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Chapter 1

Multiple Integrals and
Systems in Divergence
Form

1.1. Notation

Throughout the lecture, we use Rn to denote the standard Euclidean space of n-real vari-
ables and MN×n to denote the Euclidean space MN×n of all real N × n-matrices.

The norm in Rn or MN×n is all denoted by | · |. For example, if ξ ∈MN×n then

|ξ|2 =
N∑
i=1

n∑
α=1

(ξiα)2.

For q ∈ RN , p ∈ Rn, we use η = q ⊗ p to denote the matrix with ηiα = qi pα. Therefore, it
is easy to see |q ⊗ p| = |p| |q|.

We also denote by Ω a bounded smooth domain in Rn and let Ω̄, ∂Ω denote the closure
and the boundary of Ω in Rn, respectively. For a Lebesgue measurable set E in Rn we use
|E| to denote its Lebesgue n-measure. If f : E → R is Lebesgue integrable and |E| > 0 then
we define ∫

−
E
f(x) dx =

1
|E|

∫
E
f(x) dx.

For a map u from Ω to a target space RN , we use Du(x) to denote the Jacobian or gradient
matrix of u defined by

(Du(x))iα = Dαu
i(x) = ∂ui(x)/∂xα (i = 1, 2, ..., N ; α = 1, 2, ..., n).

This can also be viewed as a map Du from Ω to the matrix space MN×n.

For 0 ≤ k ≤ ∞, we use Ck(Ω; RN ) to denote the space of all smooth maps with
continuous partial derivatives up to the order k and Ck0 (Ω; RN ) its subspace consisting of
all such maps with compact support in Ω.
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2 1. Multiple Integrals and Systems in Divergence Form

For 1 ≤ p < ∞, let W 1,p(Ω; RN ) and W 1,p
0 (Ω; RN ) be the Sobolev spaces, which are

completion of C∞(Ω; RN ) and C∞0 (Ω; RN ), respectively, under the norm

‖u‖1,p = ‖u‖1,p;Ω =
(∫

Ω

(
|u(x)|p + |Du(x)|p

)
dx

)1/p

.

If A : Ω→MN×n is a smooth map, then its divergence DivA : Ω→ RN is defined by

(DivA(x))i =
n∑

α=1

∂Aiα(x)/∂xα, i = 1, 2, ..., N.

If A is only locally integrable, then DivA is defined to be a distribution on C∞0 (Ω; RN )
(test functions) by the pairing

〈DivA,ϕ〉 = −(A,Dϕ), ϕ ∈ C∞0 (Ω; RN ),

where

(A,Dϕ) =
∫

Ω
A(x) ·Dϕ(x) dx ≡

∫
Ω

N∑
i=1

n∑
α=1

Aiα(x)Dαϕ
i(x) dx.

In most cases, we shall also use the convention that repeated indices are to be added.

1.2. Multiple integrals in the calculus of variations

Consider the multiple integral functional

(1.1) I(u) =
∫

Ω
F (x, u(x), Du(x)) dx,

where F (x, s, ξ) is a given function on Ω×RN ×MN×n. In the calculus of variations, such
functionals I(u) are usually called an energy functional, as is in the theory of elasticity.

Suppose F (x, s, ξ) is continuous and is also smooth in s and ξ. Assume u is a nice (say,
u ∈ C1(Ω̄; RN )) minimizer of I(u) with its own boundary data; that is, u is a map such
that

I(u) ≤ I(u+ tϕ)

for all t ∈ R1 and ϕ ∈ C∞0 (Ω; RN ). Then by taking derivative of I(u+ t ϕ) at t = 0 we see
that u satisfies ∫

Ω

(
Fξiα(x, u,Du)Dαϕ

i(x) + Fsi(x, u,Du)ϕi(x)
)
dx = 0

for all ϕ ∈ C∞0 (Ω; RN ). (Summation notation is used here.) This equation is called the
Euler-Lagrange equation (in weak form) or the first variation of I at u.

The Euler-Lagrange equation can be written as a differential system for map u in the
distribution sense:

(1.2) −DivA(x, u,Du) + b(x, u,Du) = 0,

where A, b are defined by

(1.3) Aiα(x, s, ξ) = Fξiα(x, s, ξ), bi(x, s, ξ) = Fsi(x, s, ξ).



1.3. Systems in divergence form 3

Remarks. 1) If F, u are sufficiently smooth (e.g. of class C2) then we have the strong form
of the Euler-Lagrange equation of I at u :

−F
ξiα ξ

j
β
(x, u,Du)DαDβu

j − Fξiα sj (x, u,Du)Dαu
j

−Fξiα xα(x, u,Du) + Fsi(x, u,Du) = 0, i = 1, 2, ..., N,
which is a second-order quasilinear system of N coupled partial differential equations.

2) If F, u are sufficiently smooth (e.g. of class C2) then we have

d2

dt2
I(u+ tϕ)

∣∣∣
t=0
≥ 0.

This implies ∫
Ω
F
ξiα ξ

j
β
(x, u,Du)Dαϕ

iDβϕ
j dx

+
∫

Ω

[
2Fξiα sj (x, u,Du)ϕjDαϕ

i + Fsisj (x, u,Du)ϕiϕj
]
dx ≥ 0

for all ϕ ∈ C∞0 (Ω; RN ). This inequality is called the second variation of I at minimum
point u. We shall discuss some consequences of this inequality later on. �

1.3. Systems in divergence form

We consider general systems of PDE in divergence form as (1.2). Let A : Ω×RN×MN×n →
MN×n and b : Ω×RN×MN×n → RN be given. Consider the system of differential equations
for a map u : Ω→ RN

(1.4) −DivA(x, u,Du) + b(x, u,Du) = 0

in the sense of distribution; this means that∫
Ω

(
A(x, u,Du) ·Dϕ(x) dx+ b(x, u,Du) · ϕ(x)

)
dx = 0

for all test functions ϕ ∈ C∞0 (Ω; RN ).
The leading term A(x, s, ξ) in system (1.4) can be classified to be

• linear if A(x, s, ξ) is linear in both s and ξ; that is,

Aiα(x, s, ξ) = Aαβij (x) ξjβ + bαij(x) sj + riα(x);

• quasilinear if A(x, s, ξ) is only linear in ξ; that is,

Aiα(x, s, ξ) = Aαβij (x, s) ξjβ + P iα(x, s);

• nonlinear for all other cases of A(x, s, ξ).

The system (1.4) is said to be linear if A(x, s, ξ), b(x, s, ξ) are both linear in s and ξ.

Remark. Again, if A, u are sufficiently smooth, the strong form of (1.4) is a second-order
quasilinear system of N coupled partial differential equations of the form

(1.5) −Aαβij (x, u,Du)DαDβu
j +Ri(x, u,Du) = 0, i = 1, 2, ..., N,

where the leading coefficients Aαβij (x, s, ξ) are given by

(1.6) Aαβij (x, s, ξ) = ∂Aiα(x, s, ξ)/∂ξjβ.

�



4 1. Multiple Integrals and Systems in Divergence Form

1.4. Legendre ellipticity condition for systems

Definition 1.1. The system (1.4) or (1.5) is called (uniformly, strictly) elliptic if there
exists a ν > 0 such that for all (x, s, ξ)

(1.7)
N∑

i,j=1

n∑
α,β=1

Aαβij (x, s, ξ) ηiα η
j
β ≥ ν |η|

2 ∀ η ∈MN×n,

where coefficients Aαβij (x, s, ξ) = ∂Aiα(x, s, ξ)/∂ξjβ are defined as in (1.6). This condition is
also called the (uniform, strict) Legendre (ellipticity) condition for the given system.

A weaker condition, obtained by setting η = q⊗p with p ∈ Rn, q ∈ RN , is the following
so-called (strong) Legendre-Hadamard condition:

(1.8)
∑
i,j

∑
α,β

Aαβij (x, s, ξ) qi qj pα pβ ≥ ν |p|2 |q|2 ∀ p ∈ Rn, q ∈ RN .

Note that for systems with linear leading terms; that is,

Aiα(x, s, ξ) = Aαβij (x) ξiα ξ
j
β + bαij(x) sj + riα(x),

the Legendre condition and Legendre-Hadamard condition become, respectively

Aαβij (x) ηiα η
j
β ≥ ν |η|

2 ∀ η ∈MN×n;

Aαβij (x) qi qj pα pβ ≥ ν |p|2 |q|2 ∀ p ∈ Rn, q ∈ RN .

Remark. The Legendre-Hadamard condition does not imply the Legendre ellipticity con-
dition. �

Example 1.2. Let n = N = 2 and define constants Aαβij by

Aαβij ξ
i
α ξ

j
β ≡ det ξ + ε |ξ|2.

Since
Aαβij pαpβ q

iqj = det(q ⊗ p) + ε |q ⊗ p|2 = ε |p|2|q|2,
the Legendre-Hadamard condition holds for all ε > 0. But, if 0 < ε < 1/2, then there exists

a matrix ξ of the form
(

0 1
a 0

)
such that det ξ + ε|ξ|2 < 0; thus the Legendre ellipticity

condition fails. In fact, one can check that the Legendre condition holds for this system if
and only if ε > 1/2.

Remark. Let u = (v, w) and (x1, x2) = (x, y). Then the system of differential equations
defined by Aαβij given above is {

ε∆v + wxy = 0,
ε∆w − vxy = 0.

This system reduces to two fourth-order equations for v, w (where ∆f = fxx + fyy):

ε2∆2v − vxxyy = 0, ε2∆2w + wxxyy = 0.

We can easily see that both equations are elliptic if and only if ε > 1/2. �
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1.5. Convexity and rank-one convexity

We now consider the ellipticity of the Euler-Lagrange equation (1.2), whereA(x, s, ξ), b(x, s, ξ)
are given by (1.3) and F (x, s, ξ) is C2 in ξ. In this case, the Legendre ellipticity condition
and Legendre-Hadamard condition reduce to, respectively:

(1.9) F
ξiα ξ

j
β
(x, s, ξ) ηiα η

j
β ≥ ν |η|

2 ∀η ∈MN×n;

(1.10) F
ξiα ξ

j
β
(x, s, ξ) qi qj pαpβ ≥ ν|p|2|q|2 ∀q ∈ RN , p ∈ Rn.

Proposition 1.1. Under the conditions (1.9) and (1.10), the following conditions hold,
respectively:

(1.11) F (x, s, η) ≥ F (x, s, ξ) + Fξiα(x, s, ξ) (ηiα − ξiα) +
ν

2
|η − ξ|2

and

(1.12) F (x, s, ξ + q ⊗ p) ≥ F (x, s, ξ) + Fξiα(x, s, ξ) pα qi +
ν

2
|p|2|q|2

for all x ∈ Ω, s, q ∈ RN , ξ, η ∈MN×n and p ∈ Rn.

Proof. Let ζ = η − ξ and f(t) = F (x, s, ξ + tζ). Then, by Taylor’s formula,

f(1) = f(0) + f ′(0) +
∫ 1

0
(1− t) f ′′(t) dt.

Note that

f ′(t) = Fξiα(x, s, ξ + tζ) ζiα, f ′′(t) = F
ξiαξ

j
β
(x, s, ξ + tζ) ζiαζ

j
β.

From this and the Taylor formula, inequalities (1.11) and (1.12) follow easily from (1.9) and
(1.10), respectively. �

Definition 1.3. A function F (x, s, ξ) is said to be convex in ξ if

F (x, s, tξ + (1− t)η) ≤ tF (x, s, ξ) + (1− t)F (x, s, η)

for all x, s, ξ, η and 0 ≤ t ≤ 1. While F (x, s, ξ) is said to be rank-one convex in ξ if the
function f(t) = F (x, s, ξ + t q ⊗ p) is convex in t ∈ R1 for all x, s, ξ and q ∈ RN , p ∈ Rn.

We easily have the following result.

Proposition 1.2. Let F (x, s, ξ) be C2 in ξ. Then the convexity of F (x, s, ξ) in ξ is equiv-
alent to (1.9) with ν = 0, while the rank-one convexity of F (x, s, ξ) in ξ is equivalent to
(1.10) with ν = 0.

Remarks. 1) Conditions (1.9) and (1.10) are also called the strong convexity and the
strong rank-one convexity conditions of F (x, s, ξ) on ξ, respectively.

2) Rank-one convexity does not imply convexity. For example, take n = N ≥ 2, and
F (ξ) = det ξ. Then F (ξ) is rank-one convex but not convex in ξ (why?) Later on, we will
study other convexity conditions related to the energy functionals given by (1.1). �



6 1. Multiple Integrals and Systems in Divergence Form

1.6. Uniqueness of weak solutions

In this section, we prove a uniqueness of weak solutions of Euler-Lagrange equations under
the hypotheses of strong convexity and certain growth conditions. For this purpose, we
consider a simple case where F (x, s, ξ) = F (x, ξ) satisfies, for some 1 < p <∞,

(1.13) |Fξiα(x, ξ)| ≤ µ (χ(x) + |ξ|p−1) ∀x ∈ Ω, ξ ∈MN×n,

where µ > 0 is a constant and χ ∈ L
p
p−1 (Ω) is some function. Let

I(u) =
∫

Ω
F (x,Du(x)) dx.

Theorem 1.3. Let F (x, ξ) be C2 in ξ and satisfy the Legendre condition (1.9). Let u ∈
W 1,p(Ω; RN ) be a weak solution of the Euler-Lagrange equation of I and I(u) <∞. Then
u must be the unique minimizer of I among the class of functions in W 1,p(Ω; RN ) having
the same boundary conditions as u.

Proof. Since u is a weak solution of the Euler-Lagrange equation of I, it follows that

(1.14)
∫

Ω
Fξiα(x,Du(x))Dαϕ

i dx = 0

for all ϕ ∈ C∞0 (Ω; RN ). The growth condition (1.13) implies Fξiα(x,Du) ∈ L
p
p−1 (Ω) and

hence, by a density argument, equation (1.14) holds also for all ϕ ∈ W 1,p
0 (Ω; RN ). Now let

v ∈W 1,p(Ω; RN ) with v− u ∈W 1,p
0 (Ω; RN ). By the strong convexity condition and (1.11),

we have

(1.15) F (x, η) ≥ F (x, ξ) + Fξiα(x, ξ) (ηiα − ξiα) +
ν

2
|η − ξ|2, ∀ ξ, η.

This implies∫
Ω
F (x,Dv) dx ≥

∫
Ω
F (x,Du) dx+

∫
Ω
Fξiα(x,Du)Dα(vi − ui) dx

+
ν

2

∫
Ω
|Du−Dv|2 dx.

Since u is a weak solution, we have∫
Ω
Fξiα(x,Du)Dα(vi − ui) dx = 0.

Therefore, it follows that

(1.16) I(v) ≥ I(u) +
ν

2

∫
Ω
|Du−Dv|2 dx

for all v ∈ W 1,p(Ω; RN ) with v − u ∈ W 1,p
0 (Ω; RN ). This shows that u is a minimizer of I

among the class of all functions v ∈W 1,p(Ω; RN ) with v−u ∈W 1,p
0 (Ω; RN ). If v is another

such minimizer of I we would then obtain Du = Dv by (1.16) and thus v ≡ u. The theorem
is proved. �



Chapter 2

Existence Theory for
Linear Systems

2.1. Dirichlet problem for linear systems

In this chapter, we study the solvability of Dirichelt problems of the linear elliptic systems
in some Hilbert space. We study the Dirichlet problem

(2.1)

{
−DivA(x, u,Du) + b(x, u,Du) = G,

u|∂Ω = 0,

where A(x, s, ξ) and b(x, s, ξ) are both linear in s, ξ with L∞-coefficients; that is,

Aiα(x, u,Du) = Aαβij (x)Dβ u
j + bαij(x)uj ,

bi(x, u,Du) = cαij(x)Dαu
j + dij(x)uj .

Here G is a bounded linear functional on the Hilbert space H1
0 (Ω; RN ) = W 1,2

0 (Ω; RN ) with
the inner product

(u, v) ≡
n∑

α=1

N∑
i=1

∫
Ω
Dαu

iDαv
i dx.

The norm induced by this inner product is denoted by ‖ · ‖H , which is equivalent to the
Sobolev norm ‖ · ‖1,2 defined earlier.

Definition 2.1. By a weak solution of system (2.1) we mean a function u ∈ H1
0 (Ω; RN )

such that B[u, v] = 〈G, v〉 for all v ∈ H1
0 (Ω; RN ), where B[u, v] is the bilinear form on

H1
0 (Ω; RN ) defined by

(2.2) B[u, v] =
∫

Ω

(
Aαβij Dβu

jDαv
i + bαij u

jDαv
i + cαij Dαu

jvi + dij u
jvi
)
dx.

