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Chapter 1

Multiple Integrals and
Systems in Divergence
Form

1.1. Notation

Throughout the lecture, we use R™ to denote the standard Euclidean space of n-real vari-
ables and MY *" to denote the Euclidean space MV *" of all real N x n-matrices.

The norm in R™ or MYV *" is all denoted by | - |. For example, if £ € MY *" then

N n
67 =D (€)™

i=1 a=1

For ¢ € RN, p € R™, we use n = ¢ ® p to denote the matrix with n, = ¢' po. Therefore, it
is easy to see |q @ p| = [p|q].

We also denote by © a bounded smooth domain in R™ and let 2, 9Q denote the closure
and the boundary of 2 in R", respectively. For a Lebesgue measurable set E in R™ we use
|E| to denote its Lebesgue n-measure. If f: E — R is Lebesgue integrable and |E| > 0 then
we define

][Ef(x) di = ’E1’ /Ef(x) da.

For a map u from  to a target space RY, we use Du(z) to denote the Jacobian or gradient
matrix of u defined by

(Du(x))!, = Dout(z) = Oul(2)/0zq (i=1,2,..,N; a=1,2,...,n).

This can also be viewed as a map Du from € to the matrix space MY ™.

For 0 < k < oo, we use C*(Q;RY) to denote the space of all smooth maps with
continuous partial derivatives up to the order k& and C(’f(Q; RY) its subspace consisting of
all such maps with compact support in 2.

1



2 1. Multiple Integrals and Systems in Divergence Form

For 1 < p < oo, let W'P(Q; RY) and Wol’p(Q;RN) be the Sobolev spaces, which are
completion of C°(Q; RY) and C§°(2; RY), respectively, under the norm

1/p
fulhy =l = ([ (ol + 1Duto) a)
If A:Q — MY*"is a smooth map, then its divergence Div A : @ — RY is defined by

(Div A(z Z@A’ )/0zq, i=1,2,...,N.

If A is only locally integrable, then Div A is defined to be a distribution on C§°(2; R")
(test functions) by the pairing

(Div A, ) = —(A, D), ¢ € C(%RY),
where
(A, Dy) = /A - Do(x d:];—/Z:Z:AZ o' () da.
i=1 a=1

In most cases, we shall also use the convention that repeated indices are to be added.

1.2. Multiple integrals in the calculus of variations

Consider the multiple integral functional
(1.1) I(u) = / F(x,u(z), Du(z)) dz,
Q

where F(z,s,&) is a given function on Q x RY x M™V*"_ In the calculus of variations, such
functionals I(u) are usually called an energy functional, as is in the theory of elasticity.

Suppose F(x,s,€) is continuous and is also smooth in s and £. Assume u is a nice (say,
u € CHQ; RY)) minimizer of I(u) with its own boundary data; that is, u is a map such
that

I(u) < I(u+tp)
for all t € R! and ¢ € C5°(Q; RY). Then by taking derivative of I(u +t¢) at t = 0 we see
that u satisfies

/Q (F% (z,u, Du) Do@'(x) 4+ Fyi(x,u, Du) go”‘(a:)) dr =0

for all ¢ € C§°(;RY). (Summation notation is used here.) This equation is called the
Euler-Lagrange equation (in weak form) or the first variation of I at u.

The FEuler-Lagrange equation can be written as a differential system for map u in the
distribution sense:

(1.2) —Div A(z, u, Du) + b(z,u, Du) = 0,
where A, b are defined by

(1.3) Al (x,5,6) = Fei (2,5,6), bi(x,s,&) = Fa(x,s,§).



1.3. Systems in divergence form 3

Remarks. 1) If F, u are sufficiently smooth (e.g. of class C?) then we have the strong form
of the Euler-Lagrange equation of I at w :
—F g (z,u, Du) Do Dgu? — Fei i (2, u, Du) D’
—Fei o, (z,u, Du) + Fy(z,u, Du) =0, i=1,2,..,N,
which is a second-order quasilinear system of N coupled partial differential equations.

2) If F, u are sufficiently smooth (e.g. of class C?) then we have

d2

—1 t > (.
dt? (uttp) t=0 0
This implies

/QF% % (z,u, Du) DagoiDﬁgoj dz

+/ [QF&; i (@, u, Du) ¢! Do" 4 Fligi(x,u, Du) <pi<pj] dr >0
Q

for all p € C5°(Q; RY). This inequality is called the second variation of I at minimum
point u. We shall discuss some consequences of this inequality later on. O

1.3. Systems in divergence form

We consider general systems of PDE in divergence form as (1.2). Let A : QxRN xMV*n —,
MY *" and b : QxRN xMY*" — RN be given. Consider the system of differential equations
for a map u: Q — RY

(1.4) —Div A(z, u, Du) + b(z,u, Du) =0
in the sense of distribution; this means that
/ (A(z,u, Du) - Dp(z) dz + b(x,u, Du) - p(z)) dz =0
Q
for all test functions ¢ € C$°(Q; RY).
The leading term A(x, s,§) in system (1.4) can be classified to be
e linear if A(z,s,&) is linear in both s and &; that is,
Ay(x,5,€) = A (2) € + 055 (0) 7 + 7 (2);
e quasilinear if A(x,s,£) is only linear in &; that is,
Ay (,5,6) = A (v,5) € + Pi(a, s);
e nonlinear for all other cases of A(z,s,¢).

The system (1.4) is said to be linear if A(x,s,§), b(z,s,&) are both linear in s and &.

Remark. Again, if A, u are sufficiently smooth, the strong form of (1.4) is a second-order
quasilinear system of N coupled partial differential equations of the form

(1.5) fA%ﬁ(ac,u,Du) DaDﬂuj + Ri(z,u,Du) =0, i=1,2,...,N,
where the leading coefficients Af‘jﬁ (z,s,&) are given by

(1.6) A (w,5,€) = DAL (w, 5, €) /085,



4 1. Multiple Integrals and Systems in Divergence Form

1.4. Legendre ellipticity condition for systems

Definition 1.1. The system (1.4) or (1.5) is called (uniformly, strictly) elliptic if there
exists a v > 0 such that for all (z,s,§)

(1.7) Z Z A (@, s, miymhy > vinl> ¥ne MV,
1,j=1 a,5=1

where coeflicients Af‘jﬂ(:c, s,6) = 0AL (, 3,§)/8§é are defined as in (1.6). This condition is

also called the (uniform, strict) Legendre (ellipticity) condition for the given system.

A weaker condition, obtained by setting n = ¢®p with p € R", ¢ € R", is the following
so-called (strong) Legendre-Hadamard condition:

(1.8) SN A (@,5.6)d P paps > viIpl*la* YpeR", geRY.
i, a,0

Note that for systems with linear leading terms; that is,
A (,5,6) = AL (@) €, + by (@) 87 + 1, (@),
the Legendre condition and Legendre-Hadamard condition become, respectively

A () 1, my > v vne MY
A%(@) ¢ ¢ paps > vIpl*la? ¥YpeR", geRY.

Remark. The Legendre-Hadamard condition does not imply the Legendre ellipticity con-
dition. 0

Example 1.2. Let n = N = 2 and define constants A?jﬁ by

A%ﬁ &, % = det & + € |¢|%.
Since
A papsd'q = det(q®p) +elq @ p|* = €|p|lql?,
the Legendre-Hadamard condition holds for all € > 0. But, if 0 < € < 1/2, then there exists

a matrix £ of the form such that det & + €|¢]? < 0; thus the Legendre ellipticity

1
0
condition fails. In fact, one can check that the Legendre condition holds for this system if
and only if € > 1/2.

Remark. Let u = (v,w) and (z1,z2) = (x,y). Then the system of differential equations
defined by A%ﬂ given above is

€AV + wgy = 0,
€AW — vgy = 0.
This system reduces to two fourth-order equations for v, w (where Af = foo + fyy):
A%y — Vzayy = 0, EN%w + Weazyy = 0.

We can easily see that both equations are elliptic if and only if € > 1/2. g



1.5. Convexity and rank-one convexity )

1.5. Convexity and rank-one convexity

We now consider the ellipticity of the Fuler-Lagrange equation (1.2), where A(z, s,&), b(x, s,£)
are given by (1.3) and F(z,s,¢) is C? in &. In this case, the Legendre ellipticity condition
and Legendre-Hadamard condition reduce to, respectively:

(1.9) Fo ¢ (@5, momy > vinf* vy e MM

(1.10) F

b6 (@58 @ paps > vIpl’le]* Yg e RY, peR™.

Proposition 1.1. Under the conditions (1.9) and (1.10), the following conditions hold,
respectively:

i i v
(1.11) F(z,s,n) > F(z,s,§) + Fﬁé(x737§) (Mo —&a) + 9 In — 5‘2
and
v
(1.12) F(r,s.6+q@p) 2 Flw,5,8) + Fg (2,5, pad + 5 pl*lql?

forallz €, s, g e RN, &, neMN*" and p € R™.

Proof. Let ( =n— ¢ and f(t) = F(x,s,£ + t(). Then, by Taylor’s formula,

F(1) = £(0) + £(0) + / (1) (1) dt.

Note that
F(0) = Fe (0,5,6 + 1) Gy (1) = Fyy (5,6 +10) G35

From this and the Taylor formula, inequalities (1.11) and (1.12) follow easily from (1.9) and
(1.10), respectively. O

Definition 1.3. A function F(z,s,§) is said to be convex in ¢ if
F(IIZ,S,tf + (1 - t)ﬁ) < tF(fL’,S,g) + (1 - t)F(x75777)

for all z, s, £, n and 0 < ¢t < 1. While F(z,s,¢) is said to be rank-one convex in ¢ if the
function f(t) = F(z,s,6 +tq®p) is convex in t € R! for all z, s, ¢ and ¢ € RV, p € R™.

We easily have the following result.

Proposition 1.2. Let F(z,s,£) be C? in &. Then the convexity of F(x,s,&) in & is equiv-
alent to (1.9) with v = 0, while the rank-one convexity of F(x,s,£) in & is equivalent to
(1.10) with v = 0.

Remarks. 1) Conditions (1.9) and (1.10) are also called the strong convexity and the
strong rank-one convexity conditions of F(x, s, &) on &, respectively.

2) Rank-one convexity does not imply convexity. For example, take n = N > 2, and
F(¢) = det&. Then F(€) is rank-one convex but not convex in  (why?) Later on, we will
study other convexity conditions related to the energy functionals given by (1.1). O



6 1. Multiple Integrals and Systems in Divergence Form

1.6. Uniqueness of weak solutions

In this section, we prove a uniqueness of weak solutions of Euler-Lagrange equations under
the hypotheses of strong convexity and certain growth conditions. For this purpose, we
consider a simple case where F'(x, s,&) = F(x,§) satisfies, for some 1 < p < o0,

(1.13) |Fei (2,8)] < pu(x(z) + [€P7Y) Vaeq, £ e MV,

where p > 0 is a constant and x € L%(Q) is some function. Let

I(u):/ﬂF(:L',Du(x))dm.

Theorem 1.3. Let F(x,&) be C? in & and satisfy the Legendre condition (1.9). Let u €
WP (Q: RN) be a weak solution of the Euler-Lagrange equation of I and I(u) < co. Then
u must be the unique minimizer of I among the class of functions in WIP(Q; RN) having
the same boundary conditions as u.

Proof. Since u is a weak solution of the Fuler-Lagrange equation of I, it follows that
(1.14) / Fei (z, Du(z)) Do’ dz = 0
Q

for all p € C§°(S;RY). The growth condition (1.13) implies Fei (z,Du) € Lp%l(Q) and
hence, by a density argument, equation (1.14) holds also for all ¢ € WO1 P RY). Now let
veWhP(Q;RYN) with v —u € Wol’p(Q; RY). By the strong convexity condition and (1.11),
we have

(1.15) F(z,n) > F(2,8) + Fgi (x,€) (ny, — &) +

This implies

/F(az,Dv)dx > /F(x,Du)dx—l—/Fgé(aj,Du)Da(vi—ui)dx
Q Q Q

v

2 |77_§|27 Vfa .

+ 2 / |Du — Dv|? dz.
2 Ja
Since u is a weak solution, we have
/ Fei (z, Du) Dy (v' —u')dz = 0.
Q
Therefore, it follows that

(1.16) I(v) >I(u)+g /Q|Du—Dv]2da:

for all v € WHP(Q; RY) with v —u € Wol’p(Q; RY). This shows that u is a minimizer of I
among the class of all functions v € WHP(Q; RY) with v —u € Wol’p(Q; RM). If v is another
such minimizer of I we would then obtain Du = Dv by (1.16) and thus v = u. The theorem
is proved. O



Chapter 2

Existence Theory for
Linear Systems

2.1. Dirichlet problem for linear systems

In this chapter, we study the solvability of Dirichelt problems of the linear elliptic systems
in some Hilbert space. We study the Dirichlet problem

(21) —Div A(z, u, Du) 4+ b(z,u, Du) = G,
' ulan = 0,

where A(z,s,€) and b(x, s,&) are both linear in s, £ with L>-coefficients; that is,
Al (z,u, Du) = A%’g(x) Dgu + b () v,
bi(x,u, Du) = cii () Dow? + dij(x) ul.

Here G is a bounded linear functional on the Hilbert space Hg (Q; RY) = Wol’2(Q; RY) with
the inner product

n N
(u,v) = ZZ/ Dou' D' de.
Q

a=1i=1
The norm induced by this inner product is denoted by || - ||, which is equivalent to the
Sobolev norm || - ||1,2 defined earlier.

Definition 2.1. By a weak solution of system (2.1) we mean a function v € H}(; RY)
such that Blu,v] = (G,v) for all v € H}(Q;RY), where Blu,v] is the bilinear form on
H}(Q; RY) defined by

(2.2) Blu,v] = / (A%ﬁ DgujDavi + b} W Dov' + ci; Daulvt + d;j ujvi) dx.

Q

Remark. By a Poincaré-type inequality, |[ullz < C |jul|g for u € HE(Q; RY); therefore, we
have

| Blu, ol| < ¢|lullm [[v]la,

O

where ¢ depends on the L*°-norms of A%ﬂ , b, ¢y and dij.

EN{



8 2. Existence Theory for Linear Systems

2.2. Hilbert space methods for existence

In what follows, let H be a Hilbert space with inner product (-,-) and norm || - ||. We first
recall

Theorem 2.1 (Riesz representation theorem). For any bounded linear functional G on H
there exists a unique go € H such that

(G,v) = (go,v), YveH.
Furthermore, ||go|| = ||G||, the operator norm of G.
Definition 2.2. A function p: H x H — R is said to be

e bilinear if p[-,v], p[u, -] are both linear on H for any given u, v € H;

bounded if |p[u,v]| < ¢||ul| ||v|| for all u, v € H;

coercive if plu,u] > ul|u|? for all u € H and some p > 0;
e symmetric if plu, v] = p[v,u] for all u, v € H.
Lemma 2.2. Let p: H x H — R be a bounded, coercive, symmetric bilinear form on H.

Then, for any bounded linear functional G on H, there exists a unique g1 € H such that
(G,v) = plg1,v] for allv e H.

Proof. This follows from the Riesz representation theorem for one can use (u,v)g = plu, v]
as a new inner product on H. ]

Theorem 2.3 (Lax-Milgram theorem). Let a: H x H — R be a bounded, coercive bilinear
form on H. Then, for any bounded linear functional G on H, there exists a unique go € H
such that (G,v) = plg1,v] for allv € H.

Proof. For each fixed u € H, (F,v) = a[u,v] defines a bounded linear functional F' on
H:; thus by Riesz’s representation theorem, there exists a unique fo = Tu € H such that
alu,v] = (T'u,v) for all v € H; this defines a bounded linear operator 7' : H — H. Let T*
be its adjoint operator; that is, (T'u,v) = (u, T*v). Define a form p on H x H by

plu,v] = (TT*u,v) = (T"u, T*v).
Then p : H x H — R is a bounded, coercive, symmetric bilinear form on H (check it).

Therefore, if G is a bounded linear functional on H, by Lemma 2.2, there exists a unique
g1 € H such that

(G,v) = plg1,v] = (TT*g1,v) = a[T* g1, v];
this proves the theorem with go = T%g;. Moreover, if |a[u,v]| < c|lu||||v||, then ||ga] <

cllGll O
2.3. Legendre-Hadamard condition and coercivity

In this section, we consider the following simple bilinear form
alu,v] = / A%ﬁ(x)DgujDavi dx,
Q

where A%ﬁ € L>(£2). We will use H to denote HZ(Q;RY) with inner product (-,-) and
norm || - ||z given above.
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Theorem 2.4. Assume that either Af‘j’g are in L*°(Q) satisfying the Legendre condition

or A%ﬁ are constants satisfying the Legendre-Hadamard condition. Then afu,u] > v |jul%
for allu € H.

Proof. In the first case, the conclusion follows easily from the Legendre condition. We
prove the second case when AZC-;-B are constants satisfying the Legendre-Hadamard condition

A ¢ ¢ paps > vIplla*, VYpeR", g€ RV
We prove
/A%ﬁDﬂuj Dou' dz > V/ | Dul? dz
Q Q

for all u € C$°(Q2; RY). For these test functions u we extend them onto R™ by zero outside
Q and thus consider them as functions in C§°(R™; R”). Define the Fourier transforms for
such functions u by

n

a(p) = (277)”/2/ e PTy(x)dr; peR™

Then, for any u, v € C°(R™; RY),

the last identity can also be written as l/)ZL(p) =iu(p) ® p. Now, using these identities, we
have

——

/ AP Dgu! (z) Do () da = / A2 Dgud (p) Dot (p) dp

n

—~

= [ A b (p) () dp = Re ( | A i) o) dp).

Write @(p) = q + iy with ¢, y € RV. Then

—~

Re (uj (p) ui(p)> =¢¢ +yy.

Therefore, by the Legendre-Hadamard condition,

Re (Af}ﬂpapﬁ w (p) ui(p)> > vpl® (la” + yI*) = vIp* la(p)[*.
Hence,

alu, u] :/ A%ﬁ Dgw? (2) D' (z) dx

= Re (/R A%ﬁpgpa ul (p) ut(p) dp>
2 1A N2 . 2
v [ WPl =y [ i) opPdp
R® R»

:1// |m(p)|2dp:1// |Du(x)|2d:1:.
n Rn

This implies afu,u] > v ||u||% for all u € H; the proof is complete. O
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Theorem 2.5. Under the hypotheses of the previous theorem the following Dirichlet problem

{— Div(A(z, Du)) = G,
ulpo = ¢

has a unique weak solution u in H = HJ () RY) for any bounded linear functional G on H
and any function o € WH2(Q; RN), where A% (z,¢) = A?jﬁ(x) fé as given above.

Proof. We know that every bounded linear functional G on H = H}(€; RY) is of the form
G =g+>"_| Dofa as a distribution, where g, f, € L?(Q;R"). In order to solve for u we
let uw = v 4 ¢; then we need to solve for v € H which satisfies

(2.3) {_ Div(A(z, Dv)) = G + Div(A(z, Dp)),

v]g = 0.

Note that G = G + Div(A(z, D)) is a bounded linear functional on H. Since under the
hypotheses of the theorem the bilinear form afu,v] is bounded and coercive, the existence
of a unique solution v of the problem (2.3) follows by virtue of the Lax-Milgram theorem.
We have thus proved the theorem. O

Theorem 2.6. If A7’ € L>(Q) and the coercivity condition
(2.4) / Agﬁ(w) Dpu! Dou'dx > v / |Du|? dx
Q Q

holds for all u € HOI(Q; RY) then the Legendre-Hadamard condition holds for almost every
xeQ:

A (2) ¢ ¢ paps > vIpllal>, VpeR", ¢eRY.

Proof. Let p(t) be the 2-periodic “sawtooth” function equaling ¢ on interval [0, 1] and 2 —¢
on interval [1,2]. Thus p/(t) = %1 for a.e. t € R. For any ¢ € C§°(2), p € R and ¢ € RY,
define

uele) = eC@) plp- 2/)a, € > 0.
It is easy to see u. € Hi(;RY) and

Doul(x) = € Dual(x) plp - x/€) ¢ + ((2) p'(p- x/€) pa -
Inserting them into the coercivity condition and letting ¢ — 0 we have
| 45 @0 & apsClayar = v [ i G
This is true for all ¢ € C5°(€2); thus we have for a.e. x € €,
AP ()¢ ¢ paps > vIpl*la)®, YpER", geRY.
The proof is complete. O

Remark. The reverse of the theorem is not true; that is, the Legendre-Hadamard condition
does not imply the coercivity condition (2.4), even for A?jﬁ € C*(Q). (Le Dret ’87) O
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2.4. Garding’s inequality and existence results

In this section, we consider the general bilinear form Blu,v] defined earlier by (2.2). We
prove the following result known as Garding’s inequality.

Theorem 2.7. Let Blu,v] be defined by (2.2). Assume
1) AY € 0(Q),
2) the Legendre-Hadamard condition holds for all x € Q; that is,
A ()¢ ¢ paps > vIpl*lal>, VpeR", g RY.
3) sz, ij dij S LOO(Q)
Then, there exist constants A\g > 0 and A1 such that
B[“?“] > Ao HUH%-I — Al ||U’H%27 Vue H&(Q7RN)
Proof. By uniform continuity, we can choose a small € > 0 such that
1% _
A7)~ AW < 5, Ve yeq, -yl <
We claim

(2.5) / A2 (2) Dow' D! da > g / | Du(z)|? da
Q Q

for all uw € C§° (¢ RY) with the diameter of the support diam(suppu) < e. To see this, we
choose any point xg € supp u. Then

/ Agﬂ(a}) Dou' Dgu? do = / A%ﬁ(xo) Dou' Dgu? da
Q Q

(AP A w0) Dt D
supp u

2V/|Du(a:)]2da:—y/]Du(x)2d:1:,
Q 2 Ja

which proves (2.5). We now cover () with finitely many open balls {B€/4(£L'k)} with 2* € Q
and k = 1,2,..., K. For each k, let ¢, € C§°(B./2(a"¥)) with (p(z) = 1 for © € Bj4(a®).
Since for any x € 2 we have at least one k such that x € B€/4(atk) and thus (x(z) = 1, we
may therefore define

Cr(x)
(SK, )"

Then Zszl ¢2(x) =1 for all z € Q. (This is a special case of partition of unity.) We have
thus

k=1,2,.. K.

or(x) =

(2.6) A (x) Dgu' D! =

\Mx

(Aaﬁ ) 03 Dou Dguj>

and each term (no summation on k)

A7 (@) ¢} Dau' Dpw? = A7 (2) Dalpr ') Dy )

— AP (@) (¢ Daoru! Do’ + @1, Dot Dgu? + Doy, Do u?) .
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Since pru € C§°(2 N Bejo(z¥); RY) and diam(€2 N B, jo(2*)) < €, we have by (2.5)

| 4% Daliorat) Dyt d = 5 [ Dl de
Note also that

1Dk u)® = @ [Dul® + [Dy|* [uf® + 2 o Dagpp u' Do’
Therefore, we have by (2.6) and the fact that 215:1 $% =1 on Q,

/QA%B(:U) Dou' Dgu? da

12
> [ 1DuP do = Cy ulla [ Dulz = Ca a3

The terms in Blu, u] involving b}, ¢f; and d;; can be estimated by |[ul|2 [[Dul| 2 and [lull?,.

Finally, by all of these estimates and the inequality

1
ab < ea® + — b?
4e

we have Blu,u] > o ||lul|3 — A1 [|ul|?, for all w € Hj(Q; RY). This completes the proof. [

Note that the bilinear form Blu,v] = Blu,v]+ X (u,v) 2 is a bounded, coercive, bilinear
form on H = H} () RY) for all A > Aq; thus, by the Lax-Milgram theorem, we easily obtain
the following existence result.

