, r)

‖Au− u0‖ ≤ ‖Au−Au0‖+ ‖Au0 − u0‖ ≤ q‖u− u0‖+ (1− q)r.

Since ‖u − u0‖ ≤ r, A maps the ball B(u0, r) into itself, and the result follows from the
contraction mapping theorem. �

We now consider operator equations of the form A(u, v) = 0, where A maps a subset
of X × Y into Z. For a given [u0, v0] ∈ X × Y we denote the Frechet derivative of A (at
[u0, v0]) with respect to the first (second) argument by Au(u0, v0) (Av(u0, v0)).

Theorem 1.36. (Implicit Function) Let X,Y, Z be Banach spaces. For a given [u0, v0] ∈
X × Y and a, b > 0, let S = {[u, v] : ‖u − u0‖ ≤ a, ‖v − v0‖ ≤ b}. Suppose A : S → Z
satisfies the following:

(i) A is continuous.

(ii) Av(·, ·) exists and is continuous in S (in the operator norm)

(iii) A(u0, v0) = 0.

(iv) [Av(u0, v0)]−1 exists and belongs to B(Z, Y ).

Then there are neighborhoods U of u0 and V of v0 such that the equation A(u, v) = 0 has
exactly one solution v ∈ V for every u ∈ U . The solution v depends continuously on u.

Proof. If in S we define

B(u, v) = v − [Av(u0, v0)]−1A(u, v)

it is clear that the solutions of A(u, v) = 0 and v = B(u, v) are identical. The theorem will
be proved by applying the contraction mapping theorem to B. Since

Bv(u, v) = I − [Av(u0, v0)]−1Av(u, v)

Bv(·, ·) is continuous in the operator norm. Now Bv(u0, v0) = 0, so for some δ > 0 there is
a q < 1 such that

‖Bv(u, v)‖ ≤ q
for ‖u − u0‖ ≤ δ, ‖v − v0‖ ≤ δ. By virtue of Lemma 1.34, B(u, ·) is a contraction. Since
A is continuous, B is also continuous. Therefore, since B(u0, v0) = v0, there is an ε with
0 < ε ≤ δ such that

‖B(u, v0)− v0‖ ≤ (1− q)δ
for ‖u − u0‖ ≤ ε. The existence of a unique fixed point in the closed ball B(v0, δ) follows
from Lemma 1.35 and the continuity from Lemma 1.33. �
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Example 1.37. Let f(ξ) ∈ C1,α(R), f(0) = f ′(0) = 0, g(x) ∈ Cα(Ω̄) and consider the
boundary value problem

(1.13) ∆u+ f(u) = g(x) in Ω, u|∂Ω = 0.

Set X = Z = Cα(Ω̄), Y = {u ∈ C2,α(Ω̄) : u|∂Ω = 0} and

A(g, u) = ∆u+N(u)− g

where N is the Nemytskii operator corresponding to f . The operator A maps X × Y into
the space Z. Clearly A(0, 0) = 0 (A is C1 by earlier examples) and

Au(0, 0)v = ∆v, v ∈ Y.

It is easily checked that all the conditions of the implicit function theorem are met. In
particular, condition (iv) is a consequence of the bounded inverse theorem. Thus, for a
function g ∈ Cα(Ω̄) of sufficiently small norm (in the space Cα(Ω̄)) there exists a unique
solution of (1.13) which lies near the zero function. There may, of course, be other solutions
which are not close to the zero function. (Note that the condition f ′(0) = 0 rules out linear
functions.)

Remark. Note that the choice of X = Z = C(Ω̄), Y = {u ∈ C2(Ω̄) : u|∂Ω = 0} would fail
above since the corresponding linear problem is not onto. An alternate approach would be
to use Sobolev spaces. In fact, if we take X = Z = W k−2(Ω), Y = W k(Ω) ∩H1

0 (Ω) with k
sufficiently large, and if f(ξ) ∈ Ck+1(R), then as above, we can conclude the existence of a
unique solution u ∈W k(Ω) provided ‖g‖k−2,2 is sufficiently small. Hence, we get existence

for more general functions g; however, the solution u ∈ W k(Ω) is not a classical (i.e., C2)
solution in general.

1.5.5. Generalized Weierstrass Theorem. In its simplest form, the classical Weier-
strass theorem can be stated as follows: Every continuous function defined on a closed ball
in Rn is bounded and attains both its maximum and minimum on this ball. The proof
makes essential use of the fact that the closed ball is compact.

The first difficulty in trying to extend this result to an arbitrary Banach space X is
that the closed ball in X is not compact if X is infinite dimensional. However, as we shall
show, a generalized Weierstrass theorem is possible if we require a stronger property for the
functional.

A set S ⊂ X is said to be weakly closed if {un} ⊂ S, un ⇀ u implies u ∈ S, i.e.,
S contains all its weak limits. A weakly closed set is clearly closed, but not conversely.
Indeed, the set {sin nx}∞1 in L2(0, π) has no limit point (because it cannot be Cauchy) so
it is closed, but zero is a weak limit that does not belong to the set. It can be shown that
every convex, closed set in a Banach space is weakly closed.

A functional f : S ⊂ X → R is weakly continuous at u0 ∈ S if for every sequence
{un} ⊂ S with un ⇀ u0 it follows that f(un) → f(u0). Clearly, every functional f ∈ X*
is weakly continuous. A functional f : S ⊂ X → R is weakly lower semicontinuous
(w.l.s.c.) at u0 ∈ S if for every sequence {un} ⊂ S for which un ⇀ u0 it follows that
f(u0) ≤ lim infn→∞ f(un). According to Theorem 1.19, the norm on a Banach space is
w.l.s.c.. A functional f : S ⊂ X → R is weakly coercive on S if f(u) → ∞ as ‖u‖ → ∞
on S.

Theorem 1.38. Let X be a reflexive Banach space and f : C ⊂ X → R be w.l.s.c. and
assume
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(i) C is a nonempty bounded weakly closed set in X or

(ii) C is a nonempty weakly closed set in X and f is weakly coercive on C.

Then

(a) infu∈C f(u) > −∞;

(b) there is at least one u0 ∈ C such that f(u0) = infu∈C f(u).
Moreover, if u0 is an interior point of C and f is G-diff at u0, then f ′(u0) = 0; that is, u0

is a critical point of f .

Proof. Assume (i) and let {un} ⊂ C be a minimizing sequence, i.e., limn→∞ f(un) =
infu∈C f(u). The existence of such a sequence follows from the definition of inf. Since X is
reflexive and C is bounded and weakly closed, there is a subsequence {un′} and a u0 ∈ C
such that un′ ⇀ u0. But f is w.l.s.c. and so f(u0) ≤ lim infn→∞ f(un′) = infu∈C f(u),
which proves (a). Since by definition, f(u0) ≥ infu∈C f(u), we get (b).

Assume (ii) and fix u0 ∈ C. Since f is weakly coercive, there is a closed ball B(0, R) ⊂ X
such that u0 ∈ B ∩C and f(u) ≥ f(u0) outside B ∩C. Since B ∩C satisfies the conditions
of (i), there is a u1 ∈ B ∩ C such that f(u) ≥ f(u1) for all u ∈ B ∩ C and in particular for
u0. Thus, f(u) ≥ f(u1) on all of C.

To prove the last statement we set ϕv(t) = f(u0 + tv). For fixed v ∈ X, ϕv(t) has a
local minimum at t = 0, and therefore 〈f ′(u0), v〉 = 0 for all v ∈ X. �

Remark. Even though weakly continuous functionals on closed balls attain both their inf
and sup (which follows from the above theorem), the usual functionals that we encounter
are not weakly continuous, but are w.l.s.c.. Hence this explains why we seek the inf and
not the sup in variational problems.

A set C in a real normed space X is called convex if (1 − t)u + tv ∈ C for all t ∈
[0, 1], u, v ∈ C. The following result is needed later.

Theorem 1.39. A closed convex set in a Banach space is weakly closed.

1.5.6. Monotone Operators and Convex Functionals. Let A : X → X* be an oper-
ator, where X is a real Banach space. We say that

(i) A is monotone if

〈Au−Av, u− v〉 ≥ 0 for all u, v ∈ X.

(ii) A is strongly monotone if for some c > 0 and p > 1,

〈Au−Av, u− v〉 ≥ c‖u− v‖pX for all u, v ∈ X.

(iii) A is coercive if

lim
‖u‖→∞

〈Au, u〉
‖u‖

= +∞.
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Remark. A strongly monotone operator is coercive. This follows immediately from 〈Au, u〉 =
〈Au−A0, u〉+ 〈A0, u〉 ≥ c‖u‖pX − ‖A0‖‖u‖X .

Let C be a convex set in the real normed space X. A functional f : C ⊂ X → R is said
to be convex if

f((1− t)u+ tv) ≤ (1− t)f(u) + tf(v) for all t ∈ [0, 1], u, v ∈ C.

In the following we set

ϕ(t) = f((1− t)u+ tv) = f(u+ t(v − u))

for fixed u and v.

Lemma 1.40. Let C ⊂ X be a convex set in a real normed space X. Then the following
statements are equivalent:

(a) The real function ϕ : [0, 1]→ R is convex for all u, v ∈ C.

(b) The functional f : C ⊂ X → R is convex.

(c) f ′ : C ⊂ X → X* (assuming f is G-diff on C) is monotone.

Proof. Assume ϕ is convex. Then

ϕ(t) = ϕ((1− t) · 0 + t · 1) ≤ (1− t)ϕ(0) + tϕ(1)

for all t ∈ [0, 1], which implies (b).

Similarly, if f is convex, then for t = (1− α)s1 + αs2, with α, s1, s2 ∈ [0, 1], we have

ϕ(t) = f(u+ t(v − u)) ≤ (1− α)f(u+ s1(v − u)) + αf(u+ s2(v − u))

for all u, v ∈ C, which implies (a).

Fix u, v ∈ C. Then ϕ′(t) = 〈f ′(u + t(v − u)), v − u〉. If f is convex, then ϕ is convex
and therefore ϕ′ is monotone. From ϕ′(1) ≥ ϕ′(0) we obtain

〈f ′(v)− f ′(u), v − u〉 ≥ 0 for all u, v ∈ C

which implies (c).

Finally, assume f ′ is monotone. Then for s < t we have

ϕ′(t)− ϕ′(s) =
1

t− s
〈f ′(u+ t(v − u))− f ′(u+ s(v − u)), (t− s)(v − u)〉 ≥ 0.

Thus ϕ′ is monotone, which implies ϕ, and thus f is convex. �

Theorem 1.41. Consider the functional f : C ⊂ X → R, where X is a real Banach space.
Then f is w.l.s.c. if any one of the following conditions holds:

(a) C is closed and convex; f is convex and continuous.

(b) C is convex; f is G-diff on C and f ′ is monotone on C.

Proof. Set

Cr = {u ∈ C : f(u) ≤ r}.
It follows from (a) that Cr is closed and convex for all r, and thus is weakly closed (cf.
Theorem 1.39). If f is not w.l.s.c., then there is a sequence {un} ⊂ C with un ⇀ u and
f(u) > lim inf f(un). Hence, there is an r and a subsequence {un′} such that f(u) > r and
f(un′) ≤ r (i.e., un′ ∈ Cr) for all n′ large enough. Since Cr is weakly closed, u ∈ Cr, which
is a contradiction.
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Assume (b) holds and set ϕ(t) = f(u+ t(v − u)). Then by Lemma 1.40, ϕ : [0, 1]→ R
is convex and ϕ′ is monotone. By the classical mean value theorem,

ϕ(1)− ϕ(0) = ϕ′(θ) ≥ ϕ′(0), 0 < θ < 1

i.e.,

f(v) ≥ f(u) + 〈f ′(u), v − u〉 for all u, v ∈ C.
If un ⇀ u, then 〈f ′(u), un − u〉 → 0 as n→∞. Hence, f is w.l.s.c. �

1.5.7. Lagrange Multipliers. Let f, g : X → R be two functionals defined on the Banach
space X and let

Mc = {u ∈ X : g(u) = c}
for a given constant c. A point u0 ∈Mc is called a local extremal point of f with respect
to Mc if there exists a neighborhood of u0, U(u0) ⊂ X, such that

f(u) ≤ f(u0) for all u ∈ U(u0) ∩Mc

or

f(u) ≥ f(u0) for all u ∈ U(u0) ∩Mc.

In the first case we say that f has (local) maximum at u0 with respect to Mc, while in the
second case f has (local) minimum at u0 with respect to Mc.

A point u0 ∈Mc is called an ordinary point of the manifold Mc if F-derivative g′(u0)
exists and g′(u0) 6= 0.

Let u0 be an ordinary point of Mc. Then u0 is called a critical point of f with respect
to Mc if there exists a real number λ, called a Lagrange multiplier, such that

f ′(u0) = λg′(u0).

As we shall see, if u0 is an extremal point of f with respect to Mc, and if u0 is an
ordinary point, then u0 is a critical point of f with respect to Mc. Note that if u0 is an
extremal point of f with respect to X, then Lagrange multiplier λ = 0, which implies the
usual result.

Lemma 1.42. Let X be a Banach space. Suppose the following hold:

(i) f, g : X → R are of class C1

(ii) For u0 ∈ X, we can find v, w ∈ X such that

(1.14) f ′(u0)v · g′(u0)w 6= f ′(u0)w · g′(u0)v.

Then f cannot have a local extremum with respect to the level set Mc at u0.

Proof. Fix v, w ∈ X, and for s, t ∈ R consider the real-valued functions

F (s, t) = f(u0 + sv + tw), G(s, t) = g(u0 + sv + tw)− c.

Then
∂F

∂s
(0, 0) = f ′(u0)v,

∂F

∂t
(0, 0) = f ′(u0)w

∂G

∂s
(0, 0) = g′(u0)v,

∂G

∂t
(0, 0) = g′(u0)w

so that condition (1.14) is simply that the Jacobian |∂(F,G)/∂(s, t)| is nonvanishing at
(s, t) = (0, 0). Since F,G ∈ C1 on R2, we may apply the implicit function theorem to
conclude that a local extremum cannot occur at u0. More precisely, assume w.l.o.g. that
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Gt(0, 0) 6= 0. Since G(0, 0) = 0, the implicit function theorem implies the existence of a C1

function φ such that φ(0) = 0 and G(s, φ(s)) = 0 for sufficiently small s. Moreover,

φ′(0) = −Gs(0, 0)

Gt(0, 0)
.

Set z(s) = F (s, φ(s)) = f(u0 + sv + φ(s)w) and note that g(u0 + sv + φ(s)w) = c. Hence,
if to the contrary f has an extremum at u0, then z(s) has a local extremum at s = 0. But,
an easy computation shows that Gt(0, 0)z′(0) = f ′(u0)v · g′(u0)w − f ′(u0)w · g′(u0)v 6= 0,
which is a contradiction. �

Theorem 1.43. (Lagrange) Let X be a Banach space. Suppose the following conditions
hold:

(i) f, g : X → R are of class C1,

(ii) g(u0) = c,

(iii) u0 is a local extremal point of f with respect to the constraint Mc.

Then either

(a) g′(u0)v = 0 for all v ∈ X, or

(b) there exists λ ∈ R such that f ′(u0)v = λg′(u0)v for all v ∈ X.

Proof. If (a) does not hold, then fix w ∈ X with g′(u0)w 6= 0. By hypothesis and the above
lemma, we must have

f ′(u0)v · g′(u0)w = f ′(u0)w · g′(u0)v for all v ∈ X.

If we define λ = (f ′(u0)w)/(g′(u0)w), then we obtain (b). �

More generally, one can prove the following:

Theorem 1.44. (Ljusternik) Let X be a Banach space. Suppose the following hold:

(i) g0 : X → R is of class C1

(ii) gi : X → R are of class C1, i = 1, . . . , n

(iii) u0 is a local extremal point of g0 with respect to the constraint C:

C = {u : gi(u) = ci (i = 1, . . . , n)}

where the ci are constants.

Then there are numbers λi (not all zero) such that

(1.15)
n∑
i=0

λig
′
i(u0) = 0.

As an application of Ljusternik’s theorem we have

Theorem 1.45. Let f, g : X → R be C1 functionals on the reflexive Banach space X.
Suppose

(i) f is w.l.s.c. and weakly coercive on X ∩ {g(u) ≤ c}
(ii) g is weakly continuous

(iii) g(0) = 0, g′(u) = 0 only at u = 0.
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Then the equation f ′(u) = λg′(u) has a one parameter family of nontrivial solutions (uR, λR)
for all R 6= 0 in the range of g(u) and g(uR) = R. Moreover, uR can be characterized as
the function which minimizes f(u) over the set g(u) = R.

Proof. Since g(u) is weakly continuous, it follows that MR = {u : g(u) = R} is weakly
closed. If MR is not empty, i.e., if R belongs to the range of g, then by Theorem 1.38,
there is a uR ∈ MR such that f(uR) = inf f(u) over u ∈ MR. If R 6= 0 then it cannot
be that g′(uR) = 0. Otherwise by (iii), uR = 0 and hence R = g(uR) = 0, which is a
contradiction. Thus, by Ljusternik’s theorem, there exist constants λ1, λ2, λ

2
1 +λ2

2 6= 0 such
that λ1f

′(uR) + λ2g
′(uR) = 0. Since uR is an ordinary point, it follows that λ1 6= 0, and

therefore λR = −λ2/λ1. �

Remark. In applying this theorem one should be careful and not choose g(u) = ‖u‖, since
this g is not weakly continuous.

The following interpolation inequality, often referred to as Ehrling’s inequality, will
be useful in Sobolev spaces.

Theorem 1.46. Let X,Y, Z be three Banach spaces such that

X ⊂ Y ⊂ Z.
Assume that the embedding X ⊂ Y is compact and the embedding Y ⊂ Z is continuous.
Then for each ε > 0, there is a constant c(ε) such that

(1.16) ‖u‖Y ≤ ε‖u‖X + c(ε)‖u‖Z for all u ∈ X.

Proof. If for a fixed ε > 0 the inequality is false, then there exists a sequence {un} such
that

(1.17) ‖un‖Y > ε‖un‖X + n‖un‖Z for all n.

As un 6= 0, without loss of generality, we can assume ‖un‖X = 1. Since the embedding
X ⊂ Y is compact, there is a subsequence, again denoted by {un}, with un → u in Y . This
implies un → u in Z. By (1.17), ‖un‖Y > ε and so u 6= 0. Again by (1.17), un → 0 in Z,
i.e., u = 0, which is a contradiction. �



Chapter 2

Sobolev Spaces

This chapter is devoted to a discussion of the necessary Sobolev function spaces which
permit a modern approach to the study of differential equations.

2.1. Weak Derivatives and Sobolev Spaces

2.1.1. Weak Derivatives. Let Ω be a nonempty open set in Rn. Suppose u ∈ Cm(Ω) and
ϕ ∈ Cm0 (Ω). Then by integration by parts

(2.1)

∫
Ω
uDαϕdx = (−1)|α|

∫
Ω
vϕdx, |α| ≤ m

where α = (α1, α2, · · · , αn) is an n-tuple and v = Dαu = ∂α1
x1
∂α2
x2
· · · ∂αnxn u.

Motivated by (2.1), we now enlarge the class of functions for which the notion of deriv-
ative can be generalized.

Let u ∈ L1
loc(Ω). A function v ∈ L1

loc(Ω) is called the αth weak derivative of u if it
satisfies

(2.2)

∫
Ω
uDαϕdx = (−1)|α|

∫
Ω
vϕdx for all ϕ ∈ C |α|0 (Ω).

It can be easily shown that weak derivatives are unique. Thus we write v = Dαu to indicate
that v is the αth weak derivative of u. If a function u has an ordinary αth derivative lying
in L1

loc(Ω), then it is clearly the αth weak derivative.

In contrast to the corresponding classical derivative, the weak derivative Dαu is defined
globally on all of Ω by (2.2). However, in every subregion Ω′ ⊂ Ω the function Dαu will
also be the weak derivative of u. It suffices to note that (2.2) holds for every function

ϕ ∈ C |α|0 (Ω′), and extended outside Ω′ by assigning to it the value zero. In particular, the
weak derivative (if it exists) of a function u having compact support in Ω has itself compact
support in Ω and thus belongs to L1(Ω).

We also note that in contrast to the classical derivative, the weak derivative Dαu is
defined at once for order |α| without assuming the existence of corresponding derivatives of
lower orders. In fact, the derivatives of lower orders may not exist even we have a higher
order weak derivative exists.

28
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Example 2.1. (a) Consider the function u(x) = sgnx1+sgnx2 in the ball Ω = B(0, 1) ⊂ R2.
Show that the weak derivative ux1 does not exist, but the weak derivative ux1x2 does exist
and equals 0. In fact, for any ϕ ∈ C2

0 (Ω)∫
Ω
uϕx1x2dx = 2

∫
Ω+

ϕx1x2dx− 2

∫
Ω−

ϕx1x2dx = 2ϕ(0, 0)− 2ϕ(0, 0) = 0,

where Ω+ = Ω ∩ (x1 > 0, x2 > 0), Ω− = Ω ∩ (x1 < 0, x2 < 0). However,
∫

Ω uϕx1 =

−2
∫ 1
−1 ϕ(0, x2)dx2, which can not be written as

∫
Ω vϕ dx for any function v.

(b) The function u(x) = |x1| has in the ball Ω = B(0, 1) weak derivatives ux1 =
sgn x1, uxi = 0, i = 2, . . . , n. In fact, we apply formula (2.2) as follows: For any ϕ ∈ C1

0 (Ω)∫
Ω
|x1|ϕx1dx =

∫
Ω+

x1ϕx1dx−
∫

Ω−
x1ϕx1dx

where Ω+ = Ω ∩ (x1 > 0), Ω− = Ω ∩ (x1 < 0). Since x1ϕ = 0 on ∂Ω and also for x1 = 0,
an application of the divergence theorem yields∫

Ω
|x1|ϕx1dx = −

∫
Ω+

ϕdx+

∫
Ω−

ϕdx = −
∫

Ω
(sgn x1)ϕdx.

Hence |x1|x1 = sgn x1. Similarly, since for i ≥ 2∫
Ω
|x1|ϕxidx =

∫
Ω

(|x1|ϕ)xidx = −
∫

Ω
0ϕdx

|x1|xi = 0 for i = 2, . . . , n. Note that the function |x1| has no classical derivative with
respect to x1 in Ω.

(c) Let Ω = B(0, 1/2) ⊂ R2 and define u(x) = ln(ln(2/r)), x ∈ Ω, where r = |x| =

(x2
1 + x2

2)1/2. Then u 6∈ L∞(Ω) because of the singularity at the origin. However, we will
show that u has weak first partial derivatives; in fact all first weak derivatives are in L2(Ω).

First of all u ∈ L2(Ω), for∫
Ω
|u|2dx =

∫ 2π

0

∫ 1/2

0
r[ln(ln(2/r))]2dr dθ

and a simple application of L’hopitals rule shows that the integrand is bounded and thus
the integral is finite. Similarly, it is easy to check that the classical partial derivative

ux1 =
− cos θ

r ln(2/r)
, where x1 = r cos θ

also belongs to L2(Ω). Now we show that the defining equation for the weak derivative is
met.

Let Ωε = {x : ε < r < 1/2} and choose ϕ ∈ C1
0 (Ω). Then by the divergence theorem

and the absolute continuity of integrals∫
Ω
uϕx1dx = lim

ε→0

∫
Ωε

uϕx1dx = lim
ε→0

[
−
∫

Ωε

ux1ϕdx+

∫
r=ε

uϕn1ds

]
where n = (n1, n2) is the unit outward normal to Ωε on r = ε. But (ds = εdθ)

|
∫
r=ε

uϕn1ds| ≤
∫ 2π

0
|u| |ϕ|εdθ ≤ 2πεc ln(ln(2/ε))→ 0

as ε→ 0. Thus ∫
Ω
uϕx1dx = −

∫
Ω
ux1ϕdx.
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The same analysis applies to ux2 . Thus u has weak first partial derivatives given by the
classical derivatives which are defined on Ω\{0}.

2.1.2. Sobolev Spaces. For p ≥ 1 and k a nonnegative integer, we define

W k,p(Ω) = {u ∈ Lp(Ω): Dαu ∈ Lp(Ω), ∀ 0 < |α| ≤ k},

where Dαu denotes the αth weak derivative. When k = 0, W k,p(Ω) will mean Lp(Ω). It is
clear that W k,p(Ω) is a vector space.

A norm is introduced by defining

(2.3) ‖u‖k,p = ‖u‖Wk,p(Ω) =

∫
Ω

∑
|α|≤k

|Dαu|pdx

1/p

if 1 ≤ p <∞. For p =∞, we define norm in terms of ‖|Dαu|‖L∞(Ω). The space W k,p(Ω) is
known as a Sobolev space of order k.

We also introduce the space W k,p
0 (Ω) which is defined to be the closure of the space

Ck0 (Ω) with respect to the norm ‖ · ‖k,p. As we shall see shortly, W k,p(Ω) 6= W k,p
0 (Ω) for

k ≥ 1. (Unless Ω = Rn.)

Remark. The case p = 2 is special, since the spaces W k,2(Ω), W k,2
0 (Ω) will be Hilbert spaces

under the inner product

(u, v)k,2 = (u, v)Wk,2(Ω) =

∫
Ω

∑
|α|≤k

DαuDαvdx.

Since we shall be dealing mostly with these spaces in the sequel, we introduce the special
notation:

Hk(Ω) = W k,2(Ω), Hk
0 (Ω) = W k,2

0 (Ω).

Theorem 2.2. For 1 ≤ p ≤ ∞, the space W k,p(Ω) is a Banach space under the norm
defined. If 1 < p <∞, it is reflexive; if 1 ≤ p <∞, it is separable.

Proof. We only prove the case for 1 ≤ p <∞; the case when p =∞ is similar.
We first prove that W k,p(Ω) is complete with respect to the norm (2.3).

Let {un} be a Cauchy sequence of elements in W k,p(Ω), i.e.,

‖un − um‖pk,p =
∑
|α|≤k

∫
Ω
|Dαun −Dαum|pdx→ 0 as m,n→∞.

Then for any α, |α| ≤ k, when m,n→∞∫
Ω
|Dαun −Dαum|pdx→ 0

and, in particular, when |α| = 0 ∫
Ω
|un − um|pdx→ 0.

Since Lp(Ω) is complete, it follows that there are functions uα ∈ Lp(Ω), |α| ≤ k such that
Dαun → uα (in Lp(Ω)). Since each un(x) has weak derivatives (up to order k) belonging
to Lp(Ω), a simple limit argument shows that uα is the αth weak derivative of u0. In fact,∫

Ω
uDαϕdx←

∫
Ω
unD

αϕdx = (−1)|α|
∫

Ω
ϕDαundx→ (−1)|α|

∫
Ω
uαϕdx.
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Hence u0 ∈W k,p(Ω) and ‖un − u0‖k,p → 0 as n→∞.

Consider the map T : W 1,p(Ω)→ (Lp(Ω))n+1 defined by

Tu = (u,D1u, . . . ,Dnu).

If we endow the latter space with the norm

‖v‖ = (

n+1∑
i=1

‖vi‖pp)1/p

for v = (v1, . . . , vn+1) ∈ (Lp(Ω))n+1, then T is a (linear) isometry. Now (Lp(Ω))n+1 is
reflexive for 1 < p <∞ and separable for 1 ≤ p <∞. Since W 1,p(Ω) is complete, its image
under the isometry T is a closed subspace of (Lp(Ω))n+1 which inherits the corresponding
properties as does W 1,p(Ω). Similarly, we can handle the case k ≥ 2. �

Example 2.3. Let Ω be a bounded open connected set in Rn. Divide Ω into N open disjoint
subsets Ω1,Ω2, . . . ,ΩN . Suppose the function u : Ω→ R has the following properties:

(i) u is continuous on Ω̄.

(ii) For some i, Diu is continuous on Ω1,Ω2, . . . ,ΩN , and can be extended contin-
uously to Ω̄1, Ω̄2, . . . , Ω̄N , respectively.

(iii) The surfaces of discontinuity are such that the divergence theorem applies.

Define wi(x) = Diu(x) if x ∈ ∪Ni=1Ωi. Otherwise, wi can be arbitrary. We now claim
that wi ∈ Lp(Ω) is a weak partial derivative of u on Ω.

Indeed, for all ϕ ∈ C1
0 (Ω), the divergence theorem yields∫

Ω
uDiϕdx =

∑
j

∫
Ωj

uDiϕdx

=
∑
j

(∫
∂Ωj

uϕnidS −
∫

Ωj

ϕDiudx

)

= −
∫

Ω
ϕDiudx.

Note that the boundary terms either vanish, since ϕ has compact support, or cancel out
along the common boundaries, since u is continuous and the outer normals have opposite
directions. Similarly, if u ∈ Ck(Ω̄) and has piecewise continuous derivatives in Ω of order
k + 1, then u ∈W k+1,p(Ω).

Remark. More generally, by using a partition of unity argument, we can show the following:
If O is a collection of nonempty open sets whose union is Ω and if u ∈ L1

loc(Ω) is such that

for some multi-index α, the αth weak derivative of u exists on each member of O, then the
αth weak derivative of u exists on Ω.

2.2. Approximations and Extensions

2.2.1. Approximations. Let x ∈ Rn and let B(x, h) denote the open ball with center at
x and radius h. For each h > 0, let ωh(x) ∈ C∞(Rn) satisfy

ωh(x) ≥ 0; ωh(x) = 0 for |x| ≥ h,∫
Rn
ωh(x)dx =

∫
B(0,h)

ωh(x)dx = 1.
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Such functions are called mollifiers. For example, let

ω(x) =

{
k exp [(|x|2 − 1)−1], |x| < 1,

0, |x| ≥ 1,

where k > 0 is chosen so that
∫
Rn ω(x) dx = 1. Then, a family of mollifiers can be taken as

ωh(x) = h−nω(x/h) for h > 0.

Let Ω be a nonempty open set in Rn and let u ∈ L1(Ω). We set u = 0 outside Ω. Define
for each h > 0 the mollified function

uh(x) =

∫
Ω
ωh(x− y)u(y)dy

where ωh is a mollifier. There are two other forms in which uh can be represented, namely

(2.4) uh(x) =

∫
Rn
ωh(x− y)u(y)dy =

∫
B(x,h)

ωh(x− y)u(y)dy

the latter equality being valid since ωh vanishes outside the (open) ball B(x, h). Thus
the values of uh(x) depend only on the values of u on the ball B(x, h). In particular, if
dist(x, supp(u)) ≥ h, then uh(x) = 0.

Theorem 2.4. Let Ω be a nonempty open set in Rn. Then

(a) uh ∈ C∞(Rn).

(b) If supp(u) is a compact subset of Ω, then uh ∈ C∞0 (Ω) for all h sufficiently
small.

Proof. Since u is integrable and ωh ∈ C∞, the Lebesgue theorem on differentiating integrals
implies that for |α| <∞

Dαuh(x) =

∫
Ω
u(y)Dαωh(x− y)dy

i.e., uh ∈ C∞(Rn). Statement (b) follows from the remark preceding the theorem. �

With respect to a bounded set Ω we construct another set Ω(h) as follows: with each
point x ∈ Ω as center, draw a ball of radius h; the union of these balls is then Ω(h). Clearly
Ω(h) ⊃ Ω. Moreover, uh can be different from zero only in Ω(h).

Corollary 2.5. Let Ω be a nonempty bounded open set in Rn and let h > 0 be any number.
Then there exists a function η ∈ C∞(Rn) such that

0 ≤ η(x) ≤ 1; η(x) = 1, x ∈ Ω(h); η(x) = 0, x ∈ (Ω(3h))c.

Such a function is called a cut-off function for Ω.

Proof. Let χ(x) be the characteristic function of the set Ω(2h) : χ(x) = 1 for x ∈ Ω(2h), χ(x) =

0 for x 6∈ Ω(2h) and set

η(x) ≡ χh(x) =

∫
Rn
ωh(x− y)χ(y)dy.

Then

η(x) =

∫
Ω(2h)

ωh(x− y)dy ∈ C∞(Rn),

0 ≤ η(x) ≤
∫
Rn
ωh(x− y)dy = 1,
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and

η(x) =

∫
B(x,h)

ωh(x− y)χ(y)dy =

{∫
B(x,h) ωh(x− y)dy = 1, x ∈ Ω(h),

0, x ∈ (Ω(3h))c.

In particular, we note that if Ω′ ⊂⊂ Ω, there is a function η ∈ C∞0 (Ω) such that η(x) = 1

for x ∈ Ω′, and 0 ≤ η(x) ≤ 1 in Ω. �

Remark. Henceforth, the notation Ω′ ⊂⊂ Ω means that Ω′,Ω are open sets and that Ω′ ⊂ Ω.

We shall have need of the following well-known result.

Theorem 2.6. (Partition of Unity) Assume Ω ⊂ Rn is bounded and Ω ⊂⊂ ∪Ni=1Ωi,
where each Ωi is open. Then there exist C∞ functions ψi(x)(i = 1, . . . , N) such that

(a) 0 ≤ ψi(x) ≤ 1,

(b) ψi has its support in Ωi,

(c)
∑N

i=1 ψi(x) = 1 for every x ∈ Ω.

Lemma 2.7. Let Ω be a nonempty bounded open set in Rn. Then every u ∈ Lp(Ω) is
p-mean continuous, i.e.,∫

Ω
|u(x+ z)− u(x)|pdx→ 0 as z → 0.

Proof. Choose a > 0 large enough so that Ω is strictly contained in the ball B(0, a). Then
the function

U(x) =

{
u(x) if x ∈ Ω,
0 if x ∈ B(0, 2a) \ Ω

belongs to Lp(B(0, 2a)). For ε > 0, there is a function Ū ∈ C(B̄(0, 2a)) which satisfies the
inequality ‖U − Ū‖Lp(B(0,2a)) < ε/3. By multiplying Ū by an appropriate cut-off function,

it can be assumed that Ū(x) = 0 for x ∈ B(0, 2a)/B(0, a).

Therefore for |z| ≤ a, ‖U(x+ z)− Ū(x+ z)‖Lp(B(0,2a)) = ‖U(x)− Ū(x)‖Lp(B(0,a)) ≤ ε/3.

Since the function Ū is uniformly continuous in B(0, 2a), there is a δ > 0(δ < a) such that
‖Ū(x + z) − Ū(x)‖Lp(B(0,2a)) ≤ ε/3 whenever |z| < δ. Hence for |z| < δ we easily see that
‖u(x+ z)− u(x)‖Lp(Ω) = ‖U(x+ z)− U(x)‖Lp(B(0,2a)) ≤ ε. �

Theorem 2.8. Let Ω be a nonempty open set in Rn. If u ∈ Lp(Ω) (1 ≤ p <∞), then

(a) ‖uh‖p ≤ ‖u‖p
(b) ‖uh − u‖p → 0 as h→ 0.

If u ∈ Ck(Ω̄), where Ω̄ is compact, then

(c) ‖uh − u‖Ck(Ω̄′) → 0 as h→ 0,

where Ω′ ⊂⊂ Ω.
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Proof. If 1 < p < ∞, let q = p/(p − 1). Then ωh = ω
1/p
h ω

1/q
h and Hölder’s inequality

implies

|uh(x)|p ≤
∫

Ω
ωh(x− y)|u(y)|pdy

(∫
Ω
ωh(x− y)dy

)p/q
≤

∫
Ω
ωh(x− y)|u(y)|pdy

which obviously holds also for p = 1. An application of Fubini’s Theorem gives∫
Ω
|uh(x)|pdx ≤

∫
Ω

(∫
Ω
ωh(x− y)dx

)
|u(y)|pdy ≤

∫
Ω
|u(y)|pdy

which implies (a).

To prove (b), let ω(x) = hnωh(hx). Then ω(x) ∈ C∞(Rn) and satisfies

ω(x) ≥ 0; ω(x) = 0 for |x| ≥ 1∫
Rn
ω(x)dx =

∫
B(0,1)

ω(x)dx = 1.

Using the change of variable z = (x− y)/h we have

uh(x)− u(x) =

∫
B(x,h)

[u(y)− u(x)]ωh(x− y)dy

=

∫
B(0,1)

[u(x− hz)− u(x)]ω(z)dz.

Hence by Hölder’s inequality

|uh(x)− u(x)|p ≤ d
∫
B(0,1)

|u(x− hz)− u(x)|pdz

and so by Fubini’s Theorem∫
Ω
|uh(x)− u(x)|pdx ≤ d

∫
B(0,1)

(

∫
Ω
|u(x− hz)− u(x)|pdx)dz.

The right-hand side goes to zero as h→ 0 since every u ∈ Lp(Ω) is p-mean continuous.

We now prove (c) for k = 0. Let Ω′,Ω′′ be such that Ω′ ⊂⊂ Ω′′ ⊂⊂ Ω. Let h0 be the
shortest distance between ∂Ω′ and ∂Ω′′. Take h < h0. Then

uh(x)− u(x) =

∫
B(x,h)

[u(y)− u(x)]ωh(x− y)dy.

If x ∈ Ω̄′, then in the above integral y ∈ Ω̄′′. Now u is uniformly continuous in Ω̄′′ and
ωh ≥ 0, and therefore for an arbitrary ε > 0 we have

|uh(x)− u(x)| ≤ ε
∫
B(x,h)

ωh(x− y)dy = ε

provided h is sufficiently small. The case k ≥ 1 is handled similarly and is left as an
exercise. �
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Remark. The following example shows that in (c) we cannot replace Ω′ by Ω. Let u ≡ 1 for

x ∈ [0, 1] and consider uh(x) =
∫ 1

0 ωh(x− y)dy, where ωh(y) = ωh(−y). Now
∫ h
−h ωh(y)dy =

1 and so uh(0) = 1/2 for all h < 1. Thus uh(0)→ 1/2 6= 1 = u(0). Moreover, for x ∈ (0, 1)

and h sufficiently small, (x− h, x+ h) ⊂ (0, 1) and so uh(x) =
∫ x+h
x−h ωh(x− y)dy = 1 which

implies uh(x)→ 1 for all x ∈ (0, 1).

Corollary 2.9. Let Ω be a nonempty open set in Rn. Then C∞0 (Ω) is dense in Lp(Ω) for
all 1 ≤ p <∞.

Proof. Suppose first that Ω is bounded and let Ω′ ⊂⊂ Ω. For a given u ∈ Lp(Ω) set

v(x) =

{
u(x), x ∈ Ω′

0, x ∈ Ω\Ω′.

Then ∫
Ω
|u− v|pdx =

∫
Ω\Ω′

|u|pdx.

By the absolute continuity of integrals, we can choose Ω′ so that the integral on the right
is arbitrarily small, i.e., ‖u− v‖p < ε/2.

Since supp(v) is a compact subset of Ω, Theorems 2.4(b) and 2.8(b) imply that for h
sufficiently small, vh(x) ∈ C∞0 (Ω) with ‖v − vh‖p < ε/2, and therefore ‖u− vh‖p < ε.

If Ω is unbounded, choose a ball B large enough so that∫
Ω\Ω′

|u|pdx < ε/2

where Ω′ = Ω ∩B, and repeat the proof just given. �

We now consider the following local approximation theorem.