Remark. By a Poincaré-type inequality, ‖u‖2 ≤ C ‖u‖H for u ∈ H1
0 (Ω; RN ); therefore, we

have
|B[u, v]| ≤ c ‖u‖H ‖v‖H ,

where c depends on the L∞-norms of Aαβij , b
α
ij , c

α
ij and dij . �

7



8 2. Existence Theory for Linear Systems

2.2. Hilbert space methods for existence

In what follows, let H be a Hilbert space with inner product (·, ·) and norm ‖ · ‖. We first
recall

Theorem 2.1 (Riesz representation theorem). For any bounded linear functional G on H
there exists a unique g0 ∈ H such that

〈G, v〉 = (g0, v), ∀v ∈ H.

Furthermore, ‖g0‖ = ‖G‖, the operator norm of G.

Definition 2.2. A function ρ : H ×H → R is said to be

• bilinear if ρ[·, v], ρ[u, ·] are both linear on H for any given u, v ∈ H;

• bounded if |ρ[u, v]| ≤ c ‖u‖ ‖v‖ for all u, v ∈ H;

• coercive if ρ[u, u] ≥ µ‖u‖2 for all u ∈ H and some µ > 0;

• symmetric if ρ[u, v] = ρ[v, u] for all u, v ∈ H.

Lemma 2.2. Let ρ : H ×H → R be a bounded, coercive, symmetric bilinear form on H.
Then, for any bounded linear functional G on H, there exists a unique g1 ∈ H such that
〈G, v〉 = ρ[g1, v] for all v ∈ H.

Proof. This follows from the Riesz representation theorem for one can use (u, v)H = ρ[u, v]
as a new inner product on H. �

Theorem 2.3 (Lax-Milgram theorem). Let a : H ×H → R be a bounded, coercive bilinear
form on H. Then, for any bounded linear functional G on H, there exists a unique g2 ∈ H
such that 〈G, v〉 = ρ[g1, v] for all v ∈ H.

Proof. For each fixed u ∈ H, 〈F, v〉 = a[u, v] defines a bounded linear functional F on
H; thus by Riesz’s representation theorem, there exists a unique f0 = Tu ∈ H such that
a[u, v] = (Tu, v) for all v ∈ H; this defines a bounded linear operator T : H → H. Let T ∗

be its adjoint operator; that is, (Tu, v) = (u, T ∗v). Define a form ρ on H ×H by

ρ[u, v] = (TT ∗u, v) = (T ∗u, T ∗v).

Then ρ : H × H → R is a bounded, coercive, symmetric bilinear form on H (check it).
Therefore, if G is a bounded linear functional on H, by Lemma 2.2, there exists a unique
g1 ∈ H such that

〈G, v〉 = ρ[g1, v] = (TT ∗g1, v) = a[T ∗g1, v];

this proves the theorem with g2 = T ∗g1. Moreover, if |a[u, v]| ≤ c ‖u‖ ‖v‖, then ‖g2‖ ≤
c ‖G‖. �

2.3. Legendre-Hadamard condition and coercivity

In this section, we consider the following simple bilinear form

a[u, v] =
∫

Ω
Aαβij (x)Dβu

jDαv
i dx,

where Aαβij ∈ L∞(Ω). We will use H to denote H1
0 (Ω; RN ) with inner product (·, ·) and

norm ‖ · ‖H given above.



2.3. Legendre-Hadamard condition and coercivity 9

Theorem 2.4. Assume that either Aαβij are in L∞(Ω) satisfying the Legendre condition

or Aαβij are constants satisfying the Legendre-Hadamard condition. Then a[u, u] ≥ ν ‖u‖2H
for all u ∈ H.

Proof. In the first case, the conclusion follows easily from the Legendre condition. We
prove the second case when Aαβij are constants satisfying the Legendre-Hadamard condition

Aαβij q
i qj pαpβ ≥ ν |p|2|q|2, ∀p ∈ Rn, q ∈ RN .

We prove ∫
Ω
Aαβij Dβu

j Dαu
i dx ≥ ν

∫
Ω
|Du|2 dx

for all u ∈ C∞0 (Ω; RN ). For these test functions u we extend them onto Rn by zero outside
Ω and thus consider them as functions in C∞0 (Rn; RN ). Define the Fourier transforms for
such functions u by

û(p) = (2π)−n/2
∫
Rn

e−i p·x u(x) dx; p ∈ Rn.

Then, for any u, v ∈ C∞0 (Rn; RN ),∫
Rn

u(x) · v(x) dx =
∫
Rn

û(p) · v̂(p) dp,

D̂αui(p) = i pαûi(p);

the last identity can also be written as D̂u(p) = i û(p) ⊗ p. Now, using these identities, we
have ∫

Rn

Aαβij Dβu
j(x)Dαu

i(x) dx =
∫
Rn

Aαβij D̂βuj(p) D̂αui(p) dp

=
∫
Rn

Aαβij pβ pα û
j(p) ûi(p) dp = Re

(∫
Rn

Aαβij pβ pα û
j(p) ûi(p) dp

)
.

Write û(p) = q + iy with q, y ∈ RN . Then

Re
(
ûj(p) ûi(p)

)
= qi qj + yi yj .

Therefore, by the Legendre-Hadamard condition,

Re
(
Aαβij pα pβ û

j(p) ûi(p)
)
≥ ν |p|2 (|q|2 + |y|2) = ν |p|2 |û(p)|2.

Hence,

a[u, u] =
∫
Rn

Aαβij Dβu
j(x)Dαu

i(x) dx

= Re
(∫

Rn

Aαβij pβ pα û
j(p) ûi(p) dp

)
≥ ν

∫
Rn

|p|2 |û(p)|2 dp = ν

∫
Rn

|iû(p)⊗ p|2 dp

= ν

∫
Rn

|D̂u(p)|2 dp = ν

∫
Rn

|Du(x)|2 dx.

This implies a[u, u] ≥ ν ‖u‖2H for all u ∈ H; the proof is complete. �
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Theorem 2.5. Under the hypotheses of the previous theorem the following Dirichlet problem{
−Div(A(x,Du)) = G,

u|∂Ω = ϕ

has a unique weak solution u in H = H1
0 (Ω; RN ) for any bounded linear functional G on H

and any function ϕ ∈W 1,2(Ω; RN ), where Aiα(x, ξ) = Aαβij (x) ξjβ as given above.

Proof. We know that every bounded linear functional G on H = H1
0 (Ω; RN ) is of the form

G = g+
∑n

α=1Dαfα as a distribution, where g, fα ∈ L2(Ω; RN ). In order to solve for u we
let u = v + ϕ; then we need to solve for v ∈ H which satisfies

(2.3)

{
−Div(A(x,Dv)) = G+ Div(A(x,Dϕ)),
v|∂Ω = 0.

Note that G̃ = G + Div(A(x,Dϕ)) is a bounded linear functional on H. Since under the
hypotheses of the theorem the bilinear form a[u, v] is bounded and coercive, the existence
of a unique solution v of the problem (2.3) follows by virtue of the Lax-Milgram theorem.
We have thus proved the theorem. �

Theorem 2.6. If Aαβij ∈ L∞(Ω) and the coercivity condition

(2.4)
∫

Ω
Aαβij (x)Dβu

j Dαu
i dx ≥ ν

∫
Ω
|Du|2 dx

holds for all u ∈ H1
0 (Ω; RN ) then the Legendre-Hadamard condition holds for almost every

x ∈ Ω :

Aαβij (x) qi qj pα pβ ≥ ν |p|2 |q|2, ∀p ∈ Rn, q ∈ RN .

Proof. Let ρ(t) be the 2-periodic “sawtooth” function equaling t on interval [0, 1] and 2− t
on interval [1, 2]. Thus ρ′(t) = ±1 for a.e. t ∈ R. For any ζ ∈ C∞0 (Ω), p ∈ Rn and q ∈ RN ,
define

uε(x) = ε ζ(x) ρ(p · x/ε) q, ε > 0.

It is easy to see uε ∈ H1
0 (Ω; RN ) and

Dαu
i
ε(x) = εDαζ(x) ρ(p · x/ε) qi + ζ(x) ρ′(p · x/ε) pα qi.

Inserting them into the coercivity condition and letting ε→ 0 we have∫
Ω
Aαβij (x) qi qj pα pβ ζ2(x) dx ≥ ν

∫
Ω
|p|2 |q|2 ζ2(x) dx.

This is true for all ζ ∈ C∞0 (Ω); thus we have for a.e. x ∈ Ω,

Aαβij (x) qi qj pα pβ ≥ ν |p|2 |q|2, ∀p ∈ Rn, q ∈ RN .

The proof is complete. �

Remark. The reverse of the theorem is not true; that is, the Legendre-Hadamard condition
does not imply the coercivity condition (2.4), even for Aαβij ∈ C∞(Ω). (Le Dret ’87) �



2.4. G̊arding’s inequality and existence results 11

2.4. G̊arding’s inequality and existence results

In this section, we consider the general bilinear form B[u, v] defined earlier by (2.2). We
prove the following result known as G̊arding’s inequality.

Theorem 2.7. Let B[u, v] be defined by (2.2). Assume

1) Aαβij ∈ C(Ω̄),

2) the Legendre-Hadamard condition holds for all x ∈ Ω; that is,

Aαβij (x) qi qj pα pβ ≥ ν |p|2 |q|2, ∀p ∈ Rn, q ∈ RN .

3) bαij , c
α
ij , dij ∈ L∞(Ω).

Then, there exist constants λ0 > 0 and λ1 such that

B[u, u] ≥ λ0 ‖u‖2H − λ1 ‖u‖2L2 , ∀u ∈ H1
0 (Ω; RN ).

Proof. By uniform continuity, we can choose a small ε > 0 such that

|Aαβij (x)−Aαβij (y)| ≤ ν

2
, ∀x, y ∈ Ω̄, |x− y| ≤ ε.

We claim

(2.5)
∫

Ω
Aαβij (x)Dαu

iDβu
j dx ≥ ν

2

∫
Ω
|Du(x)|2 dx

for all u ∈ C∞0 (Ω; RN ) with the diameter of the support diam(suppu) ≤ ε. To see this, we
choose any point x0 ∈ suppu. Then∫

Ω
Aαβij (x)Dαu

iDβu
j dx =

∫
Ω
Aαβij (x0)Dαu

iDβu
j dx

+
∫

suppu

(
Aαβij (x)−Aαβij (x0)

)
Dαu

iDβu
j dx

≥ ν
∫

Ω
|Du(x)|2 dx− ν

2

∫
Ω
|Du(x)|2 dx,

which proves (2.5). We now cover Ω̄ with finitely many open balls {Bε/4(xk)} with xk ∈ Ω
and k = 1, 2, ...,K. For each k, let ζk ∈ C∞0 (Bε/2(xk)) with ζk(x) = 1 for x ∈ Bε/4(xk).
Since for any x ∈ Ω̄ we have at least one k such that x ∈ Bε/4(xk) and thus ζk(x) = 1, we
may therefore define

ϕk(x) =
ζk(x)(∑K

j=1 ζ
2
j (x)

)1/2 , k = 1, 2, ...,K.

Then
∑K

k=1 ϕ
2
k(x) = 1 for all x ∈ Ω. (This is a special case of partition of unity.) We have

thus

(2.6) Aαβij (x)Dαu
iDβu

j =
K∑
k=1

(
Aαβij (x)ϕ2

kDαu
iDβu

j
)

and each term (no summation on k)

Aαβij (x)ϕ2
kDαu

iDβu
j = Aαβij (x)Dα(ϕk ui)Dβ(ϕk uj)

−Aαβij (x)
(
ϕkDβϕk u

j Dαu
i + ϕkDαϕk u

iDβu
j +DαϕkDβϕk u

i uj
)
.
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Since ϕku ∈ C∞0 (Ω ∩Bε/2(xk); RN ) and diam(Ω ∩Bε/2(xk)) ≤ ε, we have by (2.5)∫
Ω
Aαβij (x)Dα(ϕk ui)Dβ(ϕk uj) dx ≥

ν

2

∫
Ω
|D(ϕk u)|2 dx.

Note also that

|D(ϕk u)|2 = ϕ2
k |Du|2 + |Dϕk|2 |u|2 + 2ϕkDαϕk u

iDαu
i.

Therefore, we have by (2.6) and the fact that
∑K

k=1 φ
2
k = 1 on Ω,∫

Ω
Aαβij (x)Dαu

iDβu
j dx

≥ ν

2

∫
Ω
|Du|2 dx− C1 ‖u‖L2 ‖Du‖L2 − C2 ‖u‖2L2 .

The terms in B[u, u] involving bαij , c
α
ij and dij can be estimated by ‖u‖L2 ‖Du‖L2 and ‖u‖2L2 .

Finally, by all of these estimates and the inequality

ab ≤ εa2 +
1
4ε
b2

we have B[u, u] ≥ λ0 ‖u‖2H −λ1 ‖u‖2L2 for all u ∈ H1
0 (Ω; RN ). This completes the proof. �

Note that the bilinear form B̃[u, v] = B[u, v]+λ (u, v)L2 is a bounded, coercive, bilinear
form on H = H1

0 (Ω; RN ) for all λ > λ1; thus, by the Lax-Milgram theorem, we easily obtain
the following existence result.

Theorem 2.8. Under the hypotheses of the previous theorem, the Dirichlet problem

(2.7)

{
−Div(A(x, u,Du)) + b(x, u,Du) + λu = G,

u|∂Ω = 0

has a unique weak solution u in H1
0 (Ω; RN ) for any bounded linear functional G on H,

where A(x, u,Du), b(x, u,Du) are the linear operators as given in the previous theorem and
λ1 is the constant in the theorem. Moreover, the solution u satisfies ‖u‖H ≤ C ‖G‖ with a
constant C depending on λ and the L∞-norms of the coefficients of A(x, s, ξ) and b(x, s, ξ).

Finally, we have the following existence theorem, which follows from the Fredholm al-
ternative theorem in Hilbert spaces.

Theorem 2.9. There exists an at most countable set σ ⊂ R such that Dirichlet problem
(2.7) has a unique weak solution u in H1

0 (Ω; RN ) for any bounded linear functional G on
H if and only if λ /∈ σ. Moreover, if σ is infinite then σ is a nonincreasing sequence
{σk}, k = 1, 2, ... with σk → −∞ as k →∞. The values {−σk} are called the eigenvalues
of the linear operator Lu ≡ −Div(A(x, u,Du))+b(x, u,Du) with the zero Dirichlet boundary
condition.

Proof. Let λ̃ > λ1 be a fixed number. Then, by the theorem above, there exists an inverse
(L+ λ̃)−1 : H∗ → H, where H = H1

0 (Ω; RN ). Let P : H → H∗ be the map defined by

〈Pu, v〉 =
∫

Ω
u · v dx, ∀u, v ∈ H.

Then Dirichlet problem (2.7) is equivalent to the following equation in H

[I + (λ− λ̃)(L+ λ̃)−1P ]u = (L+ λ̃)−1G,



2.4. G̊arding’s inequality and existence results 13

where G ∈ H∗ is any bounded linear functional on H. This equation has a unique solution
u ∈ H if and only if

(2.8) Range [I + (λ− λ̃)T ] = H, Ker [I + (λ− λ̃)T ] = {0},
where T = (L+ λ̃)−1P : H → H is a bounded linear operator on H. We have the following

Lemma 2.10. T : H → H is a compact operator.

Proof. It is sufficient to prove that {Tuk} has a convergent subsequence for any bounded
sequence {uk} in H. Note that

‖Pu‖ ≤ ‖u‖L2 .

By Sobolev’s embedding theorem we have a subsequence {ukj} such that ukj → ū in
L2(Ω; RN ) as j →∞. Therefore,

‖Tukj − Tukh‖ ≤ ‖(L+ λ̃)−1‖ · ‖ukj − ukh‖L2 → 0 as j, h→∞
and hence {Tukj} converges in H; thus T is compact. �

From this lemma, by Fredholm’s alternative theorem, the conclusion (2.8) is true for all
λ except for an at most countable set σ whose only possible limit point is −∞. The theorem
is proved. �





Chapter 3

Direct Methods in the
Calculus of Variations

A variational problem involves finding minimizers or general critical points of a given func-
tional. For systems in variational form, we can find a solution as a minimizer of a related
multiple integral functional. Usually, the existence of such a minimizer is proved by an ab-
stract idea of an existence theorem of Weierstrass. This method has been known as a direct
method in the calculus of variations, which dates back to the well-known Dirichlet principle,
where a harmonic function with given boundary data is found by minimizing the energy
functional in the class of functions with the same given boundary data. In this chapter, we
deal with some important issues related to the direct methods in the calculus of variations.

3.1. Abstract theorems on existence of minimizers

Let us first recall a few topological facts. Let X be a topological space, Φ : X → R∪{+∞}
and A a subset of X.

Definition 3.1. We say Φ is sequentially lower semicontinuous (write s.l.s.c.) on X
if for any x̄ ∈ X and every sequence {xj} converging to x̄

Φ(x̄) ≤ lim inf
j→∞

Φ(xj).