Theorem 2.8. Under the hypotheses of the previous theorem, the Dirichlet problem

{— Div(A(z,u, Du)) + b(z,u, Du) + Au = G,

(2.7)
ulgn =0

has a unique weak solution u in H&(Q;RN) for any bounded linear functional G on H,
where A(x,u, Du), b(x,u, Du) are the linear operators as given in the previous theorem and
A1 is the constant in the theorem. Moreover, the solution u satisfies ||ul|lp < C ||G|| with a
constant C' depending on A and the L>-norms of the coefficients of A(z,s,§) and b(x, s,£).

Finally, we have the following existence theorem, which follows from the Fredholm al-
ternative theorem in Hilbert spaces.

Theorem 2.9. There exists an at most countable set ¢ C R such that Dirichlet problem
(2.7) has a unique weak solution u in H}(Q;RN) for any bounded linear functional G on
H if and only if X ¢ o. Moreover, if o is infinite then o is a nonincreasing sequence
{ok}, k=1,2,... with o, — —oc0 as k — oo. The values {—oy} are called the eigenvalues
of the linear operator Lu = — Div(A(z, u, Du))+b(x, u, Du) with the zero Dirichlet boundary
condition.

Proof. Let A > )1 be a fixed number. Then, by the theorem above, there exists an inverse
(L+)\)~': H* — H, where H = H}(;R"). Let P: H — H* be the map defined by

(Pu,v)—/u-vd:c, Yu,v € H.
Q

Then Dirichlet problem (2.7) is equivalent to the following equation in H
T+ \=A(L+NPlu=(L+MN)7'G,
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where G € H* is any bounded linear functional on H. This equation has a unique solution
u € H if and only if

(2.8) Range [I + (A = \)T] = H, Ker[l + (A —\T] = {0},
where T'= (L + X)_IP: H — H is a bounded linear operator on H. We have the following

Lemma 2.10. T: H — H is a compact operator.

Proof. It is sufficient to prove that {T'u;} has a convergent subsequence for any bounded
sequence {uy} in H. Note that

[Pull < [lul|L2.
By Sobolev’s embedding theorem we have a subsequence {ukj} such that ug;, — u in
L?(;RN) as j — oo. Therefore,

Tk, = T, | < (L A+ X) 7] - [k, = upyllz2 — 0 as j, b — o0

and hence {T'uy, } converges in H; thus 7" is compact. O

From this lemma, by Fredholm’s alternative theorem, the conclusion (2.8) is true for all
A except for an at most countable set o whose only possible limit point is —oco. The theorem
is proved. ]






Chapter 8

Direct Methods in the
Calculus of Variations

A variational problem involves finding minimizers or general critical points of a given func-
tional. For systems in variational form, we can find a solution as a minimizer of a related
multiple integral functional. Usually, the existence of such a minimizer is proved by an ab-
stract idea of an existence theorem of Weierstrass. This method has been known as a direct
method in the calculus of variations, which dates back to the well-known Dirichlet principle,
where a harmonic function with given boundary data is found by minimizing the energy
functional in the class of functions with the same given boundary data. In this chapter, we
deal with some important issues related to the direct methods in the calculus of variations.

3.1. Abstract theorems on existence of minimizers

Let us first recall a few topological facts. Let X be a topological space, ® : X — RU{+o00}
and A a subset of X.

Definition 3.1. We say ® is sequentially lower semicontinuous (write s.l.s.c.) on X
if for any # € X and every sequence {z;} converging to =

¢(z) < liminf ®(z;).
j—00

We say A is sequentially compact if from every sequence of points in A one can select a
subsequence converging to a point still in A.

The following theorem plays a fundamental role in the direct methods we shall discuss
later on.

Theorem 3.1 (Weierstrass). Let ® : X — R U {400} be sl.s.c. on X and let A be a
sequentially compact subset of X. Then the infimum of ® over A is attained at some point

in A.
Proof. In order to see how (the idea of) this simple existence theorem can be used later
for many variational problems, we present a short proof of this result. To do so, assume

= inf ®(x).
n= e
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Then there exists a minimizing sequence {xy} in A such that
lim ®(z) = m.
k—o0

Now by the sequential compactness of A we can select a subsequence {a:kj} converging to
a point xg in A. Then, the sequential lower semicontinuity of ® will imply

®(zg) < liminf ®(zy;) = m.
j—00

Since zg € A, by the definition of m, it follows that

P =m = inf ®(z).
(o) =m = o *
Hence ® has a minimizer zp over A. From the proof, we also see that m = ®(zg) > —oo;
thus ® must be bounded below over the set A. O

In many variational problems, where we are trying to find a minimizer of a function ®
on a set A. Generally, A is not equipped a priori with a topology. So our minimization
problem can be seen as a problem of introducing a topology for which both A is a sequentially
compact set and @ is a s.l.s.c. function. Note that in order to grant that ® be s.l.s.c. we
need a rich topology, while for the sequential compactness the topology need not be too
rich.

We shall see that this compromise can be reached satisfactorily for a large class of
multiple integral functionals working in the Sobolev spaces WP (Q; RY).

We consider a very useful case where A is a subset of a given Banach space X. Then,
besides the norm-topology of X we have the weak topology on X. Under this weak topology,
a sequence {x} is to converge to a point z as k — oo provided that

lim (L, zy) = (L, %)
k—oo

for all bounded linear functionals L: X — R on X; the set of all these bounded linear
functionals is called the dual space of X and denoted by X*. If X is a reflexive Banach
space, i.e., (X*)* = X, then every bounded closed subset of X is sequentially compact in the
weak topology of X (also called sequentially weakly compact); this is Banach-Aloglu
theorem.

Theorem 3.2. Let X be a reflexive Banach space and A be a subset of X which is closed
in the weak topology of X. Suppose & : A — R U {400} is

e s.l.s.c. in the weak topology of X (we also write ® is w.s.l.s.c.),

e bounded below, and

e norm-coercive in the sense that ®(x;) — oo as ||| — oo.

Then ® attains its minimum at some point in A.

Proof. Take a minimizing sequence {z;} in A such that
lim ®(z;) =m = inf &(x).
j—o0 z€EA

Since ® is bounded below, it follows that —oco < m < oo. If m = oo then there is nothing
to prove since ® = +oo0. Now assume m < oco. Then the norm-coercivity of ® implies
that sequence {||z;||} is bounded. Therefore, by the self-reflexivity of X, there exists a
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subsequence {z;, } which weakly converges to some point Z € X. Since A is weakly closed,
we have T € A. Finally the lower semicontinuity of ® implies

d(z) < th:n inf ®(z;,) =m

and the membership Z € A yields that m = ®(z) and thus Z € A is a minimizer sought
for. O

Remarks. 1) In application, we usually have X = WP(Q;R"™) and A a Dirichlet class;
that is,
A=DE(Q) = {ue WP(QRY) | ulpq = ¢},

where ¢ € WP(Q; R") is given. Then X is reflezive for all 1 < p < oo. But if p = 1, oo,
X is not reflexive. In the case p = oo, the topology for A in the theorem need be replaced
by the weak star topology of W1H>°(; RN).

2) In the calculus of variations, the lower semicontinuity of an energy functional is
mostly essential for many problems, while the boundedness and coercivity are sometimes
relatively easy to obtain. O

3.2. Lower semicontinuity in Sobolev spaces

As discussed before, in many variational problems lower semicontinuity is an essential con-
dition for exitence of minimizers. In next two sections, we study the (sequential) lower
semicontinuity of a multiple integral functional I(u) in the Sobolev space W1P(Q; RN).
Assume

I(u) = / F(z,u, Du)dzx.
Q
We first prove a semicontinuity result, due mainly to Tonelli.

Theorem 3.3. Let F(z,s,£) > 0 be smooth and convex in . Assume F, F¢ are both
continuous in (z, s,§). Then the functional I(u) defined above is sequentially weakly (weakly
star if p = oo) lower semicontinuous on WhP(Q; RN) for all 1 < p < cc.

Proof. We need only to prove I(u) is s.w.s.l.c. on WH(Q; RY). To this end, assume {uy}
is a sequence weakly convergent to u in W11(Q; RY). We need to show

I(u) < likm inf I (ug).

By the Sobolev embedding theorem it follows that (via a subsequence) ug, — u in L'(Q; RN).
We can also assume ug(x) — u(x) for almost every z € . Now, for any given § > 0 we
choose a compact set K C € such that

(i) ugp — w uniformly on K and |2\ K| < ¢ (by Egorov’s theorem);
(ii) w, Du are continuous on K (by Lusin’s theorem).
Since F'(z,s,§) is smooth and convex in &, it follows that
F(x,s,1) 2 F(x,5,8) + Fgi (x,5,6) (0, = &,) V&, ne MV
Therefore, since £ > 0,

I(Uk)Z/ F(z,ug, Duy) dx
K

> / [F (2, ug, Du) + Fgi («, ug, Du) (Dauj, — Dau')]
K
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= / F(x,uk, Du) +/ Fei (z,u, Du) (Dot — Dou')
K K

+/ [Fei (z,up, Du) — Fes (z,ul, Du)] (Douy, — Dau').

K

Since F(z,s,&) is uniformly continuous on bounded sets and uy(z) — u(x) uniformly on K
we have

lim F(x,uk,Du)dwz/ F(x,u, Du)dz,
k—oo J K K

lim ||F§3(x¢ukaDu) - Ffa(xvu;caDu)HLoo(K) = 0.

k—o0

Now since Fi (z,u, Du) is bounded on K and D}, converges to Dou’ weakly in L'(€) as
k — oo, we thus have

k—o0

lim /K Fei (z,u, Du) (Dout, — Dou') dz = 0.
From these estimates, we use Lemma 3.4 below to deduce that

liminf](uk)Z/ F(z,u, Du).
K

k—o0

If F(z,u, Du) € L*(Q), i.e., I(u) < 0o, then for any given € > 0, we use Lebesgue’s absolute
continuity theorem to determine é > 0 so that

/F(w,u,Du)E/F(w,u,Du)—e, VE CQ, |2\ E|<o.
E Q

On the other hand, if I(u) = oo then for any given large number M > 0 we choose § > 0
so that

/ F(z,u,Du)dx > M, VECQ, |Q\E| </
E
In any of these two cases, by letting either ¢ — 0 or M — oo, we obtain
liminf I'(ug) > I(u).
k—o0
The theorem is proved. O

Lemma 3.4. liminf (a; + bg) > liminf ay + lim inf b.
k—o0 k—o00

k—o0
Using the theorem, we obtain the following existence result for convex functionals.

Theorem 3.5. In addition to the hypotheses of the previous theorem, assume there exists
1 < p < oo such that

F(z,s,8) >cl¢lP —C, ¢>0,C are some constants.

If for some @ € WEP(Q; RN) one has I(p) < oo then the minimization problem inf,c4 I(u)
has a minimizer in A, where A = DL (Q) is the Dirichlet class of ¢ defined before.

Remark. Both theorems in this section hold for more general functions F'(x, s, §). For ex-
ample, we can replace the continuity condition by the Carathéodory condition; a function
F(z,s,€) is called a Carathéodory function if and only if F' is measurable in x for all (s, &)
and continuous in (s,§) for almost every z. O
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3.3. Quasiconvexity and lower semicontinuity

Note that W1>°(Q; RY) can be identified with the space of all Lipschitz maps from € to
R”. A sequence {uy} converges to u in the weak star topology of W (€; RV) if and only
if {uy} converges to u in the sense of Lipschitz convergence; that is,

1) ug — w uniformly in C(Q; RN);

2) the Lipschitz norms of uj and u are bounded.
Then we have the following necessary condition, mainly due to Morrey, for the lower semi-
continuity under the Lipschitz convergence of the multiple integral

I(u):/QF(a:,u(a?),Du(a:))daﬁ.

Theorem 3.6. Assume F(x,s,£) is continuous on Q x RN x MN*", If the functional I (u)
defined by F as above is s.1.s.c. with respect to the Lipschitz convergence on W (; RN),
then the following condition holds for all xg € Q, so € RN, & € MN*" and all ¢ €
C (RN

(31) F(.ﬁUO,So,fO) < ][QF($0,$0,§0—|—D¢($))(1$-
In this case, function F(x,s,§) is called quasiconvex in &.

Proof. Let @ be a fixed open cube containing ) with center Z and side-length 2L. We
prove this theorem by several lemmas.

Lemma 3.7. Suppose
(32) F($07807€0) S ][QF(:UOMS(be +D¢($)) dx
holds for all ¢ € C°(Q; RN ). Then (3.1) holds.

Proof. For any ¢ € C°(Q;RY) we extend ¢ by zero onto Q; then ¢ € C5(Q;RYN).
Inserting it into (3.2) yields (3.1). O

In the following, let zg € €, so € RY, & € MY *" be given. Define @i(x) = so+ & - (v —
7). Let also ¢ € C5°(Q; RY) be given.

Assume Q' CC  is an arbitrarily given cube containing xy with side-length 2I. For
any positive integer v we divide each side of )" into 2” intervals of equal length, each being
equal to 277*1. This divides @’ into 2™ small cubes {Q]”} with j = 1,2,...,2™. Denote
the center of each cube Q7 by z7 and define a function u,: @ — RY as follows.

~ . 2nV v.
() = {u(x) if v € Q\U7L,Q%;

a(e) + 2t g+ HE (e —ay)  ifreqy, 1<j<2v

Lemma 3.8. w, is a Lipschitz function on Q and {u,} converges to @ as v — oo in the
sense of Lipschitz convergence defined above.

Proof. Note that, by the definition of @

. 2711/ v.

o+ Doz + T (e —ay))  ifreQy 1<j<2m

Therefore {Du, } is uniformly bounded. The lemma follows directly from the definition of
Lipschitz convergence. U
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To continue the proof, we notice that

I(@) = /Q Flo, i), &) da
and that
I(u,,):/QF(:):,ul,(x),Dul,)dx

:/ F(x,a,&) dx—l—/ F(z,u,, Du,) dz.
Q\QI /

Therefore, by the lower semicontinuity of I, we thus have

(3.3) / F(z,a,&)dr <lim inf/ F(x,uy,, Du,)dz.

V—00
From the uniform continuity of F(z,s,&) on bounded sets and the fact that u, — @ uni-
formly on 2 we have

(3.4) liminf [ F(z,u,, Du,)dx = lim inf/ F(z,u, Du,)dx.

V—00 Q/ V—00

We now compute

nv
2 v

// F(x,a, Du,) dx—Z/ za,£0+D¢(a?+¥(a:—:ﬁ;)))dx

Z/_ F (a5, a(a%), & + Doz + 2VlL(x—:Ej’f)))dx

22_: (2%)”/ F(ab,a(xY), & + Do(y)) d
(3.5) Z:: vy 1Ql,

where x]” € Q]V are some points by the mean value theorem of integration, and

- ][QF(ar, u(z),& + Do(y)) dy

This function is continuous on @’ and the sum in (3.5) is simply the Riemann sum of the
integral of F' over . Therefore, we arrive at

lim F(z,a,Duy,)dx = / F(x)dz,
V—00 Q/ /

which by (3.4) implies

/ F(z,u(x),&)dr < F(z)dx.

/ Q/

This inequality holds for any cube Q' CC Q containing xg; therefore,
F(x0, (o), &) < F(x0).

This is nothing but

F(xq,50,&) < ][QF(wo, s0,&0 + Do(y)) dy
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Finally, the proof of Theorem 3.6 is complete. O

Later we shall show that the quasiconvexity is also sufficient for the lower semicontinuity
of the multiple integrals of our study. But, before proving the sufficiency theorems, we would
like to point out some important properties of this quasiconvexity condition related to the
lower semicontinuity; properties related to other convexity conditions will be discussed in
next section.

Since quasiconvexity is only a condition for the dependence of F(z,s,£) on &, in the
following we assume F' = F'(£) depends only on £. Therefore, F' is quasiconvez if and only
if

F§) < { Ple+ Do) da

holds for all ¢ € C§°(£2; RY). The following result, due to Meyers, will be useful to relax
the zero boundary condition on ¢.

Theorem 3.9. Let F: MVN*" — R be continuous and quasiconvex. For every bounded
set Q C R™ and every sequence {z,} in WH>(Q;RY) converging to zero in the sense of
Lipschitz convergence, we have

F) < h,?l inf + F({+ Dzp(x))dx

for every & € MN*",

Proof. Let Q, = {z € Q| dist(z,0Q) > 1/v}. Then @, CC Q and |Q\Q,| — 0 as v — oo.
Choose a cut-off function ¢, € C§°(Q) such that
0<G <1 Glg, =1 My =[DGlr= < co.
Since z; — 0 uniformly on @ we can choose a subsequence {k,} such that
|2k, lee < (M, +1)71 Vv =1,2, ...

and we may also assume

lim [ F({+ Dz, (x))dr = lim inf/ F(& + Dz(x)) dx.
Q

v—00 Jo k—oo

Define ¢, = (,, zi,. Then ¢, € WOI’OO(Q; R") and we can use them as test functions in the
definition of quasiconvexity to obtain

QIF(e) < / F(¢ + Do, () do
Q
- / F(E+ Do) + / F(€+ ¢, Dy, + 20, ® DC,)
v Q\Ql’
= / F(&+ Dz, (x)) dx + €,
Q
where

€, = / [F(§+ ¢ Dzg, + 2z, ® D) — F(€ 4 Dz, (2))] dx.
Q\Qv

Since F(&) is bounded on bounded sets and |Q \ Q.| — 0 as v — oo, we easily have €, — 0
as v — o0. Therefore,

QI F(§) < liminf/ F(£ 4 Dz(x)) da.
k—oo Q
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This completes the proof. ]

We now prove the sufficiency of quasiconvexity for the lower semicontinuity of the func-
tional

I(u) = / F(z,u(x), Du(z)) dz
Q
under the Lipschitz convergence on €.

Theorem 3.10. Assume F(z,s,£) is continuous on Q x RN x MN*" and is quasiconvex

in €. Then the functional I defined above is s.l.s.c. with respect to Lipschitz convergence
on €.

Proof. Let {z;} be any sequence converging to 0 in the sense of Lipschitz convergence on
Q, and let u € W°(Q; RN) be any given function. We need to show

k—o0

(3.6) / F(z,u, Du) < lim inf/ F(z,u+ zg, Du+ Dz).
Q Q
For any given € > 0, we choose finitely many disjoint cubes @); contained in €2 such that

I(u)g/ F(z,u,Du)dz + €
UQ]'
and

I(u—f—zk)Z/ F(z,u+ zg, Du+ Dz) dx — €,
UQj
for all k =1,2,--- . In what follows, we prove for each cube Q = Q;
Ig(u) = / F(z,u, Du)dr < liminf Ig(u + 2).
Q k—o0
This, by Lemma 3.4, will certainly imply the conclusion of the theorem. To this end, for

each positive integer v, we divide @) into small cubes {Q;’ } with center T as in the proof
of Theorem 3.6:

2’Vll/
Q=JQ/uE, |E=0.
j=1
Define
(u)y :][ u(z)dz, (Du)j = Du(z) dz,
Q5 Q5
and
277.1/ 2’)’Ll/
U @) = S ) - xqr(@), MY = S (Du)t - xgr (@),
j=1 j=1
Note that

10 oo + [[M7 [ oo < Jlullyr.o
and that the sequences {U"} and {M"} converge almost everywhere to v and Du on @) as

v — 00, respectively. We now estimate Ig(u + z).

IQ(u—{—zk):/F(x,u+zk,Du+Dzk):ak+bz+cz+d”—|—IQ(u),
Q
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where

ap = / (x,u+ 2z, Du+ Dz) — F(x,u, Du+ Dz)] dz,

by = Z F(z,u, Du+ Dz) — F(z7, (u)y, (Du)j + Dz)] dz,
j=1 QF
n

& = Z Y, (Du)? + Dzy) — F(Z4, (w)?, (Du)¥)] du,
j=1 j
gnv

- Z 4 (Du)y) — F(x,u, Du)] dx.

By the uniform continuity of F'(z,s,£) on bounded sets and the pointwise convergence of
{U"} and {M"} we have
lim ay =0, lim d“=0

k—oo vV—00

and lim, . by = 0 uniformly with respect to k. We apply Theorem 3.9 to each QJV- to
obtain, by Lemma 3.4,

liminfel >0
k—o0
for all v =1,2,--- . Therefore, again by Lemma 3.4,
liminf Ig(u + 2;) > Ig(u),
k—o00

as desired. The proof is complete. O

Remarks. 1) Both Theorems 3.6 and 3.10 are valid also for Carathéodory functions F'(z, s, §).

2) Quasiconvexity is also the “right” condition for (sequential) lower semicontinuity of
integral functionals in the weak topology of W1?(€; R™V). The most general theorem in this
direction is the following theorem due to Acerbi and Fusco. O

Theorem 3.11. Let F(x,s,) be a Carathéodory function. Assume for some 1 < p < oo
0< F(z,s,8) <alz)+C(|sl” +[¢°),

where C > 0isa const(mt and a(x) > 0 is a locally integrable function in . Then func-
tional I(u) = [, F(x,u, Du)dx is w.s.l.s.c. on WHP(Q;RYN) if and only if F(z,s,£) is
quaszconve:r in €.

Theorem 3.12 (Existence of minimizers). Let F'(z,s,&) be Carathéodory and quasiconvex
i & and satisfy

max{0, c[¢[’ = C} < F(x,5,8§) < a(x) + O (|s[” +[¢7)

for some 1 < p < oo, where ¢ > 0, C are constants and a(x) > 0 is a locally integrable
function in Q. Then the minimization problem

min / F(z,u(z), Du(x)) dx
Q

ueDL ()

has a minimizer for any given p € WHP(Q; RY), where DL(Y) is the Dirichlet class of ¢
defined before.
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3.4. Properties of quasiconvex functions

Again since quasiconvexity is only a property of a function F'(z, s, ) on &, for simplicity, we
consider functions F' depending only on £. Such a function F' is quasiconver if and only if

(3.7) F(§) < ][QF(§ + Do(x))dz, VEe MYV

holds for all ¢ € C§°(€2; RY). We prove this property is independent of the domain (2.

Theorem 3.13. Let F': MV*" — R be continuous and (3.7) hold for all ¢ € C*(Q; RYN).
Then for any bounded open set G C R™ with |0G| = 0 one has

(3.8) () < ][GF<5+Dw<y>>dy, vE € MV
holds for all ¢ € C°(G; RN).

Proof. Note that since F' is continuous (3.7) holds for all ¢ € Wol’oo(Q; RM). Let G ¢ R"
be any bounded open set with |0G| = 0, and ¥ € C§°(G;RY) be any given test function.
Assume § € G. For any x €  and € > 0 let

G(z,e) ={z€R"|z=a+¢e(y — y) for some y € G}.

Then there exists an €; > 0 such that x € G(z,e) C Q for all x € Q and 0 < € < ¢;. This
means the family

{G(z,e)|z€Q, 0<e<e}
covers ) in the sense of Vitali covering. Therefore, there exists a countable disjoint sub-
family {G(xj,€;)} and a set E of measure zero such that

(3.9) 0=|JG(,¢)UE.
Jj=1

We now define a function ¢: Q — R as follows.

R it e UR, 0060 0)| U B,
(g + =2) if v € G(zj,¢;) for some j.

One can verify that ¢ € Wy *°(Q; RY) and
D¢(x) = Dip(7 +
Therefore, from (3.7), it follows that

F(e)|0] < /Q F(¢ + Dé(x)) du

:i/ | F<§+D¢(g+x;x")> dz

€5

ZL‘—$]'

) Vz e G(zj,€)).