Theorem 2.10. Let Ω be a nonempty open set in Rn and suppose u, v ∈ L1
loc(Ω). Then

v = Dαu iff, for each compact set S ⊂ Ω, there exists a sequence of C∞(Ω) functions {uh}
with ‖uh − u‖L1(S) → 0, ‖Dαuh − v‖L1(S) → 0 as h→ 0.

Proof. (Necessity) Suppose v = Dαu. Let S ⊂ Ω be compact, and choose d > 0 small

enough so that the sets Ω′ ≡ S(d/2),Ω′′ ≡ S(d) satisfy Ω′ ⊂⊂ Ω′′ ⊂⊂ Ω. For x ∈ Rn define

uh(x) =

∫
Ω′′
ωh(x− y)u(y)dy, vh(x) =

∫
Ω′′
ωh(x− y)v(y)dy.

Clearly, uh, vh ∈ C∞(Rn) for h > 0. Moreover, from Theorem 2.8 we have ‖uh − u‖L1(S) ≤
‖uh − u‖L1(Ω′′) → 0.

Now we note that if x ∈ Ω′ and 0 < h < d/2, then ωh(x − y) ∈ C∞0 (Ω′′). Thus by
Theorem 2.4 and the definition of weak derivative,

Dαuh(x) =

∫
Ω′′
u(y)Dα

xωh(x− y)dy = (−1)|α|
∫

Ω′′
u(y)Dα

y ωh(x− y)dy

=

∫
Ω′′
ωh(x− y) · v(y)dy = vh(x).

Thus, ‖Dαuh − v‖L1(S) → 0.

(Sufficiency) Choose ϕ ∈ C |α|0 (Ω) and consider a compact set S ⊃ supp(ϕ). Then as
h→∞ ∫

S
uDαϕdx←

∫
S
uhD

αϕdx = (−1)|α|
∫
S
ϕDαuhdx→ (−1)|α|

∫
S
vϕdx
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which is the claim. �

If u is equal to a constant (a.e.) in Ω, then u has the weak derivative Dαu = 0, |α| > 0.
An application of Theorem 2.10 yields the converse:

Theorem 2.11. Let Ω be a bounded open connected set in Rn. If u ∈ L1
loc(Ω) has a weak

derivative Dαu = 0 whenever |α| = 1, then u =const. a.e. in Ω.

Proof. Let Ω′ ⊂⊂ Ω. Then for x ∈ Ω′ and with uh as in Theorem 2.10, Dαuh(x) =
(Dαu)h(x) = 0 for all h sufficiently small. Thus uh = const = c(h) in Ω′ for such h. Since
‖uh − u‖L1(Ω′) = ‖c(h)− u‖L1(Ω′) → 0 as h→ 0, it follows that

‖c(h1)− c(h2)‖L1(Ω′) = |c(h1)− c(h2)|mes(Ω′)→ 0 as h1, h2 → 0.

Consequently, c(h) = uh converges uniformly and thus in L1(Ω′) to some constant. Hence
u = const(a.e.) in Ω′ and therefore also in Ω, by virtue of it being connected. �

We now note some properties of W k,p(Ω) which follow easily from the results of this
and the previous section.

(a) If Ω′ ⊂ Ω and if u ∈W k,p(Ω), then u ∈W k,p(Ω′).

(b) If u ∈ W k,p(Ω) and |a(x)|k,∞ < ∞, then au ∈ W k,p(Ω). In this case any weak
derivative Dα(au) is computed according to the usual rule of differentiating the
product of functions.

(c) If u ∈ W k,p(Ω) and uh is its mollified function, then for any compact set S ⊂
Ω, ‖uh−u‖Wk,p(S) → 0 as h→ 0. If in addition, u has compact support in Ω, then

‖uh − u‖k,p → 0 as h→ 0.

More generally, we have the following global approximation theorems. (The proofs make
use of a partition of unity argument; see Evans’s book.)

Theorem 2.12. (Meyers-Serrin) Assume Ω is bounded and let u ∈W k,p(Ω), 1 ≤ p <∞.
Then there exist functions um ∈ C∞(Ω) ∩W k,p(Ω) such that

um → u in W k,p(Ω).

In other words, C∞(Ω) ∩W k,p(Ω) is dense in W k,p(Ω).

Theorem 2.13. Assume Ω is bounded and ∂Ω ∈ C1. Let u ∈ W k,p(Ω), 1 ≤ p <∞. Then
there exist functions um ∈ C∞(Ω̄) such that

um → u in W k,p(Ω).

In other words, C∞(Ω̄) is dense in W k,p(Ω).

Example 2.14. (a) Prove the product rule for weak derivatives:

Di(uv) = (Diu)v + u(Div)

where u,Diu are locally Lp(Ω), v,Div are locally Lq(Ω) (p > 1, 1/p+ 1/q = 1).

(b) If u ∈W k,p
0 (Ω) and v ∈ Ck(Ω̄), prove that uv ∈W k,p

0 (Ω).

(c) If u ∈W k,p(Ω) and v ∈ Ck0 (Ω), prove that uv ∈W k,p
0 (Ω).

Theorem 2.15. (Chain Rule) Let Ω be a bounded open set in Rn. Let f ∈ C1(R), |f ′(s)| ≤
M for all s ∈ R and suppose u has a weak derivative Dαu for |α| = 1. Then the composite
function f ◦ u has a weak derivative Dα(f ◦ u) = f ′(u)Dαu. Moreover, if f(0) = 0 and if
u ∈W 1,p(Ω), then f ◦ u ∈W 1,p(Ω).
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Proof. According to Theorem 2.10, there exists a sequence {uh} ⊂ C1(Ω) such that ‖uh−
u‖L1(Ω′) → 0, ‖Dαuh −Dαu‖L1(Ω′) → 0 as h→ 0, where Ω′ ⊂⊂ Ω. Thus∫

Ω′
|f(uh)− f(u)|dx ≤ sup |f ′|

∫
Ω′
|uh − u|dx→ 0 as h→ 0∫

Ω′
|f ′(uh)Dαuh − f ′(u)Dαu|dx ≤ sup |f ′|

∫
Ω′
|Dαuh −Dαu|dx

+

∫
Ω′
|f ′(uh)− f ′(u)||Dαu|dx.

Since ‖uh − u‖L1(Ω′) → 0, there exists a subsequence of {uh}, which we call {uh} again,

which converges a.e. in Ω′ to u. Moreover, since f ′ is continuous, {f ′(uh)} converges to f ′(u)
a.e. in Ω′. Hence the last integral tends to zero by the dominated convergence theorem.
Consequently, the sequences {f(uh)}, {f ′(uh)Dαuh} tend to f(u), f ′(u)Dαu respectively,
and the first conclusion follows by an application of Theorem 2.10 again.

Since f(0) = 0, the mean value theorem implies |f(s)| ≤ M |s| for all s ∈ R. Thus,
|f(u(x))| ≤ M |u(x)| for all x ∈ Ω and so f ◦ u ∈ Lp(Ω) if u ∈ Lp(Ω). Similarly,
f ′(u(x))Dαu ∈ Lp(Ω) if u ∈W 1,p(Ω), which shows that f ◦ u ∈W 1,p(Ω). �

Corollary 2.16. Let Ω be a bounded open set in Rn. If u has an αth weak derivative
Dαu, |α| = 1, then so does |u| and

Dα|u| =


Dαu if u > 0

0 if u = 0
−Dαu if u < 0

i.e., Dα|u| = (sgn u)Dαu for u 6= 0. In particular, if u ∈W 1,p(Ω), then |u| ∈W 1,p(Ω).

Proof. The positive and negative parts of u are defined by

u+ = max{u, 0}, u− = min{u, 0}.
If we can show that Dαu+ exists and that

Dαu+ =

{
Dαu if u > 0

0 if u ≤ 0

then the result for |u| follows easily from the relations |u| = u+ − u− and u− = −(−u)+.
Thus, for h > 0 define

fh(u) =

{
(u2 + h2)

1
2 − h if u > 0

0 if u ≤ 0.

Clearly fh ∈ C1(R) and f ′h is bounded on R. By Theorem 2.15, fh(u) has a weak derivative,
and for any ϕ ∈ C1

0 (Ω)∫
Ω
fh(u)Dαϕdx = −

∫
Ω
Dα(fh(u))ϕdx = −

∫
u>0

ϕ
uDαu

(u2 + h2)
1
2

dx.

Upon letting h → 0, it follows that fh(u) → u+, and so by the dominating convergence
theorem ∫

Ω
u+Dαϕdx = −

∫
u>0

ϕDαudx = −
∫

Ω
vϕdx

where

v =

{
Dαu if u > 0
0 if u ≤ 0

which establishes the desired result for u+. �
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Remark. Since u = u+ + u−, we have ∂u/∂xi = ∂u+/∂xi + ∂u−/∂xi. Consequently,
∂u/∂xi = 0 a.e. on {u = c} = {x ∈ Ω : u(x) = c}.

The following result is of independent importance.

Theorem 2.17. un ⇀ u in W k,p(Ω), if and only if Dαun ⇀ Dαu in Lp(Ω) for all |α| ≤ k.

Theorem 2.18. Let f : R → R be Lipschitz continuous with f(0) = 0. Then if Ω is a

bounded open set in Rn, 1 < p <∞ and u ∈W 1,p
0 (Ω), we have f ◦ u ∈W 1,p

0 (Ω).

Proof. Given u ∈ W 1,p
0 (Ω), let un ∈ C1

0 (Ω) with ‖un − u‖1,p → 0 and define vn = f ◦ un.
Since un has compact support and f(0) = 0, vn has compact support. Also vn is Lipschitz
continuous, for

|vn(x)− vn(y)| = |f(un(x))− f(un(y))| ≤ c|un(x)− un(y)| ≤ cn|x− y|.

Hence vn ∈ Lp(Ω). Since vn is absolutely continuous on any line segment in Ω, its par-
tial derivatives (which exist almost everywhere) coincide almost everywhere with the weak
derivatives. Moreover, we see from above that |∂vn/∂xi| ≤ cn for 1 ≤ i ≤ n, and as Ω is
bounded, ∂vn/∂xi ∈ Lp(Ω). Thus vn ∈ W 1,p(Ω) and has compact support, which implies

vn ∈W 1,p
0 (Ω). From the relation

|vn(x)− f(u(x))| ≤ c|un(x)− u(x)|

it follows that ‖vn − f ◦ u‖p → 0. Furthermore, if ei is the standard ith basis vector in Rn,
we have

|vn(x+ hei)− vn(x)|
|h|

≤ c |un(x+ hei)− un(x)|
|h|

and so

lim sup
n→∞

‖∂vn
∂xi
‖p ≤ c lim sup

n→∞
‖∂un
∂xi
‖p.

But, {∂un/∂xi} is a convergent sequence in Lp(Ω) and therefore {∂vn/∂xi} is bounded in

Lp(Ω) for each 1 ≤ i ≤ n. Since ‖vn‖1,p is bounded and W 1,p
0 (Ω) is reflexive, a subsequence

of {vn} converges weakly in W 1,p(Ω), and thus weakly in Lp(Ω) to some element of W 1,p
0 (Ω).

Thus, f ◦ u ∈W 1,p
0 (Ω). �

Remark. In terms of the trace operator (defined later) we have γ0(f ◦ u) = f ◦ γ0(u).

Corollary 2.19. Let u ∈W 1,p
0 (Ω). Then |u|, u+, u− ∈W 1,p

0 (Ω).

Proof. We apply the preceding theorem with f(t) = |t|. Thus |u| ∈ W 1,p
0 (Ω). Now

u+ = (|u|+ u)/2 and u− = (u− |u|)/2. Thus u+, u− ∈W 1,p
0 (Ω). �

2.2.2. Extensions. If Ω ⊂ Ω′, then any function u(x) ∈ Ck0 (Ω) has an obvious extension

U(x) ∈ Ck0 (Ω′) by zero outside of Ω. From the definition of W k,p
0 (Ω) it follows that the

function u(x) ∈W k,p
0 (Ω) and extended as being equal to zero in Ω′\Ω belongs to W k,p

0 (Ω′).
In general, a function u ∈W k,p(Ω) and extended by zero to Ω′ will not belong to W k,p(Ω′).

(Consider the function u(x) ≡ 1 in Ω.) This also shows that in general W k,p(Ω) 6= W k,p
0 (Ω).

We now consider a more general extension result.

Theorem 2.20. Let Ω be a bounded open set in Rn with Ω ⊂⊂ Ω′ and assume k ≥ 1.
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(a) If ∂Ω ∈ Ck, then any function u(x) ∈ W k,p(Ω) has an extension U(x) ∈
W k,p(Ω′) into Ω′ with compact support. Moreover,

‖U‖Wk,p(Ω′) ≤ c‖u‖Wk,p(Ω)

where the constant c > 0 does not depend on u.

(b) If ∂Ω ∈ Ck, then any function u(x) ∈ Ck(Ω̄) has an extension U(x) ∈ Ck0 (Ω′)
into Ω′ with compact support. Moreover,

‖U‖Ck(Ω̄′) ≤ c‖u‖Ck(Ω̄), ‖U‖Wk,p(Ω′) ≤ c‖u‖Wk,p(Ω)

where the constant c > 0 does not depend on u.

(c) If ∂Ω ∈ Ck, then any function u(x) ∈ Ck(∂Ω) has an extension U(x) into Ω
which belongs to Ck(Ω̄). Moreover

‖U‖Ck(Ω̄) ≤ c‖u‖Ck(∂Ω)

where the constant c > 0 does not depend on u.

Proof. Suppose first that u ∈ Ck(Ω̄). Let y = ψ(x) define a Ck diffeomorphism that
straightens the boundary near x0 = (x0

1, . . . , x
0
n) ∈ ∂Ω. In particular, we assume there is a

ball B = B(x0) such that ψ(B ∩Ω) ⊂ Rn+ (i.e., yn > 0), ψ(B ∩ ∂Ω) ⊂ ∂Rn+. (e.g., we could
choose yi = xi − x0

i for i = 1, . . . , n− 1 and yn = xn − ϕ(x1, . . . , xn−1), where ϕ is of class
Ck. Moreover, without loss of generality, we can assume yn > 0 if x ∈ B ∩ Ω.)

Let G and G+ = G ∩ Rn+ be respectively, a ball and half-ball in the image of ψ such
that ψ(x0) ∈ G. Setting ū(y) = u ◦ ψ−1(y) and y = (y1, . . . , yn−1, yn) = (y′, yn), we define
an extension Ū(y) of ū(y) into yn < 0 by

Ū(y′, yn) =
k+1∑
i=1

ciū(y′,−yn/i), yn < 0

where the ci are constants determined by the system of equations

(2.5)
k+1∑
i=1

ci(−1/i)m = 1, m = 0, 1, . . . , k.

Note that the determinant of the system (2.5) is nonzero since it is the Vandemonde deter-
minant. One verifies readily that the extended function Ū is continuous with all derivatives
up to order k in G. For example,

lim
y→(y′,0)

Ū(y) =
k+1∑
i=1

ciū(y′, 0) = ū(y′, 0)

by virtue of (2.5) with m = 0. A similar computation shows that

lim
y→(y′,0)

Ūyi(y) = ūyi(y
′, 0), i = 1, . . . , n− 1.

Finally

lim
y→(y′,0)

Ūyn(y) =

k+1∑
i=1

ci(−1/i)ūyn(y′, 0) = ūyn(y′, 0)

by virtue of (2.5) with m = 1. Similarly we can handle the higher derivatives.
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Thus w = Ū ◦ψ ∈ Ck(B′) for some ball B′ = B′(x0) and w = u in B′∩Ω, (If x ∈ B′∩Ω,
then ψ(x) ∈ G+ and w(x) = Ū(ψ(x)) = ū(ψ(x)) = u(ψ−1ψ(x)) = u(x)) so that w provides
a Ck extension of u into Ω ∪B′. Moreover,

sup
G+

|ū(y)| = sup
G+

|u(ψ−1(y))| ≤ sup
Ω
|u(x)|

and since x ∈ B′ implies ψ(x) ∈ G

sup
B′
|Ū(ψ(x))| ≤ c sup

G+

|ū(y)| ≤ c sup
Ω
|u(x)|.

Since a similar computation for the derivatives holds, it follows that there is a constant
c > 0, independent of u, such that

‖w‖Ck(Ω̄∪B′) ≤ c‖u‖Ck(Ω̄).

Now consider a finite covering of ∂Ω by balls Bi, i = 1, . . . , N , such as B in the
preceding, and let {wi} be the corresponding Ck extensions. We may assume the balls Bi
are so small that their union with Ω is contained in Ω

′
. Let Ω0 ⊂⊂ Ω be such that Ω0 and

the balls Bi provide a finite open covering of Ω. Let {ηi}, i = 1, . . . , N , be a partition of
unity subordinate to this covering and set

w = uη0 +
∑

wiηi

with the understanding that wiηi = 0 if ηi = 0. Then w is an extension of u into Ω
′

and
has the required properties. Thus (b) is established.

(a) If u ∈W k,p(Ω), then by Theorem 2.13, there exist functions um ∈ C∞(Ω̄) such that
um → u in W k,p(Ω). Let Ω ⊂ Ω′′ ⊂ Ω′, and let Um be the extension of um to Ω′′ as given
in (b). Then

‖Um − Ul‖Wk,p(Ω′′) ≤ c‖um − ul‖Wk,p(Ω)

which implies that {Um} is a Cauchy sequence and so converges to a U ∈ W k,p
0 (Ω′′), since

Um ∈ Ck0 (Ω′′). Now extend Um, U by 0 to Ω′. It is easy to see that U is the desired
extension.

(c) At any point x0 ∈ ∂Ω let the mapping ψ and the ball G be defined as in (b). By
definition, u ∈ Ck(∂Ω) implies that ū = u◦ψ−1 ∈ Ck(G∩∂Rn+). We define Φ̄(y′, yn) = ū(y′)

in G and set Φ(x) = Φ̄ ◦ψ(x) for x ∈ ψ−1(G). Clearly, Φ ∈ Ck(B̄) for some ball B = B(x0)
and Φ = u on B∩∂Ω. Now let {Bi} be a finite covering of ∂Ω by balls such as B and let Φi

be the corresponding Ck functions defined on Bi. For each i, we define the function Ui(x)
as follows: in the ball Bi take it equal to Φi, outside Bi take it equal to zero if x 6∈ ∂Ω and
equal to u(x) if x ∈ ∂Ω. The proof can now be completed as in (b) by use of an appropriate
partition of unity. �

2.2.3. Trace Theorems. Unless otherwise stated, Ω will denote a bounded open con-
nected set in Rn, i.e., a bounded domain.

Let Γ be a surface which lies in Ω̄ and has the representation

xn = ϕ(x′), x′ = (x1, . . . , xn−1)

where ϕ(x′) is Lipschitz continuous in Ū . Here U is the projection of Γ onto the coordinate
plane xn = 0. Let p ≥ 1. A function u defined on Γ is said to belong to Lp(Γ) if

‖u‖Lp(Γ) ≡ (

∫
Γ
|u(x)|pdS)

1
p <∞
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where ∫
Γ
|u(x)|pdS =

∫
U
|u(x′, ϕ(x′))|p[1 +

n−1∑
i=1

(
∂ϕ

∂xi
(x′))2]

1
2dx′.

Thus Lp(Γ) reduces to a space of the type Lp(U) where U is a domain in Rn−1.

For every function u ∈ C(Ω̄), its values γ0u ≡ u|Γ on Γ are uniquely given. The function
γ0u will be called the trace of the function u on Γ. Note that u ∈ Lp(Γ) since γ0u ∈ C(Γ).

On the other hand, if we consider a function u defined a.e. in Ω (i.e., functions are
considered equal if they coincide a.e.), then the values of u on Γ are not uniquely determined
since meas(Γ) = 0. In particular, since ∂Ω has measure 0, there exist infinitely many
extensions of u to Ω̄ that are equal a.e. We shall therefore introduce the concept of trace for
functions in W 1,p(Ω) so that if in addition, u ∈ C(Ω̄), the new definition of trace reduces
to the definition given above.

Lemma 2.21. Let ∂Ω ∈ C0,1. Then for u ∈ C1(Ω̄),

(2.6) ‖γ0u‖Lp(∂Ω) ≤ c‖u‖1,p
where the constant c > 0 does not depend on u.

Proof. For simplicity, let n = 2. The more general case is handled similarly. In a neigh-
borhood of a boundary point x ∈ ∂Ω, we choose a local (ξ, η)-coordinate system, where the
boundary has the local representation

η = ϕ(ξ), −α ≤ ξ ≤ α

with the C0,1 function ϕ. Then there exists a β > 0 such that all the points (ξ, η) with

−α ≤ ξ ≤ α, ϕ(ξ)− β ≤ η ≤ ϕ(ξ)

belong to Ω̄. Let u ∈ C1(Ω̄). Then

u(ξ, ϕ(ξ)) =

∫ ϕ(ξ)

t
uη(ξ, η)dη + u(ξ, t)

where ϕ(ξ)− β ≤ t ≤ ϕ(ξ). Applying the inequality (a+ b)p ≤ 2p−1(ap + bp) together with
Hölder’s inequality we have

|u(ξ, ϕ(ξ))|p ≤ 2p−1βp−1

∫ ϕ(ξ)

ϕ(ξ)−β
|uη(ξ, η)|pdη + 2p−1|u(ξ, t)|p.

An integration with respect to t yields

β|u(ξ, ϕ(ξ))|p ≤ 2p−1

∫ ϕ(ξ)

ϕ(ξ)−β
[βp|uη(ξ, η)|p + |u(ξ, η)|p]dη.

Finally, integration over the interval [−α, α] yields

(2.7)

∫ α

−α
β|u(ξ, ϕ(ξ))|pdξ ≤ 2p−1

∫
S

(βp|uη|p + |u|p)dξdη

where S denotes a local boundary strip.

Suppose ϕ(·) is C1. Then the differential of arc length is given by ds = (1 + ϕ′2)1/2dξ.
Addition of the local inequalities (2.7) yields the assertion (2.6). Now if ϕ(·) is merely
Lipschitz continuous, then the derivative ϕ′ exists a.e. and is bounded. Thus we also
obtain (2.6). �
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Since C1(Ω̄) = W 1,p(Ω), the bounded linear operator γ0 : C1(Ω̄) ⊂ W 1,p(Ω)→ Lp(∂Ω)
can be uniquely extended to a bounded linear operator γ0 : W 1,p(Ω) → Lp(∂Ω) such that
(2.6) remains true for all u ∈ W 1,p(Ω). More precisely, we obtain γ0u in the following
way: Let u ∈ W 1,p(Ω). We choose a sequence {un} ⊂ C1(Ω̄) with ‖un − u‖1,p → 0. Then
‖γ0un − γ0u‖Lp(∂Ω) → 0.

The function γ0u (as an element of Lp(∂Ω)) will be called the trace of the function
u ∈ W 1,p(Ω) on the boundary ∂Ω. (‖γ0u‖Lp(∂Ω) will be denoted by ‖u‖Lp(∂Ω).) Thus the

trace of a function is defined for any element u ∈W 1,p(Ω).

The above discussion partly proves the following:

Theorem 2.22. (Trace) Suppose ∂Ω ∈ C1. Then there is a unique bounded linear operator
γ0 : W 1,p(Ω)→ Lp(∂Ω) such that γ0u = u|∂Ω for u ∈ C(Ω̄)∩W 1,p(Ω), and γ0(au) = γ0a·γ0u

for a(x) ∈ C1(Ω̄), u ∈W 1,p(Ω). Moreover, N (γ0) = W 1,p
0 (Ω) and R(γ0) = Lp(∂Ω).

Proof. Suppose u ∈ C(Ω̄) ∩ W 1,p(Ω). Then by Theorem 2.20, u can be extended into
Ω′(Ω ⊂⊂ Ω′) such that its extension U ∈ C(Ω̄′) ∩W 1,p(Ω′). Let Uh(x) be the mollified
function for U . Since Uh → U as h→ 0 in both the norms ‖·‖C(Ω̄), ‖·‖W 1,p(Ω), we find that

as h→ 0, Uh|∂Ω → u|∂Ω uniformly and Uh|∂Ω → γ0u in Lp(∂Ω). Consequently, γ0u = u|∂Ω.

Now au ∈W 1,p(Ω) if a ∈ C1(Ω̄), u ∈W 1,p(Ω) and consequently, γ0(au) is defined. Let
{un} ⊂ C1(Ω̄) with ‖un − u‖1,p → 0. Then

γ0(aun) = γ0a · γ0un

and the desired product formula follows by virtue of the continuity of γ0.

If u ∈ W 1,p
0 (Ω), then there is a sequence {un} ⊂ C1

0 (Ω) with ‖un − u‖1,p → 0. But

un|∂Ω = 0 and as n→∞, un|∂Ω → γ0u in Lp(∂Ω) which implies γ0u = 0. Hence W 1,p
0 (Ω) ⊂

N (γ0). Now suppose u ∈ N (γ0). If u ∈ W 1,p(Ω) has compact support in Ω, then by an

earlier remark, u ∈W 1,p
0 (Ω). If u does not have compact support in Ω, then it can be shown

that there exists a sequence of cut-off functions ηk such that ηku ∈ W 1,p(Ω) has compact
support in Ω, and moreover, ‖ηku − u‖1,p → 0. By using the corresponding mollified

functions, it follows that u ∈ W 1,p
0 (Ω) and N (γ0) ⊂ W 1,p

0 (Ω). Details can be found in
Evans’s book.

To see that R(γ0) = Lp(∂Ω), let f ∈ Lp(∂Ω) and let ε > 0 be given. Then there is a
u ∈ C1(∂Ω) such that ‖u− f‖Lp(∂Ω) < ε. If we let U ∈ C1(Ω̄) be the extension of u into Ω̄,

then clearly ‖γ0U − f‖Lp(∂Ω) < ε, which is the desired result since U ∈W 1,p(Ω). �

Remarks. (i) The range R(γ0) is the fractional Sobolev space W
1− 1

p
,p

(∂Ω); see [2].

(ii) Note that the function u ≡ 1 belongs to W 1,p(Ω) ∩ C(Ω̄) and its trace on ∂Ω is 1.

Hence this function does not belong to W 1,p
0 (Ω), which establishes the earlier assertion that

W 1,p
0 (Ω) 6= W 1,p(Ω).

Let u ∈ W k,p(Ω), k > 1. Since any weak derivative Dαu of order |α| < k belongs to
W 1,p(Ω), this derivative has a trace γ0D

αu belonging to Lp(∂Ω). Moreover

‖Dαu‖Lp(∂Ω) ≤ c‖Dαu‖1,p ≤ c‖u‖k,p
for constant c > 0 independent of u.

Assuming the boundary ∂Ω ∈ C1, the unit outward normal vector n to ∂Ω exists and
is bounded. Thus, the concept of traces makes it possible to introduce, for k ≥ 2, ∂u/∂n
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for u ∈ W k,p(Ω). More precisely, for k ≥ 2, there exist traces of the functions u, Diu so
that, if ni are the direction cosines of the normal, we may define

γ1u =
n∑
i=1

(γ0(Diu))ni, u ∈W k,p(Ω), k ≥ 2.

The trace operator γ1 : W k,p(Ω) → Lp(∂Ω) is continuous and γ1u = (∂u/∂n)|∂Ω for u ∈
C1(Ω̄) ∩W k,p(Ω).

For a function u ∈ Ck(Ω̄) we define the various traces of normal derivatives given by

γju =
∂ju

∂nj
|∂Ω, 0 ≤ j ≤ k − 1.

Each γj can be extended by continuity to all of W k,p(Ω) and we obtain the following:

Theorem 2.23. (Higher Trace) Suppose ∂Ω ∈ Ck. Then there is a unique continuous

linear operator γ = (γ0, γ1, . . . , γk−1) : W k,p(Ω) →
∏k−1
j=0 W

k−1−j,p(∂Ω) such that for u ∈
Ck(Ω̄)

γ0u = u|∂Ω, γju =
∂ju

∂nj
|∂Ω, j = 1, . . . , k − 1.

Moreover, N (γ) = W k,p
0 (Ω) and R(γ) =

∏k−1
j=0 W

k−1−j,p(∂Ω).

The Sobolev spaces W k−1−j,p(∂Ω), which are defined over ∂Ω, can be defined locally.

Theorem 2.24. (Integration by Parts) Let u, v ∈ H1(Ω) and let ∂Ω ∈ C1. Then for
any i = 1, . . . , n

(2.8)

∫
Ω
vDiudx =

∫
∂Ω

(γ0u · γ0v)nidS −
∫

Ω
uDivdx.

Proof. Let {un} and {vn} be sequences of functions in C1(Ω̄) with ‖un − u‖H1(Ω) →
0, ‖vn − v‖H1(Ω) → 0 as n→∞. Formula (2.8) holds for un, vn∫

Ω
vnDiundx =

∫
∂Ω
unvnnidS −

∫
Ω
unDivndx

and upon letting n→∞ relation (2.8) follows. �

Corollary 2.25. Let ∂Ω ∈ C1.

(a) If v ∈ H1(Ω) and u ∈ H2(Ω) then∫
Ω
v∆udx =

∫
∂Ω
γ0v · γ1udS −

∫
Ω

(∇u · ∇v)dx (Green’s 1st identity).

(b) If u, v ∈ H2(Ω) then∫
Ω

(v∆u− u∆v)dx =

∫
∂Ω

(γ0v · γ1u− γ0u · γ1v)dS (Green’s 2nd identity).

In these formulas ∇u ≡ (D1u, . . . ,Dnu) is the gradient vector and ∆u ≡
∑n

i=1Diiu is the
Laplace operator.

Proof. If in (2.8) we replace u by Diu and sum from 1 to n, then Green’s 1st identity is
obtained. Interchanging the roles of u, v in Green’s 1st identity and subtracting the two
identities yields Green’s 2nd identity. �
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Example 2.26. Establish the following one-dimensional version of the trace theorem: If
u ∈W 1,p(Ω), where Ω = (a, b), then

‖u‖Lp(∂Ω) ≡ (|u(a)|p + |u(b)|p)1/p ≤ const ‖u‖W 1,p(Ω)

where the constant is independent of u.

2.3. Sobolev Imbedding Theorems

We consider the following question: If a function u belongs to W k,p(Ω), does u automatically
belong to certain other spaces? The answer will be yes, but which other spaces depend upon
whether 1 ≤ kp < n, kp = n, n < kp <∞.

The result we want to prove is the following:

Theorem 2.27. (Sobolev-Rellich-Kondrachov) Let Ω ⊂ Rn be bounded and open with
∂Ω ∈ C1. Assume 1 ≤ p <∞ and k is a positive integer.

(a) If kp < n and 1 ≤ q ≤ np/(n− kp), then

W k,p(Ω) ⊂ Lq(Ω)

is a continuous imbedding; the imbedding is compact if 1 ≤ q < np/(n − kp).
Moreover,

(2.9) ‖u‖Lq(Ω) ≤ C‖u‖Wk,p(Ω)

where the constant C depends only on k,p,n and Ω.

(b) If kp = n and 1 ≤ r <∞, then

W k,p(Ω) ⊂ Lr(Ω)

is a compact imbedding and

(2.10) ‖u‖Lr(Ω) ≤ C‖u‖Wk,p(Ω)

where the constant depends only on k,p,n and Ω.

(c) If kp > n and 0 ≤ α ≤ k −m− n/p, then

W k,p(Ω) ⊂ Cm,α(Ω̄)

is a continuous imbedding; the imbedding is compact if 0 ≤ α < k − m − n/p.
Moreover,

(2.11) ‖u‖Cm,α(Ω̄) ≤ C‖u‖Wk,p(Ω)

where the constant C depends only on k,p,n,α and Ω.

(d) Let 0 ≤ j < k, 1 ≤ p, q <∞. Set d = 1/p− (k − j)/n. Then

W k,p ⊂W j,q

is a continuous imbedding for d ≤ 1/q; the imbedding is compact for d < 1/q.

The above results are valid for W k,p
0 (Ω) spaces on arbitrary bounded domains Ω.
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Remark. It is easy to check that the imbedding W 1,p(Ω) ⊂ Lp(Ω) is compact for all p ≥ 1
and all n.

A series of special results will be needed to prove the above theorem. Only selected
proofs will be given to illustrate some of the important techniques.

Suppose 1 ≤ p < n. Do there exist constants C > 0 and 1 ≤ q <∞ such that

(2.12) ‖u‖Lq(Rn) ≤ C‖∇u‖Lp(Rn)

for all u ∈ C∞0 (Rn)? The point is that the constants C and q should not depend on u.

We shall show that if such an inequality holds, then q must have a specific form. For
this choose any u ∈ C∞0 (Rn), u 6≡ 0, and define for λ > 0

uλ(x) ≡ u(λx) (x ∈ Rn).

Now ∫
IRn
|uλ|qdx =

∫
IRn
|u(λx)|qdx =

1

λn

∫
IRn
|u(y)|qdy

and ∫
IRn
|∇uλ|pdx = λp

∫
IRn
|∇u(λx)|pdx =

λp

λn

∫
IRn
|∇u(y)|pdy.

Inserting these inequalities into (2.12) we find

1

λn/q
‖u‖Lq(Rn) ≤ C

λ

λn/p
‖∇u‖Lp(Rn)

and so

(2.13) ‖u‖Lq(Rn) ≤ Cλ1−n/p+n/q‖∇u‖Lp(Rn).

But then if 1 − n/p + n/q > 0(< 0), we can upon sending λ to 0 (∞) in (2.13) obtain a
contradiction (u = 0). Thus we must have q = p* where

(2.14) p* =
np

n− p
is called the Sobolev conjugate of p. Note that then

(2.15)
1

p∗
=

1

p
− 1

n
, p∗ > p.

Next we prove that the inequality (2.12) is in fact correct.

Lemma 2.28. (Gagliardo-Nirenberg-Sobolev Inequality) Assume 1 ≤ p < n. Then
there is a constant C, depending only on p and n, such that

(2.16) ‖u‖Lp∗ (Rn) ≤ C‖∇u‖Lp(Rn)

for all u ∈ C1
0 (Rn).

Proof. First assume p = 1. Since u has compact support, for each i = 1, . . . , n we have

u(x) =

∫ xi

−∞
uxi(x1, . . . , xi−1, yi, xi+1, . . . , xn)dyi

and so

|u(x)| ≤
∫ ∞
−∞
|∇u(x1, . . . , yi, . . . , xn)|dyi (i = 1, . . . , n).
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Consequently

(2.17) |u(x)|
n
n−1 ≤

n∏
i=1

(∫ ∞
−∞
|∇u(x1, . . . , yi, . . . , xn)|dyi

) 1
n−1

.

Integrate this inequality with respect to x1:∫ ∞
−∞
|u(x)|

n
n−1dx1 ≤

∫ ∞
−∞

n∏
i=1

(∫ ∞
−∞
|∇u|dyi

) 1
n−1

dx1

=

(∫ ∞
−∞
|∇u|dy1

) 1
n−1

∫ ∞
−∞

n∏
i=2

(∫ ∞
−∞
|∇u|dyi

) 1
n−1

dx1

≤
(∫ ∞
−∞
|∇u|dy1

) 1
n−1

(
n∏
i=2

∫ ∞
−∞

∫ ∞
−∞
|∇u|dx1dyi

) 1
n−1

the last inequality resulting from the generalized Hölder inequality (1.1), with r = 1,
k = n− 1 and pi = n− 1.

We continue by integrating with respect to x2, . . . , xn and applying the generalized
Hölder inequality to eventually find (pull out an integral at each step)∫

IRn
|u(x)|

n
n−1dx ≤

n∏
i=1

(∫ ∞
−∞
· · ·
∫ ∞
−∞
|∇u|dx1 . . . dyi . . . dxn

) 1
n−1

=

(∫
IRn
|∇u|dx

) n
n−1

which is estimate (2.16) for p = 1.

Consider now the case that 1 < p < n. We shall apply the last estimate to v = |u|γ ,
where γ > 1 is to be selected. Note that at a point x0 where u(x0) 6= 0

(Div)(x0) =

{
γuγ−1Diu if u(x0) > 0
−γ(−u)γ−1Diu if u(x0) < 0

If u(x0) = 0, clearly (Div)(x0) exists at x0 and equals 0. Thus v ∈ C1
0 (Rn), and(∫

IRn
|u(x)|

γn
n−1dx

)n−1
n

≤
∫

IRn
|∇|u|γ |dx

= γ

∫
IRn
|u|γ−1|∇u|dx

≤ γ

(∫
IRn
|u|

p(γ−1)
p−1 dx

) p−1
p
(∫

IRn
|∇u|pdx

) 1
p

.

We set

γ =
p(n− 1)

n− p
> 1

in which case
γn

n− 1
=
p(γ − 1)

p− 1
=

np

n− p
= p∗.

Thus, the above estimate becomes(∫
IRn
|u|p∗dx

) 1
p∗

≤ C
(∫

IRn
|∇u|pdx

) 1
p

.
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�

Theorem 2.29. Let Ω ⊂ Rn be bounded and open, with ∂Ω ∈ C1. Assume 1 ≤ p < n, and
u ∈W 1,p(Ω). Then u ∈ Lp∗(Ω) and

(2.18) ‖u‖Lp∗ (Ω) ≤ C‖u‖W 1,p(Ω)

where the constant C depends only on p,n and Ω.

Proof. Since ∂Ω ∈ C1, there exists an extension U ∈ W 1,p(Rn) such that U = u in Ω, U
has compact support and

(2.19) ‖U‖W 1,p(Rn) ≤ C‖u‖W 1,p(Ω).

Moreover, since U has compact support, there exist mollified functions um ∈ C∞0 (Rn) such
that um → U in W 1,p(Rn). Now according to Lemma 2.28,

‖um − ul‖Lp∗ (Rn) ≤ C‖∇um −∇ul‖Lp(Rn)

for all l,m ≥ 1; whence um → U in Lp
∗
(Rn) as well. Since Lemma 2.28 also implies

‖um‖Lp∗ (Rn) ≤ C‖∇um‖Lp(Rn)

we get in the limit that

‖U‖Lp∗ (Rn) ≤ C‖∇U‖Lp(Rn).

This inequality and (2.19) complete the proof. �

Theorem 2.30. Let Ω ⊂ Rn be bounded and open. Assume 1 ≤ p < n, and u ∈ W 1,p
0 (Ω).

Then u ∈ Lq(Ω) and

‖u‖Lq(Ω) ≤ C‖∇u‖Lp(Ω)

for each q ∈ [1, p∗], the constant C depending only on p,q,n and Ω.

Proof. Since u ∈W 1,p
0 (Ω), there are functions um ∈ C∞0 (Ω) such that um → u in W 1,p(Ω).

We extend each function um to be 0 in Rn\Ω̄ and apply Lemma 2.28 to discover (as above)

‖u‖Lp∗ (Ω) ≤ C‖∇u‖Lp(Ω).

Since |Ω| <∞, we furthermore have

‖u‖Lq(Ω) ≤ C‖u‖Lp∗ (Ω)

for every q ∈ [1, p∗]. �

We now turn to the case n < p < ∞. The next result shows that if u ∈ W 1,p(Ω), then
u is in fact Hölder continuous, after possibly being redefined on a set of measure zero.