We say A is sequentially compact if from every sequence of points in A one can select a
subsequence converging to a point still in A.

The following theorem plays a fundamental role in the direct methods we shall discuss
later on.

Theorem 3.1 (Weierstrass). Let Φ : X → R ∪ {+∞} be s.l.s.c. on X and let A be a
sequentially compact subset of X. Then the infimum of Φ over A is attained at some point
in A.

Proof. In order to see how (the idea of) this simple existence theorem can be used later
for many variational problems, we present a short proof of this result. To do so, assume

m = inf
x∈A

Φ(x).

15
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Then there exists a minimizing sequence {xk} in A such that

lim
k→∞

Φ(xk) = m.

Now by the sequential compactness of A we can select a subsequence {xkj} converging to
a point x0 in A. Then, the sequential lower semicontinuity of Φ will imply

Φ(x0) ≤ lim inf
j→∞

Φ(xkj ) = m.

Since x0 ∈ A, by the definition of m, it follows that

Φ(x0) = m = inf
x∈A

Φ(x).

Hence Φ has a minimizer x0 over A. From the proof, we also see that m = Φ(x0) > −∞;
thus Φ must be bounded below over the set A. �

In many variational problems, where we are trying to find a minimizer of a function Φ
on a set A. Generally, A is not equipped a priori with a topology. So our minimization
problem can be seen as a problem of introducing a topology for which bothA is a sequentially
compact set and Φ is a s.l.s.c. function. Note that in order to grant that Φ be s.l.s.c. we
need a rich topology, while for the sequential compactness the topology need not be too
rich.

We shall see that this compromise can be reached satisfactorily for a large class of
multiple integral functionals working in the Sobolev spaces W 1,p(Ω; RN ).

We consider a very useful case where A is a subset of a given Banach space X. Then,
besides the norm-topology of X we have the weak topology on X. Under this weak topology,
a sequence {xk} is to converge to a point x̄ as k →∞ provided that

lim
k→∞
〈L, xk〉 = 〈L, x̄〉

for all bounded linear functionals L : X → R on X; the set of all these bounded linear
functionals is called the dual space of X and denoted by X∗. If X is a reflexive Banach
space, i.e., (X∗)∗ ∼= X, then every bounded closed subset of X is sequentially compact in the
weak topology of X (also called sequentially weakly compact); this is Banach-Aloglu
theorem.

Theorem 3.2. Let X be a reflexive Banach space and A be a subset of X which is closed
in the weak topology of X. Suppose Φ : A → R ∪ {+∞} is

• s.l.s.c. in the weak topology of X (we also write Φ is w.s.l.s.c.),

• bounded below, and

• norm-coercive in the sense that Φ(xj)→∞ as ‖xj‖ → ∞.

Then Φ attains its minimum at some point in A.

Proof. Take a minimizing sequence {xj} in A such that

lim
j→∞

Φ(xj) = m = inf
x∈A

Φ(x).

Since Φ is bounded below, it follows that −∞ < m ≤ ∞. If m = ∞ then there is nothing
to prove since Φ ≡ +∞. Now assume m < ∞. Then the norm-coercivity of Φ implies
that sequence {‖xj‖} is bounded. Therefore, by the self-reflexivity of X, there exists a
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subsequence {xjk} which weakly converges to some point x̄ ∈ X. Since A is weakly closed,
we have x̄ ∈ A. Finally the lower semicontinuity of Φ implies

Φ(x̄) ≤ lim inf
k→∞

Φ(xjk) = m

and the membership x̄ ∈ A yields that m = Φ(x̄) and thus x̄ ∈ A is a minimizer sought
for. �

Remarks. 1) In application, we usually have X = W 1,p(Ω; RN ) and A a Dirichlet class;
that is,

A = Dpϕ(Ω) = {u ∈W 1,p(Ω; RN ) |u|∂Ω = ϕ},
where ϕ ∈ W 1,p(Ω; RN ) is given. Then X is reflexive for all 1 < p < ∞. But if p = 1, ∞,
X is not reflexive. In the case p =∞, the topology for A in the theorem need be replaced
by the weak star topology of W 1,∞(Ω; RN ).

2) In the calculus of variations, the lower semicontinuity of an energy functional is
mostly essential for many problems, while the boundedness and coercivity are sometimes
relatively easy to obtain. �

3.2. Lower semicontinuity in Sobolev spaces

As discussed before, in many variational problems lower semicontinuity is an essential con-
dition for exitence of minimizers. In next two sections, we study the (sequential) lower
semicontinuity of a multiple integral functional I(u) in the Sobolev space W 1,p(Ω; RN ).
Assume

I(u) =
∫

Ω
F (x, u,Du) dx.

We first prove a semicontinuity result, due mainly to Tonelli.

Theorem 3.3. Let F (x, s, ξ) ≥ 0 be smooth and convex in ξ. Assume F, Fξ are both
continuous in (x, s, ξ). Then the functional I(u) defined above is sequentially weakly (weakly
star if p =∞) lower semicontinuous on W 1,p(Ω; RN ) for all 1 ≤ p ≤ ∞.

Proof. We need only to prove I(u) is s.w.s.l.c. on W 1,1(Ω; RN ). To this end, assume {uk}
is a sequence weakly convergent to u in W 1,1(Ω; RN ). We need to show

I(u) ≤ lim inf
k→∞

I(uk).

By the Sobolev embedding theorem it follows that (via a subsequence) uk → u in L1(Ω; RN ).
We can also assume uk(x) → u(x) for almost every x ∈ Ω. Now, for any given δ > 0 we
choose a compact set K ⊂ Ω such that

(i) uk → u uniformly on K and |Ω \K| < δ (by Egorov’s theorem);
(ii) u, Du are continuous on K (by Lusin’s theorem).

Since F (x, s, ξ) is smooth and convex in ξ, it follows that

F (x, s, η) ≥ F (x, s, ξ) + Fξiα(x, s, ξ) (ηiα − ξiα) ∀ξ, η ∈MN×n.

Therefore, since F ≥ 0,

I(uk) ≥
∫
K
F (x, uk, Duk) dx

≥
∫
K

[
F (x, uk, Du) + Fξiα(x, uk, Du) (Dαu

i
k −Dαu

i)
]
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=
∫
K
F (x, uk, Du) +

∫
K
Fξiα(x, u,Du) (Dαu

i
k −Dαu

i)

+
∫
K

[Fξiα(x, uk, Du)− Fξiα(x, uik, Du)] (Dαu
i
k −Dαu

i).

Since F (x, s, ξ) is uniformly continuous on bounded sets and uk(x)→ u(x) uniformly on K
we have

lim
k→∞

∫
K
F (x, uk, Du) dx =

∫
K
F (x, u,Du) dx,

lim
k→∞

‖Fξiα(x, uk, Du)− Fξiα(x, uik, Du)‖L∞(K) = 0.

Now since Fξiα(x, u,Du) is bounded on K and Dαu
i
k converges to Dαu

i weakly in L1(Ω) as
k →∞, we thus have

lim
k→∞

∫
K
Fξiα(x, u,Du) (Dαu

i
k −Dαu

i) dx = 0.

From these estimates, we use Lemma 3.4 below to deduce that

lim inf
k→∞

I(uk) ≥
∫
K
F (x, u,Du).

If F (x, u,Du) ∈ L1(Ω), i.e., I(u) <∞, then for any given ε > 0, we use Lebesgue’s absolute
continuity theorem to determine δ > 0 so that∫

E
F (x, u,Du) ≥

∫
Ω
F (x, u,Du)− ε, ∀E ⊂ Ω, |Ω \ E| < δ.

On the other hand, if I(u) = ∞ then for any given large number M > 0 we choose δ > 0
so that ∫

E
F (x, u,Du) dx > M, ∀E ⊂ Ω, |Ω \ E| < δ.

In any of these two cases, by letting either ε→ 0 or M →∞, we obtain

lim inf
k→∞

I(uk) ≥ I(u).

The theorem is proved. �

Lemma 3.4. lim inf
k→∞

(ak + bk) ≥ lim inf
k→∞

ak + lim inf
k→∞

bk.

Using the theorem, we obtain the following existence result for convex functionals.

Theorem 3.5. In addition to the hypotheses of the previous theorem, assume there exists
1 < p <∞ such that

F (x, s, ξ) ≥ c |ξ|p − C, c > 0, C are some constants.

If for some ϕ ∈W 1,p(Ω; RN ) one has I(ϕ) <∞ then the minimization problem infu∈A I(u)
has a minimizer in A, where A = Dpϕ(Ω) is the Dirichlet class of ϕ defined before.

Remark. Both theorems in this section hold for more general functions F (x, s, ξ). For ex-
ample, we can replace the continuity condition by the Carathéodory condition; a function
F (x, s, ξ) is called a Carathéodory function if and only if F is measurable in x for all (s, ξ)
and continuous in (s, ξ) for almost every x. �
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3.3. Quasiconvexity and lower semicontinuity

Note that W 1,∞(Ω; RN ) can be identified with the space of all Lipschitz maps from Ω to
RN . A sequence {uk} converges to u in the weak star topology of W 1,∞(Ω; RN ) if and only
if {uk} converges to u in the sense of Lipschitz convergence; that is,

1) uk → u uniformly in C(Ω̄; RN );
2) the Lipschitz norms of uk and u are bounded.

Then we have the following necessary condition, mainly due to Morrey, for the lower semi-
continuity under the Lipschitz convergence of the multiple integral

I(u) =
∫

Ω
F (x, u(x), Du(x)) dx.

Theorem 3.6. Assume F (x, s, ξ) is continuous on Ω̄×RN ×MN×n. If the functional I(u)
defined by F as above is s.l.s.c. with respect to the Lipschitz convergence on W 1,∞(Ω; RN ),
then the following condition holds for all x0 ∈ Ω, s0 ∈ RN , ξ0 ∈ MN×n and all φ ∈
C∞0 (Ω; RN ) :

(3.1) F (x0, s0, ξ0) ≤
∫
−

Ω
F (x0, s0, ξ0 +Dφ(x)) dx.

In this case, function F (x, s, ξ) is called quasiconvex in ξ.

Proof. Let Q be a fixed open cube containing Ω̄ with center x̄ and side-length 2L. We
prove this theorem by several lemmas.

Lemma 3.7. Suppose

(3.2) F (x0, s0, ξ0) ≤
∫
−
Q
F (x0, s0, ξ0 +Dφ(x)) dx

holds for all φ ∈ C∞0 (Q; RN ). Then (3.1) holds.

Proof. For any φ ∈ C∞0 (Ω; RN ) we extend φ by zero onto Q; then φ ∈ C∞0 (Q; RN ).
Inserting it into (3.2) yields (3.1). �

In the following, let x0 ∈ Ω, s0 ∈ RN , ξ0 ∈MN×n be given. Define ũ(x) = s0 + ξ0 · (x−
x0). Let also φ ∈ C∞0 (Q; RN ) be given.

Assume Q′ ⊂⊂ Ω is an arbitrarily given cube containing x0 with side-length 2l. For
any positive integer ν we divide each side of Q′ into 2ν intervals of equal length, each being
equal to 2−ν+1l. This divides Q′ into 2nν small cubes {Qνj } with j = 1, 2, ..., 2nν . Denote
the center of each cube Qνj by x̄νj and define a function uν : Ω→ RN as follows.

uν(x) =

{
ũ(x) if x ∈ Ω \ ∪2nν

j=1Q
ν
j ;

ũ(x) + 2−ν l
L φ

(
x̄+ 2νL

l (x− x̄νj )
)

if x ∈ Qνj , 1 ≤ j ≤ 2nν .

Lemma 3.8. uν is a Lipschitz function on Ω and {uν} converges to ũ as ν → ∞ in the
sense of Lipschitz convergence defined above.

Proof. Note that, by the definition of ũ

Duν(x) =

{
ξ0 if x ∈ Ω \ ∪2nν

j=1Q
ν
j ;

ξ0 +Dφ
(
x̄+ 2νL

l (x− x̄νj )
)

if x ∈ Qνj , 1 ≤ j ≤ 2nν .

Therefore {Duν} is uniformly bounded. The lemma follows directly from the definition of
Lipschitz convergence. �
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To continue the proof, we notice that

I(ũ) =
∫

Ω
F (x, ũ(x), ξ0) dx

and that
I(uν) =

∫
Ω
F (x, uν(x), Duν) dx

=
∫

Ω\Q′
F (x, ũ, ξ0) dx+

∫
Q′
F (x, uν , Duν) dx.

Therefore, by the lower semicontinuity of I, we thus have

(3.3)
∫
Q′
F (x, ũ, ξ0) dx ≤ lim inf

ν→∞

∫
Q′
F (x, uν , Duν) dx.

From the uniform continuity of F (x, s, ξ) on bounded sets and the fact that uν → ũ uni-
formly on Ω we have

(3.4) lim inf
ν→∞

∫
Q′
F (x, uν , Duν) dx = lim inf

ν→∞

∫
Q′
F (x, ũ,Duν) dx.

We now compute∫
Q′
F (x, ũ,Duν) dx =

2nν∑
j=1

∫
Qνj

F
(
x, ũ, ξ0 +Dφ

(
x̄+

2νL
l

(x− x̄νj )
))
dx

=
2nν∑
j=1

∫
Qνj

F
(
xνj , ũ(xνj ), ξ0 +Dφ

(
x̄+

2νL
l

(x− x̄νj )
))
dx

=
2nν∑
j=1

(
l

2νL

)n ∫
Q
F
(
xνj , ũ(xνj ), ξ0 +Dφ(y)

)
dy

(3.5) =
2nν∑
j=1

F̃ (xνj ) |Qνj |,

where xνj ∈ Qνj are some points by the mean value theorem of integration, and

F̃ (x) =
∫
−
Q
F (x, ũ(x), ξ0 +Dφ(y)) dy.

This function is continuous on Q′ and the sum in (3.5) is simply the Riemann sum of the
integral of F̃ over Q′. Therefore, we arrive at

lim
ν→∞

∫
Q′
F (x, ũ,Duν) dx =

∫
Q′
F̃ (x) dx,

which by (3.4) implies ∫
Q′
F (x, ũ(x), ξ0) dx ≤

∫
Q′
F̃ (x) dx.

This inequality holds for any cube Q′ ⊂⊂ Ω containing x0; therefore,

F (x0, ũ(x0), ξ0) ≤ F̃ (x0).

This is nothing but

F (x0, s0, ξ0) ≤
∫
−
Q
F (x0, s0, ξ0 +Dφ(y)) dy.
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Finally, the proof of Theorem 3.6 is complete. �

Later we shall show that the quasiconvexity is also sufficient for the lower semicontinuity
of the multiple integrals of our study. But, before proving the sufficiency theorems, we would
like to point out some important properties of this quasiconvexity condition related to the
lower semicontinuity; properties related to other convexity conditions will be discussed in
next section.

Since quasiconvexity is only a condition for the dependence of F (x, s, ξ) on ξ, in the
following we assume F = F (ξ) depends only on ξ. Therefore, F is quasiconvex if and only
if

F (ξ) ≤
∫
−

Ω
F (ξ +Dφ(x)) dx

holds for all φ ∈ C∞0 (Ω; RN ). The following result, due to Meyers, will be useful to relax
the zero boundary condition on φ.

Theorem 3.9. Let F : MN×n → R be continuous and quasiconvex. For every bounded
set Q ⊂ Rn and every sequence {zk} in W 1,∞(Q; RN ) converging to zero in the sense of
Lipschitz convergence, we have

F (ξ) ≤ lim inf
k→∞

∫
−
Q
F (ξ +Dzk(x)) dx

for every ξ ∈MN×n.

Proof. Let Qν = {x ∈ Q | dist(x, ∂Q) > 1/ν}. Then Qν ⊂⊂ Q and |Q\Qν | → 0 as ν →∞.
Choose a cut-off function ζν ∈ C∞0 (Q) such that

0 ≤ ζν ≤ 1, ζν
∣∣
Qν

= 1, Mν = ‖Dζν‖L∞ <∞.

Since zk → 0 uniformly on Q we can choose a subsequence {kν} such that

‖zkν‖L∞ ≤ (Mν + 1)−1 ∀ ν = 1, 2, ...

and we may also assume

lim
ν→∞

∫
Q
F (ξ +Dzkν (x)) dx = lim inf

k→∞

∫
Q
F (ξ +Dzk(x)) dx.

Define φν = ζν zkν . Then φν ∈ W 1,∞
0 (Q; RN ) and we can use them as test functions in the

definition of quasiconvexity to obtain

|Q|F (ξ) ≤
∫
Q
F (ξ +Dφν(x)) dx

=
∫
Qν

F (ξ +Dzkν ) +
∫
Q\Qν

F (ξ + ζν Dzkν + zkν ⊗Dζν)

=
∫
Q
F (ξ +Dzkν (x)) dx+ εν ,

where
εν =

∫
Q\Qν

[F (ξ + ζν Dzkν + zkν ⊗Dζν)− F (ξ +Dzkν (x))] dx.