J

j=1 G(zj,€5)
— n F D d
Z/G (€ + Di(y) dy
_ T pie 4 Do)y,
G| Ja

where the last equality follows since, by (3.9), >°°2, €} = |Q|/|G|. We have thus proved
(3.8). O
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In the following, let ¥ be the unit cube in R"; that is
Y={zecR"|0<2, <1, a=1,2,--- ,n}.

Note that |X| = 1. Let f: R® — R" be any given function. We say f is ¥-periodic if
f(-+ xq,--) is l-periodic in z, for all « = 1,2,--- ,n. Quasicovexity can be also charac-
terized by the following condition.

Theorem 3.14. Let F': MY*" — R be continuous. Then F is quasiconvez if and only if
(3.10) F(€) < / F(€+ D¢(x))dz Ve e MV

%
for all S-periodic Lipschitz functions ¢ € W (R™ RN).

Proof. Since any function ¢ € C§°(%; RY) can be extended as a Y-periodic function on R”
we easily see that (3.10) implies (3.8) for G = ¥ thus the quasiconvexity of F'. We have only
to prove (3.10) holds for all continuous quasiconvex functions F. Let ¢ € WH°(R™; RN)
be a Y-periodic function. Define

bi(x) = ;Qﬁ(jw)

for all j = 1,2,--- . It is easily seen that ¢; — 0 in the sense of Lipschitz convergence on
WHoo(2; RY). Therefore the theorem of Meyers, Theorem 3.9, and the quasiconvexity of F'
implies
F(¢) < liminf/ F(&+ Dgj(x)) da.
j—oo Jx
Note that
[P+ Do) de = [ Pl +Dotio) do

>
—jn /] 6+ Do) dy

and that, besides a set of measure zero,

N

J
i==U@ +5)

v=1
where I, are the left-lower corner points of the subcubes obtained by dividing the sides of
j¥ into j-equal subintervals. Since D¢(x) is X-periodic, we thus have

B
/j e Dot =3 / Pl Do)y =57 /E F(¢ + Dé(x))dr,

and therefore

F(©) < [ P(6+ Do) ds
as needed; the proof is complete. ) O
Theorem 3.15. Every continuous quasiconver function is rank-one convez.
Proof. There are many proofs for this result. We present a proof based on the previous
theorem. Let F' be a continuous quasiconvex function. We need to show that for any

£ e MV g e RN, p € R" the function f(t) = F(£+tq®p) is a convex function of ¢ € R.
Since f(t) is continuous the convexity is equivalent to

J(Ehe) <1010y e

2 2
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which is equivalent to
2F() < F(l+qop)+F({—-q®p),

where
~ t+s . t—s
=8+ —5a®p, (=51
Therefore the theorem follows from the following result. O

Lemma 3.16. Let F' be a continuous quasiconvex function. Then
(3.11) 2F(6) < F(E+q@p)+ F(E—qop) VEe MV
holds for all g € RN and p € R™.

Proof. Since F is continuous it suffices to prove this inequality for all p € R™ with all
Po being rational numbers. Let p: R — R be the “sawtooth” function which is 1-periodic
such that p(t) =t for 0 < ¢ < % and p(t) =1 —t for 3 <t < 1. We choose a large integer
T such that all Tp, are integers. Define ¢(x) = %p(Tﬂ? -p)q. Then it is easily seen that
¢ € WH2(R™; RY) is X-periodic and

D¢(x) = p'(Tx - p)q @ p.

By Theorem 3.14 we have
F(©) < | F(e+Dola) da

=N {p(Tx-p) =1} F(€+q®p)
+HXn{p (Tz-p) = -1} F(§ —q@p).

Since it is easy to see that
H(zi,z2, yxp) =1 =21, 1 —x9, - ,1 — )
defines a diffeomorphism from XN {p/(Tz-p) = 1} onto TN {p'(Tx-p) = —1}, we have thus
SO (Tep) = 1} =[S0 {(Ta - p) = —1}] = 1/2.

The proof is thus complete. ]
Remark. Another proof is as follows. Let F' be quasiconvex. If F is of class C?, then
70 = [ Fie-+ Do) da
takes its minimum at ¢ = 0. Therefore f”(0) > 0; that is,
| P (€ Dadi @)D () > 0
for all ¢ € C5°(€2; RY). This implies the weak Legendre-Hadamard condition
Fey () 4'¢ papp = 0.

This shows that F' is rank-one conver; that is, F' satisfies (3.11). If F is only continuous,
then, for any € > 0, let F' = F * p. be the regularization of F'. Then F° is of class C*° and
can be shown to be quasiconvex, and hence F© satisfies (3.11) for all ¢ > 0; letting ¢ — 0
yields that F satisfies (3.11) and thus is rank-one convex. O
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Lemma 3.17 (Jensen’s inequality). Let (E, 1) be a measure space with total mass u(E) =1
and let h: E — R be an integrable function on E. If G: RY — R is a convex function,

" G< /E h(z) du> < /E G(h(z)) dp.

Proof. Since G: R* — R is convex, for each F' € R¥ there exists [ € R (note that
lp = DG(F) for almost every F') such that

G(A) > G(F)+1lp-(A-F) VYAeRE

Let F' = [ h(x)dp. Then G(h(z)) > G(F) +lp - (h(z) — F) for all x € E, and integrating
over x € F yields

/ Glh(z)) du > G(F) + I - / (h(x) - F)dp = G(F),
E E

which proves Jensen’s inequality. O

Lemma 3.18 (Divergence Theorem). Let Q be a domain with smooth boundary 0Q and
let v(z) = (v1,...,vn) be the unit outer normal and dS the surface integral element on OSQ.
Then for any vector field ¢ € C1(Q; RYN) one has

/ D¢(z)dx = o(z) @ v(x)dS.
Q o0
Proposition 3.19. If F () is convex in & then F' is quasiconvex.

Proof. This follows easily from Jensen’s inequality and the divergence theorem given above.
O

3.5. Polyconvex functions and null-Lagrangians

Unlike the convexity and rank-one convexity, quasiconvexity is a global property since the
inequality (3.7) is required to hold for all test functions. It is thus generally impossible to
verify whether a given function F'(§) is quasiconvex. We have already seen that every convex
function is quasiconvex. However, there is a class of functions which are quasiconvex but
not necessarily convex. This class, mainly due to Morrey, has been called the polyconvex
functions by Ball.

In order to introduce the polyconvex functions of Ball, we need some notation. Let
o = min{n, N}. For each integer k € [1,0], and any two ordered sequences of integers

1< <io< - <, <N, 1< <ag< - <ap<n,

let Jélfé'g'.'.i.’ak (&) be the determinant of the k x k matrix whose (g, p) position element is 5231,
for each 1 < p, ¢ < k. Note that, by the usual notation,

L i1 g2 .. gt iq
Joasth, (Du(x)) = Olu?, u?, ’Uk)) —det(au )

[eaResAaied
a(xoq ) xa27 Ty Q?ak 83:%

Let J(£) be the collection of all Ji2," (€) for all k € [1,0] and all ordered integral
sequences {i,}, {ap}. We embed J(£) to a large dimensional RY with the same rule for all

&, where -
L=L(n,N)=Y_ <JZ> (Z) '

k=1
In this way, we have defined a map J: MY*? — RL.
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Definition 3.2. A function F(¢) on M™V*" is called a polyconvex function if there exists
a conver function G: RY — R such that F(&) = G(J(&)) for all £ € MNX"; that is,
F=GoJ on MVx",

Remark. For a polyconvex function we may have different convex functions in its repre-
sentation. For example, let n = N = 2 and F(£¢) = |[¢]? — det&. In this case, consider
J (&) = (¢,det &) € R5. Then we have

F(&) =Gi(T(€), F(&) =Ga(T(€)),
where
Gi(&t) =€ —t, Ga&t) = (6 — &)+ (§ + &) +t

are both convex functions of (¢,1). O

We need following result to study the properties of polyconvex functions.

Theorem 3.20. Let J (&) be defined as above, and let ¥ be the unit cube in C R™. Then it
follows that

/Z T+ Do(x)) dz = T(€)

for all € C°(Z; RY) and & € MN*™,

Proof. Since each J(§) is given by a k x k-determinant, without loss of generality, we
only prove this identity for J (&) = Jx(£) = J127K(¢), where 1 < k < o = min{n, N}. For
simplicity, let u(z) = £x + ¢(x). Let

x/:(l'l,”',.’lfk), 'CC”:(‘T’C+17”'7$”) 1fk+1§n

Let ¥/, ¥ be the unit cubes in 2/, " variables, respectively. Fix z” € Y”, for t > 0,
consider maps Vi, U;: ¥’ — RF such that

Vi) = tai + (o), Uie!) = ta; + ui(al 2.

We can choose t > 0 sufficiently large so that V;, U; are both diffeomorphisms on ¥/, and

therefore
/ det(DUt(:E'))dx/:/ dy/:/ dy/:/ det(DVi(z")) dz’.
/ Ut(zl) Vt(zl) ’

Since both sides are polynomials of ¢ of degree k, it follows that this equality holds for all
t. When t = 0 this implies

(3.12) . Jp(€+ Do, 2")) da’ = . Ji(€) da'.

Integrating (3.12) over 2 € 3" we deduce

(3.13) /E Ji(€ + Do) do = Jy(€),

completing the proof. O

Theorem 3.21. A polyconvex function is quasiconver.
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Proof. Let F: MV*" — R be a polyconvex function. Then there exists a convex function
G: R — R such that F(¢) = G(J(€)) for all £&. Given € € MV*" and ¢ € C°(X; RY),
let h(z) = J (£ + D¢(x)). Then Jensen’s inequality implies

(f04) < L

By the theorem above, the lefthand side is G(J = F(§) and therefore
/G da:—/G (& + Do(x )))dw—/F(é—i—D(b(x))dm
by
proving that F' is quasiconvex. [l

Note that, using the method in the proof of Theorem 3.20, we also see that
/ T (Du(z)) dz = / T (Du(z) + Dé(x)) da
b)) b))
for all u € CY(Z; RY) and ¢ € C5°(3; RY). This property introduces the following defini-
tion.

Definition 3.3. A function F: MV*"” — R is called a null-Lagrangian on M~ *" if
/ F(Du(z) + Do(x)) de = / F(Du(2)) do
% P

holds for all u € C*(Z;RY) and ¢ € C°(X; RY).
Theorem 3.22. Let F: MV*" — R be continuous and let

") = /Q F(Du(z)) dz,

where € is any smooth bounded domain in R™. Then the following conditions are equivalent:
(1) F is a null-Lagrangian on M™*™;
=[x F(¢+ Do(z)) dz for all § € MN*" and ¢ € Cg°(Z; RY);

(3) F is of C! and the Euler-Lagrange equation for functional Ig is satisfied by all

functions in C1(Q; RN);

(4) the functional I is continuous with respect to the Lipschitz convergence on WH>°(Q; RV).
Proof. Note that (3) is the reason for the name of null-Lagrangians. We now prove the
theorem. It is easy to see (1) = (2). Note that (2) is equivalent to that both F and —F" are
quasiconvex; the latter is equivalent to that both I and —I are lower semicontinuous with
respect to the Lipschitz convergence on W1 (€; RN). Therefore, (4) <= (2). It remains to
show (2) = (3) = (1). Let us first prove (3) = (1). To this end, given v € C*(Z;R")
and ¢ € C°(Z;RY), let

£(t) = /E F(Du(z) + tDo()) da
Then (3) implies
= [ e (D +10)(@) Da () d = 0

and thus f(1) = f(0); therefore, F' is null-Lagrangian and hence (3) = (1). The proof of
(2) = (3) will follow from several lemmas proved below. O

Lemma 3.23. If F is of C*, then (2) = (3).
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Proof. Note that (2) implies
| Ple+ Dota)dz = F©I0] ¥ o€ CFaR).
Since F' is of C'*°, this implies that, for any ¢, ¢ € C§°(£; RY), the function
£(6) = [ F(tDota) + D) da
is constant and of C''. Therefore, f/(0) = 0, which gives
/Q Fei (DY(x)) Do’ () dz = 0.

Now given u € C1(Q; RY), we can select a sequence {t;} in C§°(€2; RY) such that ¢; — u
in C1(supp ¢; R"). Using the identity above with 1 = 1; and letting j — oo yield

/Q Fyi (Du(x)) Do (1) dir = 0.

This shows the Euler-Lagrange equation for I holds for any u € C1(€; R"), and thus (3)
follows. .

From this lemma, the proof of (2) = (3) will be complete if we show that (2) = F'is
of C*°. In fact, we can prove the following.

Proposition 3.24. If F' satisfies (2) then F(§) is a polynomial in .

This result will be proved later. We say F' is rank-one affine if F'({ + tq ® p) is affine
in t for all £ € MV*" g e RN, p e R™

Lemma 3.25. If F satisfies (2) then F' is rank-one affine.

Proof. Since (2) <= that both F' and —F are quasiconvex, by Theorem 3.15, (2) implies
the fact that both F and —F are rank-one convex, which is equivalent to that F'is rank-one

affine. D

We need some notation. Let pf, = e’ ® e,, where {e’} and {e,} are the standard bases
of RN and R", respectively. For each 1 < k < ¢ = min{n, N} and 1 <4y, -+ ,ip < N, 1<
ai, -, ap < n, we define, inductively,

FoL (&) = F(E+ pg,) — F(8),

3, (€) = Falldy (6 + ulh) — P "6, (6).
Note that if F' is a polynomial it follows
Fo %, (6) = 0" F(€) /06, - 08,

Indeed, we have the same permutation invariance property.

Lemma 3.26. Let {1',--- ,k'} be any permutation of {1,--- ,k}. Then

Fuk (6) = Fall &, (6).
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Proof. We use induction on k. Assume this is true for all k < s—1. Suppose {1/,2/,--- | s’}
is a permutation of {1,2,--- ,s}. We need to show
(3.14) Fivvis (¢) = F7T (g),

1 s 1 s

By definition o o

Fixi (€) = FATH2 (€ + ) — FATH2,(0).
By induction assumption, (3.14) holds if ' = s. We thus assume s’ < s. In this case, by
induction assumption,

Fitrhs (€) = FI iy (e i) — F0 ()
(where the /m means omitting m)

_ Fil'“is"" (f n Hf;s i ,uf)f;,) B Fil... /(f i Mifs)

S
QpGgres ay-Gy

_Ftilllgt;,(g + /Léf;l) + F;11 /(5)

i1y eis iy Q10
= Fall...ds,...as (§ + Hozsl) - Fall...d Jous (g))
which, by induction assumption, equals
SURETPEELY, iy i1/-~-i(571)/ iy
Fal/-~~a(571)/ (€ + ’uas/) - Fa1/-~~a(571)/ (g) - Fall""as’ (5)
This proves the induction procedure and hence the lemma. ([l

Lemma 3.27. If F' is rank-one affine, then all nyllﬁfk are also rank-one affine. Moreover,

(3.15) FIin (E 4 tpl) = FiL% (&) +t Fol 9 o(g).

ar-ax

Proof. Use induction again on k. ]

Proof of Proposition 3.24. If F satisfies (2) then F' is rank-one affine. Write

N n
=D & i
i=1 a=1
Then a successive use of the previous lemma shows that F'(£) is a polynomial of degree at
most n.N in & with coefficients determined by Fii% (0). O

Remark. In fact, one can prove that a rank-one affine function is also a null-Lagrangian.
The proof involves some very complicated computations; we do not intend to present it
here. Also, the following result actually characterizes all null-Lagrangians; the proof of this
theorem is beyond this lecture. O

Theorem 3.28. Let F: MV*" — R be continuous. Then F is a null-Lagrangian if and
only if there exists an affine function L: R* — R such that F = Lo J.

We prove a compensated compactness property of the null-Lagrangians. For nonlinear
operators with similar properties we refer to Coifman et al.

Theorem 3.29. Let Ji(Du) be any k x k subdeterminant. Let {u;} be any sequence weakly
convergent to u in WHE(Q;RY) as j — oco. Then Ji(Du;) — Ji(Du) in the sense of
distribution in €; that is,

lim [ Ji(Duj(x)) ¢(x) de = / Ji(Du(x)) ¢(z) dx

J—=oo Ja Q
for all ¢ € CF°(Q).



32 3. Direct Methods in the Calculus of Variations

Proof. We prove this by induction on k. Obviously, the theorem is true when k£ = 1.
Assume it holds for Jg with s < k — 1. We need to show it also holds for s = k. Without
loss of generality, we may assume

o(ur,u?, - ub)

8(1.171:27’ T 7$k).

Jx(Du(z)) =

For any smooth function u, we observe that Ji(Du) is actually a divergence:

DR, )
8($1,"‘,fy,"‘,3§k> ’

k
(3.16) JMMMzZ£<
v=1 v

where 7, again, means deleting x,. Let

_ 1\l u2 uk
I, (Dua)) = LA

~

(xlv'” y Lyy " 9:1:14:).
Then (3.16) implies

k
(3.17) | 3Duta)) ot do = 3 [ wl(a) I (D) Doola) da.
v=1

By density argument, this identity still holds if u € W1*(Q;RY). Suppose u; — @ in
WLF(Q; RY). By the Sobolev embedding theorem, u; — @ in L*(€; RY). Moreover, by the
induction assumption, J,gli)l(Duj) — J,g’i)l(Dﬂ) in the sense of distribution. Note that since
sequence {J,g'j_)l(Duj)} is also bounded in L%(Q) it also weakly converges in L%(Q); by
density the weak limit must be J,g’i)l(Dﬂ). We can then apply (3.17) to conclude

tim [ J(Dus(e) o) do = [ (Dala) (o)

)= Ja Q
as desired. The proof is complete. ]
Remark. Although, when u; — @ in WHE(Q; RY), it follows Ji(Duj) — Ji(Da) in the

sense of distribution and {J(Du;)} is bounded in L'(f), it is not true that Ji(Du;) —
Jp(D1) weakly in L'(£2). The following example is due to Ball and Murat. O

Example 3.4 (Ball and Murat ’84). Let B be the unit open ball in R". Consider, for
7 =1,2,---, the radial mappings

gr if 0 <r<1/j,
u-(x)—Uj(’xDx Uir) = 49— jr if1/5<r<2/j
J - |:L’| ’ J - Jr 1 J=T > I

0 if2/j <r<1.

Computation shows that u; — 0 in Wh*(B;R") as j — oco. But
det Duj(z) = (Uj(r)/r)"*lU]'-(r)

for a.e. x € B, where r = |z|, and hence
/ |det Duj(x)|dx = C
|lz[<2/j

is a constant independent of j. This shows that {det Du;} is not equi-integrable in B, and
therefore it does not converges weakly in L!(B), or in L], (B). The last observation is in
sharp contrast to a well-known result of Miiller, which states that if det Duj(z) > 0 a.e. in
Q and u; — @ weakly in W1(Q; R") then det Du; — det Du weakly in L}, (€2).

loc
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3.6. Questions and examples

We have introduced several convexity conditions: convex, rank-one convex, quasiconvex,
polyconvex. For convexity and rank-one convexity we have the strict versions before, which
are equivalent to the Legendre condition and Legendre-Hadamard condition (with v > 0),
respectively. For quasiconvexity, Evans also introduced a strict version.

Definition 3.5. A function F': MY*" — R is called uniformly strict quasiconvex in
WP provided that

/ [F(¢ + Dé(x)) — F(©)]dx >~ / D() P da,
Q Q

where v > 0 is a constant, holds for all smooth domains 2 C R™ and all ¢ € W& P RN).
This condition is useful for regularity theory of minimizers, which we will do later.

In our study so far, we have assumed N > 2. But if N =1 or n = 1 we can easily see
that all these convexities are the same as the usual convex condition. However, if n, N > 2,
we have known that for continuous functions with finite values

convex = polyconvex = quasiconvex = rank-one convex.
We give some examples which show that these are in general truly different conditions.
Example 3.6 (Dacorogna and Marcellini ’88). Let n = N = 2 and
Fy(€) = [¢]" = 6 |¢]* det €.

Then
convex — |§ < %\/ﬁ ~ 1.89,
) polyconvex = |9 <2,
Fsis .
quasiconvex = 0| <2+c¢,

rank-one convex <= |§]| < %\/3 ~ 2.31.

It is known that € > 0 for the quasiconvexity; whether or not 2+ ¢ = % is still open. Note
that this example gives an explicit quasiconvex function which is not polyconvex. But it
leaves open whether a rank-one convex function is quasiconvex.

Proposition 3.30. If F' is a polynomial of degree two (quadratic polynomial) then F is
quasiconvex <= F' is rank-one conver.

Proof. Assume F' is a rank-one convex quadratic polynomial. We show F' is quasiconvex.
Since subtraction of an affine function from a function does not change the quasiconvexity
or rank-one convexity, we thus assume F' is a homogeneous quadratic polynomial given by

F(¢) = A%ﬁ 535% (summation notation is used here and below)
with A%ﬁ are constants. Then

(3.18) F(§+n) = F(&) + A el + ATl + A i,

Note that the rank-one convexity is equivalent to

A G paps > 0.

Hence the linear system defined by constants flfjﬂ = A%ﬁ + eéijdaﬂ satisfies the Legendre-
Hadamard condition, where € > 0 and 9, 5P are the usual delta notation. By a theorem
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we prove before, the bilinear form defined by flio;-ﬂ is coercive in VVO1 2 (R™;RY); this means
that
A Dot @)Dt/ (@) do = ¢ [ Do) ds

n

Rn
for all ¢ € C°(R™; R™); hence, by cancelling the e-terms both sides, we have

- A Do’ () D (x) dw > 0.

Therefore by (3.18)

[ Pe+ Do) do = F(©) + [ 43Dt (0) D30/ (a) do > FI6),

n

as required. The proof is complete. ]

Proposition 3.31. A rank-one convex third degree polynomial must be a null-Lagrangian
and thus quasiconver.

Proof. Let F' be a rank-one convex third degree polynomial. Then the polynomial f(t) =
F (& +tg ® p) is convex and of degree < 3 in ¢, and hence the degree of f(¢) cannot be 3.
Note that the coefficient of ¢ term in f is half of

(3‘19) Fffmﬁé (5) PaPp qiqj >0,

which holds for all £, p, ¢. Since ng ¢ (&) is linear in &, condition (3.19) implies F, ¢ (&) papsd'd’ =
asSp asg
0. Therefore f(t) = F(§ + tq ® p) is affine in ¢ and hence F is rank-one affine. Conse-

quently, the result follows from the fact that a rank-one affine function must be a null-
Lagrangian. g

The following now classical example of Sverdk settles a long-standing open problem
raised by Morrey in early fifties.

Theorem 3.32 (Sverdk '92). Ifn > 2, N > 3 then there exists a rank-one convex function
F: MN*" & R which is not quasiconver.

Proof. We only prove the theorem for n = 2, N = 3. Consider the periodic function
u: R? = R3 by

1
u(x) = %(Sin 27z, sin 2wxe, sin 27 (x1 + x2)).

Then
Ccos 27T 0

Du(x) = 0 COS 2T Xy
cos 27 (x1 + xe) cos2m(xy + x2)

Let L be the linear span of the values of Du(x) in M = M?3*2; that is,

L={<[rst=

z)

0
s r,s,teR
t

~+~ O =

Note that a matrix { = [r,s,t] € L is of rank < 1 if and only if at most one of {r,s,t} is
nonzero. Define g: L — R by g([r, s,t]) = —rst. Using formula 2 cos - cos § = cos(a+ ) +
cos(a — f3), we easily obtain

1 1
g(Du(z)) = i Z(sin47r(a:1 + x2) + cos dmxy + cos dmwas)
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and hence by a direct computation that

1 1
(3.20) /E g(Du(z)) de — /0 /0 g(Du(a:))dxldxgz—i.