Theorem 2.31. (Morrey’s Inequality) Assume n < p <∞. Then there exists a constant
C, depending only on p and n, such that

(2.20) ‖u‖
C

0,1−np (Rn)
≤ C‖u‖W 1,p(Rn), ∀ u ∈ C1(Rn).

Proof. We first prove the following inequality: for all x ∈ Rn, r > 0 and all u ∈ C1(Rn),

(2.21)

∫
B(x,r)

|u(y)− u(x)| dy ≤ rn

n

∫
B(x,r)

|Du(y)|
|x− y|n−1

dy.
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To prove this, note that, for any w with |w| = 1 and 0 < s < r,

|u(x+ sw)− u(x)| =

∣∣∣∣∫ s

0

d

dt
u(x+ tw)dt

∣∣∣∣
=

∣∣∣∣∫ s

0
∇u(x+ tw) · wdt

∣∣∣∣
≤

∫ s

0
|∇u(x+ sw)| dt.

Now we integrate w over ∂B(0, 1) to obtain∫
∂B(0,1)

|u(x+ sw)− u(x)| dS ≤
∫ s

0

∫
∂B(0,1)

|∇u(x+ sw)| dSdt

=

∫
B(x,s)

|∇u(y)|
|x− y|n−1

dy

≤
∫
B(x,r)

|∇u(y)|
|x− y|n−1

dy.

Multiply both sides by sn−1 and integrate over s ∈ (0, r) and we obtain (2.21).
To establish the bound on ‖u‖C0(Rn), we observe that, by (2.21), for x ∈ Rn,

|u(x)| ≤ 1

|B(x, 1)|

∫
B(x,1)

|u(y)− u(x)| dy +
1

|B(x, 1)|

∫
B(x,1)

|u(y)| dy

≤ C

(∫
Rn
|∇u(y)|p dy

)1/p
(∫

B(x,1)
|y − x|

(1−n)p
p−1 dy

) p−1
p

+ C‖u‖Lp(Rn)

≤ C‖u‖W 1,p(Rn).

To establish the bound on the semi-norm [u]γ , γ = 1 − n
p , take any two points x, y ∈ Rn.

Let r = |x− y| and W = B(x, r) ∩B(y, r). Then

(2.22) |u(x)− u(y)| ≤ 1

|W |

∫
W
|u(x)− u(z)| dz +

1

|W |

∫
W
|u(y)− u(z)| dz.

Note that |W | = βrn, r = |x − y| and
∫
W ≤ min{

∫
B(x,r),

∫
B(y,r)}. Hence, using (2.21), by

Hölder’s inequality, we obtain∫
W
|u(x)− u(z)| dz ≤

∫
B(x,r)

|u(x)− u(z)| dz ≤ rn

n

∫
B(x,r)

|Du(z)||x− z|1−n dz

≤ rn

n

(∫
B(x,r)

|∇u(z)|p dz

)1/p (∫
B(x,r)

|z − x|
(1−n)p
p−1 dz

) p−1
p

≤ C rn ‖∇u‖Lp(Rn)

(∫ r

0
s

(1−n)p
p−1 sn−1 ds

) p−1
p

≤ C rn+γ‖∇u‖Lp(Rn),

where γ = 1− n
p ; similarly,∫

W
|u(y)− u(z)| dz ≤ C rn+γ‖∇u‖Lp(Rn).

Hence, by (2.22),

|u(x)− u(y)| ≤ C |x− y|γ‖∇u‖Lp(Rn).
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This inequality and the bound on ‖u‖C0 above complete the proof. �

Theorem 2.32. (Estimates for W 1,p, n < p ≤ ∞) Let Ω ⊂ Rn be bounded and open,

with ∂Ω ∈ C1. Assume n < p <∞, and u ∈W 1,p(Ω). Then u ∈ C0,1−n
p (Ω̄) a.e. and

‖u‖
C

0,1−np (Ω̄)
≤ C‖u‖W 1,p(Ω)

where the constant C depends only on p, n and Ω.

Proof. Since ∂Ω ∈ C1, there exists an extension U ∈ W 1,p(Rn) such that U = u in Ω, U
has compact support and

(2.23) ‖U‖W 1,p(Rn) ≤ C‖u‖W 1,p(Ω).

Moreover, since U has compact support, there exist mollified functions um ∈ C∞0 (Rn) such
that um → U in W 1,p(Rn) (and hence on compact subsets). Now according to Morrey’s
inequality,

‖um − ul‖C0,1−n/p(Rn) ≤ C‖um − ul‖W 1,p(Rn)

for all l,m ≥ 1; whence there is a function u∗ ∈ C0,1−n/p(Rn) such that um → u∗ in

C0,1−n/p(Rn). Thus u∗ = u a.e. in Ω. Since we also have

‖um‖C0,1−n/p(Rn) ≤ C‖um‖W 1,p(Rn)

we get in the limit that

‖u∗‖C0,1−n/p(Rn) ≤ C‖U‖W 1,p(Rn).

This inequality and (2.23) complete the proof. �

We can now concatenate the above estimates to obtain more complicated inequalities.

Proof of general Sobolev inequalities. Assume kp < n and u ∈W k,p(Ω). Since Dαu ∈
Lp(Ω) for all |α| ≤ k, the Sobolev-Nirenberg-Gagliardo inequality implies

‖Dβu‖Lp∗ (Ω) ≤ C‖u‖Wk,p(Ω)

if |β| ≤ k − 1, and so u ∈ W k−1,p∗(Ω). Moreover, ‖u‖k−1,p∗ ≤ c‖u‖k,p. Similarly, we find

u ∈W k−2,p∗∗(Ω), where
1

p∗∗
=

1

p∗
− 1

n
=

1

p
− 2

n
.

Moreover, ‖u‖k−2,p∗∗ ≤ c‖u‖k−1,p∗ . Continuing, we find after k steps that u ∈ W 0,q(Ω) =
Lq(Ω) for

1

q
=

1

p
− k

n
.

The stated estimate (2.9) follows from combining the relevant estimates at each stage of
the above argument. In a similar manner the other estimates can be established. �

We now consider the compactness of the imbeddings. Before we present the next result
we recall some facts that will be needed. A subset S of a normed space is said to be totally
bounded if for each ε > 0 there is a finite set of open balls of radius ε which cover S.
Clearly, a totally bounded set is bounded, i.e., it is contained in a sufficiently large ball. It
is not difficult to see that a relatively compact subset of a normed space is totally bounded,
with the converse being true if the normed space is complete. Moreover, a totally bounded
subset of a normed space is separable.
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Theorem 2.33. (Rellich-Kondrachov) Let Ω ⊂ Rn be bounded and open. Then for
1 ≤ p < n:

(a) The imbedding W 1,p
0 (Ω) ⊂ Lq(Ω) is compact for each 1 ≤ q < np/(n− p).

(b) Assuming ∂Ω ∈ C1, the imbedding W 1,p(Ω) ⊂ Lq(Ω) is compact for each 1 ≤
q < np/(n− p).

(c) Assuming ∂Ω ∈ C1, γ0 : W 1,p(Ω)→ Lp(∂Ω) is compact.

If p > n, then

(d) Assuming ∂Ω ∈ C1, the imbedding W 1,p(Ω) ⊂ Cα(Ω̄) is compact for each 0 ≤
α < 1− (n/p).

Proof. We shall just give the proof for p = q = 2. The other cases are proved similarly.
(a) Since C1

0 (Ω) is dense in H1
0 (Ω), it suffices to show that the imbedding C1

0 (Ω) ⊂ L2(Ω) is
compact. Thus, let S = {u ∈ C1

0 (Ω) : ‖u‖1,2 ≤ 1}. We now show that S is totally bounded
in L2(Ω).

For h > 0, let Sh = {uh : u ∈ S}, where uh is the mollified function for u. We claim
that Sh is totally bounded in L2(Ω). Indeed, for u ∈ S, we have

|uh(x)| ≤
∫
B(0,h)

ωh(z)|u(x− z)|dz ≤ (supωh)‖u‖1 ≤ c1(supωh)‖u‖1,2

and

|Diuh(x)| ≤ c2 sup |Diωh|‖u‖1,2, i = 1, . . . , n

so that Sh is a bounded and equicontinuous subset of C(Ω̄). Thus by the Ascoli Theorem,
Sh is relatively compact (and thus totally bounded) in C(Ω̄) and consequently also in L2(Ω).

Now, by earlier estimates, we easily obtain

‖uh − u‖22 ≤
∫
B(0,h)

ωh(z)

(∫
Ω
|u(x− z)− u(x)|2dx

)
dz

and ∫
Ω
|u(x− z)− u(x)|2dx =

∫
Ω

∣∣∣∣∫ 1

0

du(x− tz)
dt

dt

∣∣∣∣2 dx
=

∫
Ω

∣∣∣∣∫ 1

0
(−∇u(x− tz) · z)dt

∣∣∣∣2 dx
≤

∫
Ω
|z|2

(∫ 1

0
|∇u(x− tz)|2dt

)
dx ≤ |z|2‖u‖21,2.

Consequently, ‖uh − u‖2 ≤ h. Since we have shown above that Sh is totally bounded in
L2(Ω) for all h > 0, it follows that S is also totally bounded in L2(Ω) and hence relatively
compact.

(b) Suppose now that S is a bounded set in H1(Ω). Each u ∈ S has an extension
U ∈ H1

0 (Ω′) where Ω ⊂⊂ Ω′. Denote by S′ the set of all such extensions of the functions
u ∈ S. Since ‖U‖H1(Ω′) ≤ c‖u‖1,2, the set S′ is bounded in H1

0 (Ω′). By (a) S′ is relatively

compact in L2(Ω′) and therefore S is relatively compact in L2(Ω).

(c) Let S be a bounded set in H1(Ω). For any u(x) ∈ C1(Ω̄), the inequality (2.7) with
p = 2 yields

(2.24) ‖u‖2L2(∂Ω) ≤
c1

β
‖u‖22 + c2β‖u‖21,2
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where the constants c1, c2 do not depend on u or β. By completion, this inequality is
valid for any u ∈ H1(Ω). By (b), any infinite sequence of elements of the set S has a
subsequence {un} which is Cauchy in L2(Ω): given ε > 0, an N can be found such that for
all m,n ≥ N, ‖um − un‖2 < ε. Now we choose β = ε. Applying the inequality (2.24) to
um − un, it follows that the sequence of traces {γ0un} converges in L2(∂Ω).

(d) By Morrey’s inequality, the imbedding is continuous if α = 1− (n/p). Now use the
fact that Cβ is compact in Cα if α < β. �

Remarks. (a) When p = n, we can easily show that the imbedding in (a) is compact for all

1 ≤ q <∞. Hence, it follows that the imbedding W 1,p
0 (Ω) ⊂ Lp(Ω) is compact for all p ≥ 1.

(b) The boundedness of Ω is essential in the above theorem. For example, let I = (0, 1)
and Ij = (j, j + 1). Let f ∈ C1

0 (I) and define fj to be the same function defined on Ij by
translation. We can normalize f so that ‖f‖W 1,p(I) = 1. The same is then true for each fj
and thus {fj} is a bounded sequence in W 1,p(R). Clearly f ∈ Lq(R) for every 1 ≤ q ≤ ∞.
Further, if

‖f‖Lq(R) = ‖f‖Lq(I) = a > 0

then for any j 6= k we have

‖fj − fk‖qLq(R) =

∫ j+1

j
|fj |q +

∫ k+1

k
|fk|q = 2aq

and so fi cannot have a convergent subsequence in Lq(R). Thus none of the imbeddings
W 1,p(R) ⊂ Lq(R) can be compact. This example generalizes to n dimensional space and to
open sets like a half-space.

2.4. Additional Properties

2.4.1. Equivalent Norms. Two norms ‖ · ‖ and | · | on a vector space X are equivalent
if there exist constants c1, c2 ∈ (0,∞) such that

‖x‖ ≤ c1|x| ≤ c2‖x‖ for all x ∈ X.

Note that the property of a set to be open, closed, compact, or complete in a normed
space is not affected if the norm is replaced by an equivalent norm. A seminorm q on a
vector space has all the properties of a norm except that q(u) = 0 need not imply u = 0.

Theorem 2.34. Let ∂Ω ∈ C1 and let 1 ≤ p <∞. Set

‖u‖ =

(∫
Ω

n∑
i=1

|Diu|pdx+ (q(u))p

)1/p

where q : W 1,p(Ω)→ R is a seminorm with the following two properties:

(i) There is a positive constant d such that for all u ∈W 1,p(Ω)

q(u) ≤ d‖u‖1,p.
(ii) If u = constant, then q(u) = 0 implies u = 0.

Then ‖ · ‖ is an equivalent norm on W 1,p(Ω).

Proof. First of all, it is easy to check that ‖ · ‖ defines a norm. Now by (i), it suffices to
prove that there is a positive constant c such that

(2.25) ‖u‖1,p ≤ c‖u‖ for all u ∈W 1,p(Ω).
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Suppose (2.25) is false. Then there exist un ∈ W 1,p(Ω) such that ‖un‖1,p > n‖un‖. Set
vn = un/‖un‖1,p. Then

(2.26) ‖un‖1,p = 1 and 1 > n‖un‖.

According to Theorem 2.33, there is a subsequence, call it again {un}, which converges to u
in Lp(Ω). From (2.26) we have ‖un‖ → 0 and therefore ∇un → 0 in Lp(Ω) and q(un)→ 0.
This implies ∇u = 0 and hence u = const and un → u in W 1,p(Ω). Hence, ‖u‖1,p = 1 and
by triangle inequality, q(u) = 0. Since u is constant, this implies u = 0, which contradicts
‖u‖1,p = 1. �

Example 2.35. Let ∂Ω ∈ C1. Assume a(x) ∈ C(Ω), σ(x) ∈ C(∂Ω) with a ≥ 0 ( 6≡ 0), σ ≥
0 (6≡ 0). Then the following norms are equivalent to ‖ · ‖1,p on W 1,p(Ω):

(2.27) ‖u‖ =

(∫
Ω

n∑
i=1

|Diu|pdx+

∣∣∣∣∫
Ω
udx

∣∣∣∣p
)1/p

with q(u) =
∣∣∫

Ω udx
∣∣ .

(2.28) ‖u‖ =

(∫
Ω

n∑
i=1

|Diu|pdx+

∣∣∣∣∫
∂Ω
γ0udS

∣∣∣∣p
)1/p

with q(u) =
∣∣∫
∂Ω γ0udS

∣∣ .
(2.29) ‖u‖ =

(∫
Ω

n∑
i=1

|Diu|pdx+

∫
∂Ω
σ|γ0u|pdS

)1/p

with q(u) =
(∫
σ|γ0u|pdS

)1/p
.

(2.30) ‖u‖ =

(∫
Ω

n∑
i=1

|Diu|pdx+

∫
Ω
a|u|pdx

)1/p

with q(u) =
(∫

Ω a|u|
pdx
)1/p

.

Clearly, for all these q’s, condition (ii) of Theorem 2.34 holds. To verify condition (i)
of Theorem 2.34, one uses the trace theorem in (2.28) and (2.29). Also, the q(u) in (2.27)
is bounded by q(u) in (2.30). Condition (i) for q(u) in (2.30) follows from the imbedding
W 1,p(Ω)→ Lp(Ω).

Example 2.36. (Poincaré’s inequalities.) Note that ‖u‖Lp(Ω) ≤ c‖u‖ if ‖u‖ is any

equivalent norm of W 1,p(Ω). Using such an inequality with ‖u‖ defined by (2.27) on function
u− (u)Ω, where (u)Ω = 1

|Ω|
∫

Ω udx is the mean of u over Ω, we have

(2.31)

∫
Ω
|u(x)− (u)Ω|pdx ≤ c

∫
Ω

n∑
i=1

|Diu|pdx, ∀u ∈W 1,p(Ω),

where the constant c > 0 is independent of u. This inequality is often referred to as a
Poincaré’s inequality. Also if u ∈W 1,p

0 (Ω), by (2.28), it follows that

(2.32)

∫
Ω
|u(x)|pdx ≤ c

∫
Ω

n∑
i=1

|Diu|pdx, ∀u ∈W 1,p
0 (Ω),

where the constant c > 0 is independent of u. This inequality is also referred to as a
Poincaré’s inequality. In particular, (2.32) implies that quantity

‖u‖1,p,0 =

(∫
Ω

n∑
i=1

|Diu|pdx

)1/p

defines an equivalent norm on W 1,p
0 (Ω).
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2.4.2. Difference Quotients. Assume u ∈ L1
loc(Ω) and Ω′ ⊂⊂ Ω. Let e1, · · · , en be the

standard basis vectors of Rn. For all h ∈ R with 0 < |h| < dist(Ω′, ∂Ω) and i = 1, 2, · · · , n,
we define the i-th difference quotient of u of size h on Ω′ by

δhi u(x) =
u(x+ hei)− u(x)

h
, x ∈ Ω′.

Denote δhu = (δh1u, δ
h
2u, · · · , δhnu).

Theorem 2.37. (Difference Quotients and Weak Derivatives)

(i) Suppose 1 ≤ p < ∞ and u ∈ W 1,p(Ω). Then for each Ω′ ⊂⊂ Ω there exists a
constant C such that

‖δhu‖Lp(Ω′) ≤ C‖∇u‖Lp(Ω) ∀ 0 < |h| < dist(Ω′, ∂Ω).

(ii) Let 1 < p < ∞, u ∈ Lploc(Ω) and Ω′ ⊂⊂ Ω. Assume i ∈ {1, 2, · · · , n}. Suppose
that there exist constant C and sequence hk → 0 such that

(2.33) ‖δhki u‖Lp(Ω′) ≤ C ∀ k = 1, 2, · · · .
Then weak derivative uxi exists in Lp(Ω′) and ‖uxi‖Lp(Ω′) ≤ C.

Proof. 1. We first assume u is smooth. Let x ∈ Ω′ and 0 < |h| < dist(Ω′, ∂Ω). Then

u(x+ hei)− u(x) =

∫ 1

0
uxi(x+ thei)h dt

and hence

|δhi u(x)| = |u(x+ hei)− u(x)

h
| ≤

∫ 1

0
|∇u(x+ thei)|dt.

Raising to the p-th power, using Hölder’s inequality and integrating over x ∈ Ω′ will yield∫
Ω′
|δhi u(x)|p dx ≤

∫
Ω′

∫ 1

0
|∇u(x+ thei)|p dtdx

≤
∫ 1

0

∫
Ω′
|∇u(x+ thei)|p dxdt ≤

∫ 1

0

∫
Ω
|∇u(x)|p dxdt =

∫
Ω
|∇u(x)|p dx.

Thus ∫
Ω′
|δhu|p dx ≤ C

∫
Ω
|∇u(x)|p dx

with C actually depending only on n, p. This estimate holds for all smooth u and hence is
also valid by approximation for arbitrary u ∈W 1,p(Ω).

2. By (2.33), the sequence {δhki u} is bounded in Lp(Ω′). Since p > 1, there exists

a subsequence {δhki u}, still denoted by k, that converges weakly to v ∈ Lp(Ω′). Clearly
‖v‖Lp(Ω′) ≤ C. We show that v is the weak derivative uxi on Ω′. Let φ ∈ C1

0 (Ω′). For each

0 < |h| < 1
2 dist(Ω′, ∂Ω), it is easy to check that∫

Ω′
u(x)δ−hi φ(x) dx = −

∫
Ω′
φ(x)δhi u(x) dx.

(This is the integration by parts formula for difference quotients.) Take h = hk → 0 in this

formula, by the weak convergence of δhki u to v and the fact δ−hi φ(x)→ φxi(x) uniformly on
Ω′ as h→ 0, and one proves that∫

Ω′
u(x)φxi(x) dx = −

∫
Ω′
φ(x)v(x) dx ∀ φ ∈ C1

0 (Ω′).

By definition of weak derivatives, v = uxi . �
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2.4.3. Fourier Transform Methods. In defining Sobolev spaces Hk on the whole Rn,
it is often useful to use the Fourier transform.

For a function u ∈ L1(Rn), we define the Fourier transform of u by

û(y) =
1

(2π)n/2

∫
Rn
e−ix·yu(x) dx, ∀ y ∈ Rn,

and the inverse Fourier tranform by

ǔ(y) =
1

(2π)n/2

∫
Rn
eix·yu(x) dx, ∀ y ∈ Rn.

Theorem 2.38. (Plancherel’s Theorem) Assume u ∈ L1(Rn) ∩ L2(Rn). Then û, ǔ ∈
L2(Rn) and

‖û‖L2(Rn) = ‖ǔ‖L2(Rn) = ‖u‖L2(Rn).

Since L1(Rn) ∩ L2(Rn) is dense in L2(Rn), we can use this result to extend the Fourier
transforms on to L2(Rn). We still use the same notations for them. Then we have

Theorem 2.39. (Property of Fourier Tranforms) Assume u, v ∈ L2(Rn). Then

(i)
∫
Rn uv̄ dx =

∫
Rn û

¯̂v dy,

(ii) D̂αu(y) = (iy)αû(y) for each multiindex α such that Dαu ∈ L2(Rn),

(iii) u = ˇ̂u.

Next we use the Fourier transform to characterize the spaces Hk(Rn).

Theorem 2.40. Let k be a nonnegative integer. Then, a function u ∈ L2(Rn) belongs to
Hk(Rn) if and only if

(1 + |y|k)û(y) ∈ L2(Rn).

In addition, there exists a constant C such that

C−1 ‖u‖Hk(Rn) ≤ ‖(1 + |y|k) û‖L2(Rn) ≤ C ‖u‖Hk(Rn)

for all u ∈ Hk(Rn).

Using the Fourier transform, we can also define fractional Sobolev spaces Hs(Rn) for
any 0 < s <∞ as follows

Hs(Rn) = {u ∈ L2(Rn) | (1 + |y|s) û ∈ L2(Rn)},
and define the norm by

‖u‖Hs(Rn) = ‖(1 + |y|s) û‖L2(Rn).

From this we easily get the estimate

‖u‖L∞(Rn) ≤ ‖û‖L1(Rn)

= ‖(1 + |y|s)û (1 + |y|s)−1‖L1(Rn)

≤ ‖(1 + |y|s)û‖L2(Rn)‖(1 + |y|s)−2‖2L1(Rn)

≤ C ‖u‖Hs(Rn),

where C = ‖(1 + |y|s)−2‖2L1(Rn) < ∞ if and only if s > n
2 . Therefore we have an easy

imbedding, which is known valid for integers s by the previous Sobolev imbedding theorem,

Hs(Rn) ⊂ L∞(Rn) if s > n
2 .



Chapter 3

Second-Order Linear
Elliptic PDEs in
Divergence Form

3.1. Second-Order PDEs in Divergence Form

3.1.1. Single Equation Case. Henceforth, Ω ⊂ Rn denotes a bounded domain with
boundary ∂Ω ∈ C1. Consider the (Dirichlet) boundary value problem (BVP)

(3.1) Lu = f in Ω, u = 0 on ∂Ω.

Here f is a given function in L2(Ω) (or more generally, an element in the dual space of
H1

0 (Ω)) and L is a formal second-order differential operator in divergence form
given by

Lu ≡ −
n∑

i,j=1

Di (aij(x)Dju) +
n∑
i=1

bi(x)Diu+ c(x)u

with real coefficients aij(x), bi(x) and c(x) in L∞(Ω). Moreover, L is assumed to be uni-
formly elliptic in Ω, i.e., there exists a number θ > 0 such that for every x ∈ Ω and every
real vector ξ = (ξ1, . . . , ξn) ∈ Rn

(3.2)
n∑

i,j=1

aij(x)ξiξj ≥ θ
n∑
i=1

|ξi|2.

A function u ∈ H1
0 (Ω) is called a weak solution of (3.1) if the following holds

(3.3) B1(u, v) ≡
∫

Ω

[ n∑
i,j=1

aijDjuDiv + (

n∑
i=1

biDiu+ cu)v
]
dx =

∫
Ω
fvdx, ∀ v ∈ H1

0 (Ω).

Other problems can also be formulated in the weak sense as above in different Hilbert
spaces.

55
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Example 3.1. Consider the following weak formulation: Given f ∈ L2(Ω), find u ∈ H1(Ω)
satisfying ∫

Ω
∇u · ∇vdx =

∫
Ω
fvdx for all v ∈ H1(Ω).

Find the boundary value problem solved by u. What is the necessary condition for the
existence of such a u?

3.1.2. General System of PDEs in Divergence Form. For N unknown functions,
u1, · · · , uN , we write u = (u1, · · · , uN ) as a vector field. We say u ∈ X(Ω;RN ) if each
uk ∈ X(Ω), where X is a symbol of any function spaces we have learned. For example, if
u ∈W 1,p(Ω;RN ) then we use Du to denote the N×n Jacobi matrix (∂uk/∂xi)1≤k≤N,1≤i≤n.

The (Dirichlet) BVP for general system of nonlinear partial differential equations in
divergence form can be written as follows:

(3.4) −divA(x, u,Du) + b(x, u,Du) = F in Ω, u = 0 on ∂Ω,

where A(x, s, ξ) = (Aki (x, s, ξ)), 1 ≤ i ≤ n, 1 ≤ k ≤ N, and b(x, s, ξ) = (bk(x, s, ξ)),
1 ≤ k ≤ N, are given functions of (x, s, ξ) ∈ Ω × RN ×MN×n satisfying some structural
conditions, and F = (fk), 1 ≤ k ≤ N , with each fk being a given functional in the dual

space of W 1,p
0 (Ω).

The suitable structural conditions will generally assure that both |A(x, u,Du)| and

|b(x, u,Du)| belong to Lp
′
(Ω) for all u ∈W 1,p(Ω;RN ), where p′ = p

p−1 .

A function u ∈W 1,p
0 (Ω;RN ) is called a weak solution to problem (3.4) if

(3.5)

∫
Ω

[
n∑
i=1

Aki (x, u,Du)Diϕ+ bk(x, u,Du)ϕ

]
dx = 〈fk, ϕ〉

for all ϕ ∈W 1,p
0 (Ω) and each k = 1, 2, · · · , N.

System (3.4) is said to be linear if both A(x, s, ξ) and b(x, s, ξ) are linear in the variables
(s, ξ), so that

Aki (x, u,Du) =
∑

1≤l≤N, 1≤j≤n
aklij (x)Dju

l +
N∑
l=1

dkli (x)ul,

bk(x, u,Du) =
∑

1≤j≤n, 1≤l≤N
bklj (x)Dju

l +
N∑
l=1

ckl(x)ul.

(3.6)

In the linear case, as in the single equation case, we work in the Hilbert space H1
0 (Ω;RN ),

which has the inner product defined by

(u, v) ≡
∑

1≤i≤n, 1≤k≤N

∫
Ω
Diu

kDiv
k dx.

The pairing between H1
0 (Ω;RN ) and its dual is given by

〈F, u〉 =

N∑
k=1

〈fk, uk〉 if F = (fk) and u = (uk).

Then a weak solution of linear system (3.4) is a function u ∈ H1
0 (Ω;RN ) such that

(3.7) B2(u, v) ≡
∫

Ω

(
aklijDju

lDiv
k + dkli u

lDiv
k + bklj Dju

lvk + cklulvk
)
dx = 〈F, v〉
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holds for all v ∈ H1
0 (Ω;RN ). Here the conventional summation notation is used.

3.1.3. Ellipticity Conditions for Systems. There are several ellipticity conditions
for the system (3.5) in terms of the leading coefficients A(x, s, ξ). Assume A is smooth on
ξ and define

Aklij (x, s, ξ) =
∂Aki (x, s, ξ)

∂ξlj
, ξ = (ξlj).

The system (3.5) is said to satisfy the (uniform, strict) Legendre ellipticity condition
if there exists a ν > 0 such that, for all (x, s, ξ), it holds

(3.8)

n∑
i,j=1

N∑
k,l=1

Aklij (x, s, ξ) η
k
i η

l
j ≥ ν |η|2 for all N × n matrix η = (ηki ).

A weaker condition, obtained by setting η = q⊗ p = (qkpi) with p ∈ Rn, q ∈ RN , is the
following so-called (strong) Legendre-Hadamard condition:

(3.9)

n∑
i,j=1

N∑
k,l=1

Aklij (x, s, ξ) q
kqlpipj ≥ ν |p|2 |q|2 ∀ p ∈ Rn, q ∈ RN .

Note that for systems with linear leading terms A given by (3.6), the Legendre condition
and Legendre-Hadamard condition become, respectively,

(3.10)
n∑

i,j=1

N∑
k,l=1

aklij (x) ηki η
l
j ≥ ν |η|2 ∀ η = (ηki )1≤k≤N, 1≤i≤n;

(3.11)

n∑
i,j=1

N∑
k,l=1

aklij (x) qkqlpipj ≥ ν |p|2 |q|2 ∀ p ∈ Rn, q ∈ RN .

Example 3.2. The Legendre-Hadamard condition does not imply the Legendre ellipticity
condition. For example, let n = N = 2 and ε > 0; define constants aklij by

2∑
i,j,k,l=1

aklij ξ
k
i ξ

l
j ≡ det ξ + ε |ξ|2.

Since
2∑

i,j,k,=1

aklijpipj q
kql = det(q ⊗ p) + ε |q ⊗ p|2 = ε |p|2|q|2,

the Legendre-Hadamard condition holds for all ε > 0. However, show that the Legendre
condition holds for this system if and only if ε > 1/2.

Example 3.3. Let u = (v, w) and (x1, x2) = (x, y). Then the system of differential equations
defined by aklij given above is

ε∆v + wxy = 0, ε∆w − vxy = 0.

This system reduces to two fourth-order equations for v, w (where ∆f = fxx + fyy):

ε2∆2v − vxxyy = 0, ε2∆2w + wxxyy = 0.

Show that both equations are elliptic (in the sense of linear operators) if and only if ε > 1/2.
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3.2. The Lax-Milgram Theorem

Let H denote a real Hilbert space with inner product (·, ·) and norm ‖ · ‖. A function
B : H ×H → R is called a bilinear form if

B(αu+ βv,w) = αB(u,w) + βB(v, w)

B(w,αu+ βv) = αB(w, u) + βB(w, v)

for all u, v, w ∈ H and all α, β ∈ R.

Our first existence result is frequently referred to as the Lax-Milgram Theorem.

Theorem 3.4. (Lax-Milgram Theorem) Let B : H → H be a bilinear form. Assume

(i) B is bounded; i.e., |B(u, v)| ≤ α‖u‖‖v‖ ∀u, v ∈ H, for some α > 0; and

(ii) B is strongly positive (also called coercive); i.e., B(u, u) ≥ β‖u‖2 ∀u ∈ H,
for some β > 0.

Let f ∈ H∗. Then there exists a unique element u ∈ H such that

(3.12) B(u, v) = 〈f, v〉, ∀ v ∈ H.

Moreover, the solution u satisfies ‖u‖ ≤ 1
β ‖f‖.

Proof. For each fixed u ∈ H, the functional v 7→ B(u, v) is in H∗, and hence by the Riesz
Representation Theorem, there exists a unique element w = Au ∈ H such that

B(u, v) = (w, v) = (Au, v) ∀ v ∈ H.

It is easy to see that A : H → H is linear. From (i), ‖Au‖2 = B(u,Au) ≤ α‖u‖‖Au‖,
and hence ‖Au‖ ≤ α‖u‖ for all u ∈ H; that is, A is bounded. Furthermore, by (ii),
β‖u‖2 ≤ B(u, u) = (Au, u) ≤ ‖Au‖‖u‖ and hence ‖Au‖ ≥ β‖u‖ for all u ∈ H. By the Riesz
Representation Theorem again, we have a unique w0 ∈ H such that 〈f, v〉 = (w0, v) for all
v ∈ H and ‖f‖ = ‖w0‖. We will show that the equation Au = w0 has a unique solution
u ∈ H. The uniqueness of u follows easily from the property ‖Au − Av‖ ≥ β‖u − v‖ for
all u, v ∈ H. There are many different proofs for existence; here we use the Contraction
Mapping Theorem.

Note that the solution u to equation Au = w0 is equivalent to the fixed-point of the
map T : H → H defined by T (v) = v − tAv + tw0 (v ∈ H) for any fixed t > 0. We
show that for t > 0 small enough T is a contraction. Note that for all v, w ∈ H we have
‖T (v)− T (w)‖ = ‖(I − tA)(v − w)‖. We compute that for all u ∈ H

‖(I − tA)u‖2 = ‖u‖2 + t2‖Au‖2 − 2t(Au, u)

≤ ‖u‖2(1 + t2α2 − 2βt)

≤ γ‖u‖2,

for some 0 < γ < 1 if we choose t such that 0 < t < 2β
α2 . Therefore, map T : H → H is a

contraction (with constant
√
γ) on H and thus has a fixed point. This fixed point u solves

Au = w0 and is thus the (unique) solution of (3.12). Moreover, we have ‖f‖ = ‖w0‖ =
‖Au‖ ≥ β‖u‖ and hence ‖u‖ ≤ 1

β ‖f‖. The proof is complete. �
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3.3. G̊arding’s Estimates and Existence Theory

In the following, we assume all coefficients involved in the bilinear forms B1 and B2 defined
above are in L∞(Ω). Then one easily shows the boundedness:

|Bj(u, v)| ≤ α‖u‖‖v‖

for all u, v in the respective Hilbert spaces H = H1
0 (Ω) or H = H1

0 (Ω;RN ) for j = 1, 2.
Here and below, the norm ‖u‖ on H is the equivalent norm ‖Du‖L2(Ω) induced by the inner

product (u, v)H =
∫

Ω(Du,Dv) dx in both scaler or vectorial cases.

The strong positivity (also called coercivity) for B1 or B2 is not always guaranteed
and involves estimating the quadratic form Bj(u, u), which usually involves the so-called
G̊arding’s estimates. We will derive these estimates below and then state the corre-
sponding existence theorem.

3.3.1. Estimate for B1(u, u).

Theorem 3.5. Assume the ellipticity condition (3.2) holds. Then, there are constants
β > 0 and γ ∈ R such that

(3.13) B1(u, u) ≥ β‖u‖2 − γ‖u‖2L2(Ω)

for all u ∈ H = H1
0 (Ω).

Proof. Note that, by the ellipticity,

B1(u, u)−
∫

Ω
(
n∑
i=1

biDiu+ cu)u dx ≥ θ
∫

Ω

n∑
i=1

|Diu|2dx.

Let m = max{‖bi‖L∞(Ω) | 1 ≤ i ≤ n}. Then

|(biDiu, u)2| ≤ m‖Diu‖2‖u‖2
≤ (m/2)(ε‖Diu‖22 + (1/ε)‖u‖22),

where in the last step we have used Cauchy’s inequality with ε:

|αβ| ≤ (ε/2)α2 + (1/2ε)β2 ∀ α, β ∈ R.

Also, (cu, u)2 ≥ k0‖u‖2L2(Ω), where k0 = ess infx∈Ω c(x). Combining these estimates we find

B1(u, u) ≥ (θ −mε/2)‖Du‖2L2(Ω) − (mn/2ε− k0)‖u‖2L2(Ω).

By choosing ε > 0 so that β = θ − mε/2 > 0 we arrive at the desired estimate, with
γ = mn/2ε− k0. �

Theorem 3.6. Let Lu be defined as above. There is a number γ ∈ R such that for each
λ ≥ γ and for each function f ∈ L2(Ω), the boundary value problem

Lu+ λu = f(x) in Ω, u = 0 on ∂Ω

has a unique weak solution u ∈ H = H1
0 (Ω) which satisfies

‖u‖H ≤ c‖f‖2

where the positive constant c is independent of f .
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Proof. Let γ be defined from (3.13) and let λ ≥ γ. Define the bilinear form

Bλ(u, v) ≡ B1(u, v) + λ(u, v)2 for all u, v ∈ H

which corresponds to the operator Lu + λu. Then Bλ(u, v) satisfies the hypotheses of the
Lax-Milgram Theorem. Hence equation Lu + λu = f has a unique weak solution in H;
moreover, ‖u‖ ≤ 1

β‖f‖2, where β > 0 is the constant from (3.13). �

Example 3.7. Consider the Neumann boundary value problem

(3.14) −∆u(x) = f(x) in Ω,
∂u

∂ν
= 0 on ∂Ω.

A function u ∈ H1(Ω) is said to be a weak solution to (3.14 if

(3.15)

∫
Ω
∇u · ∇v dx =

∫
Ω
fv dx, ∀ v ∈ H1(Ω).

Obviously, taking v ≡ 1 ∈ H1(Ω), a necessary condition to have a weak solution is∫
Ω f(x) dx = 0. We show this is also a sufficient condition for existence of the weak so-

lutions. Note that, if u is a weak solution, then u + c, for all constants c, is also a weak
solution. Therefore, to fix the constants, we consider the vector space

H =
{
u ∈ H1(Ω)

∣∣ ∫
Ω
u(x) dx = 0

}
equipped with inner product

(u, v)H =

∫
Ω
∇u · ∇v dx.

By the theorem on equivalent norms, it follows that H with this inner product, is indeed a
Hilbert space, and (f, u)L2(Ω) is a bounded linear functional on H:

|(f, u)L2(Ω)| ≤ ‖f‖L2(Ω)‖v‖L2(Ω) ≤ ‖f‖L2(Ω)‖v‖H .

Hence the Riesz Representation Theorem implies that there exists a unique u ∈ H such
that

(3.16) (u,w)H = (f, w)L2(Ω), ∀ w ∈ H.

It follows that u is a weak solution to the Neumann problem since for any v ∈ H1(Ω) we
take w = v − c ∈ H, where c = 1

|Ω|
∫

Ω vdx, in (3.16) and obtain (3.15) using
∫

Ω fdx = 0.

Example 3.8. Denote by H1
c the space

H1
c = {u ∈ H1(Ω) : γ0u = const}.

Note that the constant may be different for different u’s.

(a) Prove that H1
c is complete.

(b) Prove the existence and uniqueness of a function u ∈ H1
c satisfying∫

Ω
(∇u · ∇v + uv)dx =

∫
Ω
fvdx for all v ∈ H1

c

where f ∈ C(Ω̄).

(c) If u ∈ C2(Ω̄) satisfies the equation in (b), find the underlying BVP.
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Example 3.9. Let us consider the nonhomogeneous Dirichlet boundary value problem

(3.17) −∆u = f in Ω, u|∂Ω = ϕ

where f ∈ L2(Ω) and ϕ is the trace of a function w ∈ H1(Ω). Note that it is not sufficient
to just require that ϕ ∈ L2(∂Ω) since the trace operator is not onto. If, for example,
ϕ ∈ C1(∂Ω), then ϕ has a C1 extension to Ω̄, which is the desired w.

The function u ∈ H1(Ω) is called a weak solution of (3.17) if u− w ∈ H1
0 (Ω) and if∫

Ω
∇u · ∇vdx =

∫
Ω
fvdx for all v ∈ H1

0 (Ω).

Let u be a weak solution of (3.17) and set u = z + w. Then z ∈ H1
0 (Ω) satisfies

(3.18)

∫
Ω
∇z · ∇vdx =

∫
Ω

(fv −∇v · ∇w)dx for all v ∈ H1
0 (Ω).