Since F (ξ) is bounded on bounded sets and |Q \Qν | → 0 as ν →∞, we easily have εν → 0
as ν →∞. Therefore,

|Q|F (ξ) ≤ lim inf
k→∞

∫
Q
F (ξ +Dzk(x)) dx.



22 3. Direct Methods in the Calculus of Variations

This completes the proof. �

We now prove the sufficiency of quasiconvexity for the lower semicontinuity of the func-
tional

I(u) =
∫

Ω
F (x, u(x), Du(x)) dx

under the Lipschitz convergence on Ω.

Theorem 3.10. Assume F (x, s, ξ) is continuous on Ω̄×RN ×MN×n and is quasiconvex
in ξ. Then the functional I defined above is s.l.s.c. with respect to Lipschitz convergence
on Ω.

Proof. Let {zk} be any sequence converging to 0 in the sense of Lipschitz convergence on
Ω, and let u ∈W 1,∞(Ω; RN ) be any given function. We need to show

(3.6)
∫

Ω
F (x, u,Du) ≤ lim inf

k→∞

∫
Ω
F (x, u+ zk, Du+Dzk).

For any given ε > 0, we choose finitely many disjoint cubes Qj contained in Ω such that

I(u) ≤
∫
∪Qj

F (x, u,Du) dx+ ε

and

I(u+ zk) ≥
∫
∪Qj

F (x, u+ zk, Du+Dzk) dx− ε,

for all k = 1, 2, · · · . In what follows, we prove for each cube Q = Qj

IQ(u) ≡
∫
Q
F (x, u,Du) dx ≤ lim inf

k→∞
IQ(u+ zk).

This, by Lemma 3.4, will certainly imply the conclusion of the theorem. To this end, for
each positive integer ν, we divide Q into small cubes {Qνj } with center x̄νj as in the proof
of Theorem 3.6:

Q =
2nν⋃
j=1

Qνj ∪ E, |E| = 0.

Define

(u)νj =
∫
−
Qνj

u(x) dx, (Du)νj =
∫
−
Qνj

Du(x) dx,

and

Uν(x) =
2nν∑
j=1

(u)νj · χQνj (x), Mν =
2nν∑
j=1

(Du)νj · χQνj (x).

Note that
‖Uν‖L∞ + ‖Mν‖L∞ ≤ ‖u‖W 1,∞

and that the sequences {Uν} and {Mν} converge almost everywhere to u and Du on Q as
ν →∞, respectively. We now estimate IQ(u+ zk).

IQ(u+ zk) =
∫
Q
F (x, u+ zk, Du+Dzk) = ak + bνk + cνk + dν + IQ(u),
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where

ak =
∫
Q

[F (x, u+ zk, Du+Dzk)− F (x, u,Du+Dzk)] dx,

bνk =
2nν∑
j=1

∫
Qνj

[F (x, u,Du+Dzk)− F (x̄νj , (u)νj , (Du)νj +Dzk)] dx,

cνk =
2nν∑
j=1

∫
Qνj

[F (x̄νj , (u)νj , (Du)νj +Dzk)− F (x̄νj , (u)νj , (Du)νj )] dx,

dν =
2nν∑
j=1

∫
Qνj

[F (x̄νj , (u)νj , (Du)νj )− F (x, u,Du)] dx.

By the uniform continuity of F (x, s, ξ) on bounded sets and the pointwise convergence of
{Uν} and {Mν} we have

lim
k→∞

ak = 0, lim
ν→∞

dν = 0

and limν→∞ b
ν
k = 0 uniformly with respect to k. We apply Theorem 3.9 to each Qνj to

obtain, by Lemma 3.4,
lim inf
k→∞

cνk ≥ 0

for all ν = 1, 2, · · · . Therefore, again by Lemma 3.4,

lim inf
k→∞

IQ(u+ zk) ≥ IQ(u),

as desired. The proof is complete. �

Remarks. 1) Both Theorems 3.6 and 3.10 are valid also for Carathéodory functions F (x, s, ξ).
2) Quasiconvexity is also the “right” condition for (sequential) lower semicontinuity of

integral functionals in the weak topology of W 1,p(Ω; RN ). The most general theorem in this
direction is the following theorem due to Acerbi and Fusco. �

Theorem 3.11. Let F (x, s, ξ) be a Carathéodory function. Assume for some 1 ≤ p <∞

0 ≤ F (x, s, ξ) ≤ a(x) + C (|s|p + |ξ|p),

where C > 0 is a constant and a(x) ≥ 0 is a locally integrable function in Ω. Then func-
tional I(u) =

∫
Ω F (x, u,Du) dx is w.s.l.s.c. on W 1,p(Ω; RN ) if and only if F (x, s, ξ) is

quasiconvex in ξ.

Theorem 3.12 (Existence of minimizers). Let F (x, s, ξ) be Carathéodory and quasiconvex
in ξ and satisfy

max{0, c |ξ|p − C} ≤ F (x, s, ξ) ≤ a(x) + C (|s|p + |ξ|p)

for some 1 < p < ∞, where c > 0, C are constants and a(x) ≥ 0 is a locally integrable
function in Ω. Then the minimization problem

min
u∈Dpϕ(Ω)

∫
Ω
F (x, u(x), Du(x)) dx

has a minimizer for any given ϕ ∈ W 1,p(Ω; RN ), where Dpϕ(Ω) is the Dirichlet class of ϕ
defined before.
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3.4. Properties of quasiconvex functions

Again since quasiconvexity is only a property of a function F (x, s, ξ) on ξ, for simplicity, we
consider functions F depending only on ξ. Such a function F is quasiconvex if and only if

(3.7) F (ξ) ≤
∫
−

Ω
F (ξ +Dφ(x)) dx, ∀ξ ∈MN×n

holds for all φ ∈ C∞0 (Ω; RN ). We prove this property is independent of the domain Ω.

Theorem 3.13. Let F : MN×n → R be continuous and (3.7) hold for all φ ∈ C∞0 (Ω; RN ).
Then for any bounded open set G ⊂ Rn with |∂G| = 0 one has

(3.8) F (ξ) ≤
∫
−
G
F (ξ +Dψ(y)) dy, ∀ξ ∈MN×n

holds for all ψ ∈ C∞0 (G; RN ).

Proof. Note that since F is continuous (3.7) holds for all φ ∈ W 1,∞
0 (Ω; RN ). Let G ⊂ Rn

be any bounded open set with |∂G| = 0, and ψ ∈ C∞0 (G; RN ) be any given test function.
Assume ȳ ∈ G. For any x ∈ Ω and ε > 0 let

G(x, ε) = {z ∈ Rn | z = x+ ε (y − ȳ) for some y ∈ G}.

Then there exists an εx > 0 such that x ∈ G(x, ε) ⊂ Ω for all x ∈ Ω and 0 < ε < εx. This
means the family

{G(x, ε)
∣∣x ∈ Ω, 0 < ε < εx}

covers Ω in the sense of Vitali covering. Therefore, there exists a countable disjoint sub-
family {G(xj , εj)} and a set E of measure zero such that

(3.9) Ω =
∞⋃
j=1

G(xj , εj) ∪ E.

We now define a function φ : Ω→ RN as follows.

φ(x) =

{
0 if x ∈

⋃∞
j=1 ∂[G(xj , εj)] ∪ E,

εj ψ
(
ȳ + x−xj

εj

)
if x ∈ G(xj , εj) for some j.

One can verify that φ ∈W 1,∞
0 (Ω; RN ) and

Dφ(x) = Dψ
(
ȳ +

x− xj
εj

)
∀x ∈ G(xj , εj).

Therefore, from (3.7), it follows that

F (ξ) |Ω| ≤
∫

Ω
F (ξ +Dφ(x)) dx

=
∞∑
j=1

∫
G(xj ,εj)

F

(
ξ +Dψ

(
ȳ +

x− xj
εj

))
dx

=
∞∑
j=1

εnj

∫
G
F (ξ +Dψ(y)) dy

=
|Ω|
|G|

∫
G
F (ξ +Dψ(y)) dy,

where the last equality follows since, by (3.9),
∑∞

j=1 ε
n
j = |Ω|/|G|. We have thus proved

(3.8). �
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In the following, let Σ be the unit cube in Rn; that is

Σ = {x ∈ Rn | 0 < xα < 1, α = 1, 2, · · · , n}.
Note that |Σ| = 1. Let f : Rn → RN be any given function. We say f is Σ-periodic if
f(· · · , xα, · · · ) is 1-periodic in xα for all α = 1, 2, · · · , n. Quasicovexity can be also charac-
terized by the following condition.

Theorem 3.14. Let F : MN×n → R be continuous. Then F is quasiconvex if and only if

(3.10) F (ξ) ≤
∫

Σ
F (ξ +Dφ(x)) dx ∀ξ ∈MN×n

for all Σ-periodic Lipschitz functions φ ∈W 1,∞(Rn; RN ).

Proof. Since any function ψ ∈ C∞0 (Σ; RN ) can be extended as a Σ-periodic function on Rn

we easily see that (3.10) implies (3.8) for G = Σ thus the quasiconvexity of F . We have only
to prove (3.10) holds for all continuous quasiconvex functions F . Let φ ∈ W 1,∞(Rn; RN )
be a Σ-periodic function. Define

φj(x) =
1
j
φ(jx)

for all j = 1, 2, · · · . It is easily seen that φj → 0 in the sense of Lipschitz convergence on
W 1,∞(Σ; RN ). Therefore the theorem of Meyers, Theorem 3.9, and the quasiconvexity of F
implies

F (ξ) ≤ lim inf
j→∞

∫
Σ
F (ξ +Dφj(x)) dx.

Note that ∫
Σ
F (ξ +Dφj(x)) dx =

∫
Σ
F (ξ +Dφ(jx)) dx

= j−n
∫
jΣ
F (ξ +Dφ(y)) dy

and that, besides a set of measure zero,

jΣ =
jn⋃
ν=1

(x̄ν + Σ),

where x̄ν are the left-lower corner points of the subcubes obtained by dividing the sides of
jΣ into j-equal subintervals. Since Dφ(x) is Σ-periodic, we thus have∫

jΣ
F (ξ +Dφ(y))dy =

jn∑
ν=1

∫
x̄ν+Σ

F (ξ +Dφ(y))dy = jn
∫

Σ
F (ξ +Dφ(x))dx,

and therefore
F (ξ) ≤

∫
Σ
F (ξ +Dφ(x)) dx

as needed; the proof is complete. �

Theorem 3.15. Every continuous quasiconvex function is rank-one convex.

Proof. There are many proofs for this result. We present a proof based on the previous
theorem. Let F be a continuous quasiconvex function. We need to show that for any
ξ ∈MN×n, q ∈ RN , p ∈ Rn the function f(t) = F (ξ+ tq⊗p) is a convex function of t ∈ R.
Since f(t) is continuous the convexity is equivalent to

f

(
t+ s

2

)
≤ f(t) + f(s)

2
∀t, s ∈ R,
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which is equivalent to
2F (ξ̃) ≤ F (ξ̃ + q̃ ⊗ p) + F (ξ̃ − q̃ ⊗ p),

where

ξ̃ = ξ +
t+ s

2
q ⊗ p, q̃ =

t− s
2

q.

Therefore the theorem follows from the following result. �

Lemma 3.16. Let F be a continuous quasiconvex function. Then

(3.11) 2F (ξ) ≤ F (ξ + q ⊗ p) + F (ξ − q ⊗ p) ∀ξ ∈MN×n

holds for all q ∈ RN and p ∈ Rn.

Proof. Since F is continuous it suffices to prove this inequality for all p ∈ Rn with all
pα being rational numbers. Let ρ : R → R be the “sawtooth” function which is 1-periodic
such that ρ(t) = t for 0 ≤ t ≤ 1

2 and ρ(t) = 1 − t for 1
2 ≤ t ≤ 1. We choose a large integer

T such that all Tpα are integers. Define φ(x) = 1
T ρ(Tx · p) q. Then it is easily seen that

φ ∈W 1,∞(Rn; RN ) is Σ-periodic and

Dφ(x) = ρ′(Tx · p) q ⊗ p.

By Theorem 3.14 we have

F (ξ) ≤
∫

Σ
F (ξ +Dφ(x)) dx

= |Σ ∩ {ρ′(Tx · p) = 1}|F (ξ + q ⊗ p)

+|Σ ∩ {ρ′(Tx · p) = −1}|F (ξ − q ⊗ p).
Since it is easy to see that

H(x1, x2, · · · , xn) = (1− x1, 1− x2, · · · , 1− xn)

defines a diffeomorphism from Σ∩{ρ′(Tx ·p) = 1} onto Σ∩{ρ′(Tx ·p) = −1}, we have thus

|Σ ∩ {ρ′(Tx · p) = 1}| = |Σ ∩ {ρ′(Tx · p) = −1}| = 1/2.

The proof is thus complete. �

Remark. Another proof is as follows. Let F be quasiconvex. If F is of class C2, then

f(t) =
∫

Ω
F (ξ + tDφ(x)) dx

takes its minimum at t = 0. Therefore f ′′(0) ≥ 0; that is,∫
Ω
F
ξiαξ

j
β
(ξ)Dαφ

i(x)Dβφ
j(x) dx ≥ 0

for all φ ∈ C∞0 (Ω; RN ). This implies the weak Legendre-Hadamard condition

F
ξiαξ

j
β
(ξ) qiqj pαpβ ≥ 0.

This shows that F is rank-one convex; that is, F satisfies (3.11). If F is only continuous,
then, for any ε > 0, let F ε = F ∗ ρε be the regularization of F . Then F ε is of class C∞ and
can be shown to be quasiconvex, and hence F ε satisfies (3.11) for all ε > 0; letting ε → 0
yields that F satisfies (3.11) and thus is rank-one convex. �
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Lemma 3.17 (Jensen’s inequality). Let (E,µ) be a measure space with total mass µ(E) = 1
and let h : E → RL be an integrable function on E. If G : RL → R is a convex function,
then

G

(∫
E
h(x) dµ

)
≤
∫
E
G(h(x)) dµ.

Proof. Since G : RL → R is convex, for each F ∈ RL there exists lF ∈ RL (note that
lF = DG(F ) for almost every F ) such that

G(A) ≥ G(F ) + lF · (A− F ) ∀A ∈ RL.

Let F =
∫
E h(x) dµ. Then G(h(x)) ≥ G(F ) + lF · (h(x)− F ) for all x ∈ E, and integrating

over x ∈ E yields ∫
E
G(h(x)) dµ ≥ G(F ) + lF ·

∫
E

(h(x)− F ) dµ = G(F ),

which proves Jensen’s inequality. �

Lemma 3.18 (Divergence Theorem). Let Ω be a domain with smooth boundary ∂Ω and
let ν(x) = (ν1, ..., νn) be the unit outer normal and dS the surface integral element on ∂Ω.
Then for any vector field φ ∈ C1(Ω̄; RN ) one has∫

Ω
Dφ(x) dx =

∫
∂Ω
φ(x)⊗ ν(x) dS.

Proposition 3.19. If F (ξ) is convex in ξ then F is quasiconvex.

Proof. This follows easily from Jensen’s inequality and the divergence theorem given above.
�

3.5. Polyconvex functions and null-Lagrangians

Unlike the convexity and rank-one convexity, quasiconvexity is a global property since the
inequality (3.7) is required to hold for all test functions. It is thus generally impossible to
verify whether a given function F (ξ) is quasiconvex. We have already seen that every convex
function is quasiconvex. However, there is a class of functions which are quasiconvex but
not necessarily convex. This class, mainly due to Morrey, has been called the polyconvex
functions by Ball.

In order to introduce the polyconvex functions of Ball, we need some notation. Let
σ = min{n,N}. For each integer k ∈ [1, σ], and any two ordered sequences of integers

1 ≤ i1 < i2 < · · · < ik ≤ N, 1 ≤ α1 < α2 < · · · < αk ≤ n,

let J i1i2···ikα1α2···αk(ξ) be the determinant of the k× k matrix whose (q, p) position element is ξiqαp
for each 1 ≤ p, q ≤ k. Note that, by the usual notation,

J i1i2···ikα1α2···αk(Du(x)) =
∂(ui1 , ui2 , · · · , uik)
∂(xα1 , xα2 , · · · , xαk)

= det
(
∂uiq

∂xαp

)
.

Let J (ξ) be the collection of all J i1i2···ikα1α2···αk(ξ) for all k ∈ [1, σ] and all ordered integral
sequences {iq}, {αp}. We embed J (ξ) to a large dimensional RL with the same rule for all
ξ, where

L = L(n,N) =
σ∑
k=1

(
N
k

)(
n
k

)
.