We now extend g to the whole M. Let P: M — L be the orthogonal projection onto L and
consider the fourth degree polynomials

(3.21) Fn(§) = g(PE) + e (|€* + 1€]") + k 1€ — PEJ>.

Lemma 3.33. For each € > 0 there exists a k = k. > 0 such that F¢ j_ is rank-one convex.
Proof. We use contradiction method. Suppose otherwise; then there exists an ¢y > 0 such

that F., x is not rank-one for any k > 0. Hence there exist & € M, p* € R?, g, € R? with
|p¥| = |qx| = 1 such that

O*Fey k(&)
0¢i,0¢)

Computing f”(0) for f(t) = F. (& + tn) yields

D?F (&) [n.n] = £"(0)

= D?g(P¢) [Pn, Py) + 2¢|n* + e (4]¢[* > + 8(¢ - )?) + 2k [n — Pn|*.

The term D?g(P¢) is linear in &; the third term is quadratic and positive definite in & if
n # 0 (this is the reason the |£|*-term is needed for F, ;). From these and (3.22) we deduce
{&} is bounded as k — co. Assume, via subsequence,

(3.22) aha phpl = D*Foy 1 (&) lae ® ¥, qe @ p¥] < 0.

ék _)57 qk — ¢, pk — P.
Since D?F. ;(€) [n, n] < D*F 1 (€) [n, 0] for all k > j, we deduce
(3.23) D?g(PE) [P(q®p), P(q@D)] + 260 +2j |[P(G@DP) —q@p| <0

forall j =1,2,--- . Thus P(§®p) = ¢®p and hence g p € L. This implies ¢®@p = [a, b, c],
where at most one of a, b, ¢ is nonzero. Therefore, function

t— g(P(E+tq®p)) = g(PE+tq @ p)

is affine in ¢, and hence the first term in (3.23) vanishes. This yields the desired contradiction
€9 < 0. The lemma is proved. ]

We now complete the proof of Sverdk’s theorem. Let u be the periodic function above.
We choose € > 0 small enough such that

; /(|Du(:v)|2 + | Du(@)|) dz < i
)

Let F.(§) = Fcx. (§) be a rank-one function by the previous lemma. Since Du(z) € L, it
follows by (3.20) that

= u € U2 U4 = .
/ZFE<Du<:c>>da:—/Eg<D )+ /Z<|D 24+ [Dul) < 0= F.(0)

This shows that F; is not quasiconvex by a theorem we proved before. The theorem is now
proved. [l
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Remarks. 1) Note that all functions F, ) defined by (3.21) are polynomials of degree 4.
Therefore, we have shown that there are quartic polynomials on MY *" which are rank-one
convex but not quasiconvex if n > 2 and N > 3. (See Propositions 3.30 and 3.31.)

2) For any function g: MV*" — R, if we define g7 : M"Y — R by g7 (&) = g(¢7),
then it is easily seen that g7 is rank-one convex (polyconvex) if and only if g is rank-one
convex (polyconvex). However, using Sverak’s function F, . above, S. Miiller '98 recently
proved that for each € > 0 there exists a k. such that F €T i 18 quasiconvex for all £ > k; of
course we already knew Fy ;, is not quasiconvex for any k> 0if e > 0 is small enough.

3) It is still completely open whether or not there exists a rank-one convex function
on M2*" which is not quasiconvex for n > 2. See also the example of Dacorogna and
Marcellini. 0

3.7. Relaxation principles

Given a function F': MY*" — R, we are interested in the largest quasiconvex function less
than or equal to F'. This largest quasiconvex function is called the quasiconvex envelope
or relaxation of F. This motivates the following definition.

Definition 3.7. The quasiconvexification of F' is defined by

c _ : Nxn
GRS . | €+ Do) da, ¢ eV

Remarks. 1) From this definition, F9¢ is only upper semicontinuous if F is continuous.
Howerver the next theorem shows that in this case F'9° is in fact continuous (locally Lips-
chitz).

2) Recently, Ball et al solved a long-standing open problem that shows F9° is of C* if
F is of C! and satisfies a polynomial growth. O

Theorem 3.34. Let F' > 0 be continuous. Then FI¢ is continuous and is the largest
quasiconvex function below F, the quasiconvex envelope of F.

Proof. For any quasiconvex function G < F|

G(e) < / G(€ + Dé(a)) dr < / F(€ + D(x)) da.

Hence G(§) < F¢(&) by the definition of F'%€. It remains to prove F¢ is itself quasiconvex.
We first observe that

(3.24) Fi°¢) = inf ][ F(&+ Do(z))dz
peW, > (4RN) J Q

for any open set Q C R™ with |92] = 0. This can be proved by using the Vitali covering
argument as before. We now prove a lemma.

Lemma 3.35. For all piecewise affine Lipschitz continuous functions ¢ € Wol’oo(E;RN),
it follows that

Fio(e) < /E Fie(& + Do(x)) da.

Proof. Let ¥ = U;Q; U E such that |E| = 0 and each ; is an open set with [0€;| = 0 and
such that ¢ € WOI’OO(E;RN) takes constant gradients D¢ = M; on each ;. Let € > 0 be
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given. By the above remark on the definition of F9¢, there exists 1; € VVO1 °(Q;; RY) such
that

Fe(¢ 4+ M) z][ F(& + M; + Dis()) da — e.
Q;

With each 1; being extended to X, we set ¢ = ¢+ >, ¢;. Then ¢ € WOI’OO(E; RY) and we
have

[P Dot dn = S 14 (e + M)

> [ Fe+ Diw)do— e = Fr(9)
>

and the lemma follows. O

Now the lemma above is enough to show F'9¢ is rank-one convex (using “sawtooth” like
piecewise affine functions) and therefore is locally Lipschitz continuous (since it is convex in
each coordinate direction). Hence F'9 is quasiconvex by the same lemma above and density
arguments. The proof of the theorem is complete. U

Suppose F(€) is a continuous function on M¥*" and satisfies
0<F(E) <C(EP+1) veeM¥

for some 1 < p < oco. We are interested in the largest w.s.l.s.c. functional I(u) on
WHP(Q; RY) which is less than or equal to the functional

I(u) = /Q F(Du(x)) dz.

This functional I(u) is called the envelope or relaxation of I in the weak topology of
WHP(Q; RY). It turns out under the condition given above, I(u) is given by the integral
functional of F9¢.

Theorem 3.36. Let F/(§) be continuous and satisfy 0 < F(§) < C ([P +1) for 1 < p < oc.
Then the envelope I(u) of I in the weak topology of WP (Q; RN) is given by

F(u) = /Q Fe(Du(x)) da.

Proof. Let I(u) be the integral functional defined by F. Since F9° is quasiconvex and
satisfies the same growth condition as F', the functional I(u) is thus (sequential) w.l.s.c. on
WhP(Q; RY) by the theorem of Acerbi and Fusco. Therefore, I < I. To prove the other
direction, we first assume there exists a continuous function g: MY *" — R such that

(3.25) I(u) = / g(Du(z))dz ¥V ue WH(Q;RN).
Q

Then g(£) must be quasiconvex and g < F, and thus g < F'%; this proves I<I. However,
the proof of (3.25) is beyond the scope of this lecture and is omitted; see e.g., Buttazzo,
Acerbi and Fusco, or Dacorogna. O

Finally we have the following theorem; the proof of the theorem is also omitted (see
also Acerbi and Fusco, or Dacorogna).
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Theorem 3.37 (Relaxation Principle). Assume
clglP < F(§) <C (| +1)
holds for some constants ¢ >0, C >0, p > 1. Then

inf /F(Du)d:v— min /Fqc(Du)d:):
uweDE(0) Jo ueDL(Q) Jo

for any ¢ € WIP(Q; RY), where DY(Q) is the Dirichlet class of .

Reamrk. This theorem seems too nice for the nonconvex variational problems since it
changes a nonconvex problem which may not have a minimizer to a quasiconvex problem
that has definitely at least one minimizer. But, there are costs for this: we may lose
some information about the minimizing sequences; a minimizer so obtained for the relaxed
problem may not characterize what seems more interesting in applications the finer and finer
patterns of minimizing sequences. In the phase transition problems for certain materials,
it accounts for the loss of information about the microstructures by a macroscopic effective
processing (relaxation). For more information, we refer to Ball and James ’92, Miiller 98
and the references therein.

O



Chapter 4

Regularity Theory for
Linear Systems

4.1. Sobolev-Poincaré type inequalities
Let 2 C R™ be a Lipschitz domain. Then, by Sobolev’s embedding theorem, the immersion
(4.1) WhP(Q; RY) — LP(; RY)

is a compact operator for all 1 < p < co. Based on this compact embedding, we can prove
several useful Poincaré-type inequalities.

Proposition 4.1. Let Q be a bounded domain such that the immersion (4.1) is compact.
Then for any 1 < p < oo there exists a constant C, = Cp(§2) such that

(4.2) /Q lu(x) —uqlP dx < C), /Q |Du(z) P dx

holds for all u € WHP(Q; RN), where uq is the average of u on Q; that is

g = ][Qu(x) i = ‘Slﬂ /Q u(w) da.

Proof. Suppose the result is not true. Then we can find a sequence {u*} in WP(Q; RY)
such that for k = 1,2, ...

u$, =0, |Ju¥llporyy =1,  I1DUF|| oqrmy < 1/k

By the compact embedding, we can find a subsequence of {u*}, still denoted the same,
such that u* — @ in LP(Q; RY) as k — co. Therefore, |||, = 1, g = 0 and by the lower
semicontinuity of the norm, || Dul[, = 0. These are obvious contradictions. The result is
proved. O

If we define Cp(£2) to be the best constant in the Poincaré inequality (4.2), then by an
easy scaling argument we have

Cy(RQ) = RP C,(Q), VY R>0.

Hence we have the following useful Poincaré-type inequalities.
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Proposition 4.2. Let 1 < p < oo. Then there exist constants C; = Ci(n,p) and Cy =
Ca(n,p) such that for all balls Bp C R™ and u € W1P(Bg; RV)

(4.3) / lu —up,|Pde < ClRp/ | Du|? dz,
Bgr Br

(4.4) / lu—upp\By,["de < CyRP / | Du|P dz.
Br\BRy2 Br\Br/2

We shall also use certain Poincaré type inequalities between LP norm of u and LY norm
of Du, which are usually called the Sobolev-Poincaré type inequalities. We state two of
such important inequalities without proof; see Gilbarg-Trudinger, Chapter 7.

Proposition 4.3. For any 1 < p < n there exists a constant Cy = Cy(n,p) such that for
any domain Q and u € WyP(Q; RN)

(4.5) / 7% de < Cy </ | Dul? da;) "
Q Q

We sometimes denote p* = %, called the Sobolev conjugate of p.

Proposition 4.4. For any 1 < p < n there exists a constant C5 = Cs(n,p) such that for
all balls Br C R™ and u € WP(Bg; RYN)

(4.6) / i — g, |5 dz < Cs (/ | Dul? dx) "
Br Br

4.2. Caccioppoli-type estimates

Let A(z,£) = A(x) £ be a linear matrix function of £ given by
(A(z,), = (A(@)e)l, = A ()€,

where A%’g € L*>*(Q). Consider the linear partial differential system

2
loc

(€2). We also write this system as
— Div(A(z)Du) = g — Div f,

where g = (¢%), f = (f%). Recall that a function u € VV;S(Q, RY) is a weak solution of (4.7)
if

(48) /Q A(2)Du - Dé(z) dz = /Q (9(2) - B(x) + f(z) - Do(x)) da

holds for all ¢ € C§°(€; RY). Since Af}ﬁ € L*>°(Q), the test function ¢ in (4.8) can be chosen
in W,2(Y; RN) for any subdomain Q' cC Q.

The regularity for system (4.7) relies on certain ellipticity conditions. We shall assume

where we assume ¢*, f4 € L

one of the following conditions for the coeflicients A%ﬁ () holds with some constant v > 0.
(H1) A (@) €8, = v gl
(H2) Af}’g are constants, A%ﬁpapg ¢ > vp|®lql.
(H3)  AY € C(Q), A () papsd'd > v Ipl*lal*.
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Assume u € I/Vlif (; RY) is a weak solution of (4.7). Almost all the estimates pertaining

to regularity of u are derived using test functions of the form ¢ = n(u — \), where 7 is a
cut-off function which belongs to Wol’oo(Q’) for certain ' CC Q. Let B, CC Br CC 2 be
concentric balls with center a € 2. Let

1 if0<t<op,
6(t) = g—:z if p<t<R,
0 ift > R.
Let ( = (y,r(z) = 6(|z — a|). Then ( € Wol’oo(Q) with supp ¢ € Bg and

_ Xp,R

where X, r = XBp\B, () is the characteristic function of B \ B,. Define
p=Cu=2A), ¢=Cu—N) =y
Then ¢, ¢ € Wy>(Bg; RN) and
D¢ =(Dy+y¢@D(, D¢p=(Du+ (u—A)®DC
Using ¢ as a test function in (4.8) yields
| wo+r00) = [ Aw@Du-Do
BR BR

= A(z)Du - (DY + A(z)Du -y ® DC.
Bgr Bgr

Note that
A(x)Dy - DYy = A(z)Du- (D¢ + A(x)(u — A) ® D¢ - Dy,

(z)
A(x)Du-¢ @ D( = A(z)(Du-(u— ) ® D¢
= A(x)Dy¢ - (u—A) @ D¢
— A(z)(u—A)®@ D¢ (u—\)® DC.
Therefore, it follows that
[, Awpv-p = [ Aww-ne e Dy
Br
RIS
- A(z)DvY - (u— X)) @ D¢
Br
+ A()(u—AN) @ D¢ (u—\) @ DC.
Br

(Note that the first and third terms on the righthand side would cancel out if A(x)¢ -7 is
symmetric in &, 7.)

For the moment, we assume the following Garding inequality holds:

(4.10) A@@)Dib - Db > v /B DY — 1y /B 2,

Br
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where vg > 0, 1 > 0 are constants. Then it follows that

VO/B Dy < [ A@Du- Dwm/B )2

< !/BRg of + [ it [ 1. 2ol

Xp,R [u— Al Xp,R U — A
+ ¢ [ Dy XeRtZAL o [ Xer[tZ AR
BR’ vl R—p Br (R—p)?

+ 1/1/ lu — N2
Br

Using the Young inequality
lal - [b] < elal® + Ce[b]”

in this estimate, we deduce

hudi=sie ool feen f o]

We now notice that under the hypothesis (H1) or (H2) the Garding inequality (4.10)
holds with 19 = v, 1 = 0 and under (H3) the inequality (4.10) also holds. Since |, =
u — A, this last estimate (4.11) proves the following theorems.

(4.11) /B |Dy|*> < C

Theorem 4.5. Let u € I/VloC (G RN) be a weak solution of (4.7). Assume either condition

(H1) or (H2) holds. Then
u— A2
[ Gl v+ [ \f|2]
BR\B,, P) Br Br

for all concentric balls B, CC Br CC Q and constants X\ € RN, where = Co,r and C >0
s a constant depending on the L -norm of A%ﬁ

(4.12) / |Dul* < C

By

Theorem 4.6. Assume condition (H3) holds. Then

Jon G| [, o-c=n]+ [, s |2>]

for all concentric balls B, CC Br CC Q and constants X € RY.

(4.13) / |Du*> < C
By

Corollary 4.7. Let u € I/Vloc (4 RYN) be a weak solution of (4.7). Assume either condition
(H1) or (H2) holds. Then

u— A2
i [ parsc [ [ [ (el \f|2)]
Br/a Br\Bgr/2 Bgr

for all balls B CC Q and constants A € RN,

Remarks. 1) The estimates (4.12), (4.13) and (4.14) are usually referred to as the Caccioppoli-
type inequalities or Caccioppoli estimates.

2) In both (4.12), (4.13), we leave the term fBR g-C*(u— ) in the estimates. We shall
see later that this term needs a special consideration when we deal with higher regularity
for weak solutions, especially when ¢ is of the form of quotient difference. O

As an application of these Caccioppoli estimates, we prove the following results.
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Proposition 4.8. Suppose u € VVllof(R”, RY) is a weak solution of
(4.15) — Do (A (2)Dgul) = 0,
where coefficients Af‘jﬁ(az) satisfy (H1) or (H2). If |Du| € L*(R™), then u is a constant.

Proof. By (4.14), it follows that

C
/ DupP < & = A2,
Br)2 R Br\Br/2

1
"~ |Br\ Bgysl Br\Br/»
Then the Poincaré inequality (see Proposition 4.2) shows that

/ = A2 < e(n) RQ/ | Dul?.
BRr\BR» Br\BR»

/ Duf? < C | Dul?.
Br/2 Br\Bgr/2

Adding C [ Brs |Du|? to both sides of this inequality (this sometimes called the hole-filling

technique of Widman), we obtain

/ |Dul? < C/ | Dul?.
Br/2 C+1 Br

We choose

u(x) dx.

Therefore

Letting R — oo we have

/ |Du]2d:n§C/ | Du|? da.

Since CLH <1 we have [g, |Du|? = 0 and thus Du = 0; hence u = constant. O

Proposition 4.9. Assume either condition (H1) or (H2) holds. Then any bounded weak
solution u € W,2(R2%;RN) to the equation (4.15) for n = 2 must be constant.

loc

Proof. Let |u| < M; then by the Caccioppoli inequality (4.14) with A = 0 we have

/ |Du*dz < CM < co, VR>0.
Bry2
This implies |Du| € L?(R?); hence by the result above, u is a constant. O

4.3. Method of difference quotients

Let {e1, - ,en} be the standard basis of R™. Define
u(z + hes) — u(x)

Th,su(z) = . , h#0.

If w is defined on 2 C R", then 7, su is defined on
Qp s ={x € Q|z+ he, € Q}.

Note that
Qp, = {z € Q] dist(z; 00) > |h|} C Q5.

We have the following properties of 7, su.
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1) If u € WHP(Q; RY) then 7, su € WP(Qy, ; RY) and
D(1h su) = T s Du.

2) If either u or v has compact support ' CC Q then

/ u-Th sV dr = —/ v-Topsudr  VIh| < dist(;09).
Q Q

3) Th,s(Pu)(x) = d(x) Thsu(z) + u(z + hes) Th s¢().

Proposition 4.10. (a) Let u € WIP(Q). Then 1, su € LP(Y') for any Q' CC Q satisfying
|h| < dist(Q; 9Q). Moreover, we have

[7h,sull Loy < [ DsullLe(q)-
(b) Letu € LP(Q), 1 < p < 00, and Q' CC Q. If there exists a constant K > 0 such that
liminf |[7hsullzoor) < K,

then the weak derivative Dsu exists and satisfies || Dsul|ppor < K.

Proof. (a) Let us suppose initially that u € C1(2) N W1?(Q). Then, for h > 0,

1 h
Th,su(x) = h/ Dsu(xy, - ,Ts—1,Ts + 1, Tsq1, "+ ,XTp)dt
0

so that by Holder’s inequality

1 h
’Th’su($)|p S h/ |D3U(l'1, o, Ts—1,Ts +t7$5+1, Tt 7‘rn)|p dta
0

and hence

1 h
/ |Th,su(z)|P do < / / |Dsul?P dx dt < / |Dsul? dx,
o h Jo JB, @) Q

where By, () = {z € Q| dist(z; ') < h}. The extension to arbitrary functions in W1?(Q)
follows by a straight-forward approximation argument.

(b) Since 1 < p < oo, there exists a sequence {hy,} tending to zero and a function
v e LP(Y) with |lv||, < K such that 7, su — v in LP()'). This means for all ¢ € C5° (')

lim @ Th,, sudr = ovdx.
m—0o0 QO ’ Q/

Now for |h,| < dist(supp ¢; '), we have

O Th,, sudr = —/ UT_p,, sPdr — — u Dy dx.

Q/ / Q/

Hence
pvdr = —/ u Dg¢dr,
Q/ /

which shows v = Dgu € LP(€Y') and || Dsul|rry < K. O
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4.4. Hilbert-space regularity

We now assume u € VV;E(Q, RY) is a weak solution of linear system
— Div(A(x) Du) = g — Div f.

This means
| @) Dutw) - Do) do = [ g(a) - 6(w)de+ [ (@) Dola) da
Q Q Q
holds for all ¢ € Wol’Q(Q’; RM). If |h| < dist(€'; Q) this implies

/QA(x + hes) Du(x + hes) - Do(x) dx

= / g(x + he) - ¢p(x) dx + / f(z + hes) - Do(x) dx.
Q Q
Substract two equations and divide by h to get

/ A(x + hes) D su- D¢ = / Th,s9(2) - ¢(x) dx
Q Q
n /Q 75 F(2) - D(w) do

- / ThsA(x) Du(z) - Dé(z) dz.
Q
This shows that v = 73, su is a weak solution of system
(4.16) —Div(A(z + hes) Dv) = 13,59 — Div(7y5f) + Div(m, s A Du)

on . We now assume that Garding’s inequality (4.10) holds. Then we can invoke the
estimate (4.11) with A =0, p = R/2 to obtain

1
(417) [ pep<cl [ mimal+] [ me
Br Br Br

+/ (|7h,s f1* + v1 |, sul® + |Th,sA|2\DU|2)},
Br

where ¢ = (7, su, ¢ = (? T su and ¢ = Cry2,r 1s defined as before. Note that

_/ Th,s9 * ¢ = / Th,s9 * ¢ = / g- T—h7s¢
Br Q Q

= /g-C(x—hes)T_h75¢+/g'i/)T_h,SC
Q Q
= I+11.

We estimate I, I1 as follows.

1< [ lal o

< . / st + C. / g2
Q7 Q/
2 2
< e/u?swr +c€/ 1l
Q Q/
<

¢ / DY + C. / 1912,
B Q
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where ' CC Q is a domain containing Bg.

/ 191 st |—nsC]
Br

C/ 2 2
< & [y +c/ -
R? oy By

Combining these estimates with (4.17) yields

| DR <) [ (1mnaul + o + a4 AP D).
R

[11]

IN

Since ¢ = 7, su and DY = 75, sDu on Bg /o we have

(4.18) / |Th,sDu|2gC(R)/ (It + 1912 + 7,0 f 12 + 7,4 APLDuP).
BR/2 94

Finally, if we assume [ € I/Vllocz(Q M?~*") and A(z) is Lipschitz continuous with Lips-
chitz constant K then

| imatP < [ DR mea@) < K,
Q/ Q//
where Q' CC Q" CC , and hence by (4.18) we have

/ [Th s Dul*(z)de < M < oo V |h| << 1,
Bry2

and thus DsDu exists and belongs to LQ(BR/Q; MY for all s = 1,2,--- ,n. This implies
we w2 2(9 RY). Therefore, we have proved the following theorem.

loc

Theorem 4.11. Suppose A € C(Q) is Lipschitz continuous and the Gdrding inequality
(4.10) holds. If g € L3 (;RN), f € WE2(Q;MN*) and u € W22 (Q;RN) is a weak

loc loc
solution of the system

—Div(A(z) Du) = g — Div f
then u € W22(Q; RY).

loc
The following higher regularity result can be proved by the standard bootstrap method.