Since the right-hand side belongs to the dual space H1
0 (Ω)∗, the Lax-Milgram theorem yields

the existence of a unique z ∈ H1
0 (Ω) which satisfies (3.18). Hence (3.17) has a unique weak

solution u.

Example 3.10. Let Ω ⊂ Rn. Show that if u, v ∈ H2
0 (Ω), then∫

Ω
∆u∆vdx =

n∑
i,j=1

∫
Ω
DijuDijvdx.

Hence, ‖∆u‖2 defines a norm on H2
0 (Ω) which is equivalent to the usual norm of H2

0 (Ω).

Example 3.11. Now let us consider the boundary value (also called Dirichlet) problem for
the fourth order biharmonic operator:

∆2u = f in Ω, u|∂Ω =
∂u

∂n
|∂Ω = 0.

We take H = H2
0 (Ω). By the general trace theorem, H = H2

0 (Ω) = {v ∈ H2(Ω) : γ0v =
γ1v = 0}. Therefore, this space H is the right space for the boundary conditions.

Accordingly, for f ∈ L2(Ω), a function u ∈ H = H2
0 (Ω) is a weak solution of the

Dirichlet problem for the biharmonic operator provided∫
Ω

∆u∆vdx =

∫
Ω
fvdx ∀ v ∈ H.

Consider the bilinear form

B(u, v) =

∫
Ω

∆u∆vdx.

Its boundedness follows from the Cauchy-Schwarz inequality

|B(u, v)| ≤ ‖∆u‖2‖∆v‖2 ≤ d‖u‖2,2‖v‖2,2.

Furthermore,

B(u, u) = ‖∆u‖22 ≥ c‖u‖22,2.

So, by the Lax-Milgram theorem (in fact, just the Riesz Representation Theorem), there
exists a unique weak solution u ∈ H.
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3.3.2. Estimate for B2(u, u). Let H = H1
0 (Ω;RN ) and let (u, v)H and ‖u‖H be the inner

product and norm defined above on H.

We consider the system (3.4) with A and b given by (3.6). Let B2(u, v) be the bilinear
form on H ×H associated with this problem, defined by (3.7). We will derive the G̊arding
estimate for B2(u, u).

Define the bilinear form of the leading terms by

A(u, v) =

n∑
i,j=1

N∑
k,l=1

∫
Ω
aklij (x)Dju

lDiv
k dx (u, v ∈ H).

Lemma 3.12. Assume that either coefficients aklij satisfy the Legendre condition or aklij
are all constants and satisfy the Legendre-Hadamard condition. Then

A(u, u) ≥ ν ‖u‖2H , ∀ u ∈ H.

Proof. The conclusion follows easily if the coefficeints aklij satisfy the Legendre condition.

We prove the second case when aklij are constants satisfying the Legendre-Hadamard condi-
tion

n∑
i,j=1

N∑
k,l=1

aklij q
k ql pipj ≥ ν |p|2|q|2, ∀p ∈ Rn, q ∈ RN .

It suffices to prove

A(u, u) =
n∑

i,j=1

N∑
k,l=1

∫
Ω
aklij Dju

lDiu
k dx ≥ ν

∫
Ω
|Du|2 dx

for all u ∈ C∞0 (Ω;RN ). Given such a function u, we extend it onto Rn by zero outside Ω so
that u ∈ C∞0 (Rn;RN ). Define the Fourier transform of u by

û(y) = (2π)−n/2
∫
Rn
e−i y·x u(x) dx; y ∈ Rn.

Then, for any u, v ∈ C∞0 (Rn;RN ), we have∫
Rn
u(x) · v(x) dx =

∫
Rn
û(y) · v̂(y) dy, D̂juk(y) = i yj ûk(y);

the second identity can also be written as D̂u(y) = i û(y) ⊗ y. Now, using these identities,
we have ∫

Rn
aklij Diu

k(x)Dju
l(x) dx =

∫
Rn
aklij D̂iuk(y) D̂jul(y) dy

=

∫
Rn
aklij yi yj û

k(y) ûl(y) dy = Re

(∫
Rn
aklij yi yj û

k(y) ûl(y) dy

)
.

Write û(y) = η + iξ with η, ξ ∈ RN . Then

Re

(
ûk(y) ûl(y)

)
= ηk ηl + ξk ξl.

Therefore, by the Legendre-Hadamard condition,

Re

n∑
i,j=1

N∑
k,l=1

(
aklij yi yj û

k(y) ûl(y)

)
≥ ν |y|2 (|η|2 + |ξ|2) = ν |y|2 |û(y)|2.
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Hence,

A(u, u) =

n∑
i,j=1

N∑
k,l=1

∫
Rn
aklij Diu

k(x)Dju
l(x) dx

= Re

n∑
i,j=1

N∑
k,l=1

(∫
Rn
aklij yi yj û

k(y) ûl(y) dy

)

≥ ν
∫
Rn
|y|2 |û(y)|2 dy = ν

∫
Rn
|iû(y)⊗ y|2 dy

= ν

∫
Rn
|D̂u(y)|2 dy = ν

∫
Rn
|Du(x)|2 dx.

The proof is complete. �

Theorem 3.13. Let B2(u, v) be defined by (3.7). Assume

1) aklij ∈ C(Ω̄),

2) the Legendre-Hadamard condition holds for all x ∈ Ω; that is,

aklij (x) qkql pi pj ≥ ν |p|2 |q|2, ∀p ∈ Rn, q ∈ RN .

3) bkli , c
kl, dkli ∈ L∞(Ω).

Then, there exist constants λ0 > 0 and λ1 ≥ 0 such that

B2(u, u) ≥ λ0 ‖u‖2H − λ1 ‖u‖2L2 , ∀u ∈ H1
0 (Ω;RN ).

Proof. By uniform continuity, we can choose a small ε > 0 such that

|aklij (x)− aklij (y)| ≤ ν/2, ∀x, y ∈ Ω̄, |x− y| ≤ ε.

We claim

(3.19)

∫
Ω
aklij (x)Diu

kDju
l dx ≥ ν

2

∫
Ω
|Du(x)|2 dx

for all test functions u ∈ C∞0 (Ω;RN ) with diameter of the support diam(suppu) ≤ ε. To
see this, we choose any point x0 ∈ suppu. Then, by Lemma 3.12,∫

Ω
aklij (x)Diu

kDju
l dx =

∫
Ω
aklij (x0)Diu

kDju
l dx

+

∫
suppu

(
aklij (x)− aklij (x0)

)
Diu

kDju
l dx

≥ ν
∫

Ω
|Du(x)|2 dx− ν

2

∫
Ω
|Du(x)|2 dx,

which proves (3.19). We now cover Ω̄ with finitely many open balls {Bε/4(xm)} with xm ∈ Ω
and m = 1, 2, ...,M. For each m, let ζm ∈ C∞0 (Bε/2(xm)) with ζm(x) = 1 for x ∈ Bε/4(xm).

Since for any x ∈ Ω̄ we have at least one m such that x ∈ Bε/4(xm) and thus ζm(x) = 1, we
may therefore define

ϕm(x) =
ζm(x)(∑M

j=1 ζ
2
j (x)

)1/2 , m = 1, 2, ...,M.
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Then
∑M

m=1 ϕ
2
m(x) = 1 for all x ∈ Ω. (This is a special case of partition of unity.) We have

thus

(3.20) aklij (x)Diu
kDju

l =

M∑
m=1

(
aklij (x)ϕ2

mDiu
kDju

l
)

and each term (no summation on m)

aklij (x)ϕ2
mDiu

kDju
l = aklij (x)Di(ϕm u

k)Dj(ϕm u
l)

−aklij (x)
(
ϕmDiϕm u

lDiu
k + ϕmDiϕm u

kDju
l +DiϕmDjϕm u

k ul
)
.

Since ϕmu ∈ C∞0 (Ω ∩Bε/2(xm);RN ) and diam(Ω ∩Bε/2(xm)) ≤ ε, we have by (3.19)∫
Ω
aklij (x)Di(ϕm u

k)Dj(ϕm u
l) dx ≥ ν

2

∫
Ω
|D(ϕm u)|2 dx.

Note also that

|D(ϕm u)|2 = ϕ2
m |Du|2 + |Dϕm|2 |u|2 + 2ϕmDiϕm u

kDiu
k.

Therefore, we have by (3.20) and the fact that
∑M

m=1 ϕ
2
m = 1 on Ω,∫

Ω
aklij (x)Diu

kDju
l dx

≥ ν

2

∫
Ω
|Du|2 dx− C1 ‖u‖L2 ‖Du‖L2 − C2 ‖u‖2L2 .

The terms in B2(u, u) involving b, c and d can be estimated by ‖u‖L2 ‖Du‖L2 and ‖u‖2L2 .
Finally, by all of these estimates and the inequality

ab ≤ εa2 +
1

4ε
b2

we have B2(u, u) ≥ λ0 ‖u‖2H−λ1 ‖u‖2L2 for all u ∈ H1
0 (Ω;RN ). This completes the proof. �

Note that the bilinear form Bλ(u, v) = B2(u, v) + λ (u, v)L2 satisfies the condition of
the Lax-Milgram theorem on H = H1

0 (Ω;RN ) for all λ ≥ λ1; thus, by the Lax-Milgram
theorem, we easily obtain the following existence result.

Theorem 3.14. Under the hypotheses of the previous theorem, for λ ≥ λ1, the Dirichlet
problem for the linear system

(3.21) −div(A(x, u,Du)) + b(x, u,Du) + λu = F, u|∂Ω = 0

has a unique weak solution u in H1
0 (Ω;RN ) for any bounded linear functional F on H.

Moreover, the solution u satisfies ‖u‖H ≤ C ‖F‖ with a constant C depending on λ and the
L∞-norms of the coefficients of linear terms A(x, s, ξ) and b(x, s, ξ) given above.

Corollary 3.15. Given λ ≥ λ1 as in the theorem, the operator K : L2(Ω;RN )→ L2(Ω;RN ),
where, for each F ∈ L2(Ω;RN ), u = KF is the unique weak solution to the BVP (3.21)
above, is a compact linear operator.

Proof. By the theorem, ‖u‖H1
0 (Ω;RN ) ≤ C‖F‖L2(Ω;RN ). Hence K is a bounded linear opera-

tor from L2(Ω;RN ) to H1
0 (Ω;RN ). So, by the compact embedding H1

0 (Ω;RN )→ L2(Ω;RN ),
the linear operator K : L2(Ω;RN )→ L2(Ω;RN ) is compact. �
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3.4. Regularity of Weak Solutions

We now discuss the question as to whether a weak solution is smooth. We restrict ourselves
to the case (3.1) of single equation for one unknown scalar u. We also emphasize the interior
regularity; see Evan’s book for more.

Consider the equation

(3.22) Lu = f in Ω,

where L is given by

Lu ≡ −
n∑

i,j=1

Di (aij(x)Dju) +
n∑
i=1

bi(x)Diu+ c(x)u

with uniform ellipticity condition: for some θ > 0,

(3.23)

n∑
i,j=1

aij(x)ξiξj ≥ θ
n∑
i=1

|ξi|2 ∀ x ∈ Ω, ξ ∈ Rn.

Assume f ∈ L2(Ω). A function u ∈ H1(Ω) is called a weak solution to Lu = f if
B1(u, v) =

∫
Ω fv dx holds for all v ∈ H1

0 (Ω), where B1(u, v) is the bilinear form defined

before. Note that we do not assume u ∈ H1
0 (Ω).

We first prove the following interior regularity result.

Theorem 3.16. (Interior H2-Regularity) In addition to ellipticity condition, assume

aij ∈ C1(Ω), bi, c ∈ L∞(Ω).

Suppose f ∈ L2(Ω) and u ∈ H1(Ω) is a weak solution to Lu = f . Then u ∈ H2
loc(Ω).

Moreover, for each Ω′ ⊂⊂ Ω, we have the estimate

(3.24) ‖u‖H2(Ω′) ≤ C(‖u‖L2(Ω) + ‖f‖L2(Ω)),

where constant C depends only on Ω′,Ω, and the coefficient of L.

Proof. Set q = f −
∑n

i=1 biDiu− cu. Since u is a weak solution of Lu = f , it satisfies

(3.25)

∫
Ω

n∑
i,j=1

aijDiuDjϕdx =

∫
Ω
qϕ dx for all ϕ ∈ H1

0 (Ω).

Choose an open set Ω′′ such that Ω′ ⊂⊂ Ω′′ ⊂⊂ Ω. Then select a smooth function η
satisfying

η = 1 on Ω′, supp η ⊂ Ω′′, 0 ≤ η ≤ 1.

First, set ϕ = η2u in (3.25) and use Djϕ = η2Dju+ 2ηuDjη to discover∫
Ω

n∑
i,j=1

aij(ηDiu)(ηDju) dx = −
∫

Ω

n∑
i,j=1

2aiju(Djη)(ηDiu) dx+

∫
Ω
qη2u dx.

By the ellipticity condition, the left-hand side of this identity is ≥ θ
∫

Ω η
2|∇u|2 dx, while

the right-hand side, by the definition of q and Cauchy’s inequality with ε, is no greater than

ε

∫
Ω
η2|∇u|2 dx+ Cε

∫
Ω

(u2 + f2) dx.

Hence choosing ε = θ/2 we have shown that∫
Ω
η2|∇u|2 dx ≤ C

∫
Ω

(u2 + f2) dx.



3.4. Regularity of Weak Solutions 66

Thus

(3.26) ‖u‖H1(Ω′′) ≤ C(‖u‖L2(Ω) + ‖f‖L2(Ω)).

We now prove a similar H2-estimate. Since we cannot differentiate the equation Lu = f ,
we need to use difference quotient operator δh defined earlier.

For 0 < |h| < 1
2 dist (Ω′′, ∂Ω) and k = 1, 2, · · · , n, we choose the test function ϕ = δ−hk v

with v = η2δhku, in (3.25) and use Djϕ = δ−hk (Djv) and integration by parts for difference
quotients to obtain ∫

Ω
[δhk (

n∑
i,j=1

aijDiu)]Djvdx = −
∫

Ω
q δ−hk vdx.

Henceforth, we omit the
∑

sign. Using the definition of q and the equality

δhk (aijDiu) = ahij(x)(δhkDiu) + (Diu)(δhkaij),

where ahij(x) = aij(x+ hek), and noting that supp v ⊂ Ω′′, we get∫
Ω
ahij(Diδ

h
ku)(Djv)dx = −

∫
Ω

(
(δhkaij)DiuDjv + q (δ−hk v)

)
dx

≤ c
(
‖u‖H1(Ω′′) + ‖f‖L2(Ω)

)
‖∇v‖L2(Ω).

Since Djv = η2Dj(δ
h
ku) + 2η(Djη)δhku, it follows that∫

Ω
η2ahij(Diδ

h
1u)(Djδ

h
1u) ≤ −2

∫
Ω
ηahij(Diδ

h
ku)(Djη)δhku

+ c
(
‖u‖H1(Ω′′) + ‖f‖L2(Ω)

)
(‖η∇δhku‖L2(Ω) + ‖δhku∇η‖L2(Ω)).

Using the ellipticity condition and Cauchy’s inequality with ε, we obtain

θ

2

∫
Ω
|ηδhk∇u|2dx ≤ c

∫
Ω
|∇η|2|δhku|2dx+ c

(
‖u‖2H1(Ω′′) + ‖f‖2L2(Ω)

)
.

Hence

‖ηδhk∇u‖2L2(Ω) ≤ C
(
‖u‖2H1(Ω′′) + ‖f‖2L2(Ω)

)
.

Since η = 1 on Ω′, we derive that (∇u)xk ∈ L2(Ω′) for all k = 1, 2, · · · , n. Hence u ∈ H2(Ω′).
Moreover,

‖D2u‖L2(Ω′) ≤ C
(
‖u‖H1(Ω′′) + ‖f‖L2(Ω)

)
.

By (3.26), we obtain the estimate (3.24). �

Theorem 3.17. (Global H2-Regularity) Assume in addition to the assumptions of The-
orem 3.16 that aij ∈ C1(Ω̄) and ∂Ω ∈ C2. Then a weak solution u of Lu = f satisfying
u ∈ H1

0 (Ω) belongs to H2(Ω), and

(3.27) ‖u‖H2(Ω) ≤ C(‖u‖L2(Ω) + ‖f‖L2(Ω))

where the constant C depends only on n, ‖aij‖W 1,∞(Ω), ‖bi‖L∞(Ω), ‖c‖L∞(Ω) and ∂Ω.

Proof. Cover Ω by a finite number of balls. In each ball containing a part of ∂Ω, we
apply the usual transformation to flatten the boundary, and then derive the corresponding
boundary estimate in a half ball. In each ball not containing a part of ∂Ω, we apply the
above interior estimate. �

By using an induction argument, we can also get higher regularity for the solution.
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Theorem 3.18. (Interior Higher Regularity) Assume L is uniformly elliptic, and let
aij , bi, c ∈ Ck+1(Ω), f ∈ Hk(Ω). If u ∈ H1(Ω) is a weak solution of Lu = f , then for any

Ω′ ⊂⊂ Ω we have u ∈ Hk+2(Ω′).

Theorem 3.19. (Global Higher Regularity) Assume in addition to the assumptions of
Theorem 3.18 that aij , bi, c ∈ Ck+1(Ω̄), ∂Ω ∈ Ck+2 and f ∈ Hk(Ω). Then a weak solution

u of Lu = f satisfying u ∈ H1
0 (Ω) belongs to Hk+2(Ω), and

(3.28) ‖u‖Hk+2(Ω) ≤ C(‖u‖L2(Ω) + ‖f‖Hk(Ω))

where the constant C is independent of u and f . Furthermore, if the only weak solution
u ∈ H1

0 (Ω) of Lu = 0 is u ≡ 0, then

(3.29) ‖u‖Hk+2(Ω) ≤ C‖f‖Hk(Ω)

where C is independent of u and f .

Proof. We just prove the last statement for k = 0; the more general case is similar. In
view of (3.28), it suffices to show that

‖u‖L2(Ω) ≤ c‖f‖L2(Ω)

If to the contrary this inequality is false, there would exist sequences un ∈ H2(Ω) ∩H1
0 (Ω)

and fn ∈ L2(Ω) for which ‖un‖2 = 1 and ‖fn‖2 → 0. By (3.28) we have ‖un‖2,2 ≤ c. Thus
we can assume that un converges weakly to u in H2(Ω) and strongly in L2(Ω). For fixed
v ∈ H1

0 (Ω), B1(u, v) ∈ (H2(Ω))∗, and so by passing to the limit in

B1(un, v) =

∫
Ω
fnvdx for all v ∈ H1

0 (Ω)

we see that u is a weak solution of Lu = 0. Hence, u ≡ 0 by weak uniqueness. This
contradicts ‖u‖2 = limn→∞ ‖un‖2 = 1. �

Remark. Similar results are valid for the more general boundary condition Bεu|∂Ω = 0.
Moreover, from the above regularity results and the Sobolev imbedding theorem, we easily
deduce the following: If u ∈ H1(Ω) is a weak solution of Lu = f ∈ Hk(Ω), Bεu|∂Ω = 0,
where k > n/2, then u ∈ C2(Ω̄). In particular, if u ∈ H1(Ω) is a weak solution of Lu =
f, Bεu|∂Ω = 0, and if aij , ai, a, f ∈ C∞(Ω̄), then u ∈ C∞(Ω̄).

The following global results on Lp estimates will play an important role in studying
nonlinear problems.

Theorem 3.20. Suppose L is uniformly elliptic with aij ∈ C1(Ω̄), bi, c ∈ C(Ω̄) and let
∂Ω ∈ C2. If u ∈W 1,p(Ω), 1 < p <∞, satisfies

B1(u, φ) =

∫
Ω
fφdx for all φ ∈ C∞0 (Ω),

then u ∈W 2,p(Ω). Moreover, for all u ∈W 2,p(Ω) ∩W 1,p
0 (Ω)

(3.30) ‖u‖W 2,p(Ω) ≤ c(‖Lu‖Lp(Ω) + ‖u‖Lp(Ω))

where the constant c is independent of u.

Theorem 3.21. Let ∂Ω ∈ Ck+2,α(k ≥ 0). Suppose u ∈ C(Ω̄)∩C2(Ω) satisfies the uniformly
elliptic problem Lu = f, u|∂Ω = 0, where f and the coefficients belong to Ck,α(Ω̄). Then
u ∈ Ck+2,α(Ω̄).

Part of the next result improves Theorem 3.21.
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Theorem 3.22. Let u ∈ W 2,p
loc (Ω) be a solution of the uniformly elliptic equation Lu = f.

Suppose the coefficients of L belong to Ck−1,1(Ω̄)(Ck−1,α(Ω̄)), f ∈W k,q(Ω)(Ck−1,α(Ω̄)), and
∂Ω ∈ Ck+1,1(Ck+1,α), with 1 < p, q <∞, k ≥ 1, 0 < α < 1. Then u ∈W k+2,q(Ω)(Ck+1,α(Ω̄)).

3.5. Symmetric Elliptic Operators and Eigenvalue Problems

3.5.1. Symmetric Elliptic Operators. In what follows, we assume Ω ⊂ Rn is a bounded
domain and N ≥ 1 is integer. We consider the operator

Lu = −divA(x,Du) + c(x)u, u ∈ H1
0 (Ω;RN ),

where A(x,Du) is a linear system defined with A(x, ξ), ξ ∈MN×n, given by

Aki (x, ξ) =
∑

1≤l≤N, 1≤j≤n
aklij (x)ξlj .

Here aklij (x) and c(x) are given functions in L∞(Ω). The bilinear form associated to L is

(3.31) B(u, v) =

∫
Ω

(

N∑
k,l=1

n∑
i,j=1

aklij (x)Dju
lDiv

k + c(x)u · v) dx, u, v ∈ H1
0 (Ω;RN ).

In order for B to be symmetric on H1
0 (Ω;RN ), that is, B(u, v) = B(v, u) for all u, v ∈

H1
0 (Ω;RN ), we need the following symmetry condition:

(3.32) aklij (x) = alkji(x), ∀ i, j = 1, 2, · · · , n; k, l = 1, 2, · · · , N.

We also assume the G̊arding inequality holds (see Theorem 3.13 for sufficient conditions):

(3.33) B(u, u) ≥ σ‖u‖2H1
0
− µ‖u‖2L2 , ∀ u ∈ H1

0 (Ω;RN ),

where σ > 0 and µ ∈ R are constants.

3.5.2. The Compact Inverse. For each F ∈ L2(Ω;RN ), define u = KF to be the unique
weak solution in H1

0 (Ω;RN ) of the BVP

Lu+ µu = F in Ω, u|∂Ω = 0.

By Theorem 3.14 and Corollary 3.15, this K is well defined and is a compact linear operator
on L2(Ω;RN ). Sometime, we write K = (L+µI)−1. Here I denotes the identity on L2(Ω;RN )
and also the identity embedding of H1

0 (Ω;RN ) into L2(Ω;RN ).

Theorem 3.23. K : L2(Ω;RN )→ L2(Ω;RN ) is symmetric and positive; that is,

(KF,G)L2 = (KG,F )L2 , (KF, F )L2 ≥ 0, ∀ F, G ∈ L2(Ω;RN ).

Furthermore, given λ ∈ R and F ∈ L2(Ω;RN ), u ∈ H1
0 (Ω;RN ) is a weak solution of

Lu− λu = F if and only if [I − (λ+ µ)K]u = KF.

Proof. Let u = KF and v = KG. Then

(u,G)L2 = B(v, u) + µ(v, u)L2 = B(u, v) + µ(v, u)L2 = (v, F )L2 ,

proving the symmetry. Also, by (3.33),

(3.34) (KF, F )L2 = (u, F )L2 = B(u, u) + µ‖u‖2L2 ≥ σ‖u‖2H1
0

= σ‖KF‖2H1
0
≥ 0.

Finally, u ∈ H1
0 (Ω;RN ) is a weak solution of Lu − λu = F if and only if Lu + µu =

F + (λ+ µ)u, which is equivalent to the equation u = K[F + (λ+ µ)u] = KF + (λ+ µ)Ku;
that is, [I − (λ+ µ)K]u = KF. �
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3.5.3. Orthogonality Conditions. From Theorem 3.23 above, the BVP

(3.35) Lu = F, u|∂Ω = 0

has a solution if and only if KF ∈ R(I − µK) = [N (I − µK)]⊥.

If µ = 0, the Lax-Milgram theorem already implies that the problem (3.35) has a unique
weak solution u = KF. If µ 6= 0, then it is easy to see that

N = N (I − µK) = {v ∈ H1
0 (Ω;RN ) |Lv = 0}.

Note that, by the Fredholm Alternative Theorem, this null space N is of finite dimension
k, and let {v1, v2, · · · , vk} be a basis of this null space. Then (3.35) is solvable if and only
if the following orthogonality condition holds:∫

Ω
F ·Gi dx = 0, i = 1, 2, · · · , k,

where Gi = Kvi; that is, Gi is the unique weak solution to the BVP: LGi + µGi = vi, in
H1

0 (Ω;RN ).

3.5.4. Eigenvalue Problems. A number λ ∈ R is called a (Dirichlet) eigenvalue of
operator L if the BVP problem

Lu− λu = 0, u|∂Ω = 0

has nontrivial weak solutions in H1
0 (Ω;RN ); these nontrivial solutions are called the eigen-

functions corresponding to eigenvalue λ.

From Theorem 3.23, we see that λ is an eigenvalue of L if and only if equation (I− (λ+
µ)K)u = 0 has nontrivial solutions u ∈ L2(Ω;RN ); this exactly says that λ 6= −µ and 1

λ+µ

is an eigenvalue of operator K. Since, by (3.34), K is strictly positive, all eigenvalues of K
consist of a countable set of positive numbers tending to zero and hence the eigenvalues of
L consist of a set of numbers {λj}∞j=1 with −µ < λ1 ≤ λ2 ≤ · · · ≤ λj →∞.

Theorem 3.24. (Eigenvalue Theorem) Assume (3.32) and (3.33) with µ = 0. Then the
eigenvalues of L consist of a countable set Σ = {λk}∞k=1, where

0 < λ1 ≤ λ2 ≤ λ3 ≤ · · ·

and

lim
k→∞

λk =∞.

Note that λ1 is called the (Dirichlet) principal eigenvalue of L. Let wk be an eigenfunction
corresponding to λk satisfying ‖wk‖L2(Ω;RN ) = 1. Then {wk}∞k=1 forms an orthonormal

basis of L2(Ω;RN ).

Note that

(3.36) λ1 = min
u∈H1

0 (Ω;RN ), ‖u‖L2=1
B(u, u).

Theorem 3.25. Let N = 1 and let w1 be an eigenfunction corresponding to the principal
eigenvalue λ1. Then, either w1(x) > 0 for all x ∈ Ω or w1(x) < 0 for all x ∈ Ω. Moreover,
the eigenspace corresponding to λ1 is one-dimensional.
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Proof. The first part of the theorem relies on the characterization (3.36) and a maximum
principle which we do not study here. We prove only the second part. Let w be another
eigenfunction. Then, either w(x) > 0 for all x ∈ Ω or w(x) < 0 for all x ∈ Ω. Let t ∈ R be
such that ∫

Ω
w(x) dx = t

∫
Ω
w1(x)dx.

Note that u = w − tw1 is also a solution to Lu = λ1u. We claim u ≡ 0 and hence w = tw1,
proving the eigenspace is one-dimensional. Suppose u 6= 0. Then u is another eigenfunction
corresponding to λ1. Then, by the theorem, we would have either u(x) > 0 for all x ∈ Ω or
u(x) < 0 for all x ∈ Ω and hence

∫
Ω u(x)dx 6= 0, which is a contradiction. �

Remark. Why is the eigenvalue problem important? In one specific case, one can use
eigenvalues and eigenfunctions to study some evolution (i.e. time-dependent) problems. For
example, to solve the initial boundary value problem (IBVP) for the time-dependent
parabolic equation:

(3.37) ut + Lu = 0, u|∂Ω = 0, u(x, 0) = ϕ(x),

one can try to find the special solutions of the form: u(x, t) = e−λtw(x); this reduces to the
eigen-problem: Lw = λw. Therefore, for each pair (λi, wi) of eigenvalue and eigenfunction,
one obtains a special solution to the evolution equation given by ui(x, t) = e−λitwi(x). Then
one proceeds to solve the IBVP (3.37) by finding the solution of the form

u(x, t) =
∑
i

aie
−λitwi(x),

where ai is determined by the eigen-expansion of the initial data ϕ:

ϕ(x) =
∑
i

aiwi(x).

However, this course does not study the parabolic or other time-dependent problems.



Chapter 4

Variational Methods
for Nonlinear PDEs

4.1. Variational Problems

This chapter and the next will discuss some methods for solving the boundary value problem
for certain nonlinear partial differential equations. All these problems can be written in the
abstract form:

(4.1) A[u] = 0 in Ω, B[u] = 0 on ∂Ω,

whereA[u] denotes a given PDE for unknown u and B[u] is a given boundary value condition.
There is, of course, no general theory for solving such problems.

The Calculus of Variations identifies an important class of problems which can be solved
using relatively simple techniques from nonlinear functional analysis. This is the class of
variational problems, where the operator A[u] can be formulated as the first variation
(“derivative”) of an appropriate “energy” functional I(u) on a Banach space X; that is,
A[u] = I ′(u). In this way, A : X → X∗ and the equation A[u] = 0 can be formulated weakly
as

〈I ′(u), v〉 = 0, ∀ v ∈ X.

The advantage of this new formulation is that solving problem (4.1) (at least weakly) is
equivalent to finding the critical points of I on X. The minimization method for a
variational problem is to solve the problem by finding the minimizers of the related energy
functional. In this chapter and the next, we shall only study the variational problems on
the Sobolev space X = W 1,p(Ω;RN ).

We should also mention that many of the physical laws in applications arise directly as
variational principles. However, although powerful, not all PDE problems can be formulated
as variational problems; there are lots of other (nonvariational) important methods for
studying PDEs.

71
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4.2. Multiple Integrals in the Calculus of Variations

Consider the multiple integral functional

(4.2) I(u) =

∫
Ω
F (x, u(x), Du(x)) dx,

where F (x, s, ξ) is a given function on Ω× RN ×MN×n.

4.2.1. First Variation and Euler-Lagrange Equations. Suppose F (x, s, ξ) is contin-
uous and is also smooth in s and ξ. Assume u is a nice (say, u ∈ C1(Ω̄;RN )) minimizer of
I(u) with its own boundary data; that is, u is a map such that

I(u) ≤ I(u+ tϕ)

for all t ∈ R1 and ϕ ∈ C∞0 (Ω;RN ). Then by taking derivative of I(u+ t ϕ) at t = 0 we see
that u satisfies

(4.3)

∫
Ω

(
Fξki

(x, u,Du)Diϕ
k(x) + Fsk(x, u,Du)ϕk(x)

)
dx = 0

for all ϕ ∈ C∞0 (Ω;RN ). (Summation notation is used here.) The left-hand side is called
the first variation of I at u. Since this holds for all test functions, we conclude after
integration by parts:

(4.4) −divA(x, u,Du) + b(x, u,Du) = 0,

where A, b are defined by

(4.5) Aki (x, s, ξ) = Fξki
(x, s, ξ), bk(x, s, ξ) = Fsk(x, s, ξ).

This coupled system of nonlinear partial differential equations in divergence form is called
the system of Euler-Lagrange equations for the functional I(u).

4.2.2. Second Variation and Legendre-Hadamard Conditions. If F, u are suffi-
ciently smooth (e.g. of class C2) then, at the minimizer u, we have

d2

dt2
I(u+ tϕ)

∣∣∣
t=0
≥ 0.

This implies

(4.6)

∫
Ω

[
Fξki ξlj

(x, u,Du)Diϕ
kDjϕ

l + 2Fξki sl
(x, u,Du)ϕlDiϕ

k + Fsksl(x, u,Du)ϕkϕl
]
≥ 0

for all ϕ ∈ C∞0 (Ω;RN ). The left-hand side of this inequality is called the second variation
of I at u.

We can extract some useful information from (4.6). Note that routine approximation

argument shows that (4.6) is also valid for all functions ϕ ∈ W 1,∞
0 (Ω;RN ) (that is, all

Lipschitz functions vanishing on ∂Ω). Let ρ : R → R be the periodic zig-zag function of
period 1 defined by

(4.7) ρ(t+ 1) = ρ(t) (t ∈ R),

(4.8) ρ(t) = t if 0 ≤ t ≤ 1
2 ; ρ(t) = 1− t if 1

2 ≤ t ≤ 1.

Given any vectors p ∈ Rn, q ∈ RN and ε > 0, define ϕ ∈W 1,∞
0 (Ω;RN ) by

ϕ(x) = ε ρ(
x · p
ε

)ζ(x)q, ∀ x ∈ Ω,
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where ζ ∈ C∞0 (Ω) is a given scalar test function. Note that Diϕ
k(x) = ρ′(x·pε )piq

kζ +O(ε)
as ε→ 0+. Substitute this ϕ into (4.6) and let ε→ 0+ and we obtain∫

Ω

[ n∑
i,j=1

N∑
k,l=1

Fξki ξlj
(x, u,Du) pipjq

kql
]
ζ2 dx ≥ 0.

Since this holds for all ζ ∈ C∞0 (Ω), we deduce

(4.9)
n∑

i,j=1

N∑
k,l=1

Fξki ξlj
(x, u,Du) pipjq

kql ≥ 0, ∀ x ∈ Ω, p ∈ Rn, q ∈ RN .

This is the weak Legendre-Hadamard condition for F at the minimum point u.

4.2.3. Ellipticity Conditions and Convexities. We now consider the ellipticity of the
Euler-Lagrange equation (4.4), where A(x, s, ξ), b(x, s, ξ) are given by (4.5) and F (x, s, ξ) is
C2 in ξ. In this case, the Legendre ellipticity condition (3.8) and the Legendre-Hadamard
condition (3.9) defined in the previous chapter reduce to, respectively:

(4.10) Fξki ξlj
(x, s, ξ) ηki η

l
j ≥ ν |η|2 ∀η ∈MN×n;

(4.11) Fξki ξlj
(x, s, ξ) qkql pipj ≥ ν|p|2|q|2 ∀q ∈ RN , p ∈ Rn.

Obviously, (4.10) implies (4.11). We also have the following equivalent conditions.

Lemma 4.1. Let F be C2 in ξ. Then condition (4.10) or (4.11) is equivalent to the following
condition respectively:

F (x, s, η) ≥ F (x, s, ξ) + Fξki
(x, s, ξ) (ηki − ξki ) +

ν

2
|η − ξ|2,(4.12)

F (x, s, ξ + q ⊗ p) ≥ F (x, s, ξ) + Fξki
(x, s, ξ) pi q

k +
ν

2
|p|2|q|2(4.13)

for all x ∈ Ω, s, q ∈ RN , ξ, η ∈MN×n and p ∈ Rn.

Proof. Let ζ = η − ξ and f(t) = F (x, s, ξ + tζ). Then, by Taylor’s formula,

f(1) = f(0) + f ′(0) +

∫ 1

0
(1− t) f ′′(t) dt.

Note that

f ′(t) = Fξki
(x, s, ξ + tζ) ζki , f ′′(t) = Fξki ξlj

(x, s, ξ + tζ) ζki ζ
l
j .

From this and the Taylor formula, inequality (4.12) or (4.13) is equivalent to (4.10) or
(4.11), respectively. �

Remark. Interchanging η, ξ in (4.12), we also see that condition (4.10) implies

(4.14) (Fηki
(x, s, ξ)− Fξki (x, s, η)) (ηki − ξki ) ≥ ν |η − ξ|2;

that is, (DF (x, s, η)−DF (x, s, ξ)) · (η− ξ) ≥ ν|η− ξ|2 for all x ∈ Ω, s ∈ RN , ξ, η ∈MN×n.

A function F (x, s, ξ) is said to be convex in ξ ∈MN×n if

F (x, s, tξ + (1− t)η) ≤ tF (x, s, ξ) + (1− t)F (x, s, η)
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for all x, s, ξ, η and 0 ≤ t ≤ 1. While F (x, s, ξ) is said to be rank-one convex in ξ if the
function f(t) = F (x, s, ξ + t q ⊗ p) is convex in t ∈ R1 for all x, s, ξ and q ∈ RN , p ∈ Rn.
Obviously, a convex function is always rank-one convex.

We easily have the following result.

Lemma 4.2. Let F (x, s, ξ) be C2 in ξ. Then the convexity of F (x, s, ξ) in ξ is equivalent
to (4.10) with ν = 0, while the rank-one convexity of F (x, s, ξ) in ξ is equivalent to (4.11)
with ν = 0.

Remark. Rank-one convexity does not imply convexity. For example, take n = N ≥ 2, and
F (ξ) = det ξ. Then F (ξ) is rank-one convex but not convex in ξ. (Exercise!) Later on, we
will study other convexity conditions related to the energy functionals given by (4.2).

4.2.4. Structural Conditions. Distributional solutions to the Euler-Lagrange equations
(4.4) can be defined as long as A(x, u,Du) and b(x, u,Du) are in L1

loc(Ω;RN ), but we need
some structural conditions on F (x, s, ξ) so that the weak solutions to the BVP

(4.15) −divA(x, u,Du) + b(x, u,Du) = 0 in Ω, u = ϕ on ∂Ω,

can be defined and studied in W 1,p(Ω;RN ). These conditions are also sufficient for the
functional I to be Gateaux-differentiable on W 1,p(Ω;RN ).

Standard Growth Conditions. We assume F (x, s, ξ) is C1 in (s, ξ) and

|F (x, s, ξ)| ≤ c1(|ξ|p + |s|p) + c2(x), c2 ∈ L1(Ω);(4.16)

|DsF (x, s, ξ)| ≤ c3(|ξ|p−1 + |s|p−1) + c4(x), c4 ∈ L
p
p−1 (Ω);(4.17)

|DξF (x, s, ξ)| ≤ c5(|ξ|p−1 + |s|p−1) + c6(x), c6 ∈ L
p
p−1 (Ω),(4.18)

where c1, c3, c5 are constants.

Theorem 4.3. Under the standard conditions above, the functional I : W 1,p(Ω;RN ) → R
is Gateaux-differentiable and, for u, v ∈ W 1,p(Ω;RN ), the directional derivative 〈I ′(u), v〉
is exactly given by

(4.19) 〈I ′(u), v〉 =

∫
Ω

(
Fξki

(x, u,Du)Div
k(x) + Fsk(x, u,Du) vk(x)

)
dx

(as usual, summation notation is used here).

Proof. Given u, v ∈ X = W 1,p(Ω;RN ), let h(t) = I(u + tv). Then, by (4.16), h is finite
valued, and for t 6= 0 we have

h(t)− h(0)

t
=

∫
Ω

F (x, u+ tv,Du+ tDv)− F (x, u,Du)

t
dx ≡

∫
Ω
F t(x) dx,

where for almost every x ∈ Ω,

F t(x) =
1

t
[F (x, u+ tv,Du+ tDv)− F (x, u,Du)] =

1

t

∫ t

0

d

ds
F (x, u+ sv,Du+ sDv) ds.