In this way, we have defined a map J : MN×n → RL.
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Definition 3.2. A function F (ξ) on MN×n is called a polyconvex function if there exists
a convex function G : RL → R such that F (ξ) = G(J (ξ)) for all ξ ∈ MN×n; that is,
F = G ◦ J on MN×n.

Remark. For a polyconvex function we may have different convex functions in its repre-
sentation. For example, let n = N = 2 and F (ξ) = |ξ|2 − det ξ. In this case, consider
J (ξ) = (ξ, det ξ) ∈ R5. Then we have

F (ξ) = G1(J (ξ)), F (ξ) = G2(J (ξ)),

where

G1(ξ, t) = |ξ|2 − t, G2(ξ, t) = (ξ1
1 − ξ2

2)2 + (ξ2
1 + ξ1

2)2 + t

are both convex functions of (ξ, t). �

We need following result to study the properties of polyconvex functions.

Theorem 3.20. Let J (ξ) be defined as above, and let Σ be the unit cube in ⊂ Rn. Then it
follows that ∫

Σ
J
(
ξ +Dφ(x)

)
dx = J (ξ)

for all φ ∈ C∞0 (Σ; RN ) and ξ ∈MN×n.

Proof. Since each J (ξ) is given by a k × k-determinant, without loss of generality, we
only prove this identity for J (ξ) = Jk(ξ) = J12···k

12···k (ξ), where 1 ≤ k ≤ σ = min{n, N}. For
simplicity, let u(x) = ξx+ φ(x). Let

x′ = (x1, · · · , xk), x′′ = (xk+1, · · · , xn) if k + 1 ≤ n.

Let Σ′, Σ′′ be the unit cubes in x′, x′′ variables, respectively. Fix x′′ ∈ Σ′′, for t ≥ 0,
consider maps Vt, Ut : Σ′ → Rk such that

V i
t (x′) = txi + (ξx)i, U it (x

′) = txi + ui(x′, x′′).

We can choose t > 0 sufficiently large so that Vt, Ut are both diffeomorphisms on Σ′, and
therefore ∫

Σ′
det(DUt(x′)) dx′ =

∫
Ut(Σ′)

dy′ =
∫
Vt(Σ′)

dy′ =
∫

Σ′
det(DVt(x′)) dx′.

Since both sides are polynomials of t of degree k, it follows that this equality holds for all
t. When t = 0 this implies

(3.12)
∫

Σ′
Jk(ξ +Dφ(x′, x′′)) dx′ =

∫
Σ′
Jk(ξ) dx′.

Integrating (3.12) over x′′ ∈ Σ′′ we deduce

(3.13)
∫

Σ
Jk(ξ +Dφ(x)) dx = Jk(ξ),

completing the proof. �

Theorem 3.21. A polyconvex function is quasiconvex.
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Proof. Let F : MN×n → R be a polyconvex function. Then there exists a convex function
G : RL → R such that F (ξ) = G(J (ξ)) for all ξ. Given ξ ∈ MN×n and φ ∈ C∞0 (Σ; RN ),
let h(x) = J (ξ +Dφ(x)). Then Jensen’s inequality implies

G

(∫
Σ
h(x) dx

)
≤
∫

Σ
G(h(x)) dx.

By the theorem above, the lefthand side is G(J (ξ)) = F (ξ) and therefore

F (ξ) ≤
∫

Σ
G(h(x)) dx =

∫
Σ
G(J (ξ +Dφ(x))) dx =

∫
Σ
F (ξ +Dφ(x)) dx,

proving that F is quasiconvex. �

Note that, using the method in the proof of Theorem 3.20, we also see that∫
Σ
J (Du(x)) dx =

∫
Σ
J (Du(x) +Dφ(x)) dx

for all u ∈ C1(Σ̄; RN ) and φ ∈ C∞0 (Σ; RN ). This property introduces the following defini-
tion.

Definition 3.3. A function F : MN×n → R is called a null-Lagrangian on MN×n if∫
Σ
F
(
Du(x) +Dφ(x)

)
dx =

∫
Σ
F (Du(x)) dx

holds for all u ∈ C1(Σ̄; RN ) and φ ∈ C∞0 (Σ; RN ).

Theorem 3.22. Let F : MN×n → R be continuous and let

IΩ(u) =
∫

Ω
F (Du(x)) dx,

where Ω is any smooth bounded domain in Rn. Then the following conditions are equivalent:

(1) F is a null-Lagrangian on MN×n;
(2) F (ξ) =

∫
Σ F (ξ +Dϕ(x)) dx for all ξ ∈MN×n and ϕ ∈ C∞0 (Σ; RN );

(3) F is of C1 and the Euler-Lagrange equation for functional IΩ is satisfied by all
functions in C1(Ω̄; RN );

(4) the functional IΩ is continuous with respect to the Lipschitz convergence on W 1,∞(Ω; RN ).

Proof. Note that (3) is the reason for the name of null-Lagrangians. We now prove the
theorem. It is easy to see (1) =⇒ (2). Note that (2) is equivalent to that both F and −F are
quasiconvex; the latter is equivalent to that both IΩ and −IΩ are lower semicontinuous with
respect to the Lipschitz convergence on W 1,∞(Ω; RN ). Therefore, (4)⇐⇒ (2). It remains to
show (2) =⇒ (3) =⇒ (1). Let us first prove (3) =⇒ (1). To this end, given u ∈ C1(Σ̄; RN )
and φ ∈ C∞0 (Σ; RN ), let

f(t) =
∫

Σ
F (Du(x) + tDφ(x)) dx.

Then (3) implies

f ′(t) =
∫

Σ
Fξiα(D(u+ tφ)(x))Dαφ

i(x) dx = 0,

and thus f(1) = f(0); therefore, F is null-Lagrangian and hence (3) =⇒ (1). The proof of
(2) =⇒ (3) will follow from several lemmas proved below. �

Lemma 3.23. If F is of C∞, then (2) =⇒ (3).
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Proof. Note that (2) implies∫
Ω
F (ξ +Dφ(x)) dx = F (ξ) |Ω| ∀ φ ∈ C∞0 (Ω; RN ).

Since F is of C∞, this implies that, for any φ, ψ ∈ C∞0 (Ω; RN ), the function

f(t) =
∫

Ω
F (tDφ(x) +Dψ(x)) dx

is constant and of C1. Therefore, f ′(0) = 0, which gives∫
Ω
Fξiα(Dψ(x))Dαφ

i(x) dx = 0.

Now given u ∈ C1(Ω̄; RN ), we can select a sequence {ψj} in C∞0 (Ω; RN ) such that ψj → u
in C1(suppφ; RN ). Using the identity above with ψ = ψj and letting j →∞ yield∫

Ω
Fξiα(Du(x))Dαφ

i(x) dx = 0.

This shows the Euler-Lagrange equation for IΩ holds for any u ∈ C1(Ω̄; RN ), and thus (3)
follows. �

From this lemma, the proof of (2) =⇒ (3) will be complete if we show that (2) =⇒ F is
of C∞. In fact, we can prove the following.

Proposition 3.24. If F satisfies (2) then F (ξ) is a polynomial in ξ.

This result will be proved later. We say F is rank-one affine if F (ξ + tq ⊗ p) is affine
in t for all ξ ∈MN×n, q ∈ RN , p ∈ Rn.

Lemma 3.25. If F satisfies (2) then F is rank-one affine.

Proof. Since (2)⇐⇒ that both F and −F are quasiconvex, by Theorem 3.15, (2) implies
the fact that both F and −F are rank-one convex, which is equivalent to that F is rank-one
affine. �

We need some notation. Let µiα = ei ⊗ eα, where {ei} and {eα} are the standard bases
of RN and Rn, respectively. For each 1 ≤ k ≤ σ = min{n,N} and 1 ≤ i1, · · · , ik ≤ N, 1 ≤
α1, · · · , αk ≤ n, we define, inductively,

F i1α1
(ξ) = F (ξ + µi1α1

)− F (ξ),

F i1···ikα1···αk(ξ) = F
i1···ik−1
α1···αk−1

(ξ + µikαk)− F i1···ik−1
α1···αk−1

(ξ).

Note that if F is a polynomial it follows

F i1···ikα1···αk(ξ) = ∂kF (ξ)/∂ξi1α1
· · · ∂ξikαk .

Indeed, we have the same permutation invariance property.

Lemma 3.26. Let {1′, · · · , k′} be any permutation of {1, · · · , k}. Then

F i1···ikα1···αk(ξ) = F
i1′ ···ik′
α1′ ···αk′ (ξ).
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Proof. We use induction on k. Assume this is true for all k ≤ s−1. Suppose {1′, 2′, · · · , s′}
is a permutation of {1, 2, · · · , s}. We need to show

(3.14) F i1···isα1···αs(ξ) = F
i1′ ···is′
α1′ ···αs′ (ξ).

By definition
F i1···isα1···αs(ξ) = F

i1···is−1
α1···αs−1(ξ + µisαs)− F

i1···is−1
α1···αs−1(ξ).

By induction assumption, (3.14) holds if s′ = s. We thus assume s′ < s. In this case, by
induction assumption,

F i1···isα1···αs(ξ) = F
i1···̂is′ ···is′
α1···α̂s′ ···αs′

(ξ + µisαs)− F
i1···̂is′ ···is′
α1···α̂s′ ···αs′

(ξ)

(where the m̂ means omitting m)

= F
i1···̂is′ ···
α1···α̂s′ ···

(ξ + µisαs + µ
is′
αs′ )− F

i1···̂is′ ···
α1···α̂s′ ···

(ξ + µisαs)

−F i1···̂is′ ···α1···α̂s′ ···
(ξ + µ

is′
αs′ ) + F

i1···̂is′ ···
α1···α̂s′ ···

(ξ)

= F
i1···̂is′ ···is
α1···α̂s′ ···αs

(ξ + µ
is′
αs′ )− F

i1···̂is′ ···is
α1···α̂s′ ···αs

(ξ),

which, by induction assumption, equals

F
i1′ ···i(s−1)′
α1′ ···α(s−1)′ (ξ + µ

is′
αs′ )− F

i1′ ···i(s−1)′
α1′ ···α(s−1)′ (ξ) = F

i1′ ···is′
α1′ ···αs′ (ξ).

This proves the induction procedure and hence the lemma. �

Lemma 3.27. If F is rank-one affine, then all F i1···ikα1···αk are also rank-one affine. Moreover,

(3.15) F i1···ikα1···αk(ξ + t µjβ) = F i1···ikα1···αk(ξ) + t F i1···ikjα1···αkβ(ξ).

Proof. Use induction again on k. �

Proof of Proposition 3.24. If F satisfies (2) then F is rank-one affine. Write

ξ =
N∑
i=1

n∑
α=1

ξiα µ
i
α.

Then a successive use of the previous lemma shows that F (ξ) is a polynomial of degree at
most nN in ξ with coefficients determined by F i1···ikα1···αk(0). �

Remark. In fact, one can prove that a rank-one affine function is also a null-Lagrangian.
The proof involves some very complicated computations; we do not intend to present it
here. Also, the following result actually characterizes all null-Lagrangians; the proof of this
theorem is beyond this lecture. �

Theorem 3.28. Let F : MN×n → R be continuous. Then F is a null-Lagrangian if and
only if there exists an affine function L : RL → R such that F = L ◦ J .

We prove a compensated compactness property of the null-Lagrangians. For nonlinear
operators with similar properties we refer to Coifman et al.

Theorem 3.29. Let Jk(Du) be any k×k subdeterminant. Let {uj} be any sequence weakly
convergent to ū in W 1,k(Ω; RN ) as j → ∞. Then Jk(Duj) → Jk(Dū) in the sense of
distribution in Ω; that is,

lim
j→∞

∫
Ω
Jk(Duj(x))φ(x) dx =

∫
Ω
Jk(Dū(x))φ(x) dx

for all φ ∈ C∞0 (Ω).
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Proof. We prove this by induction on k. Obviously, the theorem is true when k = 1.
Assume it holds for Js with s ≤ k − 1. We need to show it also holds for s = k. Without
loss of generality, we may assume

Jk(Du(x)) =
∂(u1, u2, · · · , uk)
∂(x1, x2, · · · , xk)

.

For any smooth function u, we observe that Jk(Du) is actually a divergence:

(3.16) Jk(Du(x)) =
k∑
ν=1

∂

∂xν

(
u1 (−1)ν+1∂(u2, · · · , uk)
∂(x1, · · · , x̂ν , · · · , xk)

)
,

where x̂ν , again, means deleting xν . Let

J
(ν)
k−1(Du(x)) =

(−1)ν+1∂(u2, · · · , uk)
∂(x1, · · · , x̂ν , · · · , xk)

.

Then (3.16) implies

(3.17)
∫

Ω
Jk(Du(x))φ(x) dx =

k∑
ν=1

∫
Ω
u1(x) J (ν)

k−1(D(x))Dνφ(x) dx.

By density argument, this identity still holds if u ∈ W 1,k(Ω; RN ). Suppose uj ⇀ ū in
W 1,k(Ω; RN ). By the Sobolev embedding theorem, uj → ū in Lk(Ω; RN ). Moreover, by the
induction assumption, J (ν)

k−1(Duj)→ J
(ν)
k−1(Dū) in the sense of distribution. Note that since

sequence {J (ν)
k−1(Duj)} is also bounded in L

k
k−1 (Ω) it also weakly converges in L

k
k−1 (Ω); by

density the weak limit must be J (ν)
k−1(Dū). We can then apply (3.17) to conclude

lim
j→∞

∫
Ω
Jk(Duj(x))φ(x) dx =

∫
Ω
Jk(Dū(x))φ(x) dx,

as desired. The proof is complete. �

Remark. Although, when uj ⇀ ū in W 1,k(Ω; RN ), it follows Jk(Duj) → Jk(Dū) in the
sense of distribution and {Jk(Duj)} is bounded in L1(Ω), it is not true that Jk(Duj) ⇀
Jk(Dū) weakly in L1(Ω). The following example is due to Ball and Murat. �

Example 3.4 (Ball and Murat ’84). Let B be the unit open ball in Rn. Consider, for
j = 1, 2, · · · , the radial mappings

uj(x) =
Uj(|x|)
|x|

x, Uj(r) =


jr if 0 ≤ r ≤ 1/j,
2− jr if 1/j ≤ r ≤ 2/j,
0 if 2/j ≤ r < 1.

Computation shows that uj ⇀ 0 in W 1,n(B; Rn) as j →∞. But

detDuj(x) = (Uj(r)/r)n−1U ′j(r)

for a.e. x ∈ B, where r = |x|, and hence∫
|x|<2/j

| detDuj(x)| dx = C

is a constant independent of j. This shows that {detDuj} is not equi-integrable in B, and
therefore it does not converges weakly in L1(B), or in L1

loc(B). The last observation is in
sharp contrast to a well-known result of Müller, which states that if detDuj(x) ≥ 0 a.e. in
Ω and uj → ū weakly in W 1,n(Ω; Rn) then detDuj ⇀ detDū weakly in L1

loc(Ω).
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3.6. Questions and examples

We have introduced several convexity conditions: convex, rank-one convex, quasiconvex,
polyconvex. For convexity and rank-one convexity we have the strict versions before, which
are equivalent to the Legendre condition and Legendre-Hadamard condition (with ν > 0),
respectively. For quasiconvexity, Evans also introduced a strict version.

Definition 3.5. A function F : MN×n → R is called uniformly strict quasiconvex in
W 1,p provided that ∫

Ω
[F (ξ +Dφ(x))− F (ξ)] dx ≥ γ

∫
Ω
|Dφ(x)|p dx,

where γ > 0 is a constant, holds for all smooth domains Ω ⊂ Rn and all φ ∈W 1,p
0 (Ω; RN ).

This condition is useful for regularity theory of minimizers, which we will do later.

In our study so far, we have assumed N ≥ 2. But if N = 1 or n = 1 we can easily see
that all these convexities are the same as the usual convex condition. However, if n,N ≥ 2,
we have known that for continuous functions with finite values

convex =⇒ polyconvex =⇒ quasiconvex =⇒ rank-one convex.

We give some examples which show that these are in general truly different conditions.

Example 3.6 (Dacorogna and Marcellini ’88). Let n = N = 2 and

Fδ(ξ) = |ξ|4 − δ |ξ|2 det ξ.

Then

Fδ is


convex ⇐⇒ |δ| ≤ 4

3

√
2 ≈ 1.89,

polyconvex ⇐⇒ |δ| ≤ 2,
quasiconvex ⇐⇒ |δ| ≤ 2 + ε,

rank-one convex ⇐⇒ |δ| ≤ 4
3

√
3 ≈ 2.31.

It is known that ε > 0 for the quasiconvexity; whether or not 2 + ε = 4√
3

is still open. Note
that this example gives an explicit quasiconvex function which is not polyconvex. But it
leaves open whether a rank-one convex function is quasiconvex.