Theorem 4.12. Suppose u € W;" 2(9 RY) is a weak solution of the system

loc
— Div(A(x) Du) = g — Div f
with A € C*Y(Q) (that is, DFA is Lipschitz continuous) satisfying the Gdrding inequality
(4.10) and g € W22 RN), fe WETL2(Q; MN*?). Then u € WE2(Q; RN).

loc loc

Proof. Let 1 € C5°(Q; RY); then we use ¢ = Dgi as a test function for the system to
obtain

/DA ) Du) Diﬁdm-/Dsg?/)—i—/DfDd}
Since Dg(A( = (DsA) Du + A(z) DDsu we thus have

/A D(Dyu) - Dt = /Dsg w+/(Df (DsA) Du) - Dy

This shows v = Dyu € W 2((2 RY) is a weak solution of

loc

—Div(A(z) Dv) = Dsg — Div(Dsf — (DsA) Du),
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and hence v € VVZ%)C2 (4 RN); that is, u € VV;;CQ(Q, RY). The result for general k then follows
from induction. O

Remark. Note that if 4, g, f are all of C* then any weak solution v € W,22(€; RY) must

loc

be in C*(€; RY). We also have the following result. O
Theorem 4.13. Assume (H2) holds. Let u € VVllof(Q, RM) be a weak solution of
(4.19) —Do(A Dgu?) =0, i=1,2,..,N.
Then u € VVlIZf(Q;RN) forallk=1,2,... and
lullwrz(pg ,ry) < Ok, R) [lullp2(p,m)
for any ball B CC €.

Proof. By the Caccioppoli-type inequality, we have for any weak solution u of system (4.19)

C
Du2d:1:§/ ul? dz.
/Bp' Nl

The regularity result shows that u € VVZIZ’E(Q; RM) for all k and then it follows that any
derivative D¥u is also a weak solution of (4.19). Therefore, the conclusion will follow from
a successive use of the above Caccioppoli inequality with a finite number of R/2 = p; <
p2 << pg =R. O

4.5. Morrey and Campanato spaces
Let Q C R™ be a bounded open domain. For z € R", p > 0 let
Qz,p) ={y € Ay —z| <p}.
Definition 4.1. For 1 < p < 0o, A > 0 we define the Morrey space LP*(Q; RY) by

LPAMORY) = L we LP(Q; RY) ‘ sup p’\/ |u(z)|P dez < oo
0<p<diam

We define a norm by

1/p
lull Lerryy = sup <p’\/ |u(z) [P dx) )
act Q(a,p)

0<p<diam Q
Proposition 4.14. LP*(Q;RY) is a Banach space.

Lemma 4.15 (Lebesgue Differentiation Theorem). If v € L} () then

loc

i { Jo(x) — o)l dy =0
=0 By(x)
for almost every x € (.
Proposition 4.16. (a) If A > n then LPA(Q; RY) = {0}.
(b) LPO(@; RN) = L2 RY); LP7( RY) = L¥(0; RY),
(c) If1<p<g< oo, "T?)‘ > "B, then Lot (Q; RY) € LPA(Q; RV).
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Proof. (a) By Lebesgue’s differentiation theorem,
(4.20) |u(a)] = lim |u(z)|dx, Y a.e. ae€.

Now, by Hélder’s inequality,

1/p
(4.21) ][Q(%p) lu(z)| de < (fg(a’p)|u(x)|l’ dx)

A=n
< C”UHLM(Q;RN)P_WPP/VP =Cpr» HU||LM(Q;RN)~
If A > n, letting p — 0 we have u(a) = 0 for almost every a € §2; thus u = 0.
(b) That LP2(Q; RY) = LP(Q; RY) easily follows from the definition. We prove LP"(€; RV) =
L®(Q;RN). If u € L®(Q; RY), then

[ Ju)de < C full
Qa,p)
so that ||u rn < C ||ulleo. Suppose now u € LP"(€; RN). Then by (4.20), (4.21)

|u(a)] = lim lul < C'l|ul| ppin (R )-
=2 J Q(a,p)

Hence [|ul oo ry) < C llull o o;ry). Therefore LP"($; RN) = L>®°(Q; RN).
(c) We first note that u € LP*(€; RY) if and only if

/ lu(z)|P de < C p*
Q(a,p)

for all @ € © and 0 < p < pg = min{l, diam Q}. Suppose v € L9*(Q;RY). Then, by
Holder’s inequality, for all a € 2, 0 < p < pg < 1,

P
[ P < il ( / u|qdar>q
Q(a,p) Q(a,p)
< P ([ulll gy £
< Cp T ul gy
< CP ”uHLq,u(Q;RN)a

where we have used the assumption % +n— % > X and the fact 0 < p < 1. Therefore,
u € LPAQ; RY). O
Definition 4.2. For 1 < p < oo, A > 0 we define the Campanato space £P*(; RN) by
LPAQRY) = L uwe LP(Q; RY) ’ sup p’\/ U — U p|P dx < 00 p |
0<p2§?am9 (@)

where u, , is the average of u on Q(a, p). Define the seminorm and norm by

1/p
[Wleprryy = sup (p’\/ U — uq,p|? dz) ,
ogy Q(a,p)

0<p<diam

lullzormryy = lullpr@mryy + [l 2o @r)-
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For 0 < a < 1, we define the Holder space C%*({); RV) by
CO(RY) = {v e L¥QRY) | [u(@) — v(y)| < Cla — |7, Vo, y € Q]

and define the seminorm and norm by

lv(z) — v(y)|
V]goaRrNY = Sup ,
[ ]C (;RN) A ZEQ |ZIJ — y|a
z#y
[vllcoa@ryy = [vlre@ryy + [V]coe@ry)-

Proposition 4.17. Both LPA(Q; RY) and C%*(Q; RN) are Banach spaces.

Proposition 4.18. (a) For any p > 1, A > 0, LPN(Q; RY) c £PA(Q; RN).
(b) For any 0 < a <1, CO*(Q; RY) C LrnFPe(; RYN).

Proof. (a) Note that

1/p
/ 0(y) — vapPde )| < lollirciap + oy
Q(a,p)

It turns out that we can exactly estimate the two terms on the right-hand side by

- 1Q(a, p)| 7.

]| r(@(a,p)) < p*P 1]l Lor ;Y
Va0l - [92(a, )P < PP [[0]| Lo )
so that it follows that
[Vl oar )y < 210l Lo rN)-
Hence LPA(Q; RN) ¢ £PAQ; RVN).
(b) Assume v € C%(Q; RY). Then

[0() = vap] = \][m (0() — o) dy
a,p

IN

W] @mm) ][ 2 — | dy
Q(a,p)

«

< [v]leoa@ryy - (20)

Hence

and hence

(4.22) [v]gpmiva(@ryy < CV]coa@rryy)-

The proof is complete. O

In order to study the properties of Campanato functions, we need a condition on domain
Q introduced by Campanato.

Definition 4.3. We say that 2 C R" is of type A if there exists a constant A > 0 such
that

(4.23) |Qa,p)| > Ap", YaeQ, 0<p<diam.

This condition excludes that 2 may have sharp outward cusps; for instance, all Lipschitz
domains are of type A.
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Lemma 4.19. Assume Q is of type A and u € LPNQ;RN). Then for any 0 < r < R <
00, a € § it follows that

_1 X _n
o, = tar| <2477 R 175 - u] o oum.

Proof.
v~ |- 2P = o~ v lm(0a)
< Nu = uarll e o)) + 1t = tarllLran)
< Nu = uarllr(a,r)) + 14— oyl Lr(ar))
< [ulgrrry) R7 + [ul cpr (iR re
< 2[ulpr@my R7.
Hence the lemma follows from the assumption that [Q(a,r)| > Ar™. O

Proposition 4.20. If Q is of type A then LPA(Q;RN) = LPA(Q; RYN) for 0 < X < n.

Proof. We only need to show £PA(Q; RN) € LPA(Q; RYN). Let u € £LPA(; RYN). Given any
a €, 0< p<diam(), we have

IN

[ull Lo (2(a,p)) [ = tapll e ((a,p)) + [UapllLr©ap)
A n
< [ulgramryy PP+ Cluap| p?.

We now choose an integer k large enough so that Q(a, 2¥p) = Q. Then, by Lemma 4.19, we
have

k-1
|ua7p| < |ua,2kp| + Z ’ua,2j+1p - ua,2jp‘
=0
k1 1 A
< ual+ > 247 (27 )P (200) 70 - [u] o or
=0

B

A—n .
< ual+Cp 7 [ul gy -y 2O
=0
A=n
< ual + Clulgprmryyp 7 s

where ug is the average of u on 2 and therefore [ug| < C(Q) ||ul|Lr(o;r~). Combining these
estimates, we deduce

A n
[ullze(ap)) < C Ul gor@ry o7 + C llull Loy PP
and, by dividing both sides by p% and noting A < n,
A
p 7 ullr@ap) < C ulerar@ryy + C) [[ull r )
This proves

[ull Lo rmryy < C(Q) [[ull gormryy-
OJ

Remark. Note that £P7(Q;RYN) 22 LP7(Q; RN) = L>°(Q; RY). For example, let p = \ =
I,n=N=1and Q= (0, 1). Then u = Inx is in £51(0,1) but not in L>1(0,1) = L>°(0, 1).
In fact, £P"(Q; RYN) =2 BMO(Q; RY), which is called the John-Nirenberg space. O



4.5. Morrey and Campanato spaces 51

Theorem 4.21 (Campanato '63). Let Q2 be of type A. Then for n < A < n+ p,
_ A\ —
LA RY) = O (G RY), o= z

whereas for X\ > n + p we have LPA(; RN) = {constants}.

Proof. Assume A > n and v € LPA(Q; RY). For any z € Q and R > 0 we define

o(x) = klirrolo Vg, & -

Lemma 4.22. v is well-defined and independent of R > 0.

Proof. We first show the limit defining ©(x) exists. We need to show the sequence {v, = }
’2

is Cauchy. For h > k we have, by Lemma 4.19,

h—1
[0, 5 —v, 5| < Zk (Vg 2 =0, |
J:

h—1

1 A—n j(n=X\)

< 2A p[v]ﬁp,)\(Q;RN)R P E 2 p s
i=k

which, since A > n, tends to zero if k, h — oco. Therefore {v, 5 } is Cauchy and the limit
2

0(x) exists. Also in the inequality above, if £ =0 and h — oo we also deduce

A=n
(4.24) vy r — 0(z)| < C [U]Ep,)\(Q;RN) R .
We now prove 0(z) is independent of R > 0. This follows easily since by Lemma 4.19
klirgo ]v%?% - vaLk| =0.
The lemma, is proved. t

By Lebesgue’s differentiation theorem, we also have v(x) = v(x) for almost every x € .
Therefore © = v in LPA(Q; RY).

Lemma 4.23. 9 € C%%(Q; RY), where a = A;%.

Proof. Let x, y € Q and = # y. Let R = |z — y|. By (4.24) it follows that
[0(z) —o(y)| < [0(z) = var| +|0(y) — vy2rl + [ve2r — vy 2R]
< Cllearmyy - B + [vs2r — vy 2kl
We need to estimate |v; 2 —vy 2r|. To this end, let S = Q(z,2R)NQ(y, 2R). Then Q(x, R) C
S and hence
|S| > |2z, R)| > AR™.
On the other hand, we have

1
S|P vz or —vyorl = |lve2r —vy2rllLr(s)
< lve2r = vlzees) + llvg2r — vliecs)
< |vz2r — UHLP(Q(m,2R)) + |lvy2r — ”HL"(Q(MR))

IA

2 [U][,PA(Q;RN) . (QR))\/P

Combining the above two estimates we have
A=n
[vz2r — Vy2r| < Clppaqryy R 7 = C]aqry) - R
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and hence
[0(z) = o(y)| < C o] ororwy - [z —y[*
This shows
[0]co.a@rry < Cv]rr@Rry)-

To complete the proof of this lemma, we only have to observe that, by (4.24) with R =
diam 2,

[0l Le@rry < val + C ] prryy - BT
< CO) lvlizr@myy + C(Q) [v]gra@rm)
= C(9) ol errgmy)
This proves the lemma. ]

We have thus proved that if A > n then every v € £P*(; RY) has a representation
¥ which belongs to C%*(Q;RY) with a = (A —n)/p. If A > n + p then o > 1 and
any u € C%(Q; RY) must be a constant (why?). The proof of Campanato’s theorem is
complete. O

In order to use the Campanato spaces for elliptic systems, we also need some local
version of these spaces. To disperse some technicalities, we prove the following lemma.

Lemma 4.24. Let p = 1,2 and u € L?

P (QRN). Then the map E — [, |u — ug|P is
nondecreasing in subsets EE CC €.

Proof. We prove the case p = 2 first. Let E C F CC §2. Then
/ |u—uE\2 = / ]u—uF—l—uF—uE\Q
E E
= / ]u—uF\2+2(uF—uE)~/(u—up)+|E]-\uF—uE2
E E
— [l el = |l ur - usP
E

/ lu — up|?.
F

We now prove the case p = 1. Note that

/|u—uE| = /|u—uF—|—uF—uE|

E E
/]u—uF\+/\uF—uE
E E

= /‘U—U,F|—/ ]u—uF|+\E|‘\uF—uE.
F F\E

IN

IN

Thus we need to prove

(4.95) \B| - Jur — ug| g/ = ],
F\E
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Note that, by Jensen’s inequality,

][ lu—up| > ][ (u—up)
F\E F\E

! \F\E]uF—/ u
F\E

|F'\ E|
_ 1“ﬂ1¢—@]u—/u+/u
[F\E| ! e e

1
_ _IB| _
e e
and hence (4.25) follows. O

Theorem 4.25. Let p=1, 2 and u € L} (Q; RYN). Assume there exists a constant Cy, > 0
and o > 0 such that

/ lu —up,|P dr < Cy p”
By

holds for all balls B, CC Q. Then for any subdomain ' CC Q we have u € LPAQY;RY)
and moreover

[ull o (rimvy < C() [Ch/? + [ull o rmn)-

Proof. Let Q' CC Q be given. We will show u € LPA(Q; RN). Let d = dist(€; 0%2). Given
any a € 2 and 0 < p < diam(Q'). If p < dist(a; 9Q) we have by the previous lemma,

[ — ugy(qp | dx < / lu—up (o) dz < Cu p.
/ma,p) ’ (@) o

By(a

If p > dist(a; 0€2), then p > d > 0 and hence

2P HUHI[),P(Q’-RR) A\
/ [u — uqgy(q,p) [P dz < 2P / JulP dv < —————=p".
' (a,p) Y (a,p) d

Therefore, for all a € ', 0 < p < diam(€') it follows that

2 |lull} g mm
/ |u o uQ,(CL:p)|p S # p>\7
¥ (a,p)

Cu + A
and hence by definition u € £P*(€; RY) and moreover

[u] o vy < C) [CHP + [[ull oo rany)-
The proof is complete. ]

Theorem 4.26 (Morrey). Let u € I/Vllof(Q, RY). Suppose for some 3 > 0 we have

/ |DufP de < C p" PP, VB, cc Q.
P

8 _
Then for any ' CC Q of type A, we have u € C’O’?(Q’;RN).
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Proof. Using the Poincaré type inequality

(4.26) / |u—uBR|dm§CnR/ |Du| dx,
BR BR

we have for all balls B, CC (2,

/ lu —up,|dr < Cnp/ | Du| dx
B, B

P

IN

1—1
Cnp HDUHLP(BP;MNX") Byl P

n—p+p n(l—l)
p

< Cp-p v -p
B
B B _
Therefore, by Theorem 4.25, u € £"» (; RN) = ¢%» (; RY). 0

When # = 0 Morrey’s theorem has to be replaced by the John-Nirenberg estimate; see
G-T, P.166, Theorem 7.21.

Theorem 4.27 (John-Nirenberg). Let u € WH(Q; RY) where Q is conver. Suppsose there
exists a constant K such that

(4.27) / |Duldz < KR"™' VacQ, R< diamQ.
Q(a,R)
Then there exist positive constants oy and C depending only on n such that
(4.28) / exp (1 |u — UQ|> dr < C (diam Q)",
Q K

where o = o |Q] (diam Q) ~".
Remark. The set of all functions u € W11 (Q; RY) satisfying (4.27) is the space BMO(Q; RY)
introduced by John and Nirenberg, and for €2 cubes or balls it follows that

BMO(;RN) = £Pn(Q: RY), Vp>1.

For the proof of all these results and more on BM O-spaces, we refer to Gilbarg-Trudinger’s
book for a proof based on the Riesz potential, and Giaquinta’s book on the Calderon-
Zygmund cube decomposition. U

4.6. Estimates for systems with constant coefficients

We consider systems with constant coefficients. Let A = A%ﬁ be constants satisfying hy-
pothesis (H2). We first have some Campanato estimates for homogeneous systems.

Theorem 4.28. Let u € W12 (Q; RY) be a weak solution of

loc

(4.29) Do(AY Dgu?) =0, i=1,2,..,N.

Then there exists a constant ¢ depending on Af‘jﬁ such that for any concentric balls B, CC
Br CC Q,

(4.30) / lul*dz < c-(p)”/ lu|? dz,
R Br

P

(4.31) / lu—up)|*dr < c-(p)”+2/ u— up,|? da.
B, R Br
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Proof. We do scaling first. Let Br = Bg(a), where a € Q. Define
v(y) = u(a + Ry),

where y € D = {y € R"|a + Ry € Q}, which includes B;(0) in the y-space. Note that
v e W (D;RN) is a weak solution of

loc
Dy, (A3’ Dy 07) = 0.
Then the Caccioppoli estimates show that

[ollwee(B, o0 my) < CE) [0l 2B, 0myy), VE=1,2,...

and hence for all 0 < t < 1/2 it follows that

/ WPdy < )t suwp Jo(y)?
B¢(0) y€By/2(0)
< )" [olliyras, ,0mm)
< C(nak)tnHv|yi2(31(o);RN),

where we have chosen integer & > n/2 and used the Sobolev embedding W*?(B, /2(0); RY) —
CO’O‘(Bl/Q(O); RY) for some 0 < a < 1. Now if ¢ > 1/2 we easily have

/ lv|? dy < 2" " / lv|? dy.
B(0) B1(0)

Therefore we have proved

/ |U|2dy§0(n)t”/ W dy, VO<t<l.
B(0) B1(0)

Rescaling back to u(z) and letting p = tR we have

/ 2 dz < C(n) (2 / W2de, ¥p< R < dist(a; 00);
B,(a) R™ - JBr(a)

this proves (4.30). Note that Du is also a weak solution of (4.29); therefore, by (4.30) it
follows that

/ |Dul* dz < C(n) (ﬁ)" : / |Duf*dz, Yp< R < dist(a; 09Q).
By(a) R™ JBg(a)

Suppose 0 < p < R/2. Then we use the Poincaré inequality, the previous estimate and the
Caccioppoli inequality to obtain

/ \u—qu|2d9: < c(n)p2-/ | Dul|? dz

P »

< Cmp Ly /B Duf? da
R/2

IN

P \n
Clo) ()42 [ =, do.
R
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Now if p > R/2 we easily have

/\uquFdx — / u— g2 di — |B,| - Jup, — upy?
B, B,

/ lu —up,|? dx
Bgr

2n+2 (2)n+2/ |U—UBR‘2dl’.
Br

IN

IN

Therefore, for all 0 < p < R < dist(a; 092),

/ o — up, [2dz < Cln) (22 / () — up, | de
R Br '

P

The proof of both (4.30) and (4.31) is now complete. O

In (4.30) and (4.31), if we let R — dist(a; 0f2), we see that both estimates also hold for
all balls B, CC Bgr C ). We state this fact as follows.

Corollary 4.29. Both estimates (4.30) and (4.31) hold for all balls B, CC Br C Q.

In the following, we consider the nonhomogeneous elliptic systems with constant coef-
ficients:

(4.32) Do(AY Dgu?) = Do fi, i=1,2,+-.

loc

of (4.32). Suppose f € L2 MN*) and 0 < A < n+2. Then Du € Elz(;?(Q, M,

loc

Theorem 4.30. Let A%ﬁ satisfy hypothesis (H2) and u € W22 (Q; RN) be a weak solution

Corollary 4.31. Under the same assumptions, if f € Cloo’é‘(Q;MNX”) and 0 < p <1 then
Du € CYH(€; MN*m),

loc

Proof of Theorem 4.30. Let ' cC Q" cC Q. Let a € Q' and Bg(a) = Br C Q". We
write u = v +w = v + (u — v), where v € W12(Bg; RY) is the solution of the Dirichlet
problem
{Div(A Dv) =0 in Bg,
U|8BR =u.
The existence of solution v follows by the Lax-Milgram theorem. We now by Corollary 4.29
have for all p < R

(4.33) / Do — (Do)g, P de < - (2)n+2 / Do — (Do), 2 da.
B, R Br
From this we have

/ Du— (Du)p, |2 da

P

= /B |Dv + Dw — (Dv)p, — (Dw)Bp|2dac

P

< C- (%)"*2 /B |Dv — (Dv) g, |* dx —|—/ |Dw — (Dw)p,|? dx
R P

IN

01-(2)”“/ IDu—(Du)BR\QdaerCg/ |Du — Dv|? dx.
BR BR
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Since u — v € VVO1 ’2(B r; RY), we use the Legendre-Hadamard condition to have

V/ |Du — Dv|*dz < AD(u—v)-D(u—v)dx
Bgr Br

= [ (=) Dlu-v)ds
Br

< V/ |Du — Dv|*dz + C, |f — fB|* da
2 BR BR

and hence
/ |DU—D’U’2d.’L‘ S CV / ’f—fBR|2 dx S CV [f]%Z)‘(Q”;MNX") 'R)\‘
Br Bpr
Combining what we proved above, we have

/ |Du — (Du)p |2dx < (Cy- (p)”+2/ |Du — (Du)BR|2dm
) ! R Br

+ 03 [f]%Z,A(Q//;Man) ° RA.
Let
®(p) = / |Du — (Du),|* da.

P

Using the Campanato lemma below, it follows that
A% 2 A
q)(p) < C4 E (I)(R) + [f]£2,)\(QII;MN><n) P :
Now we have

/ Du— (Du)gyiap < / Du— (D), (o)
Q' (a,p) Q' (a,p)

/ Du— (Du)s, |2 = B(p)

P

IN

< Cspt (HDUH%Q(Q”;MNXTL) + [f]iz,x(m;MNXn))
Therefore
[Du] 23 vy < C ([[Dull p2gqrnaysny + [ c2a@rmanvcny) -
The proof is complete. O

Lemma 4.32 (Campanato Lemma). Let ®(t) be a nonnegative nondecreasing function.
Consider the inequality

(4.34) o(p) < A [(%)a +e| ®(B)+BR® Vp< R <R,

where A, B, a, 3, € are positive constants with o > [3. Then there exists ¢g = €o(A, a, [3)
such that if (4.34) holds for some 0 < e < €q then

o(p) < C [(Z)Bé(R)Jerﬁ] Vp < R < Ry,

where C' is a constant depending only on «, 5, A.
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Proof. For 0 < 7 <1 and R < Ry, (4.34) is equivalent to
O(TR) < AT(1 + e *)®(R) + BR®.

Let v € (B, a) be fixed and choose 7 € (0, 1) so that 247% < 77. Let ¢9 = 7¢. Then, if
(4.34) holds for some 0 < € < ¢), we have for every R < Ry

®(TR) < 77 ®(R) + BR®
and therefore for all k =1,2,---
(7" R) < 77®(r"R)+ BT RP
< 7* DY 9(R) + B RS Zk:Tj(vﬁ)
j=0
Cr* 8 (®(R) + B RP).

Since ®(t) is nondecreasing and 7¥T2R < p < 751 R for some k, we have

IN

R

as desired. The proof is complete. U

v =0(g) @ pn=c|(7) em«ne]

4.7. Schauder estimates for systems with variable coefficients

In this section, we study the local regularity of weak solutions of systems with variable
coefficients. We first prove the regularity in the Morrey space Lﬁoi(Q) for the gradient of
the weak solutions.