Clearly,

lim
t→0

F t(x) = Fξki
(x, u,Du)Div

k(x) + Fsk(x, u,Du) vk(x) a.e.

We also write

F t(x) =
1

t

∫ t

0

[
Fξki

(x, u+ sv,Du+ sDv)Div
k(x) + Fsk(x, u+ sv,Du+ sDv) vk(x)

]
ds.
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Using conditions (4.17), (4.18), and Young’s inequality: ab ≤ ap

p + bq

q , where 1
p + 1

q = 1, we

obtain that, for all 0 < |t| ≤ 1,

|F t(x)| ≤ C1(|Du|p + |Dv|p + |u|p + |v|p) + C2(x), C2 ∈ L1(Ω).

Hence, by the Lebesgue dominated convergence theorem,

h′(0) = lim
t→0

∫
Ω
F t(x) dx =

∫
Ω

[
Fξki

(x, u,Du)Div
k(x) + Fsk(x, u,Du) vk(x)

]
dx.

This proves the theorem. �

Dirichlet Classes. Given ϕ ∈W 1,p(Ω;RN ), we define the Dirichlet class of ϕ to be the set

Dϕ = {u ∈W 1,p(Ω;RN ) |u− ϕ ∈W 1,p
0 (Ω;RN )}.

4.2.5. Weak Solutions of Euler-Lagrange Equations. Under the standard growth
conditions, we say u ∈ W 1,p(Ω;RN ) is a weak solution to the BVP of Euler-Lagrange
equations (4.15) if u ∈ Dϕ and

(4.20)

∫
Ω

(
Fξki

(x, u,Du)Div
k(x) + Fsk(x, u,Du) vk(x)

)
dx = 0

for all v ∈W 1,p
0 (Ω;RN ).

Theorem 4.4. Under the standard growth conditions above, any minimizer u ∈ Dϕ of

I(u) = min
v∈Dϕ

I(v)

is a weak solution of the BVP for the Euler-Lagrange equation (4.15).

Proof. This follows from Theorem 4.3. �

4.2.6. Minimality and Uniqueness of Weak Solutions. We study the weak solutions
of Euler-Lagrange equations under the hypotheses of convexity and certain growth condi-
tions. For this purpose, we consider a simple case where F (x, s, ξ) = F (x, ξ) satisfies, for
some 1 < p <∞,

(4.21) |Fξki (x, ξ)| ≤ µ (χ(x) + |ξ|p−1) ∀x ∈ Ω, ξ ∈MN×n,

where µ > 0 is a constant and χ ∈ L
p
p−1 (Ω) is some function. Let

I(u) =

∫
Ω
F (x,Du(x)) dx.

Theorem 4.5. Let F (x, ξ) be C2 and convex in ξ. Let u ∈W 1,p(Ω;RN ) be a weak solution
of the Euler-Lagrange equation of I and I(u) < ∞. Then u must be a minimizer of I in
the Dirichlet class Du of W 1,p(Ω;RN ). Furthermore, if F satisfies the Legendre condition
(4.10) (with ν > 0), then u is the unique minimizer of I in Du.

Proof. Since u is a weak solution of the Euler-Lagrange equation of I, it follows that

(4.22)

∫
Ω
Fξki

(x,Du(x))Div
k dx = 0
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for all v ∈ W 1,p
0 (Ω;RN ). The growth condition (4.21) implies Fξki

(x,Du) ∈ L
p
p−1 (Ω). Now

let v ∈W 1,p(Ω;RN ) with v − u ∈W 1,p
0 (Ω;RN ). By the convexity condition, we have

(4.23) F (x, η) ≥ F (x, ξ) + Fξki
(x, ξ) (ηki − ξki ) +

ν

2
|η − ξ|2, ∀ ξ, η,

where ν = 0 if F is only convex in ξ and ν > 0 if F satisfies the Legendre condition. This
implies ∫

Ω
F (x,Dv) dx ≥

∫
Ω
F (x,Du) dx+

∫
Ω
Fξki

(x,Du)Di(v
k − uk) dx

+
ν

2

∫
Ω
|Du−Dv|2 dx.

Since u is a weak solution, we have∫
Ω
Fξki

(x,Du)Di(v
k − uk) dx = 0.

Therefore, it follows that

(4.24) I(v) ≥ I(u) +
ν

2

∫
Ω
|Du−Dv|2 dx ≥ I(u)

for all v ∈W 1,p(Ω;RN ) with v− u ∈W 1,p
0 (Ω;RN ). This shows that u is a minimizer of I in

the Dirichlet class Du.
Now assume ν > 0 and v ∈ Du is another such minimizer of I. Then from (4.24) we easily

obtain Du = Dv in Ω and hence v ≡ u since u − v ∈ W 1,p
0 (Ω;RN ). The proof is now

completed. �

4.2.7. Regularity. We now study functional I(u) scalar functions u, where

I(u) =

∫
Ω
F (Du(x)) dx

for a smooth convex function F (ξ) satisfying the following condition: for some constants C
and θ > 0,

(4.25) |D2F (ξ)| ≤ C, Fξiξj (ξ)pipj ≥ θ|p|
2, ∀ ξ, p ∈ Rn.

Let f ∈ L2(Ω). Recall that a function u ∈ H1(Ω) is called a weak solution to the
nonlinear PDE (the Euler-Lagrange equation for I(u)):

(4.26) −
n∑
i=1

(Fξi(Du))xi = f in Ω

if ∫
Ω

n∑
i=1

Fξi(Du)vxi dx =

∫
Ω
fv dx ∀ v ∈ H1

0 (Ω).

Theorem 4.6. (H2-Regularity) Let u ∈ H1(Ω) be a weak solution to (4.26). Then
u ∈ H2

loc(Ω). If in addition u ∈ H1
0 (Ω) and ∂Ω is C2, then u ∈ H2(Ω) and

‖u‖H2(Ω) ≤ C‖f‖L2(Ω).
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Proof. The proof of for the interior regularity will follow largely from the same proof for
linear equations. However, we only obtain an estimate like

(4.27) ‖u‖H2(Ω′) ≤ C(Ω′)(‖u‖H1(Ω) + ‖f‖L2(Ω)) ∀ Ω′ ⊂⊂ Ω.

If u ∈ H1
0 (Ω), we can estimate ‖u‖H1

0 (Ω) by ‖f‖L2(Ω). In fact, by (4.14) and (4.25), it

follows that (DF (ξ)−DF (0)) · ξ ≥ θ|ξ|2 for all ξ ∈ Rn. So

DF (ξ) · ξ ≥ DF (0)) · ξ + θ|ξ|2, ∀ ξ ∈ Rn.
Using v = u ∈ H1

0 (Ω) as test function, we have∫
Ω
fu =

∫
Ω
DF (Du) ·Du ≥

∫
Ω
DF (0) ·Du+

∫
Ω
θ|Du|2 = θ

∫
Ω
|Du|2.

By Poincaré’s inequality, ‖u‖L2(Ω) ≤ c‖Du‖L2(Ω) and hence, using Cauchy’s inequality with
ε, we obtain

‖Du‖L2(Ω) ≤ C‖f‖L2(Ω).

Then the global estimate can also be proved largely following the idea for global regularity
of linear equations. �

Remarks. (1) Assume f and F are C∞. Assume u ∈ H1(Ω) is a weak solution to (4.26).
Then u ∈ H2

loc(Ω) and, using v = wxk as test function, where w ∈ C∞0 (Ω), we obtain∫
Ω

n∑
i,j=1

Fξiξj (Du)uxjxkwxi dx =

∫
Ω
fxkw dx ∀ w ∈ C∞0 (Ω).

Let aij(x) = Fξiξj (Du(x)), ũ = uxk and f̃ = fxk . This identity implies that, for any

Ω′ ⊂⊂ Ω, ũ ∈ H1(Ω′) is a weak solution of the equation

(4.28) −Di(aij(x)Dj ũ) = f̃ in Ω′.

However, the coefficient (aij(x)), which depends on solution u and satisfies the strict ellip-
ticity condition, is only in L∞(Ω′); therefore, we cannot use the regularity theorem (e.g.,
Theorem 3.16) of linear equations (which needs aij ∈ C1).

(2) There is a well-known DeGiorgi-Nash-Moser theorem for equations of the form

(4.28) which asserts that if f̃ ∈ C∞ then any weak solution ũ ∈ H1(Ω′) must be in Cα(Ω′)
for some 0 < α < 1. Hence Du ∈ Cα(Ω′), which implies aij = Fξiξj (Du) ∈ Cα. Then, a

classical Schauder’s estimate for equation (4.28) will imply ũ ∈ C1,α; such an estimate
can also be established by using the technique of Cappanato spaces. Therefore, aij(x)
defined is in fact in C1,α. This bootstrap argument will then show that if f and F are
C∞ then any weak solution u ∈ H1(Ω) must be C∞. For details, see Giaquinta [13] and
Gilbarg & Trudinger [14].

4.3. Direct Method for Minimization

4.3.1. Weak Lower Semicontinuity. Assume 1 < p <∞. Let X = W 1,p(Ω;RN ). A set
C ⊂ X is called weakly closed if {uν} ⊂ C, uν ⇀ u implies u ∈ C. For instance, all
Dirichlet classes Dϕ are weakly closed.

A functional I : X → R̄ is called weakly lower semicontinuous(w.l.s.c.) on X if for
every u0 ∈ X and every sequence {uν} weakly convergent to u0 in X it follows that

I(u0) ≤ lim inf
ν→∞

I(uν).

I is called weakly coercive on a (unbounded) set C in X if I(u)→∞ as ‖u‖ → ∞ on C.
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4.3.2. Direct Method in the Calculus of Variations. The following theorem is a
special case of the generalized Weierstrass theorem (see Theorem 1.38).

Theorem 4.7. (Existence of Minimizers) Assume 1 < p < ∞. Let I : C ⊆ X =
W 1,p(Ω;RN )→ R be w.l.s.c. and weakly coercive on a nonempty weakly closed set C in X.
Then there is at least one u0 ∈ C such that I(u0) = infu∈C I(u). In this case we say u0 ∈ C
is a minimizer of I on C.

Proof. This theorem is a special case of Theorem 1.38 under assumption (ii) there; the proof
involves the basic ideas of what is known as the direct method of calculus of variations. We
explain this method by giving a proof of this theorem. First of all, by the weak coercivity,
one can easily show that infu∈C I(u) is finite; so take a sequence {uν}, called a minimizing
sequence, such that

lim
ν→∞

I(uν) = inf
u∈C

I(u).

Then the weak coercivity condition implies that {uν} must be bounded in X. Since 1 <
p <∞ and thus X = W 1,p(Ω;RN ) is reflexive, there exists a subsequence of {uν}, denoted
by {uνj}, and u0 ∈ X such that uνj ⇀ u0 weakly in X. The weak closedness of C implies
u0 ∈ C. Now the w.l.s.c. of I implies

I(u0) ≤ lim inf
j→∞

I(uνj ) = inf
u∈C

I(u).

This implies u0 is a minimizer of I over C. �

4.3.3. An Example: p-Laplace Equations. As an example, we consider the BVP for
nonlinear p-Laplace equations (p ≥ 2):

(4.29) −
n∑
i=1

Di(|∇u|p−2Diu) + f(x, u) = 0 in Ω, u = 0 on ∂Ω,

where f : Ω × R → R be a given function satisfying the Carathéodory property, i.e.,
for every s ∈ R, f(x, s) (as a function of x) is measurable on Ω, and for almost all x ∈ Ω,
f(x, s) (as a function of s) is continuous on R. Note that when p = 2, (4.29) becomes the
semilinear elliptic problem.

Define

F (x, s) =

∫ s

0
f(x, t) dt

and the functional I on X = W 1,p
0 (Ω) by

I(u) =

∫
Ω

[
1

p
|∇u|p + F (x, u)

]
dx.

Assume the following growth conditions are satisfied:

F (x, s) ≥ −c1|s| − c2(x),(4.30)

|F (x, s)| ≤ c3(x) + c4|s|p,(4.31)

|f(x, s)| ≤ c5(x) + c6|s|p−1(4.32)

for all x ∈ Ω and s ∈ R, where c1, c4, c6 are nonnegative constants, and c2, c3 ∈ L1(Ω), and

c5 ∈ L
p
p−1 (Ω) are given functions. Note that (4.32) implies (4.31).

Theorem 4.8. Under these conditions, the functional I has a minimizer on X = W 1,p
0 (Ω)

and hence (4.29) has a weak solution.
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Proof. We only need to check I is w.l.s.c and weakly coercive on X. We write

I(u) = I1(u) + I2(u) =
1

p

∫
Ω
|∇u|p dx+

∫
Ω
F (x, u) dx.

Note that pI1(u) = ‖u‖p1,p,0 on X which is w.l.s.c. And since the embedding X ⊂ Lp(Ω)

is always compact, by (4.31), we can show that I2 is in fact continuous under the weak
convergence. Hence I is w.l.s.c. on X. By (4.30), we have

I(u) ≥ 1

p
‖u‖p1,p,0 − c1‖u‖L1(Ω) − C ≥

1

p
‖u‖p1,p,0 − c‖u‖1,p,0 − C,

and hence I(u) → ∞ if ‖u‖X = ‖u‖1,p,0 → ∞. This proves the weak coercivity of I. The
result follows then from Theorem 4.7. �

Example 4.9. Let n ≥ 3 and 2 ≤ p < n. Show the theorem is valid if (4.32) above is
replaced by

|f(x, s)| ≤ a(x) + b |s|q,

where b ≥ 0 is a constant, a ∈ L
q+1
q (Ω) and 1 ≤ q < p∗ − 1.

4.4. Minimization with Constraints

In some cases, we need to minimize functional I under certain constraints. If I is a multiple
integral functional on X = W 1,p(Ω;RN ) defined before, there may be constraints given in
terms of one of the following:

(4.33) J(u) = 0, where J(u) =
∫

ΩG(x, u) dx.

(4.34) h(u(x)) = 0, ∀ a.e. x ∈ Ω.

(4.35) M(Du(x)) = 0, ∀ a.e. x ∈ Ω.

All these lead to some PDEs involving the Lagrange multipliers. For different types of
constraints, the Lagrange multiplier comes in significantly different ways.

4.4.1. Nonlinear Eigenvalue Problems. The following theorem was proved in the Pre-
liminaries (see Theorem 1.43).

Theorem 4.10. Let X be a Banach space. Let f, g : X → R be of class C1 and g(u0) = c.
Assume u0 is a local extremum of f with respect to the constraint g(u) = c. Then either
g′(u0)v = 0 for all v ∈ X, or there exists λ ∈ R such that f ′(u0)v = λg′(u0)v for all v ∈ X;
that is, u0 is a critical point of f − λg.

If u0 6= 0 then the corresponding λ is called an eigenvalue for the nonlinear eigenvalue
problem: f ′(u) = λg′(u), and u0 is the corresponding eigenfunction.

We have following applications.

Theorem 4.11. Let k(x), l(x) ∈ C(Ω̄) with l(x) ≥ α > 0 on Ω̄. Then, for each R ∈ (0,∞),
the problem

(4.36) ∆u+ k(x)u+ λl(x)|u|τ−1u = 0 in Ω, u|∂Ω = 0 (0 < τ <
n+ 2

n− 2
)

has a (weak) solution pair (uR, λR) with 1
τ+1

∫
Ω l(x)|uR|τ+1dx = R. Furthermore, one can

have uR ≥ 0 on Ω.
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Proof. Define the functionals

f(u) =
1

2

∫
Ω

(|∇u|2 − k(x)u2) dx, g(u) =
1

τ + 1

∫
Ω
l(x)|u|τ+1 dx.

As before, we easily see that f is w.l.s.c., and g is weakly continuous on H1
0 (Ω) (it is here

that the assumption τ < n+2
n−2 is used to guarantee that the embedding H1

0 (Ω) ⊂ Lτ+1(Ω)

be compact). Note that for each R > 0 the set C = {u ∈ H1
0 (Ω) : g(u) = R} is nonempty

(Why?) and weakly closed. Now we show that f is weakly coercive on C. First of all, by
Hölder’s inequality we have(∫

Ω
|u| dx

)τ+1

≤ |Ω|τ
∫

Ω
|u|τ+1 dx

≤ |Ω|τ

α

∫
Ω
l(x)|u|τ+1 dx = Cg(u) = CR.

Hence ‖u‖1 is uniformly bounded on C. (If τ ≥ 1 then we can also see that ‖u‖2 is bounded
on C and in the following we do not need Ehrling’s inequality.) Furthermore, by Ehrling’s
inequality (Theorem 1.46), for each ε > 0, there is an absolute constant c(ε) > 0 such that

‖u‖22 ≤ ε‖u‖21,2,0 + c(ε)‖u‖21 for all u ∈ H1
0 (Ω).

Thus

f(u) ≥ 1

2
(1− εmax |k|)‖u‖21,2,0 −

1

2
c(ε) max |k|‖u‖21.

If we choose ε small enough so that 1− εmax |k| > 0, then f(u)→∞ as ‖u‖1,2,0 →∞ for
u ∈ C. Therefore, we can apply the direct method to obtain a minimizer uR ∈ C of f over
set C. Hence uR is a minimizer of f with respect to the constraint g(u) = R. Furthermore,
since f(u) = f(|u|) and g(u) = g(|u|) for all u ∈ H1

0 (Ω), |uR| will also be a minimizer of f
with respect to g(u) = R; hence we can assume uR ≥ 0.

It is easily shown that f and g are both G-differentiable on H = H1
0 (Ω) and

〈f ′(u), v〉 =

∫
Ω

(∇u · ∇v − k(x)uv) dx, 〈g′(u), v〉 =

∫
Ω
l(x)|u|τ−1uv dx

for all u, v ∈ H. Hence

‖f ′(u)− f ′(w)‖H∗ = sup
v∈H,‖v‖H≤1

〈f ′(u)− f ′(w), v〉 ≤ C‖u− w‖H

and

‖g′(u)− g′(w)‖H∗ = sup
v∈H,‖v‖H≤1

∫
Ω
l(x)(|u|τ−1u− |w|τ−1w)v dx

≤ (max l(x))‖|u|τ−1u− |w|τ−1w‖ τ+1
τ
‖v‖τ+1 ≤ C‖|u|τ−1u− |w|τ−1w‖ τ+1

τ
.

Since Nemystkii operator N(u) = |u|τ−1u : Lτ+1(Ω)→ L
τ+1
τ (Ω) is bounded and contin-

uous and the imbedding H → Lτ+1(Ω) is continuous, it follows that both f ′ and g′ are
continuous from H to H∗ (in fact, g′ is compact); hence both f and g are C1 on H1

0 (Ω)
and that g′(u) = 0 iff u = 0. Since g(uR) = R > 0, clearly uR 6= 0 and hence g′(uR) 6= 0.
Therefore, by Theorem 4.10, we conclude that there exists a real number λR such that
f ′(uR) = λRg

′(uR); hence (uR, λR) is weak solution of (4.36) with g(uR) = R. Moreover, if

βR = f(uR) = minu∈C f(u), then it is easily seen that λR = 2βR
(τ+1)R . �

Corollary 4.12. For 0 < τ < (n + 2)/(n − 2) and τ 6= 1, there exists a nontrivial weak
solution of

(4.37) ∆u+ |u|τ−1u = 0 in Ω, u|∂Ω = 0.
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Proof. By Theorem 4.11, there exist uR 6= 0, λR > 0 such that

∆uR + λR|uR|τ−1uR = 0 in Ω, uR|∂Ω = 0.

Set uR = kv (k > 0 is to be determined). Then k∆v + λRk
τ |v|τ−1v = 0. Since τ 6= 1, we

can choose k > 0 to satisfy λRk
τ−1 = 1; hence, it follows that

∆v + |v|τ−1v = 0 in Ω, v|∂Ω = 0

has a nontrivial weak solution in H1
0 (Ω). �

Remarks. (i) Another method to show the existence of nontrivial weak solution to (4.37) is
given later by the Mountain Pass Theorem.

(ii) The nonexistence of nontrivial classical solutions to problem (4.37) when τ ≥ n+2
n−2

will be studied later for certain domains with simple topological property.

Example 4.13. For domains like annulus, problem (4.37) always has nontrivial solutions
for all τ > 1. For example, let Ω be the annulus 0 < a < r < b, r = |x| and suppose τ > 1.
Prove that the BVP

∆u+ |u|τ−1u = 0 in Ω, u|∂Ω = 0

has a nontrivial solution.

Proof. Minimize the functional

f(u) =

∫ b

a
(u′)2rn−1dr, r = |x|

over all u in the set

C =

{
u ∈ H1

0 (a, b)
∣∣∣ ∫ b

a
|u|τ+1rn−1dr = 1

}
.

�

4.4.2. Harmonic Maps and Liquid Crystals. We now consider the Dirichlet energy

I(u) =
1

2

∫
Ω
|Du|2 dx

for u ∈ H1(Ω;RN ) with point-wise constraint |u(x)| = 1 for almost every x ∈ Ω. Let

C = {u ∈ Dϕ | |u(x)| = 1 a.e.},

where Dϕ is a Dirichlet class in H1(Ω;RN ). We assume C is non-empty. Then C is weakly
closed in H1(Ω;RN ). We have the following result.

Theorem 4.14. There exists u ∈ C satisfying

I(u) = min
v∈C

I(v).

Moreover, u satisfies

(4.38)

∫
Ω
Du ·Dv dx =

∫
Ω
|Du|2u · v dx

for each v ∈ H1
0 (Ω;RN ) ∩ L∞(Ω;RN ).
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Remark. In this case, we see u is a weak solution to the harmonic map equation:

−∆u = |Du|2u in Ω.

The “Lagrange multiplier” in this case is the function λ = |Du|2, instead of a constant.

Proof. The existence of minimizers follows by the direct method as above. Given any
v ∈ H1

0 (Ω;RN ) ∩ L∞(Ω;RN ), let ε be such that |ε|‖v‖L∞(Ω) ≤ 1
2 . Define

wε(x) =
u(x) + εv(x)

|u(x) + εv(x)|
, h(ε) = I(wε).

Note that wε ∈ C and h(0) = I(u) = minC I ≤ h(ε) for sufficiently small ε; hence, h′(0) = 0.
Note that

∂wε
∂ε

=
|u+ εv|2v − (u · v + ε|v|2)(u+ εv)

|u+ εv|3
;

∂wε
∂ε
|ε=0 = v − (u · v)u.

Hence

h′(0) =

∫
Ω
Du ·D(v − (u · v)u) dx =

∫
Ω

(Du ·Dv − |Du|2u · v) dx,

where we have used Du ·D((u · v)u) = (u · v)|Du|2 due to the fact that (Du)Tu = 0 (which
follows from |u| = 1). This yields the weak form of harmonic map equation (4.38). �

Liquid Crystals. Let n = N = 3. Then the harmonic map Dirichlet energy can be considered
as a special case of the Oseen-Frank energy for liquid crystals defined earlier:

I(u) =

∫
Ω
F (u,Du) dx =

∫
Ω

(κ1(div u)2 + κ2(u · curlu)2 + κ3(u× curlu)2) dx

+

∫
Ω
κ4(tr((Du)2)− (div u)2) dx,

where Ω is a bounded domain in R3, u : Ω → R3, div u = trDu is the divergence of u and
curlu = ∇ × u denotes the curl vector of u in R3. In the first part of the total energy
I(u), the κ1-term represents the splay energy, κ2-term represents the twist energy and
κ3-term represents the bending energy, corresponding to the various deformations of the
nematic director u with |u(x)| = 1; the κ4-term is a null-Lagrangian, depending only
on the boundary data of u (see Example 5.30 in Chapter 5).

From the algebraic relation |Du− (Du)T |2 = 2| curlu|2 one easily sees that

|Du|2 = | curlu|2 + tr((Du)2).

Furthermore, since |u(x)| = 1, it easily follows that

| curlu|2 = (u · curlu)2 + |u× curlu|2.
If κ = min{κ1, κ2, κ3} then it easily follows that

(4.39) I(u) ≥ κ
∫

Ω
|Du|2 dx+ (κ4 − κ)

∫
Ω

[tr((Du)2)− (div u)2] dx.

If κ > 0, then it can be shown that the first part of F (u, ξ) is convex and quadratic in ξ,
and hence the first part of the energy I is w.l.s.c. on H1(Ω;R3) by Tonelli’s theorem
(Theorem 5.1). By (4.39), one can easily obtain that∫

Ω
|Du(x)|2 dx ≤ c0 I(u) + Cϕ, ∀ u ∈ Dϕ ⊂ H1(Ω;R3).

Therefore, by the direct method, we have established the following existence result for
minimizers.
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Theorem 4.15. Let κi > 0 for i = 1, 2, 3. If C = {u ∈ Dϕ | |u(x)| = 1 a.e.} 6= ∅, then there
exists at least one u ∈ C such that

I(u) = min
v∈C

I(v).

Remark. If all four κi are equal to 1
2 , then I(u) reduces to the Dirichlet integral for har-

monic maps: I(u) = 1
2

∫
Ω |Du|

2 dx.

4.4.3. Stokes’ Problem. Let Ω ⊂ R3 be open, bounded and simply connected. Given
f ∈ L2(Ω;R3), the Stokes’ problem

−∆u = f −∇p, div u = 0 in Ω, u = 0 on ∂Ω,

can be solved by minimizing the functional

I(u) =

∫
Ω

(
1

2
|Du|2 − f · u) dx

over the set

C = {u ∈ H1
0 (Ω;R3) | div u = 0 in Ω}.

The function p in the equation is the corresponding “Lagrange multiplier”, known as the
pressure. Pressure does not appear in the variational problem, but arises due to the con-
straint div u = 0.

4.4.4. Incompressible Elasticity. Suppose u : Ω → R3 represents the displacement of
an elastic body occupying the domain Ω ⊂ R3 before deformation. Assume the body is
incompressible, which means

detDu(x) = 1 ∀ x ∈ Ω.

The stored energy is given by an integral functional

I(u) =

∫
Ω
F (x, u,Du) dx.

The suitable space to work in this case is W 1,p(Ω;R3) with p ≥ 3. For further details, see
next chapter.

4.4.5. A Nonlocal Problem in Ferromagnetism. We study a minimization problem
in ferromagnetism which involves a constraint and a nonlocal term. Certain simplification
of the Landau-Lifshitz theory leads to a model of the total micromagnetic energy I(m)
given by

(4.40) I(m) =

∫
Ω
ϕ(m(x)) dx+

1

2

∫
Rn
|∇u(x)|2 dx,

where Ω is a bounded domain with C1 boundary ∂Ω, m ∈ L∞(Ω;Rn) with |m(x)| = 1
a.e. x ∈ Ω (that is, m ∈ L∞(Ω;Sn−1)), representing the magnetization of a ferromagnetic
material occupying the domain Ω, ϕ is a given function representing the anisotropy of the
material, and u is the nonlocal stray energy potential determined by m over the whole
space Rn by the simplified Maxwell equation:

(4.41) div(−∇u+ mχΩ) = 0 in Rn,

where χΩ is the characteristic function of Ω, and u ∈ H1
loc(Rn) with ∇u ∈ L2(Rn;Rn).
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The equation (4.41) is understood in the weak sense:∫
Rn
∇u · ∇ζ dx =

∫
Ω

m · ∇ζ dx ∀ ζ ∈ H1
0 (Rn).

Note that any two weak solutions of (4.41) can only differ by a constant; therefore ∇u is
uniquely determined by m.

Let B be a fixed open ball containing Ω̄ in Rn. We have the following result.

Theorem 4.16. For each m ∈ L2(Ω;Rn), there exists a unique weak solution u = Tm ∈
H1
loc(Rn) to (4.41) such that

∫
B u(x)dx = 0. Moreover T : L2(Ω;Rn)→ H1(B) is linear and

bounded with

‖Tm‖H1(B) ≤ C ‖m‖L2(Ω;Rn), ∀ m ∈ L2(Ω;Rn).

Proof. Let

X = {u ∈ H1
loc(Rn) | ∇u ∈ L2(Rn;Rn),

∫
B
u(x) dx = 0}.

Given m ∈ L2(Ω;Rn), define a functional J : X → R by

J(u) =
1

2

∫
Rn
|∇u|2 dx−

∫
Ω

m · ∇u dx, u ∈ X.

We solve the minimization problem: infu∈X J(u). Note that X is simply a nonempty set
of functions and has no topology defined. But we can always take a minimizing sequence
uk ∈ X such that

lim
k→∞

J(uk) = inf
u∈X

J(u) <∞.

By Cauchy’s inequality with ε, it follows that

J(u) ≥ 1

2

∫
Rn
|∇u|2 dx− ε

∫
Rn
|∇u|2 dx− Cε

∫
Ω
|m|2 dx.

Taking ε = 1
4 yields

J(u) ≥ 1

4

∫
Rn
|∇u|2 dx− C, ∀ u ∈ X.

Therefore {∇uk} is bounded in L2(Rn;Rn) and hence, via a subsequence, converges weakly
to some F ∈ L2(Rn;Rn); this F can be written as F = ∇ū for a unique u ∈ X. (The last
fact needs a little more analysis; see Theorem 4.20 below!) We then see that ū ∈ X is a
minimizer of J over X. It also satisfies the Euler-Lagrange equation

(4.42)

∫
Rn
∇ū · ∇ζ =

∫
Ω

m · ∇ζ ∀ζ ∈ X.

This equation also holds for all ζ ∈ H1
0 (Rn). From this equation, the uniqueness of minimiz-

ers and the linear dependence of ū on m will follow. Define ū = Tm. Furthermore, using
ζ = ū ∈ X in (4.42), we also have∫

Rn
|∇ū|2 dx =

∫
Ω

m · ∇ū dx ≤ ‖m‖L2(Ω;Rn)‖∇ū‖L2(B;Rn).

Hence

‖∇ū‖L2(B;Rn) ≤ ‖m‖L2(Ω;Rn).

Since
∫
B ū dx = 0, by Poincaré’s inequality,

‖ū‖H1(B) ≤ C ‖m‖L2(Ω;Rn).

The theorem is proved. �
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From (4.42), we also see that

(4.43) I(m) =

∫
Ω
ϕ(m) dx+

1

2

∫
Ω

m · ∇ū dx,

where ū = Tm is defined in the theorem above.

The following result is a special case of some general theorem, which can be proved
easily.

Lemma 4.17. Let T : L2(Ω;Rn) → H1(B) be defined above. Then Tmk ⇀ Tm weakly in
H1(B) whenever mk ⇀ m weakly in L2(Ω;Rn).

Theorem 4.18. Assume ϕ(m) ≥ 0 on Sn−1 and the minimal set ϕ−1(0) contains at least
{±m0}. Then

inf
m∈L∞(Ω;Sn−1)

I(m) = 0.

Proof. It suffices to find a sequence {mk} in L∞(Ω;Sn−1) such that

I(mk) =

∫
Ω
ϕ(mk(x))dx+

1

2

∫
Ω

mk(x) · ∇uk(x) dx→ 0

as k →∞, where uk = Tmk is the solution in X of the simplified Maxwell equation (4.41).
To this end, let η ∈ Sn−1 be such that η ⊥m0 and define

mk(x) = ρ(kx · η)m0 + (1− ρ(kx · η))(−m0), x ∈ Ω,

where ρ(t) is a periodic function of period 1 with

ρ(t) = 1 (0 ≤ t ≤ 1/2); ρ(t) = 0 (1/2 < t < 1).

It is easy to check mk ⇀ 0 weakly in L2(Ω;Rn). Let uk = Tmk. Then, by Lemma 4.17
above, uk ⇀ 0 in H1(B). Note that, by Rellich-Kondrachov imbedding theorem (Theorem
2.33), imbeddings H1(B) ⊂⊂ L2(B) and H1(B) ⊂⊂ L2(∂B) are both compact; hence
uk → 0 strongly in both L2(Ω) and L2(∂Ω). We now compute by the divergence theorem
that ∫

Ωj

mk · ∇uk dx =

∫
∂Ωj

ukmk · ν dS −
∫

Ωj

uk div mk dx,

where ν is the unit outward normal on the boundary and the formula is valid on each
piece Ωj of Ω̄ where mk is constant m0 or −m0; hence div mk = 0 on each Ωj . Moreover,
mk · ν = 0 on ∂Ωj \ ∂Ω. Hence we have∣∣∣∣∫

Ω
mk · ∇uk dx

∣∣∣∣ ≤ ∫
∂Ω
|uk(x)| dS ≤ |∂Ω|1/2‖uk‖L2(∂Ω) → 0 as k →∞.

Finally, noting that ϕ(mk(x)) = 0, we arrive at

I(mk) =

∫
Ω
ϕ(mk(x))dx+

1

2

∫
Ω

mk(x) · ∇uk(x) dx→ 0

as k →∞. �

Theorem 4.19. Assume ϕ−1(0) = {±m0}. Then there exists no minimizer of I(m) on
L∞(Ω;Sn−1).
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Proof. Suppose m̄ is a minimizer. Then I(m̄) = inf I = 0 and hence ϕ(m̄(x)) = 0 and
u = Tm̄ = 0. Therefore,

m̄(x) = χE(x)m0 + (1− χE(x))(−m0), div(m̄χΩ) = 0,

where the set E = {x ∈ Ω | m̄(x) = m0} is a measurable subset of Ω. Therefore

(4.44)

∫
Rn
f(x)∇ζ(x) ·m0 dx = 0 ∀ ζ ∈ C∞0 (Rn),

where f(x) = χΩ(x)[2χE(x)− 1] = 2χE(x)− χΩ(x). Let x = x′ + tm0 where x′ ⊥ m0 and
write f(x) = g(x′, t). In (4.44), by change of variables, we have∫

Rn
g(x′, t)ζt(x

′, t) dx′dt = 0 ∀ ζ ∈ C∞0 (Rn).

This implies the weak derivative gt(x
′, t) ≡ 0 on Rn, and hence g(x′, t) = h(x′) is indepen-

dent of t. But h(x′) = f(x′ + tm0) vanishes for large t and hence h ≡ 0. So f ≡ 0 on Rn.
However f(x) ∈ {±1} for x ∈ Ω. This is a contradiction. �

4.4.6. Representation of Curl-Free Fields. Let X = L2(Rn;Rn) denote the Hilbert
space with the inner product and norm defined by

(u, v) =

∫
Rn

(u1v1 + · · ·+ unvn) dx =

∫
Rn
u · v dx; ‖u‖ = (u, u)1/2.

For u ∈ L2(Rn;Rn), we define curlu = (curlu)ij as distribution:

〈(curlu)ij , ϕ〉 = −
∫
Rn

(uiϕxj − ujϕxi) dx, ∀ ϕ ∈ C∞0 (Rn).

Note that, if u ∈ W 1,1
loc (Rn;Rn), then curlu = Du − (Du)T . In the case n = 2 or n = 3,

curlu can be identified as follows:

curlu ≈ ∇⊥ · u = ∇ · u⊥ = div(u⊥) = u1
x2
− u2

x1
(n = 2);

curlu ≈ ∇× u = (u3
x2
− u2

x3
, u1

x3
− u3

x1
, u2

x1
− u1

x2
) (n = 3).

Define the subspace of curl-free fields as follows:

Xcurl = {u ∈ L2(Rn;Rn) | curlu = 0 in the sense of distribution}.

Let

Y = {f ∈ H1
loc(Rn) | ‖f‖∗ <∞},

where ‖f‖∗ is defined by

(4.45) ‖f‖2∗ =

∫
Rn
|∇f(x)|2 dx+ sup

R≥1

1

Rn+2

∫
BR

|f(x)|2 dx.

Clearly, ∇f ∈ Xcurl for all f ∈ Y ; the converse is also true.

Theorem 4.20. (Representation by Local Functions) The space Y is a Banach space
under the norm ‖f‖∗ defined. Moreover, the gradient operator ∇ : Y → Xcurl is surjective;
more precisely, for any v ∈ Xcurl, there exists a f ∈ Y such that

v = ∇f, ‖f‖∗ ≤ Cn‖v‖.
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Proof. The proof that Y is a Banach space follows directly by the definition and will not
be given here. We prove the rest of the theorem.

Given v ∈ Xcurl, let vε = v ∗ ρε be the smooth approximation of v. Then vε ∈ Xcurl ∩
C∞(Rn;Rn). Define

fε(x) =

∫ 1

0
vε(tx) · x dt.

Then one can easily compute that

∂xjfε(x) =

∫ 1

0
vjε (tx)dt+

∫ 1

0
(∂xjvε)(tx) · tx dt

=

∫ 1

0
vjε (tx)dt+

∫ 1

0
∇vjε (tx) · tx dt

=

∫ 1

0
vjε (tx)dt+

∫ 1

0

d

dt
[vjε (tx)]t dt

=

∫ 1

0
vjε (tx)dt+

[
vjε (tx)t

∣∣1
0
−
∫ 1

0
vjε (tx)dt

]
= vjε (x),

where we have used the condition ∂xjvε = ∇vjε from curl vε = 0. This proves ∇fε(x) = vε(x)
for all x ∈ Rn. Therefore, vε = ∇fε and hence, for all x, y ∈ Rn,

fε(x+ y)− fε(y) =

∫ 1

0
vε(y + tx) · x dt.

Hence

|fε(x+ y)− fε(y)|2 =

∣∣∣∣∫ 1

0
vε(y + tx) · x dt

∣∣∣∣2
≤ |x|2

∫ 1

0
|vε(y + tx)|2 dt.

Integrating this inequality over x ∈ BR(0) = BR, we obtain∫
BR(y)

|fε(z)− fε(y)|2 dz ≤ R2

∫ 1

0

(∫
BR

|vε(y + tx)|2 dx
)
dt

= R2

∫ 1

0

(∫
BtR(y)

|vε(z)|2 dz

)
t−n dt

= Rn+2

∫ 1

0

(
1

|BtR(y)|

∫
BtR(y)

|vε(z)|2 dz

)
dt

≤ Rn+2M(|vε|2)(y),

where M(h) is the maximal function of h (see Stein’s book). Since |vε|2 ∈ L1(Rn), it
follows that

m{y ∈ Rn |M(|vε|2)(y) > α} ≤ 5n

α

∫
Rn
|vε|2 dx ≤

5n

α

∫
Rn
|v|2 dx.

Let

Eε = {y ∈ B1 |M(|vε|2)(y) ≤ α0},
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where we choose

α0 =
2 · 5n

|B1|

∫
Rn
|v|2dx.

Then it follows that |Eε| ≥ 1
2 |B1| for all ε. Therefore, it is a simple exercise to show that

there exists a sequence εk → 0 and a point y0 ∈ B1 such that y0 ∈ ∩∞k=1Eεk ; that is,

M(|vεk |
2)(y0) ≤ α0 =

2 · 5n

|B1|
‖v‖2, ∀ k = 1, 2, · · · .

Using this y0 we define a new sequence

gk(z) = fεk(z)− fεk(y0), z ∈ Rn.

Then, for all R ≥ 1, we have∫
BR

|gk(z)|2 dz ≤
∫
B2R(y0)

|gk(z)|2 dz ≤ (2R)n+2 2 · 5n

|B1|
‖v‖2.