Proposition 3.30. If F is a polynomial of degree two (quadratic polynomial) then F is
quasiconvex ⇐⇒ F is rank-one convex.

Proof. Assume F is a rank-one convex quadratic polynomial. We show F is quasiconvex.
Since subtraction of an affine function from a function does not change the quasiconvexity
or rank-one convexity, we thus assume F is a homogeneous quadratic polynomial given by

F (ξ) = Aαβij ξ
i
αξ

j
β (summation notation is used here and below)

with Aαβij are constants. Then

(3.18) F (ξ + η) = F (ξ) +Aαβij ξ
i
αη

j
β +Aαβij ξ

j
βη

i
α +Aαβij η

i
αη

j
β.

Note that the rank-one convexity is equivalent to

Aαβij q
iqj pαpβ ≥ 0.

Hence the linear system defined by constants Ãαβij = Aαβij + εδijδ
αβ satisfies the Legendre-

Hadamard condition, where ε > 0 and δij , δ
αβ are the usual delta notation. By a theorem



34 3. Direct Methods in the Calculus of Variations

we prove before, the bilinear form defined by Ãαβij is coercive in W 1,2
0 (Rn; RN ); this means

that ∫
Rn

Ãαβij Dαφ
i(x)Dβφ

j(x) dx ≥ ε
∫
Rn

|Dφ(x)|2 dx

for all φ ∈ C∞0 (Rn; RN ); hence, by cancelling the ε-terms both sides, we have∫
Rn

Aαβij Dαφ
i(x)Dβφ

j(x) dx ≥ 0.

Therefore by (3.18)∫
Σ
F (ξ +Dφ(x)) dx = F (ξ) +

∫
Rn

Aαβij Dαφ
i(x)Dβφ

j(x) dx ≥ F (ξ),

as required. The proof is complete. �

Proposition 3.31. A rank-one convex third degree polynomial must be a null-Lagrangian
and thus quasiconvex.

Proof. Let F be a rank-one convex third degree polynomial. Then the polynomial f(t) =
F (ξ + tq ⊗ p) is convex and of degree ≤ 3 in t, and hence the degree of f(t) cannot be 3.
Note that the coefficient of t2 term in f is half of

(3.19) F
ξiαξ

j
β
(ξ) pαpβ qiqj ≥ 0,

which holds for all ξ, p, q. Since F
ξiαξ

j
β
(ξ) is linear in ξ, condition (3.19) implies F

ξiαξ
j
β
(ξ) pαpβ qiqj ≡

0. Therefore f(t) = F (ξ + tq ⊗ p) is affine in t and hence F is rank-one affine. Conse-
quently, the result follows from the fact that a rank-one affine function must be a null-
Lagrangian. �

The following now classical example of Šverák settles a long-standing open problem
raised by Morrey in early fifties.

Theorem 3.32 (Šverák ’92). If n ≥ 2, N ≥ 3 then there exists a rank-one convex function
F : MN×n → R which is not quasiconvex.

Proof. We only prove the theorem for n = 2, N = 3. Consider the periodic function
u : R2 → R3 by

u(x) =
1

2π
(sin 2πx1, sin 2πx2, sin 2π(x1 + x2)).

Then

Du(x) =

 cos 2πx1 0
0 cos 2πx2

cos 2π(x1 + x2) cos 2π(x1 + x2)

 .

Let L be the linear span of the values of Du(x) in M = M3×2; that is,

L =

[r, s, t] ≡

r 0
0 s
t t

 ∣∣∣ r, s, t ∈ R

 .

Note that a matrix ξ = [r, s, t] ∈ L is of rank ≤ 1 if and only if at most one of {r, s, t} is
nonzero. Define g : L→ R by g([r, s, t]) = −rst. Using formula 2 cosα ·cosβ = cos(α+β)+
cos(α− β), we easily obtain

g(Du(x)) = −1
4
− 1

4
(

sin 4π(x1 + x2) + cos 4πx1 + cos 4πx2

)
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and hence by a direct computation that

(3.20)
∫

Σ
g(Du(x)) dx =

∫ 1

0

∫ 1

0
g(Du(x)) dx1dx2 = −1

4
.

We now extend g to the whole M. Let P : M→ L be the orthogonal projection onto L and
consider the fourth degree polynomials

(3.21) Fε,k(ξ) = g(Pξ) + ε (|ξ|2 + |ξ|4) + k |ξ − Pξ|2.

Lemma 3.33. For each ε > 0 there exists a k = kε > 0 such that Fε,kε is rank-one convex.

Proof. We use contradiction method. Suppose otherwise; then there exists an ε0 > 0 such
that Fε0,k is not rank-one for any k > 0. Hence there exist ξk ∈M, pk ∈ R2, qk ∈ R3 with
|pk| = |qk| = 1 such that

(3.22)
∂2Fε0,k(ξk)

∂ξiα∂ξ
j
β

qikq
j
k p

k
αp

k
β ≡ D2Fε0,k(ξk) [qk ⊗ pk, qk ⊗ pk] ≤ 0.

Computing f ′′(0) for f(t) = Fε,k(ξ + tη) yields

D2Fε,k(ξ) [η, η] = f ′′(0)

= D2g(Pξ) [Pη, Pη] + 2ε |η|2 + ε (4|ξ|2|η|2 + 8(ξ · η)2) + 2k |η − Pη|2.
The term D2g(Pξ) is linear in ξ; the third term is quadratic and positive definite in ξ if
η 6= 0 (this is the reason the |ξ|4-term is needed for Fε,k). From these and (3.22) we deduce
{ξk} is bounded as k →∞. Assume, via subsequence,

ξk → ξ̄, qk → q̄, pk → p̄.

Since D2Fε,j(ξ) [η, η] ≤ D2Fε,k(ξ) [η, η] for all k ≥ j, we deduce

(3.23) D2g(P ξ̄) [P (q̄ ⊗ p̄), P (q̄ ⊗ p̄)] + 2ε0 + 2j |P (q̄ ⊗ p̄)− q̄ ⊗ p̄ | ≤ 0

for all j = 1, 2, · · · . Thus P (q̄⊗ p̄) = q̄⊗ p̄ and hence q̄⊗ p̄ ∈ L. This implies q̄⊗ p̄ = [a, b, c],
where at most one of a, b, c is nonzero. Therefore, function

t 7→ g(P (ξ̄ + tq̄ ⊗ p̄)) = g(P ξ̄ + tq̄ ⊗ p̄)

is affine in t, and hence the first term in (3.23) vanishes. This yields the desired contradiction
ε0 ≤ 0. The lemma is proved. �

We now complete the proof of Šverák’s theorem. Let u be the periodic function above.
We choose ε > 0 small enough such that

ε

∫
Σ

(|Du(x)|2 + |Du(x)|4) dx <
1
4
.

Let Fε(ξ) = Fε,kε(ξ) be a rank-one function by the previous lemma. Since Du(x) ∈ L, it
follows by (3.20) that∫

Σ
Fε(Du(x)) dx =

∫
Σ
g(Du) + ε

∫
Σ

(|Du|2 + |Du|4) < 0 = Fε(0).

This shows that Fε is not quasiconvex by a theorem we proved before. The theorem is now
proved. �
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Remarks. 1) Note that all functions Fε,k defined by (3.21) are polynomials of degree 4.
Therefore, we have shown that there are quartic polynomials on MN×n which are rank-one
convex but not quasiconvex if n ≥ 2 and N ≥ 3. (See Propositions 3.30 and 3.31.)

2) For any function g : MN×n → R, if we define gT : Mn×N → R by gT (ξ) = g(ξT ),
then it is easily seen that gT is rank-one convex (polyconvex) if and only if g is rank-one
convex (polyconvex). However, using Šverák’s function Fε,k above, S. Müller ’98 recently
proved that for each ε > 0 there exists a kε such that F Tε,k is quasiconvex for all k ≥ kε; of
course we already knew Fε,k is not quasiconvex for any k > 0 if ε > 0 is small enough.

3) It is still completely open whether or not there exists a rank-one convex function
on M2×n which is not quasiconvex for n ≥ 2. See also the example of Dacorogna and
Marcellini. �

3.7. Relaxation principles

Given a function F : MN×n → R, we are interested in the largest quasiconvex function less
than or equal to F . This largest quasiconvex function is called the quasiconvex envelope
or relaxation of F. This motivates the following definition.

Definition 3.7. The quasiconvexification of F is defined by

F qc(ξ) = inf
φ∈C∞0 (Σ;RN )

∫
Σ
F (ξ +Dφ(x)) dx, ξ ∈MN×n.

Remarks. 1) From this definition, F qc is only upper semicontinuous if F is continuous.
Howerver the next theorem shows that in this case F qc is in fact continuous (locally Lips-
chitz).

2) Recently, Ball et al solved a long-standing open problem that shows F qc is of C1 if
F is of C1 and satisfies a polynomial growth. �

Theorem 3.34. Let F ≥ 0 be continuous. Then F qc is continuous and is the largest
quasiconvex function below F, the quasiconvex envelope of F.

Proof. For any quasiconvex function G ≤ F,

G(ξ) ≤
∫

Σ
G(ξ +Dφ(x)) dx ≤

∫
Σ
F (ξ +Dφ(x)) dx.

Hence G(ξ) ≤ F qc(ξ) by the definition of F qc. It remains to prove F qc is itself quasiconvex.
We first observe that

(3.24) F qc(ξ) = inf
φ∈W 1,∞

0 (Ω;RN )

∫
−

Ω
F (ξ +Dφ(x)) dx

for any open set Ω ⊂ Rn with |∂Ω| = 0. This can be proved by using the Vitali covering
argument as before. We now prove a lemma.

Lemma 3.35. For all piecewise affine Lipschitz continuous functions φ ∈ W 1,∞
0 (Σ; RN ),

it follows that

F qc(ξ) ≤
∫

Σ
F qc(ξ +Dφ(x)) dx.

Proof. Let Σ = ∪iΩi ∪E such that |E| = 0 and each Ωi is an open set with |∂Ωi| = 0 and
such that φ ∈ W 1,∞

0 (Σ; RN ) takes constant gradients Dφ = Mi on each Ωi. Let ε > 0 be
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given. By the above remark on the definition of F qc, there exists ψi ∈ W 1,∞
0 (Ωi; RN ) such

that

F qc(ξ +Mi) ≥
∫
−

Ωi

F (ξ +Mi +Dψi(x)) dx− ε.

With each ψi being extended to Σ, we set ψ = φ+
∑

i ψi. Then ψ ∈W 1,∞
0 (Σ; RN ) and we

have ∫
Σ
F qc(ξ +Dφ(x)) dx =

∑
i

|Ωi|F qc(ξ +Mi)

≥
∫

Σ
F (ξ +Dψ(x)) dx− ε ≥ F qc(ξ)− ε,

and the lemma follows. �

Now the lemma above is enough to show F qc is rank-one convex (using “sawtooth” like
piecewise affine functions) and therefore is locally Lipschitz continuous (since it is convex in
each coordinate direction). Hence F qc is quasiconvex by the same lemma above and density
arguments. The proof of the theorem is complete. �

Suppose F (ξ) is a continuous function on MN×n and satisfies

0 ≤ F (ξ) ≤ C (|ξ|p + 1) ∀ξ ∈MN×n

for some 1 ≤ p < ∞. We are interested in the largest w.s.l.s.c. functional Ĩ(u) on
W 1,p(Ω; RN ) which is less than or equal to the functional

I(u) =
∫

Ω
F (Du(x)) dx.

This functional Ĩ(u) is called the envelope or relaxation of I in the weak topology of
W 1,p(Ω; RN ). It turns out under the condition given above, Ĩ(u) is given by the integral
functional of F qc.

Theorem 3.36. Let F (ξ) be continuous and satisfy 0 ≤ F (ξ) ≤ C (|ξ|p+1) for 1 ≤ p <∞.
Then the envelope Ĩ(u) of I in the weak topology of W 1,p(Ω; RN ) is given by

Ĩ(u) =
∫

Ω
F qc(Du(x)) dx.

Proof. Let Î(u) be the integral functional defined by F qc. Since F qc is quasiconvex and
satisfies the same growth condition as F , the functional Î(u) is thus (sequential) w.l.s.c. on
W 1,p(Ω; RN ) by the theorem of Acerbi and Fusco. Therefore, Î ≤ Ĩ . To prove the other
direction, we first assume there exists a continuous function g : MN×n → R such that

(3.25) Ĩ(u) =
∫

Ω
g(Du(x)) dx ∀ u ∈W 1,p(Ω; RN ).

Then g(ξ) must be quasiconvex and g ≤ F , and thus g ≤ F qc; this proves Ĩ ≤ Î . However,
the proof of (3.25) is beyond the scope of this lecture and is omitted; see e.g., Buttazzo,
Acerbi and Fusco, or Dacorogna. �

Finally we have the following theorem; the proof of the theorem is also omitted (see
also Acerbi and Fusco, or Dacorogna).
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Theorem 3.37 (Relaxation Principle). Assume

c |ξ|p ≤ F (ξ) ≤ C (|ξ|p + 1)

holds for some constants c > 0, C > 0, p > 1. Then

inf
u∈Dpϕ(Ω)

∫
Ω
F (Du) dx = min

u∈Dpϕ(Ω)

∫
Ω
F qc(Du) dx

for any ϕ ∈W 1,p(Ω; RN ), where Dpϕ(Ω) is the Dirichlet class of ϕ.

Reamrk. This theorem seems too nice for the nonconvex variational problems since it
changes a nonconvex problem which may not have a minimizer to a quasiconvex problem
that has definitely at least one minimizer. But, there are costs for this: we may lose
some information about the minimizing sequences; a minimizer so obtained for the relaxed
problem may not characterize what seems more interesting in applications the finer and finer
patterns of minimizing sequences. In the phase transition problems for certain materials,
it accounts for the loss of information about the microstructures by a macroscopic effective
processing (relaxation). For more information, we refer to Ball and James ’92, Müller ’98
and the references therein.

�



Chapter 4

Regularity Theory for
Linear Systems

4.1. Sobolev-Poincaré type inequalities

Let Ω ⊂ Rn be a Lipschitz domain. Then, by Sobolev’s embedding theorem, the immersion

(4.1) W 1,p(Ω; RN ) ↪→ Lp(Ω; RN )

is a compact operator for all 1 ≤ p < ∞. Based on this compact embedding, we can prove
several useful Poincaré-type inequalities.

Proposition 4.1. Let Ω be a bounded domain such that the immersion (4.1) is compact.
Then for any 1 ≤ p <∞ there exists a constant Cp = Cp(Ω) such that

(4.2)
∫

Ω
|u(x)− uΩ|p dx ≤ Cp

∫
Ω
|Du(x)|p dx

holds for all u ∈W 1,p(Ω; RN ), where uΩ is the average of u on Ω; that is

uΩ =
∫
−

Ω
u(x) dx =

1
|Ω|

∫
Ω
u(x) dx.

Proof. Suppose the result is not true. Then we can find a sequence {uk} in W 1,p(Ω; RN )
such that for k = 1, 2, ...

ukΩ = 0, ‖uk‖Lp(Ω;RN ) = 1, ‖Duk‖Lp(Ω;RN ) ≤ 1/k.

By the compact embedding, we can find a subsequence of {uk}, still denoted the same,
such that uk → ū in Lp(Ω; RN ) as k → ∞. Therefore, ‖ū‖p = 1, ūΩ = 0 and by the lower
semicontinuity of the norm, ‖Dū‖p = 0. These are obvious contradictions. The result is
proved. �

If we define Cp(Ω) to be the best constant in the Poincaré inequality (4.2), then by an
easy scaling argument we have

Cp(RΩ) = RpCp(Ω), ∀ R > 0.

Hence we have the following useful Poincaré-type inequalities.

39
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Proposition 4.2. Let 1 ≤ p < ∞. Then there exist constants C1 = C1(n, p) and C2 =
C2(n, p) such that for all balls BR ⊂ Rn and u ∈W 1,p(BR; RN )∫

BR

|u− uBR |
p dx ≤ C1R

p

∫
BR

|Du|p dx,(4.3) ∫
BR\BR/2

|u− uBR\BR/2 |
p dx ≤ C2R

p

∫
BR\BR/2

|Du|p dx.(4.4)

We shall also use certain Poincaré type inequalities between Lp norm of u and Lq norm
of Du, which are usually called the Sobolev-Poincaré type inequalities. We state two of
such important inequalities without proof; see Gilbarg-Trudinger, Chapter 7.

Proposition 4.3. For any 1 ≤ p < n there exists a constant C4 = C4(n, p) such that for
any domain Ω and u ∈W 1,p

0 (Ω; RN )

(4.5)
∫

Ω
|u|

np
n−p dx ≤ C4

(∫
Ω
|Du|p dx

) n
n−p

.