Theorem 4.33. Let A%ﬁ(:v) satisfy the hypothesis (H3) and u € VV;’E(Q;RN) be a weak
solution of system

(4.35) Do (A3 () Dgu?) = Do fh.
Suppose f € LQ’A(Q; MMN*") and 0 < X\ < n. Then Du € L?&;\(Q; MNVxn),

loc

Proof. Let ' cc Q" cC Q. Let a € ' and Br(a) = Br C Q. Using the standard Korn’s
freezing coefficients device, u is a weak solution of system with constant coefficients

Div(A(a) Du) =DivF, F = f+ (A(a)— A(z)) Du.
Let v € Wh2(Bg; RY) be the solution of the Dirichlet problem
Div(A(a) Dv) =0 in Bg,
{U‘BBR = u.
Then, as before, using (4.30) instead of (4.31) we have
[ ipap < by [ puf e [ o
R™ JB, Br

P

< oy [ pupsc [ ipp
Br Br

(Pn 2 2 2
c (R) /BR|Du| +C/BR|f] + Cw(R) /BR|Du|

P\n
< e [@rrem] [ D+ OB B
R

IN
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where w(R) is the uniform modulus of continuity of A(z) :

W(R) = sup |A(x) - Ay)l.
lz—y|<R

We choose Ry > 0 sufficiently small so that w(R) < ey for all R < Ry, where ¢ is the

constant appearing in the Campanato lemma above. Therefore,

/ DUl dz < C(, Q) (1Dl e oy + 1122 g ) 2

P

This, by a local version similar to the Campanato space, we have

HD’LLHLZ,A(Q/;Man) S C(Q,, Q//> (HDUHLQ(Q”;MNX") + HfHLZ,A(Q//;Man)),
which proves the theorem. ]
We now study the regularity of the gradient of weak solutions in the Holder spaces.

This is done by proving the regularity of gradient in the Campanato space £12£+2“ (Q) for
some p € (0, 1).

Theorem 4.34. Let Al-ajﬁ € CO*(Q) with some 0 < u < 1 satisfy the hypothesis (H3) and
u € VV&)’?(Q, RY) be a weak solution of system
(4:36) Dal(AZP(2) Dgu?) = Dafi.

Suppose f € CoM(Q; MN*). Then Du € C2M(Q; MN*™),

loc loc

Proof. Similarly as above, we have

[ 1Du-unP < e (o [ pu- Dup P [ 1F = gl
o Br Br

IN

P \n+2 2 2
e (g [ 1pu=us 0 [ 15 n

v C[A]%O,HRQ’”/ | Dul?
Br

Pn "
< e (B [ DU (D, P+ C (o) B
R

+ C[A]Qco,uRQM/ | Du?.

Br

Since by the previous theorem Du € L3 (Q; MY *") for all € > 0 we obtain

loc
/ |Du — (Du)p, |* < A(%)”+2 / |Du — (Du) g, |*> + B RV,
4 BR

Using Campanato’s lemma, we have
[ 1Du= (Dus, P < € i
BP

and hence Du € L£2"T7¢(Q; MN*") for all € > 0. This implies Du € CO’B(Q;MNX”)

loc loc
for 8 = p — §. In particular, Du is locally bounded. Therefore, again, using the above
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estimates, it follows that

| 1Du= (D), P

P

IN

¢ (Lyne / Du— (Du) s, ?
R Br

£ Clfongn B + C A0, R /B | Dul?
R

< o (g [ Du (Du,
Br
+ Cfeomqn B + C[AZ0, RV

and using Campanato’s lemma again we have Du € LlQO’ZH“ (€; MY*") and hence Du €
C’O’“(Q MN ><n) ]

loc
Finally we remark that the following higher order regularity result can be easily deduced.

Theorem 4.35. Let k> 0,0 < u <1 and Afjﬁ € OFH(Q) satisfy the hypothesis (H3) and
uwe WEH QRN be a weak solution of system

loc

(4.37) Do(A5 (x) Dgu) = Do f,.

Suppose f € Cl H(Q; MNX"). Then u € C’llztl’“(ﬂ;RN).

4.8. Systems in non-divergence form and boundary estimates

In this section, we show that the Campanato estimates can also be proved for systems that
are not in divergence form and also the global estimates are valid if the boundary 02 of the
domain 2 C R" satisfies certain smoothness condition.

We first prove the interior estimates for systems in the following form:

AP () Dog? = f'; i=1,2,--- ,N.

By a weak solution u to this system we mean a function u € VVZ (Q RY) such that the
system is satisfied almost everywhere in Q.

Theorem 4.36. Let A%’g, fre CXQ) and 0 < p < 1. If u € W22 (B RN) is a weak
solution to the system above, then u € Cfo’f(Q; RY).

We now consider the regularity up to the boundary. In what follows, we assume the
boundary 0 of the domain  is of C1#; that is, for any zg € 052, there exist an open set
U c R™ containing z¢ and a C#-diffeomorphism y = G: U — R™ such that

G(xo) =0, GUNQ) =B ={yeR"|[yl <1, y, >0}
GUNON) =T1={y eR"[|y| <1, yn =0}
This G is called (locally) flattening the boundary.

Theorem 4.37. Let 9 be of CY* with0 < u < 1 and A%ﬁ, fi e CO*(Q) and o € CHH(Q).
Let A(x) satisfy the condition (H3). If u € WY2(Q; RYN) is a weak solution to the problem

Div(A(z) Du) =Div f, ulpa =g,
then u € CTH(Q; RN).
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Theorem 4.38. Let 02 be of CY* with 0 < u < 1 and Af‘jﬁ € CY*(Q) satisfy (H3).

Assume fi € COH(Q), ¢ € CPH(Q). If u € W22(Q;RYN) is a weak solution to the problem
A (x) Dog? = [ wlloq = ¢,
then u € C2H(Q; RY).






Chapter 5

Partial Regularity for
Nonlinear Systems

5.1. Reduction to linear and quasilinear systems

Let us consider a system in divergence form

(5.1) Div A(Du(z)) =0,

where A(€) = (A%L(€)) is of C! and satisfies a controllable growth condition; that is, for all

g, € MV*" letting A7 (€) = DAL (€)/0¢),

|4L(8)] < clé,
(5.2) A< L,

AL iy > vin’s v > 0.

Theorem 5.1. Let u € WH2(Q; RY) be a weak solution of (5.1). Then u € VVZ%)’?(Q;RN)
and Du satisfies a quasilinear system

ap j i _
(5.3) /QAij (Du(z)) DgDsu? (z) Do’ (x) dz = 0
for all ¢ € WOI’2(Q; RN) with supp ¢ CC Q.

Proof. Since

/ A(Du(z)) - D¢(z)dz =0, Yée Wy*(Q;RY),
Q

we use the well-known method of difference quotients to “linearize” the system. Let ¢ have
a compact support in  and |h| < dist(supp ¢; 9Q) we have

1
7 /Q[A(Du(w + hes)) — A(Du(x))] - D¢(z) dx = 0.
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Now for almost every x € 2

Al (Du(z + hey)) — A (Du(x))

= /1 %A; (tDu(z + hes) + (1 — t)Du(z)) dt
0

= /1 A%ﬂ (tDu(z + hes) + (1 — t)Du(z)) Dg (v (x + hes) — uj($)) dt.
0

Thus
[A(Du(z + he,)) — A(Du())] = Ay () 7h,s Du(w),

= =

where fl(h) (z) = (A°? (2)) is defined by

ij(h)

Aaﬂ / Aaﬁ tDu(x + hes) + (1 — t)Du(z)) dt.

For each h we have A(h) (x) satisfies the hypothesis (H1) in the previous chapter; that is

Ay (@) < L, A, (2) €485 > vIEP.
Note also that

(5.4) / fl(h) () Th,sDu(z) - Do(z) dz = 0.
Q
As before, choosing ¢ = (2 Th,su as in the Caccioppoli estimates, we can prove that

/ |Th.sDul*dz < C(R,v, L, [ Dullr2(qy) < oo,
Br/2

which is independent of h, s. Therefore, we have u € VVZ (Q RY). Passing to the limit for
h — 01in (5.4) we have

/Q AP (Du(x)) DgDsw (x) Do’ (x) da = 0

for all ¢ € W01’2(Q;RN) with supp¢ CC €. Since we may not have v € W2>2(Q;RY)
globally, this may not hold for all ¢ € I/VO1 ’Z(Q; RY). This proves the theorem. O
For each fixed s = 1,2, ... define v: @ — R by v/ = D,u?, and let
job _ g8
Aij (z) = Az‘j (Du(x)).
Then (5.3) becomes a linear system for v: Q — RN
(5.5) Do(AY(z) Dgv’) =0, Vi=1,2,..,N.

The coefficients of this linear system are only known to belong to LOO(Q) and satisfy the
hypothesis (H1) in the previous chapter; the weak solution v € I/Vl o 2(€; RY) and we do not
have the higher regularity result from the linear theory we proved before.

Theorem 5.2. Let A%, be of C°° and satisfy the controllable growth condition (5.2) and let
u € WE2(Q; RN) be a weak solution of

Div A(Du(z)) = 0.

Let Qg be any open set in . Then u € C®(Qo; RN) ifu € C’lo’f(Qo;RN) for some 0 < pu <
1.
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Proof. If u € C’llo’(’f(Qg; RY) for some 0 < u < 1, it follows that
Ta «Q 0,
A2 (x) = AY (Du) € CLt Q).
Therefore from the linear system (5.5) and the Schauder estimates we proved before we

have v € C’ll’“(Qo;RN); this is true for all s = 1,2,...,n, so u € Cf’“(Qo;RN) and thus

oc oc
Aiajﬁ € C1*(Q) and hence v € C2#(Qo; RY). By this “bootstrap” argument, the theorem
follows. O

Remarks. 1) This theorem shows that the C'*°-regularity of weak solutions of a nonlinear
elliptic system reduces to the C*-regularity of the weak solutions. In the theorem, if
Qo = Q we obtain the full C*°-regularity theory. However, for general systems, this is not
the case. If Qg is the largest open set such that a weak solution u belongs to C}’”(Qo; RY)

oc

for some p € (0, 1), then the set 2\ g is called the singular set for the solution u. Further
study on the singular sets will be given later.

2) Since the C'h-regularity is the key issue for the weak solution u of nonlinear system
(5.1), it is desirable to study the C%#-regularity for the gradient Du. By Theorem 5.1,
Du satisfies the quasilinear system (5.3). This system can be written for the gradient field
U = (Ul) = (Dyw?) from Q to R™ as follows

(5.6) /Q(SKSA;‘f(U) DgU! Do’ dz = 0

for all ¢ = (L) € C5°(Q; R™Y). Note that the coefficients of system (5.6), 5“5A%ﬁ(U), are
continuous on U € R™ and satisfy the Legendre ellipticity condition:

n N
=AU PLPL v PP=v Y Y PR
a,k=11=1

The system (5.6) is called the system in variation of system (5.1). O

5.2. Full regularity for equations with one unknown function

Let N = 1; that is, we only deal with the scalar functions satisfying a single equation
(5.7) DyAq(Du(x)) = 0.
Here we assume A(p) = (A (p)) is of C! and satisfies the controllable growth condition;
that is, for all p, n € R, letting A%’ (p) = A4 (p)/0pg,

| Aa(p)| < clpl,
(5.8) [A*%(p)| < L,

A (p)nang > v % v >0.

We use the same or similar notation as in the previous section. Then (5.5) reduces to
(5.9) Do(A“(x) Dgv) = 0,

with, again, the coefficients A% (z) belonging to L>(£2). However, in this case, we have the
following extremely important result due to De Giorgi.

Theorem 5.3 (De Giorgi '57). Let v € W-2(Q) be a weak solution of

loc

(5.10) Do(a®?(x) Dgv) = 0,
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where a®® € L>(Q) satisfying for a constant v > 0
aaﬁ(x)papg >vpl?, VpeR™
Then v € Cp*(Q) for some 0 < pu < 1.

Theorem 5.4. Suppose u € WH2(Q) is a weak solution of
Da(Aa(Du(2))) = 0.
If the functions A, € C® satisfy the controllable growth condition (5.8) then u € C*°(£).

Proof. From De Giorgi’s theorem, we deduce from the linear equation (5.9) that v = Dsu €
C’loo’(/j(Q) for all s =1,2,...,n and hence

AP (z) = AP (Du(z)) € CPH(Q).

loc

Therefore the Schauder estimates from (5.9) imply v = Dsu € Cllog(Q) for all s =1,2,..;
this implies A*® € Cll JH(Q) and hence v € C>"()). The theorem follows by this bootstrap

loc
argument. OJ

Proof of De Giorgi’s Theorem. The proof given below is due to J. Moser 60 and uses
an iteration method.

We say a function w € W12(Q) is a subsolution (or a supersolution) of equation
(5.10) if

/ a®?(x) Dgw Dopdr <0 (or >0), Vo€ W01’2(Q), v > 0.
Q
We first prove some useful lemmas.

Lemma 5.5. Let w > 0 be a locally bounded function in WH2(Q).

(a) If w is a subsolution then for any q > 1 there exists a constant ¢y = c¢1(q) > 0 such
that

1
sup w < ¢1 <][ wqu>q VY Bop C €.
Bpr/2 Br

(b) If w is a supersolution then for any 0 < q < "5 there exists a constant ca = ca(q) >

0 such that )
inf w > ey (][ wqu>q V Bop C Q.
Bgr/2 Br

Proof. Since the idea of proving both (a), (b) is essentially the same, using special test
functions, we prove them jointly. Let & > 0 and let @ = w + k. For any p # 0 and cut-off
function ¢ € Wol’oo(BgR) let ¢ = (2 wP. Since w > k > 0 is locally bounded by assumption,
@ >0 is a legitimate test function and
Dy = 2¢wP D¢ 4 pC*wP ™t Dw
so that testing by ¢ yields
p / a®? wP~1¢2Dgw Dyw da + 2 / a®? ¢w? Dgw Do da
Bar B

2R

<0 if wis a subsolution,
>0 if w is a supersolution.
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In the following we assume that p > 0 (or p < 0) if w is a subsolution (or a supersolution).
Therefore we have

/ \DwPa?'de < = [ |Dw|@"T @' ¢|DC|da
Bor ’p| Bar
and hence
/ |Dw|2wp_1c2dx§c2/ wP | DC)? da.
Bagr P” JBsr
Note that
|ID(lnw)]* = @ % |Dwf?,
1 2
e = P pup,
D™ )2 < 2D(@" )P + 207 D2,
We have
(5.11) / |D(Inw)|?¢*dx < C |D¢|? de,
Baor Baogr
(5.12) | e Pds <clp+ 17+ 1 [ ot iDePds p# -1
Baor Bar

By Sobolev-Poincaré’s inequality, letting 2* = %, we have

[/BZR (gw%)z* dw] >

We now let B, C By, C B/ and choose the cut-off function ¢ as before such that
¢e Wol’oo(BgR) and (=1on By, (=0in Q\ B,, and

<cllp+1)?+1] / @P | D¢Pde; p# -1
Bar

1

0<¢<1; D¢l < :
ro — 1

Letéz%:ﬁ and v = p + 1. We obtain

1
B 2
(5.13) / @ dz| < C(W'“)/ @ da; 7y #0.
B, ~ (r2—r1)? Jp, ’
We now iterate (5.13) as follows. Let for i =1,2,...and 0 < 6 < 3

R OR

Yi = 0"y, Rizg‘i‘ﬁ
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and we find that

1

1
6 5t
6’77, dw
’L+1
1

< L
[l ] (o)’
11

1
. [ 1; !72| 2] / —
Ut 62 R B1toyr/2
< Cg R e / W dz,
Bve)r/2

using the elementary calculation

: 1
T e+ 1% Cn pend
I | o) <com e
J:

sit+1
(][ w7t d:v) < C(0) ][ w7 dx.
Bri 4 Bateyr/2

For v > 0, letting # = 1, we have
1

Vit1 %
(5.14) ][ wV* dx < <][ w” dx) ,
BR BR

while for v < 0, letting 6 = 2, we have

Therefore,

i+1

(5.15) ][ W dx > o ][ wldzr | .
Br;,, B3gry2

Case (a): w is a subsolution. In this case p > 0 and vy =p+ 1 > 1. In (5.14), letting
1 — 00 we obtain

~
sup w = lim ||0f|priv1i (g, )< <][ w? dm) ;o> 1L
1—00 i+1 Bgr

Br)2

Letting & — 07 yields the same estimate for w; the part (a) is proved.

Case (b): w is a supersolution. In this case, p < Oand vy =p+1< 1. Let 0 < ¢ <

%5 = 0 be any number given. Let 0 < go < ¢ be a number determined by the lemma

below and assume k > 0 is the integer satisfying ¢oé* < ¢ < god6*Tt. First of all, by Holder’s
inequality, we have

1 1
q q
Br Br

Using (5.13) as in (5.14) we have

1

: ey w
<][ w? dx) < <][ wlk+1 d:l:) < ][ w? dx .
Br Br Bsry2
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On the other hand, in (5.15) letting ¢ — oo we have

1

—a
inf w = hm ||TI)||L%’+1 (BR- ) Z C2 ][ U_)_qo de .
Bry2 i—00 il Bigy2

The part (b) and hence the lemma are proved if we prove the following lemma. O

Lemma 5.6. In case (b) above, for any 0 < q < § there exist constants qo € (0, q) and
Cy > 0 such that

1

N ©
][ w P dx >y ][ w dx .
B3gr/2 B3gr/2

Proof. Let B, be any ball lying in Bog. Let ¢ be the cut-off function such that
(B, =1 Clavp, =0; [D¢<2/r.
Use this ¢ and the estimate (5.11) above and we have

/ |D(Inw)|* dz < Cr" 2

T

so that by Hélder’s inequality

/ |D(Inw)|dx < K r" L,

We also assume K large enough so that o = % € (0, ¢), where o = 0, is the constant in
the John-Nirenberg theorem for BMO functions (see Theorem 4.27, Chapter 4). From that
theorem, u = Inw € BMO(B3g/2) and, letting

ug = ][ u(x) dz,
Bsgr,2

/ eto lu=vol go < ' R™,
B3gr/2

we have

and thus
/ e (U=v0) gp < C'R", / e (v0=) o < C'R™,
Bsp/o Bsry/2

Multiplying these two inequalities yields

/ eqﬂudaﬁ-/ e 0%y < C R*™,
B3gr/2 B3gr/2

Since e?0* = @w? and e 9" = W™ rearranging this inequality we have
1 1

—a a0
][ w P dx >y ][ w dx .
B3gr/2 B3gr/2

The lemma, is proved. U

Lemma 5.7. Let v € WH2(Q) be a weak solution of (5.10). Then v is locally bounded and
there exists c3 > 0 such that for any ball Bog C Q) we have

1

2
sup |v] < c3 <][ v[2dx) .
Br Bar
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Moreover, if v > 0 then we have the following Harnack inequality:

sup v < C inf v.
Bry» Bpr/2

Proof. The Harnack inequality follows easily from Lemma 5.5. We have only to show the
first assertion. We use a similar technique as in the proof of Lemma 5.5. Let w = v =
max{v, 0}. For any p > 1 and M > 0 let H € C'[0,00) be defined by H(s) = s for
0 < s < M and H(s) is linear for s > M. Let ¢ € Wol’oo(BgR). We define test function
¢ = (2 G(w), where

G(s) = /OS|H’(t)|2dt, 5> 0.

Since G is Lipschitz and G(s) < Cjys this function ¢ is indeed a test function in VVO1 2(Bag).
Let us look at some properties of G, H:
(5.16) G(s) < sG'(s), G'(s)=|H'(s)|?, H(s)+ sH'(s) < 2psP.
Note that Dy = (2 G'(w)Dw + 2¢ G(w) D¢ and
G(w)=0, Dw=0 on{zeQ|v(r) <0},

hence testing equation (5.10) with ¢ yields
[ pere@e < ¢ [ cipalipdG)
Bar Baog

< ¢ ¢pal|Dclwd (@)
Bar
1
! / Do) +C [ |l 1D ¢ w).
2 BQR BQR

IN

This, combined with (5.16), yields
[ igm@)Par e [ e
Bayr Bsyr

Using the Sobolev-Poincaré inequality, we have

(/ CH ()] dm)z* gcﬁ/ @2 | DCP da.
Bsg Bar

The righthand side of this inequality is independent of number M, so letting M — oo we

have
1
. 5
</ ¢? wqédx> §Cq2/ @? | D¢|? di,
BQR BZR

q = 2p > 2. Using the special cut-off function ¢ as above, we have

1

3 2
/ w? dx §Cq2/ wldzx
By, (ro —71)* Jp

T2

J— n
where 0 = -5,

for all 0 < r1 < ro < 2R. Hence using

gi = 20", Ri:RJrg,
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as in the proof of part (a) of Lemma 5.5 we deduce

1 1

2 2
supv < supw < c3 <][ w2d:z:> <c3 <][ v2dx>
Br Br Bagr Baor

The same estimate holds also for —v, and hence we have

, \?
sup |v] < c3 ][ vidx |
Br Bar

which proves the lemma. [l

Completion of the Proof. Finally let us complete the proof of the De Giorgi theorem.
Let

M(R) =supv, m(R)=infv, w(R)= M(R)—m(R).

Br Br

Let Bap, CC 2. For R < Ry we have M(R) —v > 0 is a weak solution on Bp thus by
Harnack’s inequality,

M(R) —m(R/2) < c(M(R) — M(R/2)).
Since u — m(R) > 0 is also a weak solution,
M(R/2) —m(R) < c(m(R/2) —m(R)).
Adding these two inequalities yields
w(R) +w(R/2) < c(w(R) - w(R/2))

so that
c—1
R/2) < R VR < Ry.
w(R/2) < SJ w(R), VRE Ry
From this and Lemma 5.8 below, it follows that
Inn c—1
< 'u" = —— = —_—
w(R)—C(R/RO) ;M n2’ n C—|—1’

and hence v € Cloo’g (€2). Since we can choose constant ¢ > 0 uniformly for all Ry, the constant
1 > 0 can be chosen independently of Ry; hence we have proved the De Giorgi theorem.

Lemma 5.8 (De Giorgi). Assume 0(R) > 0 is bounded on (0, Ry) and satisfies for some
constants T, n € (0, 1)

0<60(TR) <nb(R), YREe(,Ry.
Then there exists a constant C > 0 such that
1
6(R) < C-(R/Ry)’, = .
Int
Proof. Let 0 < §(R) < 6§y for 0 < R < Ry. Then
0(R) A
sup — < =
Re[rRo, Ry) RP ~ 78 Rg

We use induction to show that

O(R) < My-R°, Re[r'Ry, 7 'Ry), i=1,2,---.
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Indeed, if ¢ = 1 this is trivial by the definition of My. Suppose this inequality is proved for
i =k —1 then for i = k and R € [t*Ry, 7*"'Ry) we have R/T € [TF"'Ry, 7¥72Ry) and
hence by induction assumption 6(R/7) < My (R/7)P. Therefore, it follows that

R R RP
O(R)=0(r—) <n-0(>) <nMo—5 =My R’

T

since 77 = 5 by the definition of 3. This proves the lemma. O

5.3. No full regularity for elliptic systems

The full C*°-regularity (for smooth data) would follow for elliptic systems if De Giorgi’s
theorem were true for systems. But this is not the case. The following example due to De
Giorgi '68 showed that his result for equations cannot be extended to systems.