By using diagonal subsequences, there exists a subsequence gkj and a function f ∈ L2
loc(Rn)

such that gkj ⇀ f weakly as kj → ∞ on all balls BR(0), R > 0. This function f must

satisfy ∇f = v ∈ L2(Rn;Rn) and

sup
R≥1

1

Rn+2

∫
BR

|f(x)|2 dx ≤ Cn
∫
Rn
|v(x)|2 dx;

hence ‖f‖∗ ≤ C‖v‖. This completes the proof. �

Given any u ∈ X = L2(Rn;Rn), for each R > 0, let BR = BR(0) and consider the
following minimization problem:

(4.46) inf
ϕ∈H1

0 (BR)

∫
BR

|∇ϕ− u|2 dx.

By direct method, this problem has a unique solution, which we denote by ϕR. We also
extend ϕR by zero to all Rn. This sequence {ϕR} is of course uniquely determined by u ∈ X.
It also satisfies the following properties:∫

Rn(∇ϕR − u) · ∇ζ dx = 0 ∀ ζ ∈ H1
0 (Ω), Ω ⊆ BR,(4.47)

‖∇ϕR‖L2(Rn) ≤ ‖u‖.(4.48)

Lemma 4.21. Given u ∈ X, it follows that ∇ϕR → v in X as R→∞ for some v ∈ Xcurl

uniquely determined by u. Moreover, this v satisfies

‖v − u‖ = min
v′∈Xcurl

‖v′ − u‖;

therefore, v = u if u ∈ Xcurl.

Proof. First of all, we claim ∇ϕR ⇀ v weakly in X as R→∞. Let v′, v′′ be the weak limits
of any two subsequences {∇ϕR′} and {∇ϕR′′}, where R′, R′′ are two sequences going to ∞.
We would like to show v′ = v′′, which shows that ∇ϕR ⇀ v as R→∞. Since ∇ϕR ∈ Xcurl,
it follows easily that v′, v′′ ∈ Xcurl and, by (4.47) above,

(4.49)

∫
Rn

(v′ − u) · ∇ζ =

∫
Rn

(v′′ − u) · ∇ζ = 0 ∀Ω ⊂⊂ Rn, ∀ ζ ∈ H1
0 (Ω).

This implies div(v′−u) = div(v′′−u) = 0 and hence div(v′−v′′) = 0. Since curl(v′−v′′) = 0,
it follows that ∆(v′ − v′′) = 0 in the sense of distributions on Rn; therefore, v′ − v′′ ∈
C∞(Rn) ∩ X is harmonic component-wise. By the mean value property of harmonic
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functions, it follows that v′−v′′ ≡ 0. Hence v′ = v′′. We denote this weak limit by v ∈ Xcurl.
Note that, by (4.49), div(v − u) = 0. If curlu = 0 then curl(v − u) = 0 and hence v = u.
We now prove ∇ϕR → v in X as R → ∞. Taking ζ = ϕR ∈ H1

0 (BR) in (4.49) and letting
R→∞ we have

(4.50)

∫
Rn

(v − u) · v dx = 0.

Using ζ = ϕR in (4.47), taking R→∞ and by weak limit, we have

lim
R→∞

∫
Rn
|∇ϕR|2 dx =

∫
Rn
v · u =

∫
Rn
|v|2 dx.

This implies ∇ϕR → v strongly in L2(Rn;Rn). We now show that

(4.51) ‖v − u‖ = min
v′∈Xcurl

‖v′ − u‖.

Given any v′ ∈ Xcurl, choose the sequence ϕ̃R corresponding to v′− v. Since div(v−u) = 0,
it easily follows that

(v′ − v, v − u) = lim
R→∞

(∇ϕ̃R, v − u) = 0.

Hence ‖v′− u‖2 = ‖v− v′‖2 + 2(v′− v, v− u) + ‖v− u‖2 ≥ ‖v− u‖2; this proves (4.51). �

Theorem 4.22. Let n ≥ 3 and Y1 be the closure of C∞0 (Rn) in Y. Then,

Y1 = {f ∈ L
2n
n−2 (Rn) | ∇f ∈ L2(Rn;Rn)}

and Y1 has the equivalent norms ‖f‖∗ ≈ ‖∇f‖L2(Rn) for all f ∈ Y1; therefore Y1 is the closure
of C∞0 (Rn) under the norm ‖∇f‖L2(Rn). Furthermore the gradient operator ∇ : Y1 → Xcurl

is bijective.

Proof. Let W = {f ∈ L
2n
n−2 (Rn) | ∇f ∈ L2(Rn;Rn)}.

1. We show that Y1 ⊆W and

(4.52) ‖f‖∗ ≤ C‖∇f‖L2(Rn) ∀ f ∈ Y1.

Let f ∈ Y1. Then there exists a sequence fj ∈ C∞0 (Rn) such that ‖fj − f‖∗ → 0 as j →∞.
Therefore ‖∇fj‖L2 → ‖∇f‖L2 . By the Sobolev-Galiardo-Nirenberg inequality,

‖fj‖L2∗ (Rn) ≤ C ‖∇fj‖L2(Rn) ∀ j.

Hence fj ⇀ g ∈ L2∗(Rn). Since fj → f in L2(BR) for all R > 0. We have f = g. Hence
f ∈W. Furthermore, by Hölder’s inequality,

‖fj‖L2(BR) ≤ cnR2 ‖fj‖L2∗ (BR) ≤ C R
2 ‖∇fj‖L2(Rn).

Hence, by taking limits as j →∞, it follows that

sup
R≥1

1

Rn+2

∫
BR

|f |2 dx ≤ C
∫
Rn
|∇f(x)|2 dx,

which proves (4.52).

2. We show that W ⊆ Y1. Let f ∈ W. Define fj = fρj , where ρj ∈ W 1,∞(Rn) defined
by ρj(x) = 1 on |x| ≤ j, ρj(x) = 0 on |x| ≥ 2j and ρj(x) is linear in |x| for j ≤ |x| ≤ 2j.
Then fj ∈ Y1. It can be easily shown that

lim
j→∞

‖fj − f‖∗ = 0,

which proves f ∈ Y1 and hence W ⊆ Y1.
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3. We show that ∇ : Y1 → Xcurl is surjective. Given any u ∈ Xcurl, let ϕR ∈ H1
0 (BR)

be the function determined as in the minimization problem (4.46) above. Since curlu = 0,
it follows that ∇ϕR → u in X = L2(R2;R2) as R → ∞. Since ϕR ∈ W , we have ϕR ∈ Y1.
Inequality (4.52) implies that sequence {ϕR} is a Cauchy sequence in Y1 and hence its limit
f belongs to Y1; moreover, since ‖ϕR − f‖∗ ≈ ‖∇ϕR −∇f‖L2(Rn) → 0 as R→∞, we have
∇f = u. This completes the proof. �

4.5. Mountain Pass Theorem

4.5.1. The Palais-Smale Condition. Let E : X → R be G-diff on the Banach space X.
We say E satisfies the Palais-Smale condition (PS) if whenever {un} is a sequence in X
such that E(un) is bounded and ‖E′(un)‖ → 0, then {un} has a convergent subsequence.

Remark. The (PS) condition is not satisfied by very smooth functions very often. For
example, the function E : R → R with E(u) = cosu does not satisfy (PS), which can be
easily seen by considering the sequence un = nπ. Similarly, the function E(u) = c does not
satisfy (PS). It can be shown that if E is F-diff on the Banach space X (not necessarily
reflexive) and is bounded below and satisfies (PS), then E attains its minimum value. But
we study the case where functionals are neither bounded from above or below.

Lemma 4.23. (Deformation Lemma) Let E : X → R be a C1 functional satisfying
(PS). Let c, s ∈ R and define

Kc = {u ∈ X : E(u) = c, E′(u) = 0}

As = {u ∈ X : E(u) ≤ s}.

Assume Kc = ∅. Then there exists an ε̄ > 0 and a continuous function η : [0, 1]×X → X
such that for all 0 < ε ≤ ε̄,

(i) η(0, u) = u for all u ∈ X,
(ii) η(t, u) = u for all t ∈ [0, 1], u 6∈ E−1([c− ε, c+ ε]),

(iii) E(η(t, u)) ≤ E(u) for all t ∈ [0, 1], u ∈ X,
(iv) η(1, Ac+ε) ⊂ Ac−ε.

This lemma shows that if c is not a critical level, then we can nicely deform the set Ac+ε
into Ac−ε for some ε > 0. For a proof, see Evans’s book.

4.5.2. The Mountain Pass Theorem. We now prove the main theorem of this section.

Theorem 4.24. (Ambrosetti-Rabinowitz) Let E : X → R be a C1 functional satisfying
(PS) on the real Banach space X. Let u0, u1 ∈ X, c0 ∈ R and R > 0 be such that

(i) ‖u1 − u0‖ > R

(ii) E(u0), E(u1) < c0 ≤ E(v) for all v such that ‖v − u0‖ = R.

Then E has a critical point u with E(u) = c, c ≥ c0; the critical value c is defined by

(4.53) c = inf
p∈K

sup
t∈[0,1]

E(p(t))

where K denotes the set of all continuous maps p : [0, 1]→ X with p(0) = u0 and p(1) = u1.
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Remark. Think of the graph of E as a landscape with a low spot at u0, surrounded by a
ring of mountains. Beyond these mountains lies another low point at u1. Note that every
path p connecting u0 to u1 has to cross the sphere {v : ‖v − u0‖ = R} since u1 lies outside
the sphere. Moreover, on this sphere the value of E is at least c0. Hence the maximum
value of E(p(t)) for any such path p is at least c0. Hence c ≥ c0. An important aspect of the
MPT is that the critical point u at level c is distinct from u0 and u1. Hence, if u0 already
satisfies E′(u0) = 0 by some other method, then u will give a second solution of E′(u) = 0.

Proof. Let c be as defined in (4.53). If it is not a critical value, then Kc = ∅. Let η and
ε̄ be as in the deformation lemma. Now by condition (ii) of the theorem, we can choose ε
small enough so that 0 < ε < ε̄ and E(u0), E(u1) 6∈ [c− ε, c+ ε] (since c ≥ c0). Let p ∈ K
and define the path ξ : [0, 1]→ X by

ξ(t) = η(1, p(t)).

Since p(0) = u0 and p(1) = u1, it follows, by the choice of ε, that

ξ(0) = η(1, u0) = u0, ξ(1) = η(1, u1) = u1

using condition (ii) of the lemma. Thus ξ ∈ K. Now, we can choose p ∈ K such that

max
t∈[0,1]

E(p(t)) < c+ ε.

Since p(t) ∈ Ac+ε, by (iv) of the lemma, ξ(t) ∈ Ac−ε. Thus

max
t∈[0,1]

E(ξ(t)) ≤ c− ε

which contradicts the definition of c. Hence Kc 6= ∅. �

4.5.3. Saddle Point Solutions. In order to illustrate these ideas we apply the MPT to
the problem

(4.54) ∆u+ f(x, u) = 0 in Ω, u|∂Ω = 0

where f ∈ Car satisfies the growth condition

(4.55) |f(x, z)| ≤ c(1 + |z|τ ), |fz(x, z)| ≤ c(1 + |z|τ−1)

with 1 < τ < (n+ 2)/(n− 2). Moreover, we assume f(x, 0) = 0 and

(4.56) 0 ≤ F (x, z) ≤ γf(x, z)z

for some constant γ < 1/2, where F (x, z) =
∫ z

0 f(x, s)ds. Finally we assume

(4.57) a|z|τ+1 ≤ |F (x, z)| ≤ A|z|τ+1

for constants 0 < a ≤ A.

Remarks. (i) A typical example is given by f(x, z) = l(x)|z|τ−1z, where l ∈ C(Ω̄) and l(x) ≥
α > 0. In this case, F (x, z) = 1

τ+1 l(x)|z|τ+1 satisfies (4.56) and (4.57) with γ = 1
τ+1 <

1
2 .

(ii) Note that assumption (4.57) implies that

Fz(x, 0) = f(x, 0) = 0.

Hence u ≡ 0 is a trivial solution to (4.54).

Associated with (4.54) is the functional I defined by

I(u) =
1

2

∫
Ω
|∇u|2 dx− J(u),
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where

J(u) =

∫
Ω
F (x, u)dx.

The following lemma simplifies some of the technical details that follow.

Lemma 4.25. Let I and J be defined on H = H1
0 (Ω) as above. Then both I and J are of

C1 on H and

(a) J ′ : H → H∗ is compact.

(b) If {un} is a bounded sequence in H such that I ′(un)→ 0 as n→∞, then {un}
has a convergent subsequence.

Proof. The norm
∫

Ω |∇u|
2dx is obviously of C∞ on H. J is a Nemytskii operator with F

being C1 in u, and hence is of C1 on H with J ′ : H → H∗ given by

〈J ′(u), v〉 =

∫
Ω
f(x, u(x)) v(x) dx, ∀ u, v ∈ H.

We have the estimate

‖J ′(u)− J ′(w)‖H∗ = sup
v∈H, ‖v‖≤1

|〈J ′(u)− J ′(w), v〉|

≤ ‖f(·, u)− f(·, w)‖(τ+1)/τ‖v‖τ+1

≤ C ‖f(·, u)− f(·, w)‖(τ+1)/τ , ∀ u, w ∈ H,

where we have used the Sobolev inequality ‖v‖τ+1 ≤ C‖v‖H ≤ C since τ + 1 < 2∗ = 2n
n−2 .

Let {un} be a bounded sequence in H. Then by choosing a subsequence if necessary,
un ⇀ u in H and un → u in Lτ+1(Ω). By the continuity of Nemyskii operators, f(·, un)→
f(·, u) in L(τ+1)/τ . So, by the estimate above, J ′(un) converges to J ′(u) in H∗ and hence
J ′ : H → H∗ is compact.

Let A : H → H* denote the duality map defined by

〈Au, v〉 =

∫
Ω
∇u · ∇v dx for all u, v ∈ H.

Then 〈I ′(u), v〉 = 〈Au, v〉−〈J ′(u), v〉 for all u, v ∈ H. Note that, by the Riesz representation
or Lax-Milgram theorem, A−1 exists and is bounded on H∗; hence, it follows that

A−1I ′(u) = u−A−1J ′(u).

Let {un} be a bounded sequence in H with I ′(un) → 0 as n → ∞. Since A−1 is linear
and continuous and J ′ is compact, by passing to a subsequence if necessary, we have un =
A−1I ′(un) +A−1J ′(un) converges. �

Remark. We only need the assumption (4.55). Also, from the proof we see that the com-
pactness of the embedding H = H1

0 (Ω) ⊂ Lτ+1(Ω) is necessary.

Theorem 4.26. The boundary value problem (4.54) has at least one nontrivial solution
u ∈ H1

0 (Ω).

Proof. Consider the C1 functional I(u) above, which we rewrite as

I(u) =
1

2
‖u‖21,2,0 − J(u), where ‖u‖21,2,0 =

∫
Ω |∇u|

2 dx,

for u ∈ H1
0 (Ω). In order to apply MPT, we first verify the Palais-Smale condition. Let

{un} ⊂ H1
0 (Ω) be a sequence such that |I(un)| ≤ c for all n and I ′(un)→ 0. If we can show
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that {‖un‖1,2,0} is bounded, then according to Lemma 4.25, I satisfies (PS). For the given
sequence

I(un) =
1

2
‖un‖21,2,0 −

∫
Ω
F (x, un)dx

and

〈I ′(un), un〉 = ‖un‖21,2,0 −
∫

Ω
unf(x, un)dx

and so, by (4.56),
1

2
‖un‖21,2,0 ≤ I(un) + γ

∫
Ω
unf(x, un)dx

≤ c+ γ(‖un‖21,2,0 + ‖I ′(un)‖ ‖un‖1,2,0).

Since γ < 1/2 and ‖I ′(un)‖ → 0, this inequality implies that ‖un‖21,2,0 is bounded. Hence

(PS) condition is proved. To verify the conditions (i), (ii) in the Mountain Pass Theorem,
we choose u0 = 0. Clearly, I(u0) = 0. Now we show that I|∂B(0,R) ≥ c0 for some R, c0 > 0.

In view of the embedding H1
0 (Ω) ⊂ Lτ+1(Ω), we have, by (4.57),

J(u) ≤ A
∫

Ω
|u|τ+1dx ≤ c‖u‖τ+1

1,2,0.

Thus for all u satisfying ‖u‖1,2,0 = R

I(u) ≥ R2

2
− cRτ+1 ≥ c0 > 0

provided we take R sufficiently small. (Here we need τ > 1, which is not needed before.)
Next, let v = tu, where u 6= 0 is a fixed function in H1

0 (Ω), and t > 0 is to be selected.
Then, by (4.57),

I(v) =
t2

2
‖u‖21,2,0 − J(tu)

≤ t2

2
‖u‖21,2,0 − atτ+1

∫
Ω
|u|τ+1dx

< 0

if t > 0 is sufficiently large. (Again τ > 1 is needed.) Moreover, v ∈ H1
0 (Ω)\B̄(0, R).

Therefore, by MPT, there exists a critical point u 6= 0 of I which is a weak solution of
(4.54). �

4.6. Nonexistence and Radial Symmetry

In this section, we always assume Ω is a bounded domain in Rn and ∂Ω is C1. We will show
that for some of such domains the boundary value problem (4.36) (with k = 0, l = 1) does
not have nontrivial classical solutions if τ > (n+ 2)/(n− 2).

4.6.1. Pohozaev’s Identity. We shall need the following fundamental identity:

Theorem 4.27. (Pohozaev) Let u ∈ C2(Ω̄), u|∂Ω = 0. Then

(4.58)

∫
∂Ω
u2
ν(x · ν)dS =

∫
Ω

[2(∇u · x) + (n− 2)u]∆udx

where ν = (ν1, · · · , νn) denotes the outward unit normal to ∂Ω and uν = ∂u
∂ν = ∇u·ν = γ1(u)

denotes the normal derivative of u on ∂Ω.
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Proof. By an easy calculation we have the following identity

2∆u(∇u · x) = div[2(∇u · x)∇u− |∇u|2x] + (n− 2)|∇u|2.

An application of the divergence theorem gives∫
∂Ω

[2(∇u · x)uν − |∇u|2x · ν]dS =

∫
Ω

[2∆u(∇u · x)− (n− 2)|∇u|2]dx.

Since u = 0 on ∂Ω,
∫

Ω u∆udx +
∫

Ω |∇u|
2dx = 0 and uxi = νiuν , i.e., ∇u = uνν, which

combined with the above integral identity yields (4.58). �

Corollary 4.28. Let u ∈ C2(Ω̄) be a solution of the boundary value problem

∆u+ f(u) = 0 in Ω, u|∂Ω = 0.

Let F (u) =
∫ u

0 f(t)dt. Then u satisfies the equation

(4.59)
1

2

∫
∂Ω
u2
ν(x · ν)dS = n

∫
Ω
F (u)dx+

2− n
2

∫
Ω
uf(u)dx.

Proof. From (4.58) we have

1

2

∫
∂Ω
u2
ν(x · ν)dS =

∫
Ω

∆u(∇u · x)dx+
2− n

2

∫
Ω
uf(u)dx

so it suffices to show that ∫
Ω

∆u(∇u · x)dx = n

∫
Ω
F (u)dx.

In this direction, we first note that ∇(F (u)) = f(u)∇u; hence

∆u(∇u · x) = −f(u)(∇u · x) = −∇(F (u)) · x.

Since ∇ · (xF (u)) = nF (u) + x · ∇(F (u)), we have∫
Ω

∆u(∇u · x)dx =

∫
Ω
nF (u)dx−

∫
Ω
∇ · (xF (u))dx.

However, the second integral on the right is zero, as may be seen by applying the divergence
theorem and noting that F (u) = 0 on ∂Ω since u = 0 on ∂Ω. �

Example 4.29. (H. Weinberger) Let Ω be a bounded domain in Rn with smooth bound-
ary ∂Ω. Assume u ∈ C3(Ω̄) is a solution to ∆u = −1 in Ω and u = 0 on ∂Ω. If the normal
derivative uν is a constant c on ∂Ω, then Ω must be a ball of radius nc.

Proof. Use (4.59) with f(u) = 1 and F (u) = u and we have

c2

∫
∂Ω

(x · ν)dS = (n+ 2)

∫
Ω
u dx.

But
∫
∂Ω(x · ν)dS =

∫
∂Ω∇( |x|

2

2 ) · νdS =
∫

Ω ∆( |x|
2

2 ) dx = n|Ω|; so we obtain

(4.60) (n+ 2)

∫
Ω
u dx = nc2|Ω|.

On the other hand, by Cauchy-Schwarz inequality, we have

(4.61) 1 = −∆u ≤
n∑
i=1

|uxixi | ≤
√
n(

n∑
i=1

u2
xixi)

1/2 ≤
√
n(

n∑
i,j=1

u2
xixj )

1/2.
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Consider function v = |∇u|2 + 2
nu. From ∆u = −1, it follows that, by (4.61),

∆v = 2
n∑

i,j=1

u2
xixj −

2

n
≥ 0 in Ω.

From u = 0 on ∂Ω, we have |∇u|2 = u2
ν = c2 on ∂Ω; hence v = c2 on ∂Ω. By strong

maximum principle, we conclude that either v < c2 in Ω or v ≡ c2 in Ω. Suppose v < c2 in
Ω. Then

c2|Ω| >
∫

Ω
v dx =

∫
Ω
|∇u|2 dx+

2

n

∫
Ω
u dx = −

∫
Ω
u∆u dx+

2

n

∫
Ω
u dx =

n+ 2

n

∫
Ω
u dx,

which contradicts (4.60). Hence v ≡ c2 in Ω. This implies ∆v = 2
∑n

i,j=1 u
2
xixj −

2
n = 0 in

Ω; hence n
∑n

i,j=1 u
2
xixj = 1. Therefore, inequalities in (4.61) are all equalities. This implies

uxixj = − 1
nδij in Ω. So u(x) = − 1

2n |x|
2 + p · x + k in Ω, where p ∈ Rn and k ∈ R are

constants; thus u can be written as

u(x) =
1

2n
(A− |x− x0|2)

for some x0 ∈ Rn and A ∈ R. Since the set {u = 0} is nonempty, we must have A > 0.

Again, by strong maximum principle, u > 0 in Ω; hence Ω = {x ∈ Rn : |x − x0| <
√
A}.

From uν = c on ∂Ω, we have the radius of the ball Ω is
√
A = nc. �

4.6.2. Star-shaped Domains. Let Ω be an open set containing 0. We say Ω is star-
shaped (with respect to 0) if, for each x ∈ Ω̄, the line segment {λx : 0 ≤ λ ≤ 1} lies in
Ω̄.

Remark. Clearly if Ω is convex and 0 ∈ Ω, then Ω is star-shaped. An annulus is not
star-shaped since x · ν < 0 on the boundary of the inner circle.

Lemma 4.30. Assume ∂Ω is C1 and Ω is star-shaped with respect to 0 ∈ Ω. Then x·ν(x) ≥
0 for all x ∈ ∂Ω, where ν(x) is the outward unit normal at x ∈ ∂Ω.

Proof. Given x0 ∈ ∂Ω, since ∂Ω is C1, there exists a ball B = Bε(x0) and a C1 function φ
on B such that

Ω ∩B = {x ∈ B |φ(x) < 0}, ∂Ω ∩B = {x ∈ B |φ(x) = 0}.

Note that the outward unit normal at x0 is now given by ν(x0) = ∇φ(x0)
|∇φ(x0)| . Let δ > 0 be

sufficiently small so that λx0 ∈ B for all λ ∈ [1 − δ, 1]; hence, from Ω being star-shaped,
λx0 ∈ Ω̄ ∩B for all λ ∈ [1− δ, 1]. Consider h(λ) = φ(λx0) defined on λ ∈ [1− δ, 1]. Then h
has the maximum 0 at right-end point 1 and hence

h′(1−) = ∇φ(x0) · x0 ≥ 0,

which proves x0 · ν(x0) ≥ 0 for all x0 ∈ ∂Ω. �

4.6.3. Nonexistence of Classical Solutions.

Theorem 4.31. Let Ω be star-shaped with respect to x = 0. Then the problem

(4.62) ∆u+ |u|τ−1u = 0 in Ω, u|∂Ω = 0 (τ >
n+ 2

n− 2
)

has no nontrivial C2(Ω̄) solution. Furthermore, the problem

(4.63) ∆u+ uτ = 0 in Ω, u|∂Ω = 0 (τ ≥ n+ 2

n− 2
)
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has no positive C2(Ω̄) solution.

Proof. Suppose u is a nontrivial C2(Ω̄) solution of (4.62). Applying formula (4.59) with
f(u) = |u|τ−1u (and thus F (u) = 1

τ+1 |u|
τ+1), and using Lemma 4.30, we obtain

1

2

∫
∂Ω
u2
ν(x · ν)dS = n

∫
Ω

|u|τ+1

τ + 1
dx+

2− n
2

∫
Ω
|u|τ+1dx(4.64)

=

(
n

τ + 1
− n− 2

2

)∫
Ω
|u|τ+1dx ≥ 0,(4.65)

which yields n
τ+1 ≥

n−2
2 and hence a contradiction: τ ≤ n+2

n−2 .

If u is a positive C2(Ω̄) solution of (4.63) with τ = n+2
n−2 . Since u = 0 on ∂Ω, by a

sharp maximum principle (see Serrin’s Maximum Principle, Lemma 4.32 below), we
have uν ≤ −σ on ∂Ω for a positive number σ. By (4.65), we obtain

σ2

∫
∂Ω
x · ν dS ≤

∫
∂Ω
u2
ν(x · ν) dS = 0,

from which we have a desired contradiction:

0 =

∫
∂Ω
x · ν dS =

∫
Ω

∆(
|x|2

2
) dx = n|Ω|.

This completes the proof. �

4.6.4. Radial Symmetry of Solutions in a Ball. Let Ω = B be the open unit ball in
Rn. We shall study the nonlinear problem

(4.66) ∆u+ f(u) = 0 in Ω, u|∂Ω = 0.

We are interested in positive solutions: u > 0 in Ω. Assume that f : R → R is
Lipschitz, but is otherwise arbitrary. Our intention is to prove that u is necessarily radial,
i.e., u(x) depends only on r = |x|. This is the famous theorem of Gidas, Ni & Nirenberg
and is a quite remarkable conclusion, as we are making essentially no assumptions on the
nonlinearity.

The technique of proof is based on an extension of the maximum principle and the
method of moving planes.

Lemma 4.32. (Serrin’s Maximum Principle) Let Ω be a bounded domain in Rn. As-
sume u ∈ C2(Ω̄) satisfies

∆u+ a(x)u ≤ 0, u ≥ 0 ( 6≡ 0) in Ω

where a(x) is bounded. If x0 ∈ ∂Ω, u(x0) = 0, and Ω satisfies the interior ball condition at
x0, then the normal derivative un(x0) < 0. Moreover, u > 0 in Ω.

Proof. Set a = a+ + a−, where a+ = max(a, 0), a− = min(a, 0). Thus

∆u+ a−(x)u ≤ −a+u ≤ 0 in Ω

and the conclusions follows from the strong maximum principle and the boundary point
principle. �
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4.6.5. Moving Plane Method. Let Ω+ denote the open upper half ball Ω ∩ {xn > 0},
and Ω− the open lower half ball Ω ∩ {xn < 0}.

Lemma 4.33. Let u ∈ C2(Ω̄) be a positive solution of (4.66). Then

uxn < 0 in Ω near ∂Ω+.

Proof. Fix any point x0 ∈ ∂Ω+ and let ν = (ν1, ..., νn) denote the outer unit normal to
∂Ω+ at x0. Note that νn > 0. We claim that uxn < 0 in Ω near x0.

We shall give the proof under the assumption f(0) ≥ 0. Then

0 = −∆u− f(u) + f(0)− f(0)

≤ −∆u−
∫ 1

0

∂

∂s
f(su(x))ds

≤ −∆u+ cu

for c(x) = −
∫ 1

0 f
′(su(x))ds. According to Lemma 4.32, uν(x0) = ∇u(x0) · ν < 0. Since

∇u is parallel to ν on ∂Ω and νn > 0, we conclude that uxn(x0) < 0, and thus uxn <
0 in Ω near x0. �

Theorem 4.34. Let u ∈ C2(B̄) be a positive solution of (4.66). Then u is radial, i.e.,

u(x) = v(r) (r = |x|)

for some strictly decreasing function v : [0, 1]→ [0,∞).

Proof. We apply the method of moving planes, following the important work of Gidas,
Ni & Nirenberg.

For 0 ≤ λ ≤ 1, set Pλ ≡ {x ∈ Rn : xn = λ}. For x = (x1, · · · , xn) ∈ B̄, let

xλ ≡ (x1, . . . , xn−1, 2λ− xn)

denote the reflection of x with respect to Pλ. Let Eλ ≡ {x ∈ Ω : λ < xn < 1}. For each
0 ≤ λ < 1, consider the statement

(4.67) u(x) < u(xλ) for all x ∈ Eλ.

According to Lemma 4.33, we see that this statement is valid for each λ < 1, λ suffi-
ciently close to 1. Set

λ0 ≡ inf{µ ∈ [0, 1) : (4.67) holds for each λ ∈ [µ, 1)}.

We claim that λ0 = 0. Suppose to the contrary that λ0 > 0. Set

w(x) = u(xλ0)− u(x) (x ∈ Eλ0).

Then

−∆w = f(u(xλ0))− f(u(x)) = −cw in Eλ0

for

c(x) = −
∫ 1

0
f ′(su(xλ0) + (1− s)u(x))dx.

As w ≥ 0 in Eλ0 , we deduce from Lemma 4.32 (applied to Eλ0) that

w > 0 in Eλ0 , wxn > 0 on Pλ0 ∩ Ω.

Thus

(4.68) u(x) < u(xλ0) in Eλ0
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and

(4.69) uxn < 0 on Pλ0 ∩ Ω.

Using (4.69) and Lemma 4.33, we conclude

(4.70) u(xn) < 0 on Pλ0−ε ∩ Ω for all 0 ≤ ε ≤ ε0

if ε0 is sufficiently small. Then (4.68) and the continuity of u imply

(4.71) u(x) < u(xλ0−ε) in Eλ0−ε for all 0 ≤ ε ≤ ε0

if ε0 is small enough. Assertion (4.71) contradicts our choice of λ0.

Since λ0 = 0, we see that

u(x1, . . . , xn−1,−xn) ≥ u(x1, . . . , xn) for all x ∈ Ω+.

A similar argument in Ω− proves

u(x1, . . . , xn−1,−xn) ≤ u(x1, . . . , xn) for all x ∈ Ω+.

Thus u is symmetric with respect to the plane P0 and uxn = 0 on P0.

This argument applies as well after any rotation of coordinate axes, and so the theorem
follows. �



Chapter 5

Weak Lower
Semicontinuity on
Sobolev Spaces

As discussed before, in many variational problems, weak lower semicontinuity is essential
for using direct method to establish the existence of minimizers. In this chapter, we study
the conditions for weak lower semicontinuity of a multiple integral functional I(u) on the
Sobolev space W 1,p(Ω;RN ). Assume

I(u) =

∫
Ω
F (x, u,Du) dx.

Recall that I is called weakly lower semicontinuous on W 1,p(Ω;RN ) if

(5.1) I(ū) ≤ lim inf
ν→∞

I(uν) whenever uν ⇀ ū weakly on W 1,p(Ω;RN ).

5.1. The Convex Case

5.1.1. Tonelli’s Theorem. We first prove a semicontinuity result of Tonelli.

Theorem 5.1. Let F (x, s, ξ) ≥ 0 be smooth and convex in ξ. Assume F, Fξ are both
continuous in (x, s, ξ). Then the functional I(u) defined above is sequentially weakly (weakly
star if p =∞) lower semicontinuous on W 1,p(Ω;RN ) for all 1 ≤ p ≤ ∞.

Proof. We need only to prove I(u) is w.l.s.c. on W 1,1(Ω;RN ). To this end, assume {uν}
is a sequence weakly convergent to u in W 1,1(Ω;RN ). We need to show

I(u) ≤ lim inf
ν→∞

I(uν).

By the Sobolev embedding theorem it follows that (via a subsequence) uν → u in L1(Ω;RN ).
We can also assume uν(x) → u(x) for almost every x ∈ Ω. Now, for any given δ > 0 we
choose a compact set K ⊂ Ω such that

(i) uν → u uniformly on K and |Ω \K| < δ (by Egorov’s theorem);

(ii) u, Du are continuous on K (by Lusin’s theorem).

99
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Since F (x, s, ξ) is smooth and convex in ξ, it follows that

F (x, s, η) ≥ F (x, s, ξ) + Fξki
(x, s, ξ) (ηki − ξki ) ∀ξ, η ∈MN×n.

Therefore, since F ≥ 0,

I(uν) ≥
∫
K
F (x, uν , Duν) dx

≥
∫
K

[
F (x, uν , Du) + Fξki

(x, uν , Du) (Diu
k
ν −Diu

k)
]

=

∫
K
F (x, uν , Du) +

∫
K
Fξki

(x, u,Du) (Diu
k
ν −Diu

k)

+

∫
K

[Fξki
(x, uν , Du)− Fξki (x, u,Du)] (Diu

k
ν −Diu

k).

Since F (x, s, ξ) and Fξ(x, s, ξ) are both uniformly continuous on bounded sets and uν(x)→
u(x) uniformly on K we have

lim
ν→∞

∫
K
F (x, uν , Du) dx =

∫
K
F (x, u,Du) dx,

lim
ν→∞

‖Fξki (x, uν , Du)− Fξki (x, u,Du)‖L∞(K) = 0.

Now since Fξki
(x, u,Du) is bounded on K and Diu

k
ν ⇀ Diu

k weakly in L1(Ω) as ν → ∞,
we thus have

lim
ν→∞

∫
K
Fξki

(x, u,Du) (Diu
k
ν −Diu

k) dx = 0.

From these estimates, noting that, for any two sequences {aν}, {bν},

(5.2) lim inf
ν→∞

(aν + bν) ≥ lim inf
ν→∞

aν + lim inf
ν→∞

bν ,

we have

lim inf
ν→∞

I(uν) ≥
∫
K
F (x, u,Du) dx.

If F (x, u,Du) ∈ L1(Ω), i.e., I(u) <∞, then for any given ε > 0, we use Lebesgue’s absolute
continuity theorem to determine δ > 0 so that∫

E
F (x, u,Du)dx ≥

∫
Ω
F (x, u,Du)dx− ε, ∀E ⊂ Ω, |Ω \ E| < δ.

On the other hand, if I(u) = ∞ then for any given large number M > 0 we choose δ > 0
so that ∫

E
F (x, u,Du) dx > M, ∀E ⊂ Ω, |Ω \ E| < δ.

In any of these two cases, using this δ > 0 with E = K, where K is determined according
to (i) and (ii) above, we conclude, by setting either ε→ 0 or M →∞, that

lim inf
ν→∞

I(uν) ≥ I(u).

The theorem is proved. �
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5.1.2. Existence in the Convex Case. Using the theorem, we obtain the following
existence result for convex functionals.

Theorem 5.2. In addition to the hypotheses of the previous theorem, assume there exists
1 < p <∞ such that

F (x, s, ξ) ≥ c |ξ|p − C(x),

where c > 0, C ∈ L1(Ω) are given. If for some ϕ ∈ W 1,p(Ω;RN ), I(ϕ) < ∞, then mini-
mization problem infu∈Dϕ I(u) has a minimizer in the Dirichlet class Dϕ.

Proof. This follows from the abstract existence Theorem 4.7 in the previous chapter. �

Remark. Both theorems in this section hold for more general functions F (x, s, ξ). For ex-
ample, we can replace the continuity condition by the Carathéodory condition.

5.2. Morrey’s Quasiconvexity

In this section, we will derive a condition which, under the mild general assumption, will
be the “right” (necessary and sufficient) condition for the weak lower semicontinuity for
integral functionals on Sobolev spaces. This will be Morrey’s quasiconvexity condition;
see Morrey [15, 16]. Please be aware that there is at least one other quasiconvexity in
the analysis that has a totally different meaning.

5.2.1. Lipschitz Convergence. Note that W 1,∞(Ω;RN ) can be identified with the space
of all Lipschitz maps from Ω to RN . A sequence {uν} converges to u in the weak star
topology of W 1,∞(Ω;RN ) if and only if {uν} converges to u in the sense of Lipschitz
convergence; that is,

1) uν → u uniformly in C(Ω̄;RN );

2) the Lipschitz norms of uν and u are bounded.

5.2.2. Quasiconvexity as Necessary Condition. The following result, mainly due to
Morrey [15], gives the necessary condition for the lower semicontinuity under the Lipschitz
convergence of the multiple integral

I(u) =

∫
Ω
F (x, u(x), Du(x)) dx.

Theorem 5.3. (Morrey) Assume F (x, s, ξ) is continuous on Ω̄×RN×MN×n. Assume the
functional I(u) is s.l.s.c. with respect to Lipschitz convergence on W 1,∞(Ω;RN ). Then the

following condition holds for all x0 ∈ Ω, s0 ∈ RN , ξ0 ∈MN×n and all φ ∈W 1,∞
0 (Ω;RN ) :

(5.3) F (x0, s0, ξ0) ≤
∫
−

Ω
F (x0, s0, ξ0 +Dφ(x)) dx.

Proof. Let φ ∈ W 1,∞
0 (Ω;RN ) be given. Let Q be a fixed open cube containing Ω̄ with

center x̄ and side-length 2L. We extend φ by zero onto Q; then φ ∈W 1,∞
0 (Q;RN ).

Let x0 ∈ Ω, s0 ∈ RN and ξ0 ∈ MN×n be given. Let ũ(x) = s0 + ξ0 · (x − x0). Assume
Q′ ⊂⊂ Ω is an arbitrarily given cube containing x0 with side-length 2l. For any positive
integer ν we divide each side of Q′ into 2ν intervals of equal length, each being equal to
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2−ν+1l. This divides Q′ into 2nν small cubes {Qνj } with j = 1, 2, ..., 2nν . Denote the center

of each cube Qνj by x̄νj and define a function uν : Ω→ RN as follows:

uν(x) =

{
ũ(x) if x ∈ Ω \ ∪2nν

j=1Q
ν
j ;

ũ(x) + 2−ν l
L φ

(
x̄+ 2νL

l (x− x̄νj )
)

if x ∈ Qνj , 1 ≤ j ≤ 2nν .

We easily see that uν → ũ uniformly on Ω. Moreover,

Duν(x) =

{
ξ0 if x ∈ Ω \ ∪2nν

j=1Q
ν
j ;

ξ0 +Dφ
(
x̄+ 2νL

l (x− x̄νj )
)

if x ∈ Qνj , 1 ≤ j ≤ 2nν .

Therefore {Duν} is uniformly bounded and, by definition, {uν} converges to ũ as ν → ∞
in the sense of Lipschitz convergence. Note that

I(ũ) =

∫
Ω
F (x, ũ(x), ξ0) dx

and that

I(uν) =

∫
Ω
F (x, uν(x), Duν) dx

=

∫
Ω\Q′

F (x, ũ, ξ0) dx+

∫
Q′
F (x, uν , Duν) dx.