We sometimes denote p∗ = np
n−p , called the Sobolev conjugate of p.

Proposition 4.4. For any 1 ≤ p < n there exists a constant C5 = C5(n, p) such that for
all balls BR ⊂ Rn and u ∈W 1,p(BR; RN )

(4.6)
∫
BR

|u− uBR |
np
n−p dx ≤ C5

(∫
BR

|Du|p dx
) n
n−p

.

4.2. Caccioppoli-type estimates

Let A(x, ξ) = A(x) ξ be a linear matrix function of ξ given by

(A(x, ξ))iα = (A(x)ξ)iα = Aαβij (x)ξjβ,

where Aαβij ∈ L∞(Ω). Consider the linear partial differential system

(4.7) −Dα

(
Aαβij (x)Dβu

j
)

= gi −Dαf
i
α, i = 1, 2, · · · , N,

where we assume gi, f iα ∈ L2
loc(Ω). We also write this system as

−Div(A(x)Du) = g −Div f,

where g = (gi), f = (f iα). Recall that a function u ∈W 1,2
loc (Ω; RN ) is a weak solution of (4.7)

if

(4.8)
∫

Ω
A(x)Du ·Dφ(x) dx =

∫
Ω

(g(x) · φ(x) + f(x) ·Dφ(x)) dx

holds for all φ ∈ C∞0 (Ω; RN ). Since Aαβij ∈ L∞(Ω), the test function φ in (4.8) can be chosen
in W 1,2

0 (Ω′; RN ) for any subdomain Ω′ ⊂⊂ Ω.
The regularity for system (4.7) relies on certain ellipticity conditions. We shall assume

one of the following conditions for the coefficients Aαβij (x) holds with some constant ν > 0.

(H1) Aαβij (x) ξiαξ
j
β ≥ ν |ξ|

2.

(H2) Aαβij are constants, Aαβij pαpβ q
iqj ≥ ν |p|2|q|2.

(H3) Aαβij ∈ C(Ω̄), Aαβij (x) pαpβ qiqj ≥ ν |p|2|q|2.
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Assume u ∈W 1,2
loc (Ω; RN ) is a weak solution of (4.7). Almost all the estimates pertaining

to regularity of u are derived using test functions of the form φ = η (u − λ), where η is a
cut-off function which belongs to W 1,∞

0 (Ω′) for certain Ω′ ⊂⊂ Ω. Let Bρ ⊂⊂ BR ⊂⊂ Ω be
concentric balls with center a ∈ Ω. Let

θ(t) =


1 if 0 ≤ t ≤ ρ,
R−t
R−ρ if ρ ≤ t ≤ R,
0 if t > R.

Let ζ = ζρ,R(x) = θ(|x− a|). Then ζ ∈W 1,∞
0 (Ω) with supp ζ ⊆ B̄R and

(4.9) 0 ≤ ζ ≤ 1, ζ|Bρ ≡ 1, |Dζ| ≤
χρ,R
R− ρ

,

where χρ,R = χBR\Bρ(x) is the characteristic function of BR \Bρ. Define

ψ = ζ (u− λ), φ = ζ2(u− λ) = ζ ψ.

Then ψ, φ ∈W 1,2
0 (BR; RN ) and

Dφ = ζDψ + ψ ⊗Dζ, Dψ = ζDu+ (u− λ)⊗Dζ.

Using φ as a test function in (4.8) yields∫
BR

(g · φ+ f ·Dφ) =
∫
BR

A(x)Du ·Dφ

=
∫
BR

A(x)Du · ζDψ +
∫
BR

A(x)Du · ψ ⊗Dζ.

Note that

A(x)Dψ ·Dψ = A(x)Du · ζDψ +A(x)(u− λ)⊗Dζ ·Dψ,
A(x)Du · ψ ⊗Dζ = A(x)ζDu · (u− λ)⊗Dζ

= A(x)Dψ · (u− λ)⊗Dζ
− A(x)(u− λ)⊗Dζ · (u− λ)⊗Dζ.

Therefore, it follows that∫
BR

A(x)Dψ ·Dψ =
∫
BR

A(x)(u− λ)⊗Dζ ·Dψ

+
∫
BR

(g · φ+ f ·Dφ)

−
∫
BR

A(x)Dψ · (u− λ)⊗Dζ

+
∫
BR

A(x)(u− λ)⊗Dζ · (u− λ)⊗Dζ.

(Note that the first and third terms on the righthand side would cancel out if A(x)ξ · η is
symmetric in ξ, η.)

For the moment, we assume the following G̊arding inequality holds:

(4.10)
∫
BR

A(x)Dψ ·Dψ ≥ ν0

∫
BR

|Dψ|2 − ν1

∫
BR

|ψ|2,
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where ν0 > 0, ν1 ≥ 0 are constants. Then it follows that

ν0

∫
BR

|Dψ|2 ≤
∫
BR

A(x)Dψ ·Dψ + ν1

∫
BR

|ψ|2

≤
∣∣∣ ∫

BR

g · φ
∣∣∣+
∫
BR

|f | · |Dψ|+
∫
BR

|f | ·
χρ,R |u− λ|
R− ρ

+ C

∫
BR

|Dψ| ·
χρ,R |u− λ|
R− ρ

+ C

∫
BR

χρ,R |u− λ|2

(R− ρ)2

+ ν1

∫
BR

|u− λ|2.

Using the Young inequality
|a| · |b| ≤ ε|a|2 + Cε|b|2

in this estimate, we deduce

(4.11)
∫
BR

|Dψ|2 ≤ C

[∫
BR\Bρ

|u− λ|2

(R− ρ)2
+
∣∣∣ ∫

BR

g · φ
∣∣∣+
∫
BR

|f |2 + ν1

∫
BR

|u− λ|2
]
.

We now notice that under the hypothesis (H1) or (H2) the G̊arding inequality (4.10)
holds with ν0 = ν, ν1 = 0 and under (H3) the inequality (4.10) also holds. Since ψ|Bρ =
u− λ, this last estimate (4.11) proves the following theorems.

Theorem 4.5. Let u ∈ W 1,2
loc (Ω; RN ) be a weak solution of (4.7). Assume either condition

(H1) or (H2) holds. Then

(4.12)
∫
Bρ

|Du|2 ≤ C

[∫
BR\Bρ

|u− λ|2

(R− ρ)2
+
∣∣∣ ∫

BR

g · ζ2(u− λ)
∣∣∣+
∫
BR

|f |2
]

for all concentric balls Bρ ⊂⊂ BR ⊂⊂ Ω and constants λ ∈ RN , where ζ = ζρ,R and C > 0
is a constant depending on the L∞-norm of Aαβij .

Theorem 4.6. Assume condition (H3) holds. Then

(4.13)
∫
Bρ

|Du|2 ≤ C

[∫
BR\Bρ

|u− λ|2

(R− ρ)2
+
∣∣∣ ∫

BR

g · ζ2(u− λ)
∣∣∣+
∫
BR

(|f |2 + |u− λ|2)

]
for all concentric balls Bρ ⊂⊂ BR ⊂⊂ Ω and constants λ ∈ RN .

Corollary 4.7. Let u ∈W 1,2
loc (Ω; RN ) be a weak solution of (4.7). Assume either condition

(H1) or (H2) holds. Then

(4.14)
∫
BR/2

|Du|2 ≤ C

[∫
BR\BR/2

|u− λ|2

R2
+
∫
BR

(
|u− λ| · |g|+ |f |2

)]
for all balls BR ⊂⊂ Ω and constants λ ∈ RN .

Remarks. 1) The estimates (4.12), (4.13) and (4.14) are usually referred to as the Caccioppoli-
type inequalities or Caccioppoli estimates.

2) In both (4.12), (4.13), we leave the term
∫
BR

g · ζ2(u− λ) in the estimates. We shall
see later that this term needs a special consideration when we deal with higher regularity
for weak solutions, especially when g is of the form of quotient difference. �

As an application of these Caccioppoli estimates, we prove the following results.
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Proposition 4.8. Suppose u ∈W 1,2
loc (Rn; RN ) is a weak solution of

(4.15) −Dα(Aαβij (x)Dβu
j) = 0,

where coefficients Aαβij (x) satisfy (H1) or (H2). If |Du| ∈ L2(Rn), then u is a constant.

Proof. By (4.14), it follows that∫
BR/2

|Du|2 ≤ C

R2

∫
BR\BR/2

|u− λ|2.

We choose
λ =

1
|BR \BR/2|

∫
BR\BR/2

u(x) dx.

Then the Poincaré inequality (see Proposition 4.2) shows that∫
BR\BR/2

|u− λ|2 ≤ c(n)R2

∫
BR\BR/2

|Du|2.

Therefore ∫
BR/2

|Du|2 ≤ C
∫
BR\BR/2

|Du|2.

Adding C
∫
BR/2

|Du|2 to both sides of this inequality (this sometimes called the hole-filling
technique of Widman), we obtain∫

BR/2

|Du|2 ≤ C

C + 1

∫
BR

|Du|2.

Letting R→∞ we have ∫
Rn

|Du|2 dx ≤ C

C + 1

∫
Rn

|Du|2 dx.

Since C
C+1 < 1 we have

∫
Rn |Du|2 = 0 and thus Du ≡ 0; hence u ≡ constant. �

Proposition 4.9. Assume either condition (H1) or (H2) holds. Then any bounded weak
solution u ∈W 1,2

loc (R2; RN ) to the equation (4.15) for n = 2 must be constant.

Proof. Let |u| ≤M ; then by the Caccioppoli inequality (4.14) with λ = 0 we have∫
BR/2

|Du|2 dx ≤ CM <∞, ∀R > 0.

This implies |Du| ∈ L2(R2); hence by the result above, u is a constant. �

4.3. Method of difference quotients

Let {e1, · · · , en} be the standard basis of Rn. Define

τh,su(x) =
u(x+ hes)− u(x)

h
, h 6= 0.

If u is defined on Ω ⊂ Rn, then τh,su is defined on

Ωh,s = {x ∈ Ω |x+ hes ∈ Ω}.
Note that

Ωh = {x ∈ Ω | dist(x; ∂Ω) > |h|} ⊂ Ωh,s.

We have the following properties of τh,su.
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1) If u ∈W 1,p(Ω; RN ) then τh,su ∈W 1,p(Ωh,s; RN ) and

D(τh,su) = τh,sDu.

2) If either u or v has compact support Ω′ ⊂⊂ Ω then∫
Ω
u · τh,sv dx = −

∫
Ω
v · τ−h,su dx ∀ |h| < dist(Ω′; ∂Ω).

3) τh,s(φu)(x) = φ(x) τh,su(x) + u(x+ hes) τh,sφ(x).

Proposition 4.10. (a) Let u ∈ W 1,p(Ω). Then τh,su ∈ Lp(Ω′) for any Ω′ ⊂⊂ Ω satisfying
|h| < dist(Ω′; ∂Ω). Moreover, we have

‖τh,su‖Lp(Ω′) ≤ ‖Dsu‖Lp(Ω).

(b) Let u ∈ Lp(Ω), 1 < p <∞, and Ω′ ⊂⊂ Ω. If there exists a constant K > 0 such that

lim inf
h→0

‖τh,su‖Lp(Ω′) ≤ K,

then the weak derivative Dsu exists and satisfies ‖Dsu‖Lp(Ω′) ≤ K.

Proof. (a) Let us suppose initially that u ∈ C1(Ω) ∩W 1,p(Ω). Then, for h > 0,

τh,su(x) =
1
h

∫ h

0
Dsu(x1, · · · , xs−1, xs + t, xs+1, · · · , xn) dt

so that by Hölder’s inequality

|τh,su(x)|p ≤ 1
h

∫ h

0
|Dsu(x1, · · · , xs−1, xs + t, xs+1, · · · , xn)|p dt,

and hence ∫
Ω′
|τh,su(x)|p dx ≤ 1

h

∫ h

0

∫
Bh(Ω′)

|Dsu|p dx dt ≤
∫

Ω
|Dsu|p dx,

where Bh(Ω′) = {x ∈ Ω | dist(x; Ω′) < h}. The extension to arbitrary functions in W 1,p(Ω)
follows by a straight-forward approximation argument.

(b) Since 1 < p < ∞, there exists a sequence {hm} tending to zero and a function
v ∈ Lp(Ω′) with ‖v‖p ≤ K such that τhm,su ⇀ v in Lp(Ω′). This means for all φ ∈ C∞0 (Ω′)

lim
m→∞

∫
Ω′
φ τhm,su dx =

∫
Ω′
φ v dx.

Now for |hm| < dist(suppφ; ∂Ω′), we have∫
Ω′
φ τhm,su dx = −

∫
Ω′
u τ−hm,sφdx→ −

∫
Ω′
uDsφdx.

Hence ∫
Ω′
φ v dx = −

∫
Ω′
uDsφdx,

which shows v = Dsu ∈ Lp(Ω′) and ‖Dsu‖Lp(Ω′) ≤ K. �
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4.4. Hilbert-space regularity

We now assume u ∈W 1,2
loc (Ω; RN ) is a weak solution of linear system

−Div(A(x)Du) = g −Div f.

This means ∫
Ω
A(x)Du(x) ·Dφ(x) dx =

∫
Ω
g(x) · φ(x) dx+

∫
Ω
f(x) ·Dφ(x) dx

holds for all φ ∈W 1,2
0 (Ω′; RN ). If |h| < dist(Ω′; ∂Ω) this implies∫

Ω
A(x+ hes)Du(x+ hes) ·Dφ(x) dx

=
∫

Ω
g(x+ hes) · φ(x) dx+

∫
Ω
f(x+ hes) ·Dφ(x) dx.

Substract two equations and divide by h to get∫
Ω
A(x+ hes)Dτh,su ·Dφ =

∫
Ω
τh,sg(x) · φ(x) dx

+
∫

Ω
τh,sf(x) ·Dφ(x) dx

−
∫

Ω
τh,sA(x)Du(x) ·Dφ(x) dx.

This shows that v = τh,su is a weak solution of system

(4.16) −Div(A(x+ hes)Dv) = τh,sg −Div(τh,sf) + Div(τh,sADu)

on Ω′. We now assume that G̊arding’s inequality (4.10) holds. Then we can invoke the
estimate (4.11) with λ = 0, ρ = R/2 to obtain

(4.17)
∫
BR

|Dψ|2 ≤ C
[ ∫

BR

1
R2
|τh,su|2 +

∣∣∣ ∫
BR

τh,sg · φ
∣∣∣

+
∫
BR

(
|τh,sf |2 + ν1|τh,su|2 + |τh,sA|2|Du|2

)]
,

where ψ = ζ τh,su, φ = ζ2 τh,su and ζ = ζR/2,R is defined as before. Note that

−
∫
BR

τh,sg · φ =
∫

Ω
τh,sg · φ =

∫
Ω
g · τ−h,sφ

=
∫

Ω
g · ζ(x− hes) τ−h,sψ +

∫
Ω
g · ψ τ−h,sζ

≡ I + II.

We estimate I, II as follows.

|I| ≤
∫

Ω′
|g| · |τ−h,sψ|

≤ ε

∫
Ω′
|τ−h,sψ|2 + Cε

∫
Ω′
|g|2

≤ ε

∫
Ω
|Dsψ|2 + Cε

∫
Ω′
|g|2

≤ ε

∫
BR

|Dψ|2 + Cε

∫
Ω′
|g|2,
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where Ω′ ⊂⊂ Ω is a domain containing B̄R.

|II| ≤
∫
BR

|g| |τh,su| |τ−h,sζ|

≤ C

R2

∫
Ω′
|g|2 + C

∫
BR

|τh,su|2.

Combining these estimates with (4.17) yields∫
BR

|Dψ|2 ≤ C(R)
∫

Ω′

(
|τh,su|2 + |g|2 + |τh,sf |2 + |τh,sA|2|Du|2

)
.

Since ψ = τh,su and Dψ = τh,sDu on BR/2 we have

(4.18)
∫
BR/2

|τh,sDu|2 ≤ C(R)
∫

Ω′

(
|τh,su|2 + |g|2 + |τh,sf |2 + |τh,sA|2|Du|2

)
.

Finally, if we assume f ∈ W 1,2
loc (Ω; MN×n) and A(x) is Lipschitz continuous with Lips-

chitz constant K then ∫
Ω′
|τh,sf |2 ≤

∫
Ω′′
|Df |2, |τh,sA(x)| ≤ K,

where Ω′ ⊂⊂ Ω′′ ⊂⊂ Ω, and hence by (4.18) we have∫
BR/2

|τh,sDu|2(x) dx ≤M <∞ ∀ |h| << 1,

and thus DsDu exists and belongs to L2(BR/2; MN×n) for all s = 1, 2, · · · , n. This implies
u ∈W 2,2

loc (Ω; RN ). Therefore, we have proved the following theorem.