Example 5.1 (De Giorgi ’68). Let B be the unit ball in R™ with n > 3. Consider the
coefficients ‘
AP (w) = 6°0 6,5+ Pi(x) Pj(x)

where
TiT oy

[z

It is easily seen that A%ﬁ € L*°(B) and there exist constants 0 < v < M such that

Pl(x) = (n—2) 60 +n

vIEl? < A () €heh < Mg

Moreover one verifies that the function

x n

=or 13 [1— ((2n—2)2+1)_%}

uo () 5

belongs to W12(B;R"™) and is a weak solution of the system
Do (A3 (x) Dgu? (x)) = 0.

But, ug ¢ C2*(B; R") since it is not bounded at 2 = 0.

loc

Note that the function ug defined above is also the unique minimizer of the energy
J(v) = / F(z,Dv)dx = / (]DUP + (P(x) . Dv)) dr
B B

among the Dirichlet class D;Q(B; R") of the boundary value ¢(z) = x, where P(z) is the
matrix (P!(x)) defined above.

Remarks. 1) Modifying De Giorgi’s example, Giusti-Miranda ’68 showed that a quasilinear
elliptic system of type
Div(A(u) Du) =0

X

2] 38 weak solution and thus have singularities

with analytic coefficients A(u) can have u =

in dimension n > 3.

2) In 1975, J. Necas presented a functional of type
/ F(Du(z))dz; u:Q2CR" — R
Q

satisfying, for n > 5, the strict Legendre ellipticity condition whose minimizer is function
u¥(x) = ¥4 which is Lipschitz but not C*.

||
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3) Most recently, in 1998, Miiller and Sverak (ICM ’98, Berlin) showed that there exists
a smooth functional of type

I(u) = /QF(Du(x)) dr; wu:QCR?— R?

satisfying the strong Legendre-Hadamard condition such that the Euler-Lagrange equation
of I(u) on whole R? admits

(i) nontrivial Lipschitz solutions with compact support;

(i) Lipschitz solutions that are nowhere C*. O

We can conclude that vector valued minimizers or more generally the weak solutions of
nonlinear elliptic systems are in general non-regular and we can only hope to have a partial
regularity; that is regularity outside a certain closed set (called the singular set). The new
(unexpected) example of Miiller-Sverdk shows that the weak solutions for certain strongly
(Legendre-Hadamard) elliptic systems may be nowhere regular; this is in sharp contrast
with all the existing regularity theories for nonlinear systems, which establish the almost
everywhere regularity for weak solutions under the strong Legendre ellipticity condition or
for energy minimizers under certain strong Legendre-Hadamard conditions (e.g., uniformly
strict quasiconvexity).

There are also many open problems regarding the size of the singular sets and the
condition of ellipticity which can guarantee at least almost everywhere regularity of energy
minimizers in the calculus of variations. In the end of this chapter, we shall prove a theorem
of Evans regarding the quasiconvexity and partial regularity in the calculus of variations.

5.4. Almost everywhere regularity: an indirect approach

Consider the following quasilinear system, which is usually the system in variation of some
nonlinear system,

(5.17) Div(A(z,u) Du) = 0,
where the coefficient A(x,u) = (A%ﬁ (x,u)) satisfies
(5.18) A @w)| < L, AT (@,u) €85 > v €, ¥E e MM

This condition compares to the following condition we used before for functions A(z) =
(A%ﬁ (x)) which we called the hypothesis (H1).

(H1) Al (@) < L, A (2) €€, > v|e?, v e MV,

Theorem 5.9. Assume A(x,u) is uniformly continuous on (x,u) € Q x RN. Let u €
Wh2(Q; RYN) be a weak solution of (5.17). Then there exists an open set Qo C Q such that
10\ Q| =0 and u € C2*(Q; RN) for each 0 < p < 1.

loc

Proof. The main idea of the proof is the following. If u varies very little near a point x = a
in the sense that the quantity

(5.19) E.(a,R) = R”/ lu(z) — upp (o | do

Br(a)
is smaller than a power of R as R — 0 then the blowing up of u will converge to a solution
of linear system with constant coefficients; the limit function (tangent map) will be regular
(Holder continuous) at point a. The convergence of the blowing up will also be strong
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enough to conclude a is also a regular point for u. The idea is central to the regularity
theory for nonlinear systems. We shall give the details of the proof of the theorem below,

after several lemmas. O
Lemma 5.10. Let u € Wlicg(Q RM) be a weak solution of (5.17). Then there exists a
constant C; = Ci(n, N,v, L) such that for alla € Q and 0 < p < R < dist(a; 0)
Cl 2
(5.20) / |Du*dr < ——— / |u|* dz.
B,(a) (R=0)? JBpa)

Proof. This follows from the standard Caccioppoli estimate for linear systems since we can
consider A(z,u(x)) = A(z) as in L>®°(Q) satisfying the hypothesis (H1). O

Lemma 5.11. Let A{Xﬂ be constants satisfying (H1) above with Q = B1(0). Then there ezists
a constant Cy = Cy(n, N,v, L) such that for any weak solution v € T/Vll 20 L2(B,(0); RN)
of
Do (A3 Dgv? (z)) =0
and all 0 < p < 1 we have
Ey(0,p) < Cy p? B,y (0, 1),
where Ey(a, R) is defined by (5.19).

Proof. This is simply the Campanato inequality (4.31) we proved before. O

Lemma 5.12 (Compactness Lemma). Let fl(h)(x) be a sequence of functions satisfying
(H1) above with the same constants L, v > 0 in Q = B1(0). Assume A,y(z) converges to
A(z) for almost every x € B1(0) as h — 0. Suppose V() € I/Vli’cz N L%(B1(0); RY) is a weak
solution of

DalA28, (@) Dyl (@) = 0
and v(y — v weakly in L*(B1(0); RY). Thenv € WE2NL?(B1(0); RN) and for all0 < p < 1
v(p) — v strongly in L?(B,(0); RM),
Dy — Dv weakly in L3(B,(0); R™).
Moreover, v is a weak solution of

Do (A3 (x) Dgv? (z)) = 0.

Proof. First of all, since zzl(h) (x) satisfies the Legendre condition (H1), the weak solution
v(p satisfies a Caccioppoli-type inequality similar to (5.10). Since {v(} is bounded in
L?(B1(0); RY) we thus have for 0 < p < 1 that {Duv,} is bounded in L?(B,(0); MY*™);
therefore, the convergence part of the lemma follows. We now prove the weak limit v is a
weak solution of

(5.21) Do (A3 (z) Dgv (z)) = 0.

Let ¢ € C5°(B1(0); RY) and supp ¢ C B,(0) for some 0 < p < 1. From the systems satisfied
by v,y we have

/B/J(O) A5 (@) Dgvly (@) D' (w) d = 0.
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By assumption and Lebesgue’s bounded convergence theorem, fl(h) — A strongly in L? (B,(0))
as h — 0; therefore we can pass to the limit in the previous equation to deduce

/ A3 () D! () Dod' () dz = 0,
B,(0)
and hence v is a weak solution of (5.21); the proof is complete. ]

Remark. We notice that the assumption that the sequence of coefficients satisfy the uni-
form Legendre condition cannot be replaced with the Legendre-Hadamard condition since
in that case the Caccioppoli inequality (5.20) may not hold. O

The following important lemma is similar to the Schoen-Uhlenbeck e-regularity theorem
for harmonic maps.

Theorem 5.13 (Main Lemma). For all 0 < 7 < 1 there exist two positive constants
€0 = eo(T,n, N,v,L) and Ry = Ro(7,n, N,v,L) such that if u € WH2(Q;RYN) is a weak
solution to system (5.17) then for any a € Q and R < min{ Ry, dist(a; 0Q)} the condition

(5.22) E.(a,R) < €
implies
(5.23) Eu(a,TR) <2Cy 7% Ey(a, R),

where Cy = Co(n, N,v, L) is the constant in Lemma 5.11.

Proof. We use the contradiction method. Suppose the result is not true. Then there exist
70 € (0, 1), a sequence of points aj, € Q, a sequence €5, — 07, a sequence Ry, — 07 and a
sequence up, of weak solutions of (5.17) such that

Ey, (an, Rp) = 6}2” Ey, (an, oRp) > 2C5 7'02 6}21.
Now the following is the blowing up technique. Let
un(y) = e, [unlan + Ruy) — (un) By, (ar)] -
Let
Ay (y) = Alan + Ry, envn(y) + (un) g, (@) ¥ € B1(0).
Then it is easily seen that v, € W2(B;(0); RY) is a weak solution of

Div(An)(y) Don(y)) = 0,

and satisfies (vp)p, (o) = 0; moreover,
En01) = [ )Py =1
B1(0)

(5.24) E,, (0,79) > 2Cy7¢.

Now, passing to a subsequence, still labeled the same, as h — 0, we have
v, = v weakly in L2(B1(0); RY),

(5.25) envp(y) — 0 a.e. in B1(0),
A%’B(ah, (uh)BRh(ah)) — Af‘jﬁ, some constant,

and hence using the uniform continuity of A%ﬁ (z,u) we have

Apy(y) = A= (AY) ae in Bi(0).
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From the compactness lemma above, we obtain v is a weak solution of
Div(A Du(y)) =0
and hence by Lemma 5.11 we must have
E,(0,70) < Cy 18 E,(0,1).

On the other hand, using the semicontinuity of the norm in L?(B1(0); R") we have E,(0,1) <
1, and by (5.24) and the strong convergence of v;, to v in L2(B,(0); RY) for all p < 1 we
have

Ey(0,70) > 2Ca 73,

which is a contradiction with the previous estimate we have above. ]

Proof of Theorem 5.9. Let 0 < p < 1 and choose 7 € (0, 1) in such a way that
20y 7272 < 1. Let

(5.26) Qo = {a e ’ Eu(a,R) <¢ 3 R < min{Ro, dist(a;m)}} ,

where €y, Ry are the constants determined in the main lemma above. From the main lemma,
we have for any a € Qy
Eu(a,TR) <2Cy 1% Ey(a,R) < 7" Ey(a, R)

and hence E,(a,7R) < E,(a, R) < €3, and therefore we can use the main lemma again to
have
Eu(a,mR) < 7" Ey(a, R).
By induction we get for every k
E.(a, TkR) < ek E,(a,R)
and hence for every p < R (note that p"E,(a, p) is nondecreasing in p)

(5.27) Eu(a,p) < 7720 (%)% Eu(a, R).

On the other hand, since E,(a, R) is continuous in a, if E,(a, R) < €2 then there exists
a ball B,(a) C € such that for all x € B,(a) we have

E.(z,R) < €.
Therefore, Q) is an open set in Q0 and moreover, similarly as (5.27),
Eu(z,p) <772 (%)M Eu(z,R), V=€ B,(a).
Hence for every x € B, (a), we have
/ |U(y) - qu(x)’2 dy < Cy - Pn+2“7
Bp(iv)

where C,, = C,, (7, R) < oo is some constant. By the (local) Campanato theorem, this shows
that u € CL*(B,(a); RY). Hence u € Cp*(0; RN).

To complete the proof, we show |Q\ Qy| = 0. By Lebesgue’s differentiation theorem,

E,(z,R) — 0 as R — 0% for almost every z € Q and, for these z, we have x € Qg and
hence |2\ Qy| = 0; moreover, the singular set is given by

Q\ Qo = {a € Q| liminf B,(a, R) > 0}.
\ Qo = {a € Q] liminf £, (a, R) > 0}

The proof of Theoerm 5.9 is now complete.
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Remark. We would like to remark also that Theorem 5.9 holds even under the weaker
assumption that the coefficients A%ﬁ (z,u) be only continuous in € x RY. More precisely
the following theorem is true; its proof is similar to the one for Theorem 5.9 given above.
(See also the proof for energy minimizers later.) O

Theorem 5.14. Assume A(x,u) is continuous on (z,u) € Q x RN. Let u € WH2(Q; RY)
be a weak solution of (5.17). Then for every My > 0, there exist positive constants ey, Ry
such that if for some a € Q and R < min{ Ry, dist(a; 9Q)} we have

[uBL@)| < Mo, Eu(a, R) < €
then u is of CO* in a neighborhood of a for all u € (0, 1). Therefore, in this case, u €
CYH(Qo; RY), where

loc

Qo = {a € Q| liminf £, (a, R) =0 and sup |up,y)| < +oo},
R—0t+ R
and thus again [\ Q| = 0.

Applying this theorem to the system in variation (5.6) of the nonlinear system (5.1), we
have the following theorem.

Theorem 5.15. Let A% (€) be of C! in & € MNX" and satisfy the controllable growth
condition (5.2) and let u € WH2(; RY) be a weak solution of

Div A(Du(z)) = 0.
Then u € Cllo’g(ﬂo; RN) for each p € (0, 1), where
Qo = {a € Q| liminf Ep,(a, R) =0 and sup |(Du) g, (4| < +oo}
R—0t R

is an open set in 2 and |Q \ Qo| = 0. Furthermore, if A%, is of O then u € C*(Qp; RYN).

5.5. Reverse Holder inequality with increasing supports
Let us consider a weak solution u € W1H2(Q; RY) of the linear system
Do (A3 (z) Dgu?) =0,
where A%ﬁ € L>°(Q) satisfies the Legendre condition
A (@) €Leh > v g

Then we have the Caccioppoli inequality

/ |Du2d$§02/ lu —up,|*dr, ¥ BrCQ
Br/2 R Br

and using the Sobolev-Poincaré inequality

/ lu —up,|*dr < Gy (/ Du|qdas) ’ ,
BR BR

where 2 = ¢* = n"—_qq and thus ¢ = f—f:z < 2, it follows that

1
2
(5.28) ][ |Duf*dz| <¢ <][ | Dul|? dx)
Bgr/2 Br
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Except for the fact that the integration is on different increasing sets, the inequality
(5.28) can be seen as a reverse Hélder inequality. If the domains of integration were the
same, then the reverse Holder inequality would imply a higher integrability of Du in LP for
some p > 2; this is the well-known result of F. Gehring '73.

The following local higher integrability result based on the reverse Hdélder inequality
with increasing supports is due to Giaquinta and Modica '79. The proof we will give is
mainly due to E. Stredulinsky ’80.

Theorem 5.16. Let ¢ > 1 and f € L} _(B), f > 0. Suppose that

loc

1
q
][ fldx <b fdx, VBgrCB,
Bry2 Br

where b > 0 is a constant. Then there exists an € = e(n,b,q) > 0 such that f € L} (B) for
all p € (q, g+ €). Moreover, for all Br C B, we have

<][ fpdx>ps0(n,b,q,p) (f fqdw>q-
Br/2 Br

Before proving this theorem, we quickly give an application of this result to obtain a
higher integrability for energy minimizers.

Theorem 5.17. Assume that F: MVN*" — R satisfies
mlgP < F(§) < MIE[; 1<p<oo.

Let u € WP(Q; RY) be a local spherical quasi-minimizer of I(v) = Jo F(Dv(x)) dzx in

loc

the sense that, for any ball Bg(a) CC €,
| Powsc [ FDwro), Yo W (Bala)RY),
Br(a) Br(a)
where C' > 0 is a constant. Then u € WI}J’C‘I(Q; RYN) for some constant q > p.

Proof. Let Br = Bgr(a) CC Q be fixed. For any R/2 < s<r < R, let ( € WOI’OO(Q) be a
cut-off function satisfying supp ¢ C B, = B,(a) and

1
r—s

0<¢<1, (g, =1, [D{z) <

Let A= B, \ Bs and

¢ =—((u—\) € WyP(B; RY),
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where A € RY is a constant determined later. We have

m/ |DulP dx < m/ |Du]pdx§/ F(Du) dx
Bs B,

T

< C BTF(D(qu(b))dﬂC

< co/T\Dw—c(u—A))\pdx

- CO/A|D(u—C(u—)\))|pdm

_ CO/A|(1—C)Du—(u—)\)®Ddex
<

Co/ \Dufp dz + —0 / lu— AP da.
A (r—s)? Jpg

Now filling the hole (Widman’s technique), i.e., adding Cy [ [Dul? dz to both sides, we
have

(5.29) /Du|pd1‘§0/ \DulP? d + —C / lu— AP da,
. B, (r—s)P Jgg,

Co

Cotm < 1. We need a lemma.

where 0 =

Lemma 5.18. Let f(t) be a nonnegative bounded function on [r9, 1], where 19 > 0. Suppose
that for 1o < s <r <71 we have

f(s) <0f(r) + (A(r— )" + B),

where A, B, a, 0 are nonnegative constants and 0 < 6 < 1. Then for all o < p< R <7y
we have

(5.30) f(p) <C (AR~ p)~* + B),

where C' is a constant depending on a and 0.

Proof. For fixed 79 < p < R < 7 let us define a sequence {r;} by
ro=p, ripp—ri=1-7)7" (R—p),

where 0 < 7 < 1 is to be selected. By iteration, we have

k—1

(R—p) @+ B] > ot

=0

o) <0 1) + | 2

If we choose 7 in such a way that 77?0 < 1 and pass to the limit for ¥ — oo in the above
inequality, we get (5.30) with C' = (1 —7)~%(1 — 07—*)~L. O

From (5.29) and the lemma above (with B =0, p = R/2) we have
/ |Dul? dx < ] lu — AP dx.
Bpr/2 RP Jp,

Now we choose A = up, = fBRu and use the Sobolev-Poincaré inequality

n+p

/ lu —upg, |’ de < oy (/ |Du|n7fpda:) ’
Br Br
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to obtain
n+p

][ |Dul? dz < C3 <][ |Du\nn7+pp dm) ’
Br/2 Br

Let f = \DM% and g = % > 1. Then we have

1
q
][ fidz | <b fdx,
Bry/a Br

a

and therefore by the theorem above we have f € Lj (€) for some a > ¢. This implies
|Du| € L¢ () for some d > p. The theorem is proved. O

loc

Remarks. 1) If p = n we have u € I/Vli’q(Q; RY) for some ¢ > n and hence the Sobolev

C

embedding theorem implies that v € C’loo’?(Q; RY) for some 0 < o < 1. This is first proved
by Morrey in the case when n = 2.

2) Any weak solution u € I/Vll’2(Q; RY) of a system

Div(A(z,u, Du) Du) = 0,
with A(x,u, &) satisfying
VI < Az, u, )€, Az, u,§)E < L,

is a local spherical quasi-minimizer of the Dirichlet integral I(v) = [, |Dv|* dz. Indeed, if
/zﬂ@uJ%ODu~D¢¢r:0, V¢ e Wyt (9 RY),
Q
taking v = u 4+ ¢ with supp ¢ C Br(a) CC 2, we get

u/ |Duf*dz < / A(z,u, Du) Du - Dudx
Br(a) Br(a)

= / A(z,u, Du) Du - Dvdz
Br(a)

1/2 1/2
L(/‘ |Dm%m> (/‘ |Dm%m>
Bpg(a) Bg(a)

<
and hence I
/ |Dul? dz < (=)? / | Dv|? da.
Br(a) v Br(a)
Therefore, by the theorem above, u € I/Vllof(Q, RY) for some p > 2. O

Proof of Theorem 5.16. The main idea of the proof is to use the method of cube decom-
positions of Calderén-Zygmund. First of all, we change balls to cubes.

Let B CC B be given. We let Q°, Q', @? be the cubes with sides parallel to the
coordinate axese and with the same center as Bgr such that
Brjs C Q" cC Q' cC Q* C Bg.

1

oe(R™) and 7 > 0 we define a local mazimal function

M, (g)(z) = sup ][B Jowas

For any function g € L

0<p<r
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Select r > 0 sufficiently small so that Bs,(z) C Q? for all z € Q'. Note that we can choose
r = c, R and |Q/|Q? = dn, |Q°|/|Q?| = en, constants depending only on the dimension
n.

Let f=f- X@2- By assumption, we have
(5.31) M (f9)(z) <bML(f)(z), VaeQ'.
We want to show that

(5.32) (/Ofpdx>;§0</2fqu>;

for p € (q, g + €), where € = €(n,b,q) > 0 and C' = C(n,b,q,p) > 0 are some constants.

In the following, we assume |Q°| = 1. In this case, the number r = r,, above depends
only on the dimension n. We follow E. Stredulinsky '80. Let

a/n
R(t) = % + (;;}f_l) t=am,
where k > 1 is a constant to be determined later and ¢y > 0 is a constant making R(1/k) =
(side@')/2. Then R(t) is decreasing and R(t) — 1/2 as t — oo and
R(t) — R(tk) = ot~/
Let Q; be the cube concentric to Q° with side-length equal to 2R(t). So we have
RQPcQ,cQcQl, Vs>t>1/k
and Qq/p = Q! and Q; — Q° as t — oo. Let
E@t)={z e Q| f(x) >}, E =EH)NQ, E=Et)NQ"

Finally let m = m,, be the least integer such that diam Q! /2™ < r =r, and v,

define a constant > 0 by
1/
0 = min {ygl/q, (cg |Bl|> q} .

The remainder of the proof will be divided into several steps.

_ ognm.
= 2",

In what follows, without loss of generality, we assume || f|| La(Q2) = 0; otherwise, replace
by 111l e g2 /-
Step 1 (Cube decomposition). Fix s > 1. We have
][ Fr< | fr=ot<ut <utsl
s Q?

Subdivide the cube @ dyadically m = m,, times so that the diameter of each subcubes =
diam Q4/2™ < diam Q' /2™ < r. For each such subcube @

][ R A O
Q @l J o,

Now subdivide further each @ as in the Calderén-Zygmund decomposition to get {P;},
disjoint subcubes of ()5, such that

fq(:v) <sl ae zeEQs\UP,

s? <][ fr<oms
P.

[3
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Let G = U; P, and we have

E, C G, / f1<2msal.
G

The initial subdivision guarantees that diam P; < r. Given z € P;, consider ball B,(x) with
p = diam P; < r; then

| - -
e f D Peaninm

Therefore, by (5.31)
(5.33) s9 < apnb M2 (f)(z), Vzed.

Step 2 (Basic estimates). We now select k& > 1 such that k¢ = 3%a,b. From (5.33) with
s = kt we have

3t < Myo(f)(z), Vzed.
)

Hence, given x € G, there exists a ball B,(z) such that

(5.34) 3t < ][B ( )f.

We claim that B,(xz) C Q. It is sufficient to show p < ¢ t=2/"; indeed, if we denote the
center of Q; by ¢ = (Ga) then for any y € B,(z), since x € @5, we have

[y — 2|+ [za — Gal < p+ R(s)

cot™ 9" + R(kt) = R(t)

|ya - (ja| S
<

and hence B,(z) C Q. The definition of set E(t) gives

/ fs/ F+1B,(@))
By(x) By (x)NE(t)

From this and (5.34) we get

t1By(x)] < / <t / I
B, (2)NE(t) E(t)

and, since [ f9 =69 < ¢ |By| by the definition of 4, it follows that
|[Bp(2)] <7967 < [Bifcgt™,

and hence p < ¢ot~%"; so B,(x) C Q. Using this, we have

t / J
Bp(:l?)ﬂEt

Since these balls {B,(x)} cover the set G, using a basic covering lemma (Stein’s book),
we obtain a disjoint collection of balls {B; = B,,(x;)} such that |G| < 5" |B;| and

—

|[Bp(2)] < <
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consequently
[ i< [ ez
s G
2" 75" | Byl
i

10" s9¢1 f
E:

= 10”k5q1/ f.
Es/k

Step 8 (Reduction to Stieltjes integral form). Let h(s) = fES f then h is nonincreasing, right
continuous and h(t) — 0 as t — oco. Since

IN

IN

t1 1 h(t) < f1—0 ast— oo,
Ey

we can integrate by parts to get

—/ootqldh(t) = (¢—1) /Ootqzh(t)dt—i-sqlh(s)

s

= (¢—1) /Ootq‘2 : fly)dydt + s " h(s)

5 f
< (-1 [E F(w) / 192 dtdy + 57 h(s)

s

— [ Pkt [ f)dy
Es Ee/k
hence, with a = k10" depending only on n, b, g, we have

(5.35) — /OO t4 dh(t) < ast ' h(s/k), Vs>1.