Therefore, by the lower semicontinuity of I, we have

(5.4)

∫
Q′
F (x, ũ, ξ0) dx ≤ lim inf

ν→∞

∫
Q′
F (x, uν , Duν) dx.

From the uniform continuity of F (x, s, ξ) on bounded sets and the fact that uν → ũ uni-
formly on Ω we have

(5.5) lim inf
ν→∞

∫
Q′
F (x, uν , Duν) dx = lim inf

ν→∞

∫
Q′
F (x, ũ,Duν) dx.

We now compute∫
Q′
F (x, ũ,Duν) dx =

2nν∑
j=1

∫
Qνj

F
(
x, ũ, ξ0 +Dφ

(
x̄+

2νL

l
(x− x̄νj )

))
dx

=
2nν∑
j=1

∫
Qνj

F
(
x̄νj , ũ(x̄νj ), ξ0 +Dφ

(
x̄+

2νL

l
(x− x̄νj )

))
dx+ o(1)

=

2nν∑
j=1

(
l

2νL

)n ∫
Q
F
(
x̄νj , ũ(x̄νj ), ξ0 +Dφ(y)

)
dy + o(1)

(5.6) =
2nν∑
j=1

F̃ (x̄νj ) |Qνj |+ o(1),

where o(1)→ 0 as ν →∞, and

F̃ (x) =

∫
−
Q
F (x, ũ(x), ξ0 +Dφ(y)) dy.

This function is continuous on Q′ and the sum in (5.6) is simply the Riemann sum of the

integral of F̃ over Q′. Therefore, we arrive at

lim
ν→∞

∫
Q′
F (x, ũ,Duν) dx =

∫
Q′
F̃ (x) dx,
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which by (5.5) implies ∫
Q′
F (x, ũ(x), ξ0) dx ≤

∫
Q′
F̃ (x) dx.

This inequality holds for any cube Q′ ⊂⊂ Ω containing x0; therefore,

F (x0, ũ(x0), ξ0) ≤ F̃ (x0).

This is nothing but

F (x0, s0, ξ0) ≤
∫
−
Q
F (x0, s0, ξ0 +Dφ(y)) dy.

From this (5.3) follows since φ = 0 on Q\Ω; hence the proof of Theorem 5.3 is complete. �

Motivated by this theorem, we have the following definition of quasiconvex functions
in the sense of Morrey.

Definition. A function F : MN×n → R̄ is called quasiconvex (in the sense of Morrey) if

(5.7) F (ξ) ≤
∫
−

Ω
F (ξ +Dφ(x)) dx

holds for all φ ∈W 1,∞
0 (Ω;RN ).

The following result, due to N. Meyers, will be useful to relax the zero boundary
condition on φ.

Theorem 5.4. Let F : MN×n → R be continuous and quasiconvex. For every bounded
set Q ⊂ Rn and every sequence {zν} in W 1,∞(Q;RN ) converging to zero in the sense of
Lipschitz convergence, we have

F (ξ) ≤ lim inf
ν→∞

∫
−
Q
F (ξ +Dzν(x)) dx

for every ξ ∈MN×n.

Proof. Let Qk = {x ∈ Q | dist(x, ∂Q) > 1/k}. Then Qk ⊂⊂ Q and |Q\Qk| → 0 as k →∞.
Choose a cut-off function ζk ∈ C∞0 (Q) such that

0 ≤ ζk ≤ 1, ζk
∣∣
Qk

= 1, Mk = ‖Dζk‖L∞ <∞.

Since zν → 0 uniformly on Q we can choose a subsequence {νk} such that

‖zνk‖L∞ ≤ (Mk + 1)−1 ∀ k = 1, 2, ...

and we may also assume

lim
k→∞

∫
Q
F (ξ +Dzνk(x)) dx = lim inf

ν→∞

∫
Q
F (ξ +Dzν(x)) dx.

Define φk = ζk zνk . Then φk ∈ W 1,∞
0 (Q;RN ) and we can use them as test functions in the

definition of quasiconvexity to obtain

|Q|F (ξ) ≤
∫
Q
F (ξ +Dφk(x)) dx

=

∫
Qk

F (ξ +Dzνk) +

∫
Q\Qk

F (ξ + ζkDzνk + zνk ⊗Dζk)

=

∫
Q
F (ξ +Dzνk(x)) dx+ εk,
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where

εk =

∫
Q\Qk

[F (ξ + ζkDzνk + zνk ⊗Dζku)− F (ξ +Dzνk(x))] dx.

Since F (ξ) is bounded on bounded sets and |Q \Qk| → 0 as k →∞, we easily have εk → 0
as k →∞. Therefore,

|Q|F (ξ) ≤ lim inf
ν→∞

∫
Q
F (ξ +Dzν(x)) dx.

This completes the proof. �

5.2.3. Quasiconvexity as Sufficient Condition. We now prove the sufficiency of qua-
siconvexity for the lower semicontinuity of the functional

I(u) =

∫
Ω
F (x, u(x), Du(x)) dx

under the Lipschitz convergence on Ω.

Theorem 5.5. (Morrey) Assume F (x, s, ξ) is continuous on Ω̄ × RN × MN×n and is
quasiconvex in ξ. Then the functional I defined above is s.l.s.c. with respect to Lipschitz
convergence on Ω.

Proof. Let {zk} be any sequence converging to 0 in the sense of Lipschitz convergence on
Ω, and let u ∈W 1,∞(Ω;RN ) be any given function. We need to show

(5.8)

∫
Ω
F (x, u,Du) ≤ lim inf

k→∞

∫
Ω
F (x, u+ zk, Du+Dzk).

For any given ε > 0, since both function F (x, u,Du) and sequence {F (x, u+zk, Du+Dzk)}
are bounded, we choose finitely many disjoint cubes Qj contained in Ω such that

I(u) ≤
∫
∪Qj

F (x, u,Du) dx+ ε

and

I(u+ zk) ≥
∫
∪Qj

F (x, u+ zk, Du+Dzk) dx− ε,

for all k = 1, 2, · · · . In what follows, we prove for each cube Q = Qj

IQ(u) ≡
∫
Q
F (x, u,Du) dx ≤ lim inf

k→∞
IQ(u+ zk).

This, by (5.2), will certainly imply the conclusion of the theorem. To this end, for each
positive integer ν, we divide Q into small cubes {Qνj } with center x̄νj as in the proof of
Theorem 5.3:

Q =
2nν⋃
j=1

Qνj ∪ E, |E| = 0.

Define

(u)νj =

∫
−
Qνj

u(x) dx, (Du)νj =

∫
−
Qνj

Du(x) dx,

and

Uν(x) =

2nν∑
j=1

(u)νj · χQνj (x), Mν =

2nν∑
j=1

(Du)νj · χQνj (x).
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Note that

‖Uν‖L∞ + ‖Mν‖L∞ ≤ ‖u‖W 1,∞

and that the sequences {Uν} and {Mν} converge almost everywhere to u and Du on Q as
ν →∞, respectively. We now estimate IQ(u+ zk).

IQ(u+ zk) =

∫
Q
F (x, u+ zk, Du+Dzk) = ak + bνk + cνk + dν + IQ(u),

where

ak =

∫
Q

[F (x, u+ zk, Du+Dzk)− F (x, u,Du+Dzk)] dx,

bνk =

2nν∑
j=1

∫
Qνj

[F (x, u,Du+Dzk)− F (x̄νj , (u)νj , (Du)νj +Dzk)] dx,

cνk =
2nν∑
j=1

∫
Qνj

[F (x̄νj , (u)νj , (Du)νj +Dzk)− F (x̄νj , (u)νj , (Du)νj )] dx,

dν =

2nν∑
j=1

∫
Qνj

[F (x̄νj , (u)νj , (Du)νj )− F (x, u,Du)] dx.

By the uniform continuity of F (x, s, ξ) on bounded sets and the pointwise convergence of
{Uν} and {Mν} we have

lim
k→∞

ak = 0, lim
ν→∞

dν = 0

and limν→∞ b
ν
k = 0 uniformly with respect to k. We apply Theorem 5.4 to each Qνj to

obtain, by (5.2),

lim inf
k→∞

cνk ≥ 0

for all ν = 1, 2, · · · . Therefore, again by (5.2),

lim inf
k→∞

IQ(u+ zk) ≥ IQ(u),

as desired. The proof is complete. �

5.2.4. Weak Lower Semicontinuity on Sobolev Spaces. Quasiconvexity is also the
“right” condition for weak lower semicontinuity of integral functionals on W 1,p(Ω;RN ). A
most general theorem in this direction is the following theorem due to Acerbi & Fusco
[1]; see the reference for proof.

Theorem 5.6. (Acerbi & Fusco) Let F (x, s, ξ) be a Carathéodory function. Assume for
some 1 ≤ p <∞

0 ≤ F (x, s, ξ) ≤ a(x) + C (|s|p + |ξ|p),

where C > 0 is a constant and a(x) ≥ 0 is a locally integrable function in Ω. Then func-
tional I(u) =

∫
Ω F (x, u,Du) dx is w.s.l.s.c. on W 1,p(Ω;RN ) if and only if F (x, s, ξ) is

quasiconvex in ξ.
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5.2.5. Existence in the General Case.

Theorem 5.7. (Existence of minimizers) Let F (x, s, ξ) be Carathéodory and quasicon-
vex in ξ and satisfy

max{0, c |ξ|p − C(x)} ≤ F (x, s, ξ) ≤ a(x) + C (|s|p + |ξ|p)
for some 1 < p <∞, where c > 0 is a constant and C(x), a(x) are given integrable functions
in Ω. Then, for any ϕ ∈W 1,p(Ω;RN ), the minimization problem

min
u∈Dϕ

∫
Ω
F (x, u(x), Du(x)) dx

has a minimizer in the Dirichlet class Dϕ.

5.3. Properties of Quasiconvex Functions

5.3.1. Domain Independence. We prove that quasiconvexity is independent of the do-
main Ω.

Theorem 5.8. Let F : MN×n → R̄ be such that (5.7) holds for all φ ∈W 1,∞
0 (Ω;RN ). Then

for any bounded open set G ⊂ Rn with |∂G| = 0 one has

(5.9) F (ξ) ≤
∫
−
G
F (ξ +Dψ(y)) dy, ∀ξ ∈MN×n

holds for all ψ ∈W 1,∞
0 (G;RN ).

Proof. Let G ⊂ Rn be any bounded open set with |∂G| = 0, and ψ ∈ W 1,∞
0 (G;RN ).

Assume ȳ ∈ G. For any x ∈ Ω and ε > 0 let

G(x, ε) = {z ∈ Rn | z = x+ ε (y − ȳ) for some y ∈ G}.

Then there exists an εx > 0 such that x ∈ G(x, ε) ⊂ Ω for all x ∈ Ω and 0 < ε < εx. This
means the family

{G(x, ε)
∣∣x ∈ Ω, 0 < ε < εx}

covers Ω in the sense of Vitali covering. Therefore, there exists a countable disjoint
subfamily {G(xj , εj)} and a set E of measure zero such that

(5.10) Ω =
∞⋃
j=1

G(xj , εj) ∪ E.

We now define a function φ : Ω→ RN as follows.

φ(x) =

{
0 if x ∈

⋃∞
j=1 ∂[G(xj , εj)] ∪ E,

εj ψ
(
ȳ +

x−xj
εj

)
if x ∈ G(xj , εj) for some j.

One can verify that φ ∈W 1,∞
0 (Ω;RN ) and

Dφ(x) = Dψ
(
ȳ +

x− xj
εj

)
∀x ∈ G(xj , εj).

Therefore, from (5.7), it follows that

F (ξ) |Ω| ≤
∫

Ω
F (ξ +Dφ(x)) dx

=

∞∑
j=1

∫
G(xj ,εj)

F

(
ξ +Dψ

(
ȳ +

x− xj
εj

))
dx
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=
∞∑
j=1

εnj

∫
G
F (ξ +Dψ(y)) dy =

|Ω|
|G|

∫
G
F (ξ +Dψ(y)) dy,

where the last equality follows since, by (5.10),
∑∞

j=1 ε
n
j = |Ω|/|G|. We have thus proved

(5.9). �

In the following, let Σ be the unit cube in Rn; that is

Σ = {x ∈ Rn | 0 < xα < 1, α = 1, 2, · · · , n}.

Note that |Σ| = 1.

Let f : Rn → RN be any given function. We say f is Σ-periodic if f(· · · , xα, · · · ) is
1-periodic in xα for all α = 1, 2, · · · , n. Quasiconvexity can be also characterized by the
following condition.

Theorem 5.9. Let F : MN×n → R be continuous. Then F is quasiconvex if and only if

(5.11) F (ξ) ≤
∫

Σ
F (ξ +Dφ(x)) dx ∀ξ ∈MN×n

for all Σ-periodic Lipschitz functions φ ∈W 1,∞(Rn;RN ).

Proof. Since any function ψ ∈ W 1,∞
0 (Σ;RN ) can be extended as a Σ-periodic function on

Rn, we easily see that (5.11) implies (5.9) for G = Σ thus the quasiconvexity of F . We
have only to prove (5.11) holds if F is quasiconvex. Let φ ∈W 1,∞(Rn;RN ) be a Σ-periodic
function. Define

φj(x) =
1

j
φ(jx)

for all j = 1, 2, · · · . It is easily seen that φj → 0 in the sense of Lipschitz convergence on
W 1,∞(Σ;RN ). Therefore the theorem of Meyers, Theorem 5.4, and the quasiconvexity of
F implies

F (ξ) ≤ lim inf
j→∞

∫
Σ
F (ξ +Dφj(x)) dx.

Note that ∫
Σ
F (ξ +Dφj(x)) dx =

∫
Σ
F (ξ +Dφ(jx)) dx

= j−n
∫
jΣ
F (ξ +Dφ(y)) dy

and that, besides a set of measure zero,

jΣ =

jn⋃
ν=1

(x̄ν + Σ),

where x̄ν are the left-lower corner points of the subcubes obtained by dividing the sides of
jΣ into j-equal subintervals. Since Dφ(x) is Σ-periodic, we thus have∫

jΣ
F (ξ +Dφ(y))dy =

jn∑
ν=1

∫
x̄ν+Σ

F (ξ +Dφ(y))dy = jn
∫

Σ
F (ξ +Dφ(x))dx,

and therefore

F (ξ) ≤
∫

Σ
F (ξ +Dφ(x)) dx

as needed; the proof is complete. �
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5.3.2. Convexity vs Quasiconvexity.

Lemma 5.10. (Jensen’s inequality) Let (E,µ) be a measure space with total mass
µ(E) = 1 and let h : E → RL be an integrable function on E. If G : RL → R is a con-
vex function, then

G

(∫
E
h(x) dµ

)
≤
∫
E
G(h(x)) dµ.

Proof. Let F =
∫
E h(x) dµ. Since G : RL → R is convex, there exists lF ∈ RL (note that

lF = DG(F ) for almost every F ) such that

G(A) ≥ G(F ) + lF · (A− F ) ∀A ∈ RL.

Then G(h(x)) ≥ G(F ) + lF · (h(x)− F ) for all x ∈ E, and integrating over x ∈ E yields∫
E
G(h(x)) dµ ≥ G(F ) + lF ·

∫
E

(h(x)− F ) dµ = G(F ),

which proves Jensen’s inequality. �

Theorem 5.11. If F : MN×n → R is convex, then F is quasiconvex.

Proof. This follows easily from Jensen’s inequality and the divergence theorem. �

5.3.3. Quasiconvexity vs Rank-one Convexity. Recall that F : MN×n → R̄ is rank-
one convex if for any ξ ∈ MN×n, q ∈ RN , p ∈ Rn the function f(t) = F (ξ + tq ⊗ p) is a
convex function of t ∈ R.

We have the following result.

Theorem 5.12. Every finite-valued quasiconvex function is rank-one convex.

Proof. Let F be quasiconvex. We need to show that for any ξ ∈ MN×n, q ∈ RN , p ∈ Rn
the function f(t) = F (ξ + tq ⊗ p) is a convex function of t ∈ R; that is, for all 0 < θ < 1
and t, s ∈ R,

(5.12) f(θt+ (1− θ)s) ≤ θf(t) + (1− θ)f(s).

which is equivalent to

(5.13) F (ξ̃) ≤ θF (ξ̃ + aq ⊗ p) + (1− θ)F (ξ̃ + bq ⊗ p),

where

ξ̃ = ξ + [θt+ (1− θ)s]q ⊗ p, a = (1− θ)(t− s), b = θ(s− t).
Assume t > s; so a > 0 and b < 0. Let ζ(τ) be the periodic Lipschitz function of peroid
1 on R satisfying ζ(τ) = aτ for 0 ≤ τ ≤ θ and ζ(τ) = b(τ − 1) for θ ≤ τ ≤ 1. Let G be a
cube of unit volume which is bounded between two planes {x · p = 0} and {x · p = 1}. For
x ∈ Rn, define

|x|∞ = max{|xi| | 1 ≤ i ≤ n}, δ(x) = dist∞(x, ∂G) = inf{|x− y|∞ | y ∈ ∂G}.

Then δ ∈W 1,∞
0 (G) and ∇δ(x) ∈ {±ei | i = 1, 2, · · · , n}. Define functions by

uk(x) = k−1ζ(kx · p) q, φk(x) = min{k−1ζ(kx · p), δ(x)} q, k = 1, 2, · · · .

Note that Duk(x) ∈ {aq ⊗ p, bq ⊗ p}, φk ∈W 1,∞
0 (G;RN ) and

lim
k→∞

|{x ∈ G |Duk(x) 6= Dφk(x)}| = 0.
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Hence, by (5.7) and noting that Duk(x) and Dφk(x) take only on finitely many values,

F (ξ̃) ≤ lim
k→∞

∫
G
F (ξ̃ +Dφk(x)) dx

= lim
k→∞

∫
G
F (ξ̃ +Duk(x)) dx

= θF (ξ̃ + aq ⊗ p) + (1− θ)F (ξ̃ + bq ⊗ p).
This completes the proof. �

Remark. Another proof in the case of continuous F is as follows. Let F be quasiconvex. If
F is of class C2, then

f(t) =

∫
Ω
F (ξ + tDφ(x)) dx

takes its minimum at t = 0. Therefore f ′′(0) ≥ 0; that is,∫
Ω
Fξki ξlj

(ξ)Diφ
k(x)Djφ

l(x) dx ≥ 0

for all φ ∈ C∞0 (Ω;RN ). This implies the weak Legendre-Hadamard condition:

Fξki ξlj
(ξ) qkql pipj ≥ 0 ∀ q ∈ RN , p ∈ Rn,

which is equivalent to that F is rank-one convex. For a continuous F , let F ε = F ∗ ρε be
the regularization of F . Then F ε is of class C∞ and can be shown to be quasiconvex, and
hence F ε satisfies (5.13) for all ε > 0; letting ε → 0 yields that F satisfies (5.13) and thus
is rank-one convex.

The following result shows that Theorem 5.12 does not hold for extended valued func-
tions.

Example 5.13. Let n ≥ 2 and let A, B ∈MN×n be such that rank(A−B) = 1. Define

F (ξ) =

{
0 ξ ∈ {A, B},
∞ ξ /∈ {A, B}.

Then F is quasiconvex convex, but not rank-one convex.

Proof. The rank-one convexity of F would imply

0 ≤ F (λA+ (1− λ)B) ≤ λF (A) + (1− λ)F (B) = 0

for all 0 < λ < 1. Hence F is not rank-one convex. To see F is quasiconvex, given ξ ∈MN×n

and φ ∈W 1,∞
0 (Σ;RN ), we need to show

(5.14) F (ξ) ≤
∫

Σ
F (ξ +Dφ(x)) dx.

Since the integral on the right-hand side takes only two values of {0,∞}, we only need to
prove the inequality when ∫

Σ
F (ξ +Dφ(x)) dx = 0.

In this case, we must have ξ + Dφ(x) ∈ {A, B} for almost every x ∈ Σ. We claim, in this
case, one must have ξ ∈ {A, B} and hence (5.14) is valid. To prove this, let ξ + Dφ(x) =
χE(x)A+ (1−χE(x))B, where E = {x ∈ Σ | ξ+Dφ(x) = A}. Integrating this over Σ yields
ξ = λA+ (1− λ)B, where λ = |E| ∈ [0, 1]. Hence

Dφ(x) ∈ {A− ξ, B − ξ} = {(1− λ)(A−B), λ(A−B)} a.e. x ∈ Σ.
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Let A − B = q ⊗ p with p ∈ Sn−1. Let e ∈ Sn−1 be a vector perpendicular to p. Then
Dφ(x) e = 0 for almost every x ∈ Σ. This implies φ(x + te) is independent of t as long as
x+ te ∈ Σ̄; hence, choosing t such that x+ te ∈ ∂Σ, we have φ(x) = 0 for all x ∈ Σ. Hence,
ξ ∈ {A, B}, as claimed. �

Theorem 5.14. Every finite-valued quasiconvex function is locally Lipschitz continuous.

Proof. Let F : MN×n → R be quasiconvex. Then f(t) = F (ξ + tq ⊗ p) is a finite convex
function of t ∈ R; hence f is locally Lipschitz continuous. From this the theorem follows. �

Lemma 5.15. If F is a polynomial of degree two (quadratic polynomial) then F is quasi-
convex if and only if F is rank-one convex.

Proof. Assume F is a rank-one convex quadratic polynomial. We show F is quasiconvex.
Since subtraction of an affine function from a function does not change the quasiconvexity
or rank-one convexity, we thus assume F is a homogeneous quadratic polynomial given by

F (ξ) = Aklij ξ
k
i ξ
l
j (summation notation is used here and below)

withAklij are constants. Note that the rank-one convexity is equivalent to the weak Legendre-
Hadamard condition:

n∑
i,j=1

N∑
k,l=1

Aklijq
kql pipj ≥ 0.

Using this condition and the Fourier transform as before (see proof of Lemma 3.12), we can
show that ∫

Rn
AklijDiφ

k(x)Djφ
l(x) dx ≥ 0

for all φ ∈ C∞0 (Rn;RN ). Note that

F (ξ + η) = F (ξ) +Aklij ξ
k
i η

l
j +Aklij ξ

l
jη
k
i +Aklijη

k
i η

l
j .

Hence ∫
Σ
F (ξ +Dφ(x)) dx = F (ξ) +

∫
Rn
AklijDiφ

k(x)Djφ
l(x) dx ≥ F (ξ),

holds for all φ ∈ C∞0 (Σ;RN ). This proves the quasiconvexity of F. �

Using the definition of null-Lagrangians given later, we have the following.

Lemma 5.16. A rank-one convex third degree polynomial must be a null-Lagrangian and
thus quasiconvex.

Proof. Let F be a rank-one convex third degree polynomial. Then the polynomial f(t) =
F (ξ + tq ⊗ p) is convex and of degree ≤ 3 in t, and hence the degree of f(t) cannot be 3.
Note that the coefficient of t2 term in f is half of

(5.15) Fξki ξlj
(ξ) pipj q

kql ≥ 0,

which holds for all ξ, p, q. Since Fξki ξlj
(ξ) is linear in ξ, condition (5.15) implies

Fξki ξlj
(ξ) pipj q

kql ≡ 0.

Therefore f(t) = F (ξ+tq⊗p) is affine in t and hence F is rank-one affine. Consequently, the
result follows from the fact that a rank-one affine function must be a null-Lagrangian. �
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5.3.4. Šverák’s Example. The following example of V. Šverák [22] settles a long-
standing open problem raised by C. B. Morrey [15].

Theorem 5.17. (Šverák) If n ≥ 2, N ≥ 3 then there exists a rank-one convex function
F : MN×n → R which is not quasiconvex.

Proof. We only prove the theorem for n = 2, N = 3. Consider the Σ-periodic function
u : R2 → R3 defined by

u(x) =
1

2π
(sin 2πx1, sin 2πx2, sin 2π(x1 + x2)).

Then

Du(x) =

 cos 2πx1 0
0 cos 2πx2

cos 2π(x1 + x2) cos 2π(x1 + x2)

 ∈ L,
where L is the 3-dimensional linear subspace of M = M3×2 defined by

L =

[r, s, t] ≡

 r 0
0 s
t t

 ∣∣∣ r, s, t ∈ R

 .

Note that a matrix ξ = [r, s, t] ∈ L is of rank ≤ 1 if and only if at most one of {r, s, t} is
nonzero. Define g : L→ R by g([r, s, t]) = −rst. Using formula 2 cosα · cosβ = cos(α+β) +
cos(α− β), we easily obtain

g(Du(x)) = −1

4
− 1

4

(
sin 4π(x1 + x2) + cos 4πx1 + cos 4πx2

)
and by a direct computation it follows that

(5.16)

∫
Σ
g(Du(x)) dx =

∫ 1

0

∫ 1

0
g(Du(x)) dx1dx2 = −1

4
.

We now extend g to the whole M. Let P : M→ L be the orthogonal projection onto L and,
for k > 0, ε > 0, consider fourth degree polynomials:

(5.17) Fε,k(ξ) = g(Pξ) + ε (|ξ|2 + |ξ|4) + k |ξ − Pξ|2.

Lemma 5.18. For each ε > 0 there exists a k = kε > 0 such that Fε,kε is rank-one convex.

Proof. We use contradiction method. Suppose there exists an ε0 > 0 such that Fε0,k is

not rank-one for all k > 0. Hence there exist sequences ξk ∈ M, pk ∈ R2, qk ∈ R3 with
|pk| = |qk| = 1 such that

(5.18)
∂2Fε0,k(ξk)

∂ξαi ∂ξ
β
j

qαk q
β
k p

k
i p
k
j ≡ D2Fε0,k(ξk) [qk ⊗ pk, qk ⊗ pk] ≤ 0, ∀ k = 1, 2, · · · .

Given ξ, η ∈M, let f(t) = Fε,k(ξ + tη); then computing f ′′(0) yields

f ′′(0) = D2Fε,k(ξ) [η, η]

= D2g(Pξ) [Pη, Pη] + 2ε |η|2 + ε (4|ξ|2|η|2 + 8(ξ · η)2) + 2k |η − Pη|2.
The term D2g(Pξ) is linear in ξ; the third term is quadratic and positive definite in ξ if
η 6= 0 (this is the reason the |ξ|4-term is needed for Fε,k). Using this formula with ξ = ξk
and η = qk ⊗ pk and from (5.18), we deduce {ξk} is bounded as k → ∞. Assume, via
subsequence,

ξk → ξ̄, qk → q̄, pk → p̄ as k →∞.
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Note that D2Fε,j(ξ) [η, η] ≤ D2Fε,k(ξ) [η, η] for all k ≥ j. Hence we deduce

(5.19) D2g(P ξ̄) [P (q̄ ⊗ p̄), P (q̄ ⊗ p̄)] + 2ε0 + 2j |P (q̄ ⊗ p̄)− q̄ ⊗ p̄ | ≤ 0

for all j = 1, 2, · · · . Hence P (q̄⊗ p̄) = q̄⊗ p̄; that is, q̄⊗ p̄ ∈ L. This implies q̄⊗ p̄ = [a, b, c],
where at most one of a, b, c is nonzero. Therefore, function

t 7→ g(P (ξ̄ + tq̄ ⊗ p̄)) = g(P ξ̄ + tq̄ ⊗ p̄)

is affine in t, and hence the first term in (5.19) vanishes. This yields the desired contradiction
ε0 ≤ 0. The lemma is proved. �

We now complete the proof of Šverák’s theorem. Let u be the periodic function above.
We choose ε > 0 small enough such that

ε

∫
Σ

(|Du(x)|2 + |Du(x)|4) dx <
1

4
.

Let Fε(ξ) = Fε,kε(ξ) be a rank-one function determined by the previous lemma. Since
Du(x) ∈ L, it follows by (5.16) that∫

Σ
Fε(Du(x)) dx =

∫
Σ
g(Du) + ε

∫
Σ

(|Du|2 + |Du|4) < 0 = Fε(0).

This shows that Fε is not quasiconvex by Theorem 5.9 above. The theorem is now proved.
�

5.4. Polyconvex Functions and Null-Lagrangians

Unlike the convexity and rank-one convexity, quasiconvexity is a global property since the
inequality (5.7) is required to hold for all test functions. It is thus generally impossible to
verify whether a given function F (ξ) is quasiconvex.

We have already seen that every convex function is quasiconvex. However, there is a
class of functions which are quasiconvex but not necessarily convex. This class, mainly due
to C. B. Morrey, has been called the polyconvex functions in J. M. Ball [4]. In order
to introduce the polyconvex functions, we need some notation.

5.4.1. Determinant and Adjugate Matrix. Let ξ be a n×n square matrix. We denote
by det ξ and adj ξ the determinant and adjugate matrix of ξ, respectively, which satisfy
the following relation:

ξ (adj ξ) = (adj ξ) ξ = (det ξ) I,

where I is the n× n identity matrix. From this relation, we have

(5.20)
∂ det ξ

∂ξ
= (adj ξ)T ,

where ηT is the transpose matrix of η.

Lemma 5.19. For all u ∈ C2(Ω̄;Rn) it follows that div(adjDu(x))T = 0; that is,

n∑
i=1

Di[(adjDu(x))ik] = 0 (k = 1, 2, · · · , n).
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Proof. Note that by the identity above, we have (det ξ)I = ξT (adj ξ)T . For ξ = Du(x) this
implies

(detDu(x)) δij =
n∑
k=1

Di(u
k(x)) (adjDu(x))jk, i, j = 1, 2, · · · , n.

Differentiating this identity with respect to xj and summing over j = 1, 2, · · · , n, we have

n∑
j,k,m=1

δij(adjDu)mk Dj(Dmu
k) =

n∑
k,j=1

(DjDiu
k) (adjDu)jk + (Diu

k)Dj [(adjDu)jk]

for i = 1, 2, · · · , n. This identity simplifies to read

n∑
k=1

(Diu
k)

 n∑
j=1

Dj [(adjDu)jk]

 = 0 (i = 1, 2, · · · , n).

In short, this can be written as

(5.21) Du(x)T [div(adjDu(x))T ] = 0, x ∈ Ω.

Now, if detDu(x0) 6= 0 then by (5.21), div(adjDu(x0))T = 0. If instead detDu(x0) = 0,
we choose a sequence εν → 0 such that det(Du(x0) + ενI) 6= 0 for all ν. Use (5.21) with
ũ = u+ ενx we have detDũ(x0) 6= 0 and hence

0 = div(adjDũ(x0))T = div(adj(Du(x0) + ενI))T = 0

for all εν → 0. Hence div(adj(Du(x0)))T = 0. �

5.4.2. Subdeterminants. Let σ = min{n,N}. Given an integer k ∈ [1, σ], for any two
ordered k-tuples of integers

1 ≤ i1 < i2 < · · · < ik ≤ N, 1 ≤ α1 < α2 < · · · < αk ≤ n,

let J i1i2···ikα1α2···αk(ξ) be the determinant of the k× k matrix whose (q, p) position element is ξ
iq
αp

for all 1 ≤ p, q ≤ k. Note that, by the usual notation,

J i1i2···ikα1α2···αk(Du(x)) =
∂(ui1 , ui2 , · · · , uik)

∂(xα1 , xα2 , · · · , xαk)
= det

(
∂uiq

∂xαp

)
.

Let J (ξ) be a fixed arrangement of J i1i2···ikα1α2···αk(ξ) for all k ∈ [1, σ] and k-tuples {iq}, {αp}.
In this way, J defines a function from MN×n to RL, where

L = L(n,N) =

σ∑
k=1

(
N
k

)(
n
k

)
.

Theorem 5.20. Let J (ξ) be defined as above, and let Σ be the unit cube in ⊂ Rn. Then it
follows that ∫

Σ
J
(
ξ +Dφ(x)

)
dx = J (ξ)

for all φ ∈ C∞0 (Σ;RN ) and ξ ∈MN×n.

Proof. Since each J (ξ) is given by a k×k-determinant, without loss of generality, we only
prove this identity for Jk(ξ) = J12···k

12···k (ξ), where 1 ≤ k ≤ σ = min{n, N}. For simplicity, set
u(x) = ξx+ φ(x). Let

x′ = (x1, · · · , xk), x′′ = (xk+1, · · · , xn) if k + 1 ≤ n.
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Let Σ′, Σ′′ be the unit cubes in x′, x′′ variables, respectively. Fix x′′ ∈ Σ′′, for t ≥ 0,
consider maps Vt, Ut : Σ′ → Rk such that

V i
t (x′) = txi + (ξx)i, U it (x

′) = txi + ui(x′, x′′).

We can choose t > 0 sufficiently large so that Vt, Ut are both diffeomorphisms on Σ′, and
therefore ∫

Σ′
det(DUt(x

′)) dx′ =

∫
Ut(Σ′)

dy′ =

∫
Vt(Σ′)

dy′ =

∫
Σ′

det(DVt(x
′)) dx′.

Since both sides are polynomials of t of degree k, it follows that this equality holds for all
t. When t = 0 this implies

(5.22)

∫
Σ′
Jk(ξ +Dφ(x′, x′′)) dx′ =

∫
Σ′
Jk(ξ) dx

′.

Integrating (5.22) over x′′ ∈ Σ′′ we deduce

(5.23)

∫
Σ
Jk(ξ +Dφ(x)) dx = Jk(ξ),

completing the proof. �

5.4.3. Polyconvex Functions. A (finite-valued) function F : MN×n → R is called a
polyconvex function if there exists a convex function G : RL → R such that F (ξ) =
G(J (ξ)) for all ξ ∈MN×n; that is, F = G ◦ J on MN×n.

Remark. For a polyconvex function we may have different convex functions in its rep-
resentation. For example, let n = N = 2 and F (ξ) = |ξ|2 − det ξ. In this case, let
J (ξ) = (ξ,det ξ) ∈ R5. Then we have

F (ξ) = G1(J (ξ)), F (ξ) = G2(J (ξ)),

where

G1(ξ, t) = |ξ|2 − t, G2(ξ, t) = (ξ1
1 − ξ2

2)2 + (ξ2
1 + ξ1

2)2 + t

are both convex functions of (ξ, t).

Theorem 5.21. A polyconvex function is quasiconvex.

Proof. Let F : MN×n → R be a polyconvex function. Then there exists a convex function
G : RL → R such that F (ξ) = G(J (ξ)) for all ξ. Given ξ ∈ MN×n and φ ∈ C∞0 (Σ;RN ), let
h(x) = J (ξ +Dφ(x)). Then Jensen’s inequality implies

G

(∫
Σ
h(x) dx

)
≤
∫

Σ
G(h(x)) dx.

By the theorem above, the left-hand side is G(J (ξ)) = F (ξ) and therefore

F (ξ) ≤
∫

Σ
G(h(x)) dx =

∫
Σ
G(J (ξ +Dφ(x))) dx =

∫
Σ
F (ξ +Dφ(x)) dx,

proving that F is quasiconvex. �
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5.4.4. Null-Lagrangians. A smooth function F : Ω×RN ×MN×n → R is called a null-
Lagrangian if the system of Euler-Lagrange equations (4.4) for the energy

I(u) =

∫
Ω
F (x, u,Du) dx

is satisfied by all smooth functions u : Ω→ RN ; that is, for all u ∈ C2(Ω̄;RN ), the equation

(5.24)

n∑
i=1

∂

∂xi
Fξki

(x, u(x), Du(x)) = Fsk(x, u(x), Du(x)), ∀ x ∈ Ω̄,

holds for all k = 1, 2, · · · , N.

Example 5.22. Let f : Rn → R be C1, and let F (s, ξ) = f(s) det ξ for s ∈ Rn, ξ ∈ Mn×n.
Then, by (5.20),

Fsk(s, ξ) = fsk(s) det ξ, Fξki
(s, ξ) = f(s) (adj ξ)ik.

Hence for any u ∈ C2(Ω̄;Rn), by Lemma 5.19 above, we have
n∑
i=1

∂

∂xi
Fξki

(u(x), Du(x)) =
n∑
i=1

∂

∂xi
[f(u(x)) (adjDu(x))ik]

=
n∑

i,j=1

fsj (u(x))ujxi (adjDu(x))ik

=
n∑
j=1

fsj (u(x)) (detDu(x))δjk

= fsk(u(x)) (detDu(x))

for all k = 1, 2, · · · , n. Hence F (s, ξ) = f(s) det ξ is a null-Lagrangian.

We now prove the following boundary dependence property for null-Lagrangians.

Theorem 5.23. Let I(u) =
∫

Ω F (x, u,Du) dx and F be a null-Lagrangian. Assume u, v ∈
C2(Ω̄;RN ) satisfy u(x) = v(x) for all x ∈ ∂Ω. Then I(u) = I(v). Moreover, if F satisfies
|F (x, s, ξ)| ≤ c(|s|p + |ξ|p) + C(x) with c > 0 and C ∈ L1(Ω), then I(u) = I(v) for all

u, v ∈W 1,p(Ω;RN ) with u− v ∈W 1,p
0 (Ω;RN ).

Proof. Define h(t) = I(U(t, ·)) for t ∈ [0, 1], where U(t, x) = tu(x) + (1− t)v(x). Then

h′(t) =

∫
Ω

(
Fξki

(x, U(t, x), DU(t, x))Di(u
k − vk) + Fsk(x, U(t, x), DU(t, x))(uk − vk)

)
dx.

Since u − v, U(t, ·) ∈ C2(Ω̄;RN ) and u − v = 0 on ∂Ω, using the divergence theorem and
(5.24) with u = U(t, ·) we have h′(t) = 0 for all t ∈ (0, 1) and hence h(0) = h(1) and the first
part of the result follows. The second part follows by the continuity of I on W 1,p(Ω;RN )
under the given assumption. �

We now study the null-Lagrangians depending only on variable in MN×n.

Theorem 5.24. Let F : MN×n → R be continuous and let

IΩ(u) =

∫
Ω
F (Du(x)) dx,

where Ω is any smooth bounded domain in Rn. Then the following conditions are equivalent:

(1) F is of C2 and is a null-Lagrangian;
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(2) F (ξ) =
∫

Σ F (ξ +Dϕ(x)) dx for all ξ ∈MN×n and ϕ ∈ C∞0 (Σ;RN );

(3) IΩ(u) = IΩ(u+ φ) for all u ∈ C1(Ω̄;RN ) and φ ∈ C∞0 (Ω;RN );

(4) IΩ is continuous with respect to the Lipschitz convergence on W 1,∞(Ω;RN );

(5) there exists a linear function L : RL → R such that F (ξ) = L(J (ξ)) for all ξ ∈
MN×n.

Proof. We will not show the equivalence of (5) to other conditions, but it is important to
know that null-Lagrangians can only be the linear combination of subdeterminants. We
prove other equivalent conditions.

It is easy to see that (3) implies (2). Note that (2) is equivalent to that both F and −F
are quasiconvex; the latter is equivalent to that both IΩ and −IΩ are lower semicontinuous
with respect to the Lipschitz convergence on W 1,∞(Ω;RN ). Therefore, (4) is equivalent to
(2). It remains to show (2) implies (1) implies (3). Let us first show that (1) implies (3).
To this end, given u ∈ C2(Σ̄;RN ) and φ ∈ C∞0 (Σ;RN ), let

f(t) =

∫
Σ
F (Du(x) + tDφ(x)) dx.