S

Note that we also have for any p > 1

(5.36) —/ tr~Ydnt) > [ fPy)dy, Ys>1.
s E?

We need a lemma mainly due to F. Gehring '73.

Lemma 5.19 (Gehring *73). Suppose (5.35) holds. Let p > q satisfy 1 > a kP~ (p—q)/(p—
1). Then

[Tetan e (< [Tertan ) v anam.

1 1
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Proof. Let Ig = — flj tP~L dh(t). Integration by parts yields I = Lg + (p — q) J, where

J = /j Pl <— /tj s471 dh(s)) dt

a /j tP=2 h(t/k) dt
1

IN

i/k
= akP! / tP=2 h(t) dt
1/k

hS

akp—1 P ; ji/k
- 2 [(;)p i - [ tpldh(t)]

a kp1 /j g1 [
— | 7 hdh(t) - / 1t dh(t)| .
p—1 [ 1/k ©) k=t ( )]

IN

Therefore,

_l_
—
7N
bR~

[
=
N————

—_
[

.

b
Q
|
kw\
8
~
<
L
IS
>
—~
N’
N———

Note that the third term on the righthand side of this inequality is < 0 and let j — oo we

arrive at
1
p—q —1| joo o , P4 -1 -1
1———akP }I <IX+——ak? —/ P~ dh(t
[ D — 1 p q p— 1 < 1/k ( ))
and the lemma is proved since — fll/k tP=Ldh(t) < h(1/k). O

Step 4 (Completion of the proof). We use (5.36) with s = 1 and the lemma above to get,
for p € (¢, g + €) with some € = €(n, b, q) > 0,

/ fP<e | fl4ch(1/k).
EY Eq

Since fP < f9 when f <1 it follows that

A

Pos@ry [ freawt [
QO Q2 2
C 1 =C(n,b,q,p)d".

IN

After renormalization we have

(/, )" < ctmnan (/. o)

A dilation argument can also remove the assumption |Q"| = 1.

The proof of Theorem 5.16 is now complete.
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5.6. Singular set of solutions of quasilinear systems

From Theorem 5.14, we see that the singular set .S, C 31 U Yo, where

1 = aGQ‘liminfR_”/ U—Uu 2dz >0,
! { R—0+ Bgr(a) | BR(a)’
Yo = {a€Q|suplug,| = oo}
R>0
By Caccioppoli’s inequality (Lemma 5.10) and Poincaré’s inequality, we know

¥ = aEQ‘ liminfRQ_"/ |Dul*dz >0 .
R—0* Br(a)

Note that by Hoélder’s inequality for any p > 2

P
R“/ |Dul*dz < C (Rp”/ |Du\pda:> .
Br(a) Br(a)

Therefore
(5.37) Y1U Xy C Ep UG,
where
E, = qacQ] nminfRP—”/ |DulP dz > 03,
R—0% Br(a)
G = {acQ] sup (U (@] =00} U{a € Q[ A lm uppq)}-

By the higher integrability theorem above, there exists a number p > 2 such that

u € I/Vllof(Q, RY); therefore, we need to estimate the set E, and G for such functions w.

We need to recall the definition and some properties of Hausdorff measures.

Let X be a metric space and F a family of subsets of X containing the empty set (.
Let h: F — [0, o] be a function such that h()) = 0. For any € > 0 and subset E of X we
define

He(E) =inf{ h(Fj))Eg U Fj. FyjeF, diamFj <e
JELT jELT
and, since pe > ps if 0 < € < 0,

u(E) = lim pie(E) = sup pe(E).

e—07 e>0
In this way, u(E) is called the Carathéodory construction for F and h. Note that the set
function p(F) is an outer measure with respect to which all Borel sets are measurable.

To define the k-dimensional Hausdorff measure in R” we let X = R", F the family of
all open sets in R™ and for k =0,1,---
h(F) = hy(F) = wy, 27 % (diam F)*,

where wy, is the Lebesgue measure of unit ball of R¥. The Carathéodory construction s
for this choice of F and hy, is called the k-dimensional Hausdorff measure in R" and
denoted by H*.

Note that H°(E) = number of points of E and that if H*(E) < oo then H*+t¢(E) = 0
for all € > 0.
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We define the Hausdorff dimension of E by
dimy, E = inf{k > 0| H*(E) = 0}.
Remark. If we choose the family F to be the set of all open balls, using the same hy,

we obtain the so-called k-dimensional spherical Hausdorff measure S*. But, in general,
H* £ S*. However, we can easily verify that

HE(E) < SK(E) < 28HE(E).

Therefore, the family of subsets of H*-measure zero coincides with that of S*-measure zero;
hence, in particular, the Hausdorfl dimension is the same from both constructions. ]

Theorem 5.20. Let Q be an open set in R". Let v € L} (Q),0< a <n and

loc
E = aEQ‘limsupra lv|dz >0 5.
R—0%+ Br(a)
Then H*(E) = 0 and hence dimy E < a.

Proof. It is sufficient to show that for each compact set K C €
HYENK)=0.
Let F=FENK and

1
FF={acF limsupRa/ lv|de > — 5.
R—0Tt Br(a) k

Then F' = U2 | F kTt is sufficient to prove

HY(F*) =0, Yk=1,2,---.

Let K CQ C Q C Q and let d = dist(K;09). Then for any fixed € € (0,d) there exists for
each a € F¥ a number r, € (0, €) such that

1
ry ¢ lv| dz > —.
/Bmw 2k

From Besicovitch’s theorem (Stein’s book) there exists a countable family of disjoint balls
Bi =By, (a;); a;€F*
such that

[ee)
Fk Q U B5Tﬂz‘ (az)

i=1
2k / |v| dx
; B'r‘i (az)
2k / |v| dx.
U; Br; (a;)

:wng T wp €' g T

1
% %
2kwy, € / |v] dz,
Q

Letting r; = rq,;, we get

IN

(03
2.

%

IN

Now since o < n we have

‘ U B,.(a)

IN

IN
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which goes to zero as e — 07. This implies

lim Z rit = 0.
e—0t =

7

Note that by definition, since F*¥ C Ui Bsy, (a;) and diam(Bs,, (a;)) < § = 10e, it follows that
HE(FF)<C ) rf

and thus we have

HO(FF) = Jim, HE(F*) =0,

as desired. The proof is complete. O
From this theorem, for the set E, in (5.37), we have H" P(E,) = 0. For the set G in

(5.37), we now prove

(5.38) H"PH(G) =0, Ve>0.

(Note that, in general, it is not true that H" P(G) = 0.) By Theorem 5.20, this will be
proved if we show that

GCFE= aEQ‘ limsupR_(”_p+e)/ |DulPdz > 07, Ve>D0.
R—0F Br(a)

To see this, we assume a ¢ E for some € > 0. Since the function R +— up,4) is absolutely
continuous in the interval (0, dist(a; 02)) and

1/p
< ][ [DufPdz |,
Br(a)
using a ¢ E, we have

1/p
sup {R_(”_IH'E) / | Du|P dx} =L < o0,
0<R<Rp Bpr(a)

where Ry = min{1, 5 dist(a; 9Q)}. This implies
d
4R 'Br(@)

‘ EUBR(CL)

< LR

and hence, for 0 < s <r < Ry

[uB, (a) = UB,(a)| < /
which implies that a ¢ G, by the definition of set G; this shows G C F, as claimed.
Now (5.38) together with (5.37) and H"P(E,) = 0 shows that
H"PTE(S,) =0, Ve>O0.

L £ £
dRS—prP—sp
€

bl

d
ﬁuBR(a)

Obviously, p—e > 2 for all sufficiently small € > 0; thus we have proved the following result,
modifying Theorem 5.14.

Theorem 5.21. Assume A(x,u) is continuous on (z,u) € QxRN Let u € WH2(Q; RY) be
a weak solution of (5.17). Then there exists an open set Qg C § such that u € Cl%’é‘(ﬂo; RM)
for all0 < p <1 and H"P(Q\ Q) =0 for some p > 2.
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Remarks. 1) If n = 2 then we have H°(Q\ Qo) = 0 and thus Qy = ; so, we have the
full regularity for weak solutions in two dimension. This implies that every weak solution
to a smooth 2 x 2 strongly (Legendre) elliptic system is smooth; compare with Miiller and
Sverdk’s example for smooth 2 x 2 strongly Legendre-Hadamard elliptic systems.

2) It has been conjectured that
dimy S, =n—3; H"3T(S,) =0, Ve > 0.

This conjecture is still open in general. g

5.7. Quasiconvexity and partial regularity

In this section, we prove a result of Evans concerning the partial regularity of energy mini-
mizers in the calculus of variations.

We assume F': MV*" — R is a C? function satisfying

0< F(&) <[ +1,
(5.39) IDF(&)| < L(J¢] + 1),
ID2F ()| < L.

Note that we do not assume the Legendre ellipticity condition on F'(§).

Recall that F' is uniformly strict quasiconvex if for any ball B C R",

(5.40) ][BF@ + Do(x)) dz > F(€) + ][Bwasr? dz

for all £ € MV*" and ¢ € Wol’2(B; RY), where v > 0 is a constant.

Theorem 5.22 (Evans '86). Assume F(§) is uniformly strict quasiconvex. Suppose u €
VVllOCQ(Q, RM) is a local minimizer of the functional

I(v) = / F(Dv(x)) dx
Q
in the sense that
(5.41) I(w) <I(u+¢); V¢eWy*(@;RY), @cca.

Then there exists an open set Qg C Q such that |2\ Qo] =0 and u € Cllo’éL(Qo; RYN) for each
e (0,1).

We prove several lemmas before proving this theorem.

Lemma 5.23. Let F(§) be uniformly strict quasiconvexr. Then F satisfies the Legendre-
Hadamard condition; that is,

Fyy ¢ (©) papaa'd’ > 2v[pl* |af*
Proof. For any £ € MV*" and ¢ € WOI’2(B; RY), let us consider function
1) = [ Fie+tDo@)de =y [ 1Dofa)? .
Then we have f(t) > f(0) for all t € R and f is of C? and hence f”(0) > 0; this implies

| Pee (@ Dot @)Dy (@) do > 2y [ Do) P
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which, being valid for all ¢ € VVO1 2(B; RY), implies that the constants A%ﬁ =F.u

asp
a coercive bilinear form on H = VVO1 ’2(B ;RY) and thus, as before using the “sawtooth” like
test function ¢ we can prove

(&) define

Fyy ¢ (©) papaa'd’ > 2vIpl* |af*
that is, the Legendre-Hadamard condition must hold. This proves the lemma. O

In the following we always assume F' satisfies the assumptions stated in the theorem
and u is a local minimizer of I(v) defined before.

Lemma 5.24. There exists a constant C; = Cy(n, L,~y) such that for all A € MN*" and
A € RY we have

][ |Du—A|2de'§% lu — X\ — Az|* dx
Bp/s(a) R? J Br(a)

for all balls Br(a) CC Q.

Proof. We denote B, = B,(a). Let Bp CC § be fixed. For any R/2 < s < r < R, let
(e VVO1 >°(Q) be a cut-off function used before which satisfies supp ¢ C B, = B,(a) and

1
r—s

0<¢<1, (|, =1, [D¢(x)]<

Define

P(x) =C(u—A—Az), Y(x)=(1-C)(u—A—Az);
then ¢ € Wy2(B,;RY), ¢ € WY2(B,;RY), and D¢ + D) = Du — A. We have, by the
uniform strict quasiconvexity,

/ [F(A) + D2 dr < / F(A+ D) dz

(e T

_ / F(Du — D)) da
B

< / [F(Du) — DF(Du) D¢ + C |D¢|2} dz.

r

Since u is a local minimizer, we have

/F(Du)dac < /F(Du—Dqﬁ)dx:/ F(A+ Dy) dx

T

< / [P(4) + DF(A) Di + O |DyP] dae

r

Combining the previous two inequalities, canceling the term [ B, F(A)dz, we have

7/ Do da g/ [(DF(A) —DF(Du))D¢+C|D@Z}|Z} dz.
BT ks
From the definition of ¢ and the quardratic growth of £’ we have
(5.42) / Du— APRde < C / [1Du — A]|D] + D] dx.
S BT

Note that ¢» = 0 on Bs, and
1

r—Ss

|Dy| < |Du — A| + |lu— A — Azx|;
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hence from (5.42) we have

/ |Du — A|*dz < C |Du — A|* dx + ¢ 2/ lu — X\ — Az|*dx
. B,\B, (r—5)% Jpg
and by filling the hole again we have
/ |Du— Al*dz < 6 / |Du — A]? dz + 5 / lu — X\ — Az|* dz,
B, B, (r—5)* Jpg

where 6 = CLH < 1. This inequality is valid for all R/2 < s < r < R. We thus use Lemma

5.18 to derive o
/ |Du—A|2de‘§é/ lu — X\ — Az|* dx.
Brya R* /By

The lemma, is proved. O

Define (compare with (5.19) before)

o, (a,r) = ][ |Du — (Du)gr*dz, (Du)a, = ][ Dudzx.
By (a) By (a)

Theorem 5.25 (Main Lemma). For each M > 0 there exists a constant Co(M) with the
property that for each 0 < 17 < i there exists (M, ) > 0 such that for every ball B,(a) CC Q
the conditions

((Du)ays| <M,  [(Du)arr| <M
and @y (a,r) < e(M, 1) imply

(5.43) Dy (a,7r) < Co(M) 7% Dy (a, ).
Proof. As in Theorem 5.13, we prove by a contradiction method. Suppose there exists

My > 0 we cannot find Co(Mj) with the required property. Then, for some 7 € (0, %), we
would find balls B, (an,) CC Q for each m = 1,2, ... such that

[(DWap, e | < Mo, |(Dtt)ay, rr,, | < Mo

and
By, m) = N2, — 0 as m — oo,
but
(5.44) By, Trm) >mT2NE Vm=1,2,-- .
For simplicity, we denote
b = UGy, > "= U, 27T 9 e = UGy, , 77, 3
Bm = (Du)(lmﬂ‘rrw Em = (Du)amyTTm'

By Lemma 5.24, we have
C
(5.45) ][ |Du— E™2 dz < 12][ lu—c™ — E™(x — ap)|? da.
BTT’m (a”m) (27- Tm) BQTT"m (am)
We now use the blowing up technique. Let
o (2) = w(am +rmz) —b" —ry B"z
Am Tm

s ZEBl(O)EBl.

Then
Du(am, + rmz) — B™

Am

Duvp,(2) = , (vm)B, =0, (Duy)p, =0.
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Let
fm = (Um)BzTa gm = (Um)BT> G" = (DUm)BT-

][ |Dvp|?dz =1
By

and hence, since (vy,)p, = 0, by Sobolev-Poincaré’s inequality

][ [vm|? dz < cp.
B1

Now we have

By (5.45) we also have
(5.46) | Dy, — G™ 2 dz < G U, — ™ — G™z|* dz.
2
By 7" J Bar

Since |B™| < M, we can have a subsequence relabeled the same such that

B™ B in MN*n,
(5.47) Uy — U strongly in L?(By; RY),
Dv,, — Dv  weakly in L?(By; MYV*").

Lemma 5.26. v = v(z) is a weak solution in By of the linear system

Dza(Fgagé(B) Dzﬁ’l}j(z)) = 0, 1= ]_727 . ,N.

Proof. It is not difficult to see that u = u(x) is a weak solution in Q of the Euler-Lagrange
equations

o (or
0o \ OEL

Let ¢ € C°(B1; RY). We use ¢(z) = P(*2) as a test function in the system for u and
then change variables to obtain

0 = /B 1 [Fsé(/\mDvm +B™) — Fe (Bm)} D, ¢'(2)dz

(Du(:n))> =0, i=1,2,---,N.

1
-/ [ / Figj(s)\mDvm—i—Bm)ds} D.,ud, D& dz.
By LJo 8

By (5.47) we can also assume A\, Dvp,(z) — 0 for almost every z € B; as m — oo. Therefore,
letting m — oo, by Lebesgue’s dominated convergence theorem we have

/ Fy ¢ (B) D, v}, D¢ dz =0
B s
for all ¢ € C§°(B1; RY) and the lemma is proved. O

Using this lemma, since the coefficients F,; .; (B) of this system satisfy the hypothesis

XA
(H2) considered before, we have

sup |D%v|* < C |Dv|?dz < C.
B2 By

Using a Poincaré type inequality (see Gilbarg-Trudinger, P.164)

1. n
[ — sl Lo(py < n | S|+ (diam D)™ || Dl 1o (p)
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for any convex domain D, subset S C D and u € WP(D), we obtain
(5.48) ][ \Dv — (Dv)o, 2 dz < C 2.
BQT

Therefore

lim |V — f™ = G™ 2|2 dz = ][ lv — (v)o,2r — (Dv)o.r 2|* dz
BQT

m—oo [ p
(by Poincaré type inequality) < 07'2][ |Dv — (Dv)o-|? dz
BQT

(by (5.48)) < Cr
From this and (5.46), we have

m—00

limsup][ |Dvy, — G2 dz < C3 72

T

However if we scale (5.44) we would get
][ |Dvy, — G™2dz > m 72
B:
This contradicts with the previous estimate since C'5 > 0 is independent of m. The proof is
complete. O
Lemma 5.27. Let M > 0 and T satisfy
(5.49) 0 <7 <min{1/4, (C3(2M))~1/?},

where Ca2(2M) is the constant from the main lemma above, with 2M replacing M. Then
there exists a number n(M,T) > 0 such that, for every ball B,(a) CC Q, the validity of three
nequalities

|(DWa,r| <M, |[(Du)g,re| < M,  Py(a,r) < n(M,)
implies
(5.50) Dy(a, 7' r) < [C2(2M) 7Y @y (a,7), YVI=1,2,---.

Proof. For M, 7 satisfying the given condition, define

= (1- vaens)

where €(2M, 7) is the constant from Main Lemma (Theorem 5.25), with 2M replacing M.
We prove (5.50) by induction on /. The case [ = 1 is immediate from the main lemma since
O, (a,r) <n(M,7) < e(2M, 7). Now assume (5.50) holds for all [ =1,2,--- k. We claim

(5.51) n(M, ) = min {E(QM, T),

(552) ‘(Du)aﬂ'kr‘ < SM/27
(5.53) [(Du)g rhr1,| < 2M,
(5.54) Dy (a, 7Fr) < e(2M, 7).

We prove these relations below. Once these relations are proved, the Main Lemma (with
2M replacing M and 7Fr replacing r) and the induction assumption will yield

b, (a, Tkl r) < (C3(2M) 72 o, (a, 7k T)
S [02(2M) 7—2]k+1 (I)u(aar)7
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which proves (5.50) for I = k + 1 and hence it holds for all [ = 1,2,---; the lemma will be
proved. Therefore, we need only to prove (5.52)-(5.54) under the assumption that (5.50)
holds for [ =1,2,--- , k.

Proof of (5.52). For all l = 0,1, ... we have

(D) rtiry — (Du)grty] < ][ Du — (Du)y 1, | de
' B(a,rl+1r)

) 3
< = ][ |Du_(Du)aTlr|2d‘T
T B(a,rlr) ’
< — (a7 7‘)%
Consequently,
k—1
‘(Du)a,Tkr‘ < ‘(Du)aﬂ”’ + Z ‘(Du)a,‘rl‘*‘lr - (Du)a,‘rlr’
=1
k-1

IN

M—l——Z(I) a 7'7’)1/2
=1
1 k—1
< M+ =) [(Co(2M) 72) Dy (a, 7))
T
=1
Mt (M, 1) (1= /@M )

< 3M/2.

IN

Proof of (5.53). By the estimates above we have

‘(Du)aﬂ'k‘*‘lr - (Du)a,fkr| < in (I)U(aﬂ-kr)%
< in[cg(zM) 26/2 § (g, 1)}/
_ )t )2
T?’L
< M/2,

and hence

|(Du)a,‘rk+1r’ < |(Du)a,7k+1r - (Du)aﬂ'kr| + ‘(Du)a,rkr‘ <2M.

Proof of (5.54). We easily have

., (a, TkT) (Co(2M) 72)k o, (a,r)
O, (a,r) <n(M,T)

€(2M, 7).

INIA A

Therefore, (5.52)-(5.54) and hence the lemma are proved. O
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Proof of Theorem 5.22. Set
(5.55) Qo ={ac] EITIL%L |(Du)g,r| < o0, TE%L ®,(a,r) =0}.

Since u € W% (Q; RY), we casily see [\ Q9| = 0. We shall prove € is open and that

loc

u € CY(Qo; RYN) for each pu € (0, 1). Indeed, for each a € €, there exists a number
M = M (a) such that
|(Du)as| < M, V0<s<dist(a;00).

For each p € (0, 1) we select 7, 0 < 7 < min{1/4, Co(2M)~/2}, so that
Co(2M) 72720 < 1.
Next, from the definition of g, we choose r, 0 < r < % dist(a; 092), such that
o, (a,r) <n(M,T).
Since the mappings
a— ®u(a,r), (Du)ar, (Du)grr
are continuous, we have a ball Br(a) C B,(a) CC € such that
Oy (z,r) <n(M,7), |(Du)z,| <M, [(Du)gq| <M
for all z € Br(a). Consequently, Lemma 5.27 implies
Dy (z,7'r) < (C2(2M) 7'2>Z(I)u(l‘,’l“), Vi=1,2,..
and hence in view of the choice of 7 we have
<I>u(:z,7'lr) < 72ml O, (x, 1) < (Tl T)2“ P2 n(M, )

foralll=1,2,--- and = € Br(a). This implies
/ |Du — (Du)x’p|2 dy < C(M,r,r) p"t2H
By(z)

for all x € Br(a) and 0 < p < dist(z; Br(a)). Therefore by the local Campanato estimate
we have

Du € C**(Bpg(a); MN*™).
This in turn implies Bg/s(a) C Qo by the definition of €2y and so Qg is an open set and
u e CHM(Qo; RY) for all 0 < < 1. Theorem 5.22 is proved.

loc

Remark. The C'*-partial regularity for minimizers has been extended to functionals of
type
I(u) = / F(z,u, Du)dz,
Q
where F(x,u, ) is uniformly strictly quasiconvex in { and Hoélder continuous in (z,u); see

Acerbi-Fusco ’87, Fusco-Hutchinson ’85, and Giaquinta-Modica ’86. The following theorem
is the most general one in this direction. O

Theorem 5.28 (Acerbi-Fusco '87). Let F': @ x RY x MV*" — R satisfy that Fge(z,u,§)
is continuous and, for some p > 2,

|F(,u,§)

|F($7 u, g) - F(ya v, £)|

L1+ [¢]P),

<
< LA+ [EP)w(le =yl + [u—vf?),
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where 0 < w(t) <t7,0 < o < 1/p and w is bounded, concave and increasing. Assume there
exist constants vy > 0, Cy such that for all (xo,ug, o)

(5.56) /BF(xo,uo,ﬁo—FDqﬁ)de/B[F(JTO,UO,fO)+’Y(’D¢‘2+|D¢’p)} da,

(5.57) /B Flao, 1o, Dé(x)) dz > /B (Co + | Dé()P) da

for all balls B and ¢ € C°(B;RN). Let u € WEP(Q;RYN) be a local minimizer of the

loc

functional I defined by F as above. Then there exists an open set Qo of Q such that
10\ Qo] = 0 and u € C2*(Q: RN) for some 0 < pu < 1.

loc
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