Then, by (1),

f ′(t) =

∫
Σ
Fξiα(Du(x) + tDφ(x))Dαφ

i(x) dx = 0.

Hence f is a constant function; hence f(0) = f(1), which proves (3). The proof of that (2)
implies (1) will follow from several lemmas proved below. �

Lemma 5.25. If F is of C2, then (2) implies (1).

Proof. Note that (2) implies∫
Ω
F (ξ +Dφ(x)) dx = F (ξ) |Ω| ∀ φ ∈ C∞0 (Ω;RN ).

Since F is of C2, this implies that, for any φ, ψ ∈ C∞0 (Ω;RN ), the function

f(t) =

∫
Ω
F (tDφ(x) +Dψ(x)) dx

is constant and of C2. Therefore, f ′(0) = 0, which gives∫
Ω
Fξki

(Dψ(x))Diφ
k(x) dx = 0.

Now given u ∈ C2(Ω̄;RN ), we can select a sequence {ψν} in C∞0 (Ω;RN ) such that ψν → u
in C2(suppφ;RN ). Using the identity above with ψ = ψν and letting ν →∞ yield∫

Ω
Fξki

(Du(x))Diφ
k(x) dx = 0,

which, by the divergence theorem, shows the Euler-Lagrange equation for I is satisfied by
u ∈ C2(Ω̄;RN ), and hence F is a null-lagrangian. �

We say F is rank-one affine if F (ξ+ tq⊗p) is affine in t for all ξ ∈MN×n, q ∈ RN , p ∈
Rn.

Lemma 5.26. If F satisfies (2) then F is rank-one affine.
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Proof. Since (2) is equivalent to that F and −F are rank-one convex, which is equivalent
to that F is rank-one affine. �

We need some notation. Let µiα = ei ⊗ eα, where {ei} and {eα} are the standard bases
of RN and Rn, respectively. For each 1 ≤ k ≤ σ = min{n,N} and 1 ≤ i1, · · · , ik ≤ N, 1 ≤
α1, · · · , αk ≤ n, we define, inductively,

F i1α1
(ξ) = F (ξ + µi1α1

)− F (ξ),

F i1···ikα1···αk(ξ) = F
i1···ik−1
α1···αk−1

(ξ + µikαk)− F i1···ik−1
α1···αk−1

(ξ).

Note that if F is a polynomial it follows

F i1···ikα1···αk(ξ) = ∂kF (ξ)/∂ξi1α1
· · · ∂ξikαk .

Indeed, we have the same permutation invariance property.

Lemma 5.27. Let {1′, · · · , k′} be any permutation of {1, · · · , k}. Then

F i1···ikα1···αk(ξ) = F
i1′ ···ik′
α1′ ···αk′ (ξ).

Proof. We use induction on k. Assume this is true for all k ≤ s− 1. Let {1′, 2′, · · · , s′} be
a permutation of {1, 2, · · · , s}. We need to show

(5.25) F i1···isα1···αs(ξ) = F
i1′ ···is′
α1′ ···αs′ (ξ).

By definition

F i1···isα1···αs(ξ) = F
i1···is−1
α1···αs−1(ξ + µisαs)− F

i1···is−1
α1···αs−1(ξ).

By induction assumption, (5.25) holds if s′ = s. We thus assume s′ < s. In this case, by
induction assumption,

F i1···isα1···αs(ξ) = F
i1···̂is′ ···is′
α1···α̂s′ ···αs′

(ξ + µisαs)− F
i1···̂is′ ···is′
α1···α̂s′ ···αs′

(ξ)

(where the m̂ means omitting m)

= F
i1···̂is′ ···
α1···α̂s′ ···

(ξ + µisαs + µ
is′
αs′ )− F

i1···̂is′ ···
α1···α̂s′ ···

(ξ + µisαs)

−F i1···̂is′ ···α1···α̂s′ ···
(ξ + µ

is′
αs′ ) + F

i1···̂is′ ···
α1···α̂s′ ···

(ξ)

= F
i1···̂is′ ···is
α1···α̂s′ ···αs

(ξ + µ
is′
αs′ )− F

i1···̂is′ ···is
α1···α̂s′ ···αs

(ξ),

which, by induction assumption, equals

F
i1′ ···i(s−1)′
α1′ ···α(s−1)′ (ξ + µ

is′
αs′ )− F

i1′ ···i(s−1)′
α1′ ···α(s−1)′ (ξ) = F

i1′ ···is′
α1′ ···αs′ (ξ).

This proves the induction procedure and hence the lemma. �

Lemma 5.28. If F is rank-one affine, then all F i1···ikα1···αk are also rank-one affine. Moreover,

(5.26) F i1···ikα1···αk(ξ + t µjβ) = F i1···ikα1···αk(ξ) + t F i1···ikjα1···αkβ(ξ).

Proof. Use induction again on k. �

Lemma 5.29. If F satisfies (2) then F (ξ) is a polynomial in ξ.
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Proof. If F satisfies (2) then F is rank-one affine. Write

ξ =
N∑
i=1

n∑
α=1

ξiα µ
i
α.

Then a successive use of the previous lemma shows that F (ξ) is a polynomial of degree at

most nN in ξ with coefficients determined by F i1···ikα1···αk(0). �

Example 5.30. The function F (ξ) = (tr ξ)2 − tr ξ2 is a null-Lagrangian on Mn×n.
To see this, note that

F (ξ) = (

n∑
i=1

ξii)(

n∑
k=1

ξkk)−
n∑

i,k=1

ξki ξ
i
k =

n∑
i,k=1

Pik(ξ),

where Pik(ξ) = ξiiξ
k
k − ξikξki . For each pair (i, k), i 6= k, Pik(ξ) is a 2× 2 subdeterminant of

ξ. Hence F (ξ) is a null-Lagrangian.

5.4.5. Compensated Compactness of Null-Lagrangians. We prove a compensated
compactness property of the null-Lagrangians; for general results on compensated compact-
ness, see [7, 24].

Theorem 5.31. Let Jk(Du) be any k×k subdeterminant. Let {uj} be any sequence weakly

convergent to ū in W 1,k(Ω;RN ) as j → ∞. Then Jk(Duj) → Jk(Dū) in the sense of
distribution in Ω; that is,

lim
j→∞

∫
Ω
Jk(Duj(x))φ(x) dx =

∫
Ω
Jk(Dū(x))φ(x) dx

for all φ ∈ C∞0 (Ω).

Proof. We prove this by induction on k. Obviously, the theorem is true when k = 1.
Assume it holds for Js with s ≤ k − 1. We need to show it also holds for s = k. Without
loss of generality, we may assume

Jk(Du(x)) =
∂(u1, u2, · · · , uk)
∂(x1, x2, · · · , xk)

.

For any smooth function u, we observe that Jk(Du) is actually a divergence:

(5.27) Jk(Du(x)) =

k∑
ν=1

∂

∂xν

(
u1 (−1)ν+1∂(u2, · · · , uk)
∂(x1, · · · , x̂ν , · · · , xk)

)
,

where x̂ν , again, means deleting xν . Let

J
(ν)
k−1(Du(x)) =

(−1)ν+1∂(u2, · · · , uk)
∂(x1, · · · , x̂ν , · · · , xk)

.

Then (5.27) implies

(5.28)

∫
Ω
Jk(Du(x))φ(x) dx =

k∑
ν=1

∫
Ω
u1(x) J

(ν)
k−1(Du(x))Dνφ(x) dx.

By density argument, this identity still holds if u ∈ W 1,k(Ω;RN ). Suppose uj ⇀ ū in

W 1,k(Ω;RN ). By the Sobolev embedding theorem, uj → ū in Lk(Ω;RN ). Moreover, by the

induction assumption, for each ν, J
(ν)
k−1(Duj)→ J

(ν)
k−1(Dū) in the sense of distribution. Note

that since sequence {J (ν)
k−1(Duj)} is also bounded in L

k
k−1 (Ω) it also weakly converges in
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L
k
k−1 (Ω); hence, the weak limit must be equal to the distribution limit J

(ν)
k−1(Dū). Therefore,

we have proved that u1
jDνφ→ ū1Dνφ strongly in Lk(Ω) and J

(ν)
k−1(Duj) ⇀ J

(ν)
k−1(Dū) weakly

in L
k
k−1 (Ω); hence

lim
j→∞

∫
Ω
u1
j (x)Dνφ(x)J

(ν)
k−1(Duj(x)) dx =

∫
Ω
ū1(x)Dνφ(x)J

(ν)
k−1(Dū(x)) dx.

From this and (5.28) we conclude

lim
j→∞

∫
Ω
Jk(Duj(x))φ(x) dx =

n∑
ν=1

∫
Ω
ū1(x)Dνφ(x)J

(ν)
k−1(Dū(x)) dx =

∫
Ω
Jk(Dū(x))φ(x) dx,

as desired. The proof is complete. �

Corollary 5.32. Let Jk(Du) be any k×k subdeterminant and p > k be a number. Let {uj}
be any sequence weakly convergent to ū in W 1,p(Ω;RN ) as j →∞. Then Jk(Duj) ⇀ Jk(Dū)

weakly in L
p
k (Ω).

Proof. Note that fj = Jk(Duj) is bounded in L
p
k (Ω) and hence, via a subsequence, fj ⇀ f̄

for some f̄ weakly in L
p
k (Ω), which also implies fj → f̄ in distribution. Hence f̄ ≡ Jk(Du)

and the whole sequence fj ⇀ Jk(Du) in L
p
k (Ω). �

Example 5.33. In general, the weak convergence uj ⇀ ū in W 1,k(Ω;RN ) does not imply
the weak convergence Jk(Duj) ⇀ Jk(Dū) in L1(Ω). For example, let Ω = B be the unit
open ball in Rn. Consider, for j = 1, 2, · · · , the radial mappings

uj(x) =
Uj(|x|)
|x|

x, Uj(r) =


jr if 0 ≤ r ≤ 1/j,
2− jr if 1/j ≤ r ≤ 2/j,
0 if 2/j ≤ r < 1.

Computation shows that uj ⇀ 0 in W 1,n(B;Rn) as j →∞. But

detDuj(x) = (Uj(r)/r)
n−1U ′j(r)

for a.e. x ∈ B, where r = |x|, and hence∫
|x|<2/j

| detDuj(x)| dx = C

is a constant independent of j. This shows that the sequence {detDuj} is not equi-integrable
in B, and therefore it does not converges weakly in L1(B). Therefore, although uj ⇀ ū in

W 1,k(Ω;RN ), Jk(Duj) → Jk(Dū) in the sense of distribution, and {Jk(Duj)} is bounded
in L1(Ω), but it is not true that Jk(Duj) ⇀ Jk(Dū) weakly in L1(Ω).

However, if we assume detDuj(x) ≥ 0 a.e. in Ω and uj → ū weakly in W 1,n(Ω;Rn)
then detDuj ⇀ detDū weakly in L1

loc(Ω); this follows from a well-known theorem of S.
Müller that detDu ln(1 + detDu) ∈ L1

loc(Ω) if u ∈ W 1,n(Ω;Rn) satisfies detDu(x) ≥ 0
a.e.x ∈ Ω. We will not prove this result here, but prove the following similar result which
is useful below.

Theorem 5.34. Let uj ∈ Dϕ, the Dirichlet class of ϕ ∈ W 1,n(Ω;Rn). Assume uj ⇀ ū in
W 1,n(Ω;Rn) and detDuj(x) ≥ 0 a.e. in Ω. Then detDuj ⇀ detDū weakly in L1(Ω).
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Proof. Note that, since detDuj is bounded in L1(Ω), the weak convergence is equivalent
to

(5.29) lim
j→∞

∫
E

detDuj(x) dx =

∫
E

detDū(x) dx

for all measurable sets E ⊆ Ω. By Theorem 5.23, we have

(5.30)

∫
Ω

detDuj(x) dx =

∫
Ω

detDū(x) dx =

∫
Ω

detDϕ(x) dx.

Hence (5.29) holds when E = Ω. Let E ⊂ Ω. Let

F (x, ξ) = χE(x) max{0, det ξ},
where χE is the characteristic function of E. Then F (x, ξ) is polyconvex and hence
quasiconvex in ξ. Note that

0 ≤ F (x, ξ) ≤ C |ξ|n.
Hence by Theorem 5.6 the functional

I(u) =

∫
Ω
F (x,Du)dx

is w.l.s.c. on W 1,n(Ω;Rn). Using the fact

F (x,Duj(x)) = χE(x) detDuj(x), F (x,Dū(x)) ≥ χE(x) detDū(x) ∀ a.e. x ∈ Ω,

this w.l.s.c. implies

(5.31)

∫
E

detDū(x) dx ≤ lim inf
j→∞

∫
E

detDuj(x) dx.

This is also valid for Ec = Ω \ E; that is,

(5.32)

∫
Ec

detDū(x) dx ≤ lim inf
j→∞

∫
Ec

detDuj(x) dx.

Note that ∫
Ec

detDuj dx =

∫
Ω

detDuj dx−
∫
E

detDuj dx.

Hence (5.30) and (5.32)imply∫
E

detDū dx ≥ lim sup
j→∞

∫
E

detDuj dx,

which, combined with (5.31), implies (5.29). �

5.5. Existence in Nonlinear Elasticity

5.5.1. Hyperelastic Materials. In nonlinear elasticity, a hyperelastic material refers
to a material that possesses a stored energy density function F (x, u,Du) to character-
ize all the continuum mechanical properties under the deformation u of the material. In
particular, the total stored energy is defined by

I(u) =

∫
Ω
F (x, u(x), Du(x)) dx,

where Ω ⊂ R3 is a bounded smooth domain occupied by the hyperelastic material in the
reference configuration, and u : Ω→ R3 is the deformation (u(x) representing displacement
of material point x ∈ Ω in the deformed configuration).

The stored energy density function F (x, s, ξ) should satisfy several assumptions due to
continuum mechanics principles and material properties; some of these assumptions exclude
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the possibility of F being convex in ξ and almost all practical problems require that F (x, s, ξ)
satisfy the following:

(5.33) F (x, s, ξ) =∞ if det ξ ≤ 0, lim
det ξ→0+

F (x, s, ξ) =∞.

The first is due to the orientation-preserving assumption and the second is due to the
fact that infinite energy is needed to press a solid material into zero-volume.

Therefore, for nonlinear elasticity problems, we often need to consider extended-
valued energy functionals; theorems proved above for finite-valued functionals may not
be applicable to these problems.

5.5.2. Polyconvex Energy Density Functions. We assume the energy density function
F (x, s, ξ) satisfies the following assumptions:

(1) F (x, s, ξ) = +∞ if and only if det ξ ≤ 0, and lim
det ξ→0+

F (x, s, ξ) =∞ uniformly on

(x, s);

(2) F (x, s, ξ) is continuous in (x, s) ∈ Ω̄ × R3 and polyconvex on ξ ∈ M3×3, det ξ > 0
in the sense that there exists a continuous function W (x, s, J) on Ω̄ × R3 × R19

+ ,
convex in J ∈ R19

+ = M3×3 ×M3×3 × R+, such that

F (x, s, ξ) = W (x, s, ξ, adj ξ,det ξ)

for all x ∈ Ω̄, s ∈ R3, ξ ∈ M3×3 with det ξ > 0; furthermore, W (x, s, J) is smooth
in J ∈ R19

+ and WJ(x, s, J) is continuous on Ω̄× R3 × R19
+ ;

(3) F (x, s, ξ) ≥ c0|ξ|3 for all ξ ∈M3×3, where c0 > 0 is a constant.

5.5.3. Existence Theorem. Let I(u) be the energy functional defined by

I(u) =

∫
Ω
F (x, u(x), Du(x)) dx,

where F satisfies the previous assumptions. Let ϕ ∈ W 1,3(Ω;R3) be a given function such
that I(ϕ) <∞. Then we have the following existence result.

Theorem 5.35. (Existence in Nonlinear Elasticity) There exists at least one mini-
mizer ū ∈ Dϕ with detDū(x) > 0 for almost every x ∈ Ω such that

I(ū) = min
u∈Dϕ

I(u).

Proof. Let {uν} be a minimizing sequence in Dϕ. Since lim I(uν) = infDϕ I ≤ I(ϕ) < ∞,
from Assumption (1), it follows that

detDuν(x) > 0 a.e. Ω.

Now Assumption (3) implies that {|Duν |} is bounded in L3(Ω) and hence, having the fixed
Dirichlet boundary condition, {uν} is bounded in W 1,3(Ω;R3). Therefore, via a subsequence,
we assume uν ⇀ ū in W 1,3(Ω;R3) as ν →∞. Then, by compact imbedding, Corollary 5.32
and Theorem 5.34,

(5.34) uν → ū in L3(Ω), adjDuν ⇀ adjDū in L3/2(Ω), detDuν ⇀ detDū in L1(Ω).

It is easy to see that detDū(x) ≥ 0 for almost every x ∈ Ω. We show detDū(x) > 0 a.e. in
Ω. We follow an idea of Pedregal. Let

h(τ) = inf{F (x, s, ξ) | (x, s, ξ) ∈ Ω̄× R3 ×M3×3, det ξ = τ}.
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Then, by Assumption (1), limτ→0+ h(τ) =∞. Note that

sup
ν

∫
Ω
h(detDuν(x)) dx ≤ sup

ν

∫
Ω
F (x, uν(x), Duν(x)) dx <∞.

Let E = {x ∈ Ω | detDū(x) = 0}. We show |E| = 0. Suppose |E| > 0. By weak conver-
gence,

lim
ν→∞

∫
E

detDuν(x)dx =

∫
E

detDū(x)dx = 0.

So detDuν → 0 in L1(E). Hence, detDuν′(x)→ 0 a.e.x ∈ E along a subsequence ν ′ →∞.
Therefore, h(detDuν′(x))→∞ a.e.x ∈ E. However, by Fatou’s lemma,∫

E
lim inf
ν′→∞

h(detDuν′(x)) dx ≤ lim inf
ν′→∞

∫
E
h(detDuν′(x))dx <∞.

This implies lim infν′→∞ h(detDuν′(x)) < ∞ a.e.x ∈ E, a contradiction. Hence |E| = 0;
so, detDū(x) > 0 a.e. in Ω.

By Assumption (2), F (x, s, ξ) = W (x, s, J(ξ)) for all x, s, ξ with det ξ > 0, where
J(ξ) = (ξ, adj ξ,det ξ). Hence, at every point x where detDuν(x) > 0 and detDū(x) > 0,
it follows that

F (x, uν , Duν)− F (x, ū,Dū)

= [W (x, uν , J(Dū))−W (x, ū, J(Dū))] + [W (x, uν , J(Duν))−W (x, uν , J(Dū))]

≥ [W (x, uν , J(Dū))−W (x, ū, J(Dū))] +WJ(x, uν , J(Dū)) · (J(Duν)− J(Dū)).

We can then follow the similar steps as in the proof of the Tonelli theorem (Theorem 5.1)
to conclude that

I(ū) ≤ lim inf
ν→∞

I(uν).

For example, by (5.34), (via a subsequence) we can also assume uν(x) → ū(x) for almost
every x ∈ Ω. Now, for any given δ > 0, we choose a compact set K ⊂ Ω \ E, where
E = {x ∈ Ω | detDū(x) = 0}, such that

(i) uν → ū uniformly on K and |Ω \K| < δ (by Egorov’s theorem);

(ii) ū, Dū are continuous on K (by Lusin’s theorem);

(iii) detDū(x) ≥ δ0 > 0 on K for some constant δ0 > 0 (as detDū > 0 on K).

Since F ≥ 0, it follows that

I(uν) ≥
∫
K
F (x, uν , Duν) dx ≥

∫
K
F (x, ū,Dū)dx

+

∫
K

[W (x, uν , J(Dū))−W (x, ū, J(Dū))]dx

+

∫
K
WJ(x, uν , J(Dū)) · (J(Duν)− J(Dū))dx.

Since W (x, s, J) and WJ(x, s, J) are both uniformly continuous on compact subsets of
Ω × R3 × R19

+ and uν(x) → ū(x) uniformly on K, it follows that W (x, uν , J(Dū)) →
W (x, ū, J(Dū)) and WJ(x, uν , J(Dū)) → WJ(x, ū, J(Dū)) both uniformly on K. There-
fore, by (5.34), we conclude that

∞ > lim inf
ν→∞

I(uν) ≥
∫
K
F (x, ū,Dū) dx.
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This, holding for a sequence of compact subsets K of Ω approaching Ω, yields that I(ū) =∫
Ω F (x, ū,Dū)dx <∞. Hence, for each ε > 0, Lebesgue’s absolute continuity theorem

determines a number δ > 0 such that∫
S
F (x, ū,Dū)dx ≥

∫
Ω
F (x, ū,Dū)dx− ε, ∀S ⊂ Ω, |Ω \ S| < δ.

Using this δ > 0 with S = K, where K is determined according to (i, (ii) and (iii) above,
we conclude, by setting ε→ 0, that

lim inf
ν→∞

I(uν) ≥ I(ū).

Hence ū is a minimizer. This completes the proof. �

Remark. For general existence results with Assumption (3) weakened to F (x, s, ξ) ≥ c0(|ξ|p+
| adj ξ|q) for certain p < 3 and q > 1, see Müller, Tang & Yan [18].

5.6. Relaxation Principle and Existence for Nonconvex Problems

There are many application problems that do not satisfy the convexity conditions. In such
cases, minimizers may not be found as we did before using the direct method, but the
variational methods may still help to study the problem.

5.6.1. Non-quasiconvex Problems. In general, we consider the multiple integral func-
tional

I(u) =

∫
Ω
F (x, u(x), Du(x)) dx,

where Ω is a bounded domain in Rn, u : Ω → RN , and F (x, s, ξ) is a given function not
quasiconvex in ξ. We give two examples of one-dimensional problem.

Example 5.36. Consider the classical example of Bolza: to minimize the functional

I(u) =

∫ 1

0
[((u′)2 − 1)2 + u2]dx

among all Lipschitz functions u satisfying boundary conditions u(0) = u(1) = 0. Let

uk(x) =
1

2k
−
∣∣∣∣x− [kx]

k
− 1

2k

∣∣∣∣ ,
where [a] stands for the integer part of a ∈ R. Then uk → 0 in the Lipschitz convergence,
and I(uk)→ 0 as k →∞. Hence the infimum of I over all such u is 0. Note that I(0) = 1.
Hence I is not lower semicontinuous in the Lipschitz convergence. Moreover, I does not
have minimizers since I(u) = 0 would imply |u′| = 1 a.e and hence u ≡ 0.

Example 5.37. Let f(ξ) = (ξ2 − 1)2 for ξ ∈ R and consider the functional

I(u) =

∫ 1

0
f(u′(x)) dx =

∫ 1

0
((u′)2 − 1)2dx

over all Lipschitz functions u satisfying u(0) = 0, u(1) = a. Then this nonconvex problem
has minimizers for all values of a; moreover, the minimizer is unique if |a| ≥ 1 and there
exist infinitely many minimizers if |a| < 1.
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Proof. Let first of all |a| < 1. Then it can be easily seen that there are infinitely many
Lipschitz functions u such that u′(x) ∈ {−1, 1} with u(0) = 0 and u(1) = a; any of such
functions will be a minimizer of I with minimum value zero. Now let |a| ≥ 1. Note that the
strict inequality

f(ξ)− [f(a) + f ′(a)(ξ − a)] > 0

holds for all ξ 6= a if |a| > 1, or holds for all ξ /∈ {−1, 1} if |a| = 1. Therefore, for all
Lipschitz functions u with u(0) = 0, u(1) = a it follows that

I(u) =

∫ 1

0
f(u′(x)) dx ≥ f(a) +

∫ 1

0
f ′(a)(u′(x)− a) dx = f(a) = I(ū),

where ū(x) = ax; hence the minimum value of I is f(a) and, certainly, ū(x) = ax is a
minimizer. We show that ū is the unique minimizer. Suppose v is any minimizer of I over
all Lipschitz functions u with u(0) = 0, u(1) = a; that is,

I(v) =

∫ 1

0
f(v′(x)) dx = f(a)

with v(0) = 0 and v(1) = a. If a = 1 then since f(1) = 0 it must follow that v′(x) ∈ {−1, 1}
a.e. x ∈ (0, 1) and

∫ 1
0 (1−v′(x)) dx = 0 and hence v′(x) = 1 on (0, 1). This implies v(x) = x.

Similarly if a = −1 then v(x) = −x. Now assume |a| > 1. Since f(ξ)−f(a)−f ′(a)(ξ−a) > 0
for all ξ 6= a, from ∫ 1

0
[f(v′(x))− f(a)− f ′(a)(v′(x)− a)] dx = 0,

it follows that v′(x) = a for a.e. x ∈ (0, 1); henc v(x) = ax. Therefore, in all cases, v = ū.
This completes the proof. �

From this example, we see that the function

g(ξ) = inf
w∈W 1,∞

0 (0,1)

∫ 1

0
f(ξ + w′(x)) dx = f c(ξ) =

{
f(ξ) if |ξ| ≥ 1

0 if |ξ| < 1

is the convexification of function f ; that is, the largest convex function less than or equal
to f .

5.6.2. Quasiconvexification. Given a function F : MN×n → R, we define the largest
quasiconvex function less than or equal to F to be the quasiconvexication or quasiconvex
envelope of F. We denote the quasiconvexification of F by F qc.

Theorem 5.38. Let F ≥ 0 be continuous. Then

(5.35) F qc(ξ) = inf
φ∈W 1,∞

0 (Σ;RN )

∫
Σ
F (ξ +Dφ(x)) dx, ξ ∈MN×n.

Proof. For any quasiconvex function G ≤ F,

G(ξ) ≤
∫

Σ
G(ξ +Dφ(x)) dx ≤

∫
Σ
F (ξ +Dφ(x)) dx.

Hence G(ξ) ≤ F qc(ξ) by the definition of F qc. It remains to prove that F qc is itself quasi-
convex. We first observe that

(5.36) F qc(ξ) = inf
φ∈W 1,∞

0 (Ω;RN )

∫
−

Ω
F (ξ +Dφ(x)) dx
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for any open set Ω ⊂ Rn with |∂Ω| = 0. This can be proved by using the Vitali covering ar-
gument as before. We now claim that, for all piecewise affine Lipschitz continuous functions
φ ∈W 1,∞

0 (Σ;RN ), it follows that

(5.37) F qc(ξ) ≤
∫

Σ
F qc(ξ +Dφ(x)) dx.

To see this, let Σ = ∪iΩi∪E be such that |E| = 0 and each Ωi is an open set with |∂Ωi| = 0

and such that φ ∈ W 1,∞
0 (Σ;RN ) takes constant gradients Dφ = Mi on each Ωi. Let ε > 0

be given. By the above remark on the definition of F qc, there exists ψi ∈ W 1,∞
0 (Ωi;RN )

such that

F qc(ξ +Mi) ≥
∫
−

Ωi

F (ξ +Mi +Dψi(x)) dx− ε.

With each ψi being extended by zero to Σ, we set ψ = φ+
∑

i ψi. Then ψ ∈W 1,∞
0 (Σ;RN )

and we have ∫
Σ
F qc(ξ +Dφ(x)) dx =

∑
i

|Ωi|F qc(ξ +Mi)

≥
∑
i

[∫
Ωi

F (ξ +Mi +Dψi(x)) dx− ε|Ωi|
]

=

∫
Σ
F (ξ +Dψ(x)) dx− ε ≥ F qc(ξ)− ε,

and hence the ineqquality (5.37) follows. From this we conclude that function F qc is rank-
one convex (using “sawtooth” like piecewise affine functions as before) and is thus locally

Lipschitz continuous. To show (5.37) holds for general test functions φ ∈ W 1,∞
0 (Ω;RN ),

we use approximation of φ by piecewise affine functions. An approximation theorem (see,
e.g., [9, Corollary 10.13]) asserts that there exists a sequence of piecewise affine functions

φk ∈W 1,∞
0 (Ω;RN ) such that

‖Dφk‖L∞ ≤ C, ‖Dφk −Dφ‖Lp(Ω) → 0,

where 1 < p < ∞. Using such an approximation and the continuity of F qc, one can show
that (5.37) holds for φ ∈ W 1,∞

0 (Σ;RN ). Hence F qc is quasiconvex. This completes the
proof. �

5.6.3. Weak Lower Semicontinuous Envelope. Suppose F (x, s, ξ) is a Caratheodory
function and satisfies

0 ≤ F (x, s, ξ) ≤ C (|ξ|p + |s|p + 1) ∀x ∈ Ω, s ∈ RN , ξ ∈MN×n

for some 1 ≤ p <∞. We are interested in the largest w.l.s.c. functional Ĩ(u) on W 1,p(Ω;RN )
which is less than or equal to the functional

I(u) =

∫
Ω
F (x, u(x), Du(x)) dx.

This functional Ĩ(u) is called the weak lower semicontinuous envelope or relaxation
of I in the weak topology of W 1,p(Ω;RN ). It turns out that under some mild conditions

Ĩ(u) is given by the integral functional of the quasiconvexification of F with respect to ξ.
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Theorem 5.39. Let F qc(x, s, ·) be the quasiconvexification of F (x, s, ·) for given (x, s). In

addition, assume F qc is also a Caratheodory function. Then the envelope Ĩ(u) of I in the
weak topology of W 1,p(Ω;RN ) is given by

Ĩ(u) =

∫
Ω
F qc(x, u(x), Du(x)) dx.

Proof. Let Î(u) be the integral of F qc(x, u(x), Du(x)) over Ω. Since F qc is quasiconvex and

satisfies the same growth condition as F , the functional Î(u) is thus (sequential) w.l.s.c. on

W 1,p(Ω;RN ) by the theorem of Acerbi & Fusco. Therefore, Î ≤ Ĩ . To prove the other
direction, we first assume there exists a Caratheodory function g(x, s, ξ) such that

(5.38) Ĩ(u) =

∫
Ω
g(x, u(x), Du(x)) dx ∀ u ∈W 1,p(Ω;RN ).

Then g(x, s, ·) must be quasiconvex and g ≤ F , and thus g ≤ F qc; this proves Ĩ ≤ Î .
However, the proof of integral representation (5.38) is beyond the scope of this lecture and
is omitted; see e.g., Acerbi & Fusco [1], Buttazzo [6], or Dacorogna [8]. �

5.6.4. Relaxation Principle. We have the following theorem; the proof of the theorem
is also omitted; see the references above.

Theorem 5.40. (Relaxation Principle) Assume F (x, s, ξ) and F qc(x, s, ξ) are both
Caratheodory and that

0 ≤ F (x, s, ξ) ≤ C (|ξ|p + |s|p + 1)

holds for some constants C > 0, p > 1. Then

inf
u∈Dϕ

∫
Ω
F (x, u,Du) dx = inf

u∈Dϕ

∫
Ω
F qc(x, u,Du) dx

for any ϕ ∈W 1,p(Ω;RN ), where Dϕ is the Dirichlet class of ϕ.

Remarks. (a) The passage from F to F qc is called relaxation. The relaxation princi-
ple replaces a nonconvex problem that may not have any solution by a quasiconvex (re-
laxed) problem that will have solutions if in addition we assume the coercivity condition
F (x, s, ξ) ≥ c|ξ|p for some constant c > 0. But, there are costs for this: we lose some useful
information about the minimizing sequences; e.g., the finer and finer patterns of minimizing
sequences.

(b) In phase transition problems for certain materials, the finer and finer patterns of
minimizing sequences account for the microstructures, while the minimizers of relaxed prob-
lem may only capture the macroscopic (or effective) properties of the material. In certain
studies, microstructures are usually characterized by Young measures; for more informa-
tion, we refer to Müller [17] and the references therein.

(c) By the Relaxation Principle, if u0 is a minimizer of
∫

Ω F (x, u,Du) dx then it must
satisfy the differential inclusion:

(5.39) Du0(x) ∈ K(x, u0(x)) a.e. x ∈ Ω,

with set-valued function K(x, s) = {ξ |F (x, s, ξ) = F qc(x, s, ξ)}. There are whole lots of
researches on differential inclusions like (5.39), which could be a totally new topics course.
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5.6.5. Existence of Minimizers for a Nonconvex Problem. Consider

I(u) =

∫
Ω
f(∇u(x)) dx

where Ω is a bounded domain in Rn, u : Ω → R is a scalar function, and f : Rn → R is a
given continuous function. We define the subgradient of f at a point ξ by

∂f(ξ) = {l ∈ Rn | f(η) ≥ f(ξ) + l · (η − ξ), ∀ η ∈ Rn}.

Each l ∈ ∂f(ξ) is called a subdifferential of f at ξ. Note that ∂f(ξ) may be an empty set
for some ξ.

For a set of points ξ1, ξ2, · · · , ξq in Rn, we denote by co{ξ1, · · · , ξq} the convex hull
defined by

conv{ξ1, · · · , ξq} =

{
q∑
i=1

λiξi

∣∣∣ ∀ λi ≥ 0,

q∑
i=1

λi = 1

}
.

The following theorem indicates that even without convexity assumption the minimiza-
tion may still have solutions. However, the existence can not follow from the direct method,
but has to rely on different methods.

Theorem 5.41. Given ξ ∈ Rn, the minimization problem

inf
u∈W 1,1(Ω), u|∂Ω=ξx

∫
Ω
f(∇u)dx

has a minimizer if and only if either ∂f(ξ) 6= ∅, or there exist ξ1, ξ2, · · · , ξq such that

(5.40) ξ ∈ int conv{ξ1, · · · , ξq} and ∩qi=1 ∂f(ξi) 6= ∅.

Proof. This form of the theorem is due to Sychev [23] and we follow his proof too.

1. “Sufficiency.” First, if ∂f(ξ) 6= ∅, then one easily shows that uξ ≡ ξx is a
minimizer. Indeed, let η ∈ ∂f(ξ); then

f(∇u(x)) ≥ f(ξ) + η · (∇u(x))− ξ) ∀u ∈W 1,1(Ω).

Hence I(u) ≥ I(uξ) for all such u with u|∂Ω = uξ.

Now suppose there exist ξ1, ξ2, · · · , ξq such that

ξ ∈ int conv{ξ1, · · · , ξq} and ∩qi=1 ∂f(ξi) 6= ∅.

We assume that ξ1, · · · , ξr are the extreme points of conv{ξ1, · · · , ξq}; hence conv{ξ1, · · · , ξr} =
conv{ξ1, · · · , ξq}. Since ξ ∈ int conv{ξ1, · · · , ξr}, we can show that the function

w(x) = max
1≤i≤r

{(ξi − ξ) · x− 1}

is Lipschitz, ∇w(x) ∈ {ξi − ξ : i = 1, · · · , r} a.e., and w|∂P = 0, where

P = {x ∈ Rn : w(x) ≤ 0}

is a compact polyhedral set with nonempty interior containing 0. (Due to the special shape
of its graph, function −w(x) is usually called a pyramid function on P .) By Vitali
covering argument, we can write Ω = ∪∞i=1(yi + siP ) ∪ N , where |N | = 0, yi ∈ Ω, si > 0
and {yi + siP} are disjoint subsets of Ω. We now define

u0(x) =

{
ξx+ siw(x−yisi

) for x ∈ yi + siP , i = 1, 2, · · · ,
ξx elsewhere on Ω.
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Then u0 ∈ W 1,∞(Ω) and u0|∂Ω = ξx. We show that u0 is minimizer. Indeed, let η ∈
∩ri=1∂f(ξi). Then, f(ξj) ≥ Li(ξj) for all i, j = 1, 2, · · · , r, where Li(v) = f(ξi) + η · (v − ξi);
this implies that all Li are equal and f(v) ≥ Li(v) for all v ∈ Rn. Therefore, for all
u ∈W 1,1(Ω) with u|∂Ω = ξx, using ∇u0(x) ∈ {ξ1, ξ2, · · · , ξr}, it follows that

I(u)− I(u0) =

∫
Ω

(f(∇u)− f(∇u0)− η · (∇u−∇u0)) dx

=

∫
Ω

(f(∇u)− L1(∇u)) dx ≥ 0.

2. “Necessity.” Let u0 be a minimizer. Let f∗∗ be the convexification of f . Then a
similar argument of the relaxation principle shows that I(u0) ≤ f∗∗(ξ)|Ω|. Let η ∈ ∂f∗∗(ξ).
Then

I(u0)− f∗∗(ξ)|Ω| =
∫

Ω
(f(∇u0(x))− f∗∗(ξ)− η · (∇u0(x)− ξ)) dx ≥ 0.

Hence I(u0) = f∗∗(ξ)|Ω|. This implies ∇u0(x) ∈ Pη for a.e.x ∈ Ω, where

Pη = {v ∈ Rn : f(v)− f∗∗(ξ)− η · (v − ξ) = 0}.
If f∗∗(ξ) = f(ξ), then ∂f(ξ) 6= ∅. We now assume f∗∗(ξ) < f(ξ). We claim ξ ∈ int convPη.
Suppose this is not the case. Then, by the Hahn-Banach theorem in convex analysis,
there exists a ∈ Rn such that ξ · a ≥ v · a for all v ∈ convPη. Hence ξ · a ≥ ∇u0(x) · a for
a.e.x ∈ Ω. Since

∫
Ω ξ ·a dx =

∫
Ω∇u0(x) ·a dx, it follows that ξ ·a = ∇u0(x) ·a for a.e.x ∈ Ω;

hence the directional derivative

∂(u0 − ξx)

∂a
= (∇u0 − ξ) · a = 0 a.e. Ω.

So, for a.e.x ∈ Ω, the function h(t) = u0(x + ta) − ξ · (x + ta) must be constant on each
open interval of t where the function is defined; the endpoints t0 of any such interval must
satisfy x+ t0a ∈ ∂Ω. Since u0(x) = ξx on x ∈ ∂Ω, this implies u0(x) ≡ ξx; hence ξ ∈ Pη and
f∗∗(ξ) = f(ξ), a contradiction. So ξ ∈ int convPη and thus there exist ξ1, ξ2, · · · , ξq ∈ Pη
such that ξ ∈ int conv{ξ1, ξ2, · · · , ξq}. Since ξi ∈ Pη, we have f(ξi) = f∗∗(ξ) + η · (ξi − ξ);
so, for all v ∈ Rn, as η ∈ ∂f∗∗(ξ), it follows that

f(v) ≥ f∗∗(v) ≥ f∗∗(ξ) + η · (v − ξ)
= f∗∗(ξ) + η · (ξi − ξ) + η · (v − ξi) = f(ξi) + η · (v − ξi),

which shows that η ∈ ∂f(ξi) for all i = 1, 2, · · · , q. So ∩qi=1∂f(ξi) 6= ∅. This completes the
proof. �

Remark. Condition (5.40) is essentially equivalent to the condition that the face of epif∗∗

whose relative interior contains (ξ, f∗∗(ξ)) has dimension n, which is the original assump-
tion of Cellina. Standard notation and theorems in convex analysis can be found in
Rockafellar’s book [20].
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[19] P. Pedregal, “Parametrized Measure and Variational Principles.” Birkhauser, Basel, 1997.

[20] R. T. Rockafellar, “Convex Analysis.” Princeton University Press, Princeton, 1972.

[21] E. Stein, “Harmonic Analysis.” Princeton University Press, Princeton, 1993.
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