Theorem 4.11. Suppose A ∈ C(Ω̄) is Lipschitz continuous and the G̊arding inequality
(4.10) holds. If g ∈ L2

loc(Ω; RN ), f ∈ W 1,2
loc (Ω; MN×n) and u ∈ W 1,2

loc (Ω; RN ) is a weak
solution of the system

−Div(A(x)Du) = g −Div f

then u ∈W 2,2
loc (Ω; RN ).

The following higher regularity result can be proved by the standard bootstrap method.

Theorem 4.12. Suppose u ∈W 1,2
loc (Ω; RN ) is a weak solution of the system

−Div(A(x)Du) = g −Div f

with A ∈ Ck,1(Ω̄) (that is, DkA is Lipschitz continuous) satisfying the G̊arding inequality
(4.10) and g ∈W k,2

loc (Ω; RN ), f ∈W k+1,2
loc (Ω; MN×n). Then u ∈W k+2,2

loc (Ω; RN ).

Proof. Let ψ ∈ C∞0 (Ω; RN ); then we use φ = Dsψ as a test function for the system to
obtain ∫

Ω
Ds(A(x)Du) ·Dψ dx =

∫
Ω
Dsg · ψ +

∫
Ω
Dsf ·Dψ.

Since Ds(A(x)Du) = (DsA)Du+A(x)DDsu we thus have∫
Ω
A(x)D(Dsu) ·Dψ =

∫
Ω
Dsg · ψ +

∫
Ω

(
Dsf − (DsA)Du

)
·Dψ.

This shows v = Dsu ∈W 1,2
loc (Ω; RN ) is a weak solution of

−Div(A(x)Dv) = Dsg −Div(Dsf − (DsA)Du),



4.5. Morrey and Campanato spaces 47

and hence v ∈W 2,2
loc (Ω; RN ); that is, u ∈W 3,2

loc (Ω; RN ). The result for general k then follows
from induction. �

Remark. Note that if A, g, f are all of C∞ then any weak solution u ∈W 1,2
loc (Ω; RN ) must

be in C∞(Ω; RN ). We also have the following result. �

Theorem 4.13. Assume (H2) holds. Let u ∈W 1,2
loc (Ω; RN ) be a weak solution of

(4.19) −Dα(Aαβij Dβu
j) = 0, i = 1, 2, ..., N.

Then u ∈W k,2
loc (Ω; RN ) for all k = 1, 2, ... and

‖u‖Wk,2(BR/2;RN ) ≤ C(k,R) ‖u‖L2(BR;RN )

for any ball BR ⊂⊂ Ω.

Proof. By the Caccioppoli-type inequality, we have for any weak solution u of system (4.19)∫
Bρ

|Du|2 dx ≤ C

(R− ρ)2

∫
BR

|u|2 dx.

The regularity result shows that u ∈ W k,2
loc (Ω; RN ) for all k and then it follows that any

derivative Dku is also a weak solution of (4.19). Therefore, the conclusion will follow from
a successive use of the above Caccioppoli inequality with a finite number of R/2 = ρ1 <
ρ2 < · · · < ρK = R. �

4.5. Morrey and Campanato spaces

Let Ω ⊂ Rn be a bounded open domain. For x ∈ Rn, ρ > 0 let

Ω(x, ρ) = {y ∈ Ω | |y − x| < ρ}.

Definition 4.1. For 1 ≤ p <∞, λ ≥ 0 we define the Morrey space Lp,λ(Ω; RN ) by

Lp,λ(Ω; RN ) =

u ∈ Lp(Ω; RN )
∣∣∣ sup

a∈Ω
0<ρ<diam Ω

ρ−λ
∫

Ω(a,ρ)
|u(x)|p dx <∞

 .

We define a norm by

‖u‖Lp,λ(Ω;RN ) = sup
a∈Ω

0<ρ<diam Ω

(
ρ−λ

∫
Ω(a,ρ)

|u(x)|p dx

)1/p

.

Proposition 4.14. Lp,λ(Ω; RN ) is a Banach space.

Lemma 4.15 (Lebesgue Differentiation Theorem). If v ∈ L1
loc(Ω) then

lim
ρ→0

∫
−
Bρ(x)

|v(x)− v(y)| dy = 0

for almost every x ∈ Ω.

Proposition 4.16. (a) If λ > n then Lp,λ(Ω; RN ) = {0}.
(b) Lp,0(Ω; RN ) ∼= Lp(Ω; RN ); Lp,n(Ω; RN ) ∼= L∞(Ω; RN ).
(c) If 1 ≤ p ≤ q <∞, n−λp ≥

n−µ
q , then Lq,µ(Ω; RN ) ⊂ Lp,λ(Ω; RN ).
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Proof. (a) By Lebesgue’s differentiation theorem,

(4.20) |u(a)| = lim
ρ→0

∫
−

Ω(a,ρ)
|u(x)| dx, ∀ a.e. a ∈ Ω.

Now, by Hölder’s inequality,

(4.21)
∫
−

Ω(a,ρ)
|u(x)| dx ≤

(∫
−

Ω(a,ρ)
|u(x)|p dx

)1/p

≤ C ‖u‖Lp,λ(Ω;RN )ρ
−n/p ρλ/p = C ρ

λ−n
p ‖u‖Lp,n(Ω;RN ).

If λ > n, letting ρ→ 0 we have u(a) = 0 for almost every a ∈ Ω; thus u ≡ 0.
(b) That Lp,0(Ω; RN ) ∼= Lp(Ω; RN ) easily follows from the definition. We prove Lp,n(Ω; RN ) ∼=

L∞(Ω; RN ). If u ∈ L∞(Ω; RN ), then

ρ−n
∫

Ω(a,ρ)
|u(x)|p dx ≤ C ‖u‖p∞

so that ‖u‖Lp,n ≤ C ‖u‖∞. Suppose now u ∈ Lp,n(Ω; RN ). Then by (4.20), (4.21)

|u(a)| = lim
ρ→0

∫
−

Ω(a,ρ)
|u| ≤ C ‖u‖Lp,n(Ω;RN ).

Hence ‖u‖L∞(Ω;RN ) ≤ C ‖u‖Lp,n(Ω;RN ). Therefore Lp,n(Ω; RN ) ∼= L∞(Ω; RN ).

(c) We first note that u ∈ Lp,λ(Ω; RN ) if and only if∫
Ω(a,ρ)

|u(x)|p dx ≤ C ρλ

for all a ∈ Ω and 0 < ρ < ρ0 = min{1, diam Ω}. Suppose u ∈ Lq,µ(Ω; RN ). Then, by
Hölder’s inequality, for all a ∈ Ω, 0 < ρ < ρ0 < 1,∫

Ω(a,ρ)
|u|p dx ≤ |Ω(a, ρ)|1−

p
q

(∫
Ω(a,ρ)

|u|q dx

) p
q

≤ C ρ
n−np

q (‖u‖q
Lq,µ(Ω;RN )

ρµ)
p
q

≤ C ρ
µp
q

+n−np
q ‖u‖p

Lq,µ(Ω;RN )

≤ C ρλ ‖u‖p
Lq,µ(Ω;RN )

,

where we have used the assumption µp
q + n − np

q ≥ λ and the fact 0 < ρ < 1. Therefore,
u ∈ Lp,λ(Ω; RN ). �

Definition 4.2. For 1 ≤ p <∞, λ ≥ 0 we define the Campanato space Lp,λ(Ω; RN ) by

Lp,λ(Ω; RN ) =

u ∈ Lp(Ω; RN )
∣∣∣ sup

a∈Ω
0<ρ<diam Ω

ρ−λ
∫

Ω(a,ρ)
|u− ua,ρ|p dx <∞

 ,

where ua,ρ is the average of u on Ω(a, ρ). Define the seminorm and norm by

[u]Lp,λ(Ω;RN ) = sup
a∈Ω

0<ρ<diam Ω

(
ρ−λ

∫
Ω(a,ρ)

|u− ua,ρ|p dx

)1/p

,

‖u‖Lp,λ(Ω;RN ) = ‖u‖Lp(Ω;RN ) + [u]Lp,λ(Ω;RN ).
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For 0 < α ≤ 1, we define the Hölder space C0,α(Ω̄; RN ) by

C0,α(Ω̄; RN ) =
{
v ∈ L∞(Ω; RN )

∣∣∣ |v(x)− v(y)| ≤ C |x− y|α, ∀x, y ∈ Ω
}

and define the seminorm and norm by

[v]C0,α(Ω;RN ) = sup
x, y∈Ω

x 6=y

|v(x)− v(y)|
|x− y|α

,

‖v‖C0,α(Ω;RN ) = ‖v‖L∞(Ω;RN ) + [v]C0,α(Ω;RN ).

Proposition 4.17. Both Lp,λ(Ω; RN ) and C0,α(Ω̄; RN ) are Banach spaces.

Proposition 4.18. (a) For any p ≥ 1, λ ≥ 0, Lp,λ(Ω; RN ) ⊂ Lp,λ(Ω; RN ).
(b) For any 0 < α ≤ 1, C0,α(Ω̄; RN ) ⊂ Lp,n+pα(Ω; RN ).

Proof. (a) Note that(∫
Ω(a,ρ)

|v(y)− va,ρ|p dx

)1/p

≤ ‖v‖Lp(Ω(a,ρ) + |va,ρ| · |Ω(a, ρ)|1/p.

It turns out that we can exactly estimate the two terms on the right-hand side by

‖v‖Lp(Ω(a,ρ)) ≤ ρλ/p ‖v‖Lp,λ(Ω;RN ),

|va,ρ| · |Ω(a, ρ)|1/p ≤ ρλ/p ‖v‖Lp,λ(Ω;RN )

so that it follows that
[v]Lp,λ(Ω;RN ) ≤ 2 ‖v‖Lp,λ(Ω;RN ).

Hence Lp,λ(Ω; RN ) ⊂ Lp,λ(Ω; RN ).
(b) Assume v ∈ C0,α(Ω̄; RN ). Then

|v(x)− va,ρ| = |
∫
−

Ω(a,ρ)
(v(x)− v(y)) dy|

≤ [v]C0,α(Ω̄;RN ) ·
∫
−

Ω(a,ρ)
|x− y|α dy

≤ [v]C0,α(Ω̄;RN ) · (2ρ)α.

Hence ∫
Ω(a,ρ)

|v(x)− va,ρ|p dx ≤ C [v]p
C0,α(Ω̄;RN )

· ρn+pα

and hence

(4.22) [v]Lp,n+pα(Ω;RN ) ≤ C [v]C0,α(Ω̄;RN ).

The proof is complete. �

In order to study the properties of Campanato functions, we need a condition on domain
Ω introduced by Campanato.

Definition 4.3. We say that Ω ⊂ Rn is of type A if there exists a constant A > 0 such
that

(4.23) |Ω(a, ρ)| ≥ Aρn, ∀ a ∈ Ω, 0 < ρ < diam Ω.

This condition excludes that Ω may have sharp outward cusps; for instance, all Lipschitz
domains are of type A.
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Lemma 4.19. Assume Ω is of type A and u ∈ Lp,λ(Ω; RN ). Then for any 0 < r < R <
∞, a ∈ Ω it follows that

|ua,R − ua,r| ≤ 2A−
1
p R

λ
p r
−n
p · [u]Lp,λ(Ω;RN ).

Proof.

|ua,R − ua,r| · |Ω(a, r)|
1
p = ‖ua,R − ua,r‖Lp(Ω(a,r))

≤ ‖u− ua,R‖Lp(Ω(a,r)) + ‖u− ua,r‖Lp(Ω(a,r))

≤ ‖u− ua,R‖Lp(Ω(a,R)) + ‖u− ua,r‖Lp(Ω(a,r))

≤ [u]Lp,λ(Ω;RN )R
λ
p + [u]Lp,λ(Ω;RN ) r

λ
p

≤ 2 [u]Lp,λ(Ω;RN )R
λ
p .

Hence the lemma follows from the assumption that |Ω(a, r)| ≥ Arn. �

Proposition 4.20. If Ω is of type A then Lp,λ(Ω; RN ) ∼= Lp,λ(Ω; RN ) for 0 ≤ λ < n.

Proof. We only need to show Lp,λ(Ω; RN ) ⊂ Lp,λ(Ω; RN ). Let u ∈ Lp,λ(Ω; RN ). Given any
a ∈ Ω, 0 < ρ < diam Ω, we have

‖u‖Lp(Ω(a,ρ)) ≤ ‖u− ua,ρ‖Lp(Ω(a,ρ)) + ‖ua,ρ‖Lp(Ω(a,ρ))

≤ [u]Lp,λ(Ω;RN ) ρ
λ
p + C |ua,ρ| ρ

n
p .

We now choose an integer k large enough so that Ω(a, 2kρ) = Ω. Then, by Lemma 4.19, we
have

|ua,ρ| ≤ |ua,2kρ|+
k−1∑
j=0

|ua,2j+1ρ − ua,2jρ|

≤ |uΩ|+
k−1∑
j=0

2A−
1
p (2j+1ρ)

λ
p (2jρ)−

n
p · [u]Lp,λ(Ω;RN )

≤ |uΩ|+ C ρ
λ−n
p [u]Lp,λ(Ω;RN ) ·

k∑
j=0

2j(λ−n)/p

≤ |uΩ|+ C [u]Lp,λ(Ω;RN ) ρ
λ−n
p ,

where uΩ is the average of u on Ω and therefore |uΩ| ≤ C(Ω) ‖u‖Lp(Ω;RN ). Combining these
estimates, we deduce

‖u‖Lp(Ω(a,ρ)) ≤ C [u]Lp,λ(Ω;RN ) ρ
λ
p + C ‖u‖Lp(Ω;RN ) ρ

n
p

and, by dividing both sides by ρ
λ
p and noting λ < n,

ρ
−λ
p ‖u‖Lp(Ω(a,ρ)) ≤ C [u]Lp,λ(Ω;RN ) + C(Ω) ‖u‖Lp(Ω;RN ).

This proves
‖u‖Lp,λ(Ω;RN ) ≤ C(Ω) ‖u‖Lp,λ(Ω;RN ).

�

Remark. Note that Lp,n(Ω; RN ) 6∼= Lp,n(Ω; RN ) ∼= L∞(Ω; RN ). For example, let p = λ =
1, n = N = 1 and Ω = (0, 1). Then u = lnx is in L1,1(0, 1) but not in L1,1(0, 1) ∼= L∞(0, 1).
In fact, Lp,n(Ω; RN ) ∼= BMO(Ω; RN ), which is called the John-Nirenberg space. �
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Theorem 4.21 (Campanato ’63). Let Ω be of type A. Then for n < λ ≤ n+ p,

Lp,λ(Ω; RN ) ∼= C0,α(Ω̄; RN ), α =
λ− n
p

,

whereas for λ > n+ p we have Lp,λ(Ω; RN ) = {constants}.

Proof. Assume λ > n and v ∈ Lp,λ(Ω; RN ). For any x ∈ Ω and R > 0 we define

ṽ(x) = lim
k→∞

vx, R
2k
.

Lemma 4.22. ṽ is well-defined and independent of R > 0.

Proof. We first show the limit defining ṽ(x) exists. We need to show the sequence {vx, R
2k
}

is Cauchy. For h > k we have, by Lemma 4.19,

|vx, R
2h
− vx, R

2k
| ≤

h−1∑
j=k

|vx, R
2j
− vx, R

2j+1
|

≤ 2A−
1
p [v]Lp,λ(Ω;RN )R

λ−n
p ·

h−1∑
j=k

2
j(n−λ)

p ,

which, since λ > n, tends to zero if k, h → ∞. Therefore {vx, R
2k
} is Cauchy and the limit

ṽ(x) exists. Also in the inequality above, if k = 0 and h→∞ we also deduce

(4.24) |vx,R − ṽ(x)| ≤ C [v]Lp,λ(Ω;RN ) ·R
λ−n
p .

We now prove ṽ(x) is independent of R > 0. This follows easily since by Lemma 4.19

lim
k→∞

|vx, R
2k
− vx, r

2k
| = 0.

The lemma is proved. �

By Lebesgue’s differentiation theorem, we also have ṽ(x) = v(x) for almost every x ∈ Ω.
Therefore ṽ = v in Lp,λ(Ω; RN ).

Lemma 4.23. ṽ ∈ C0,α(Ω̄; RN ), where α = λ−n
p .

Proof. Let x, y ∈ Ω and x 6= y. Let R = |x− y|. By (4.24) it follows that

|ṽ(x)− ṽ(y)| ≤ |ṽ(x)− vx,2R|+ |ṽ(y)− vy,2R|+ |vx,2R − vy,2R|
≤ C [v]Lp,λ(Ω;RN ) ·Rα + |vx,2R − vy,2R|.

We need to estimate |vx,2R−vy,2R|. To this end, let S = Ω(x, 2R)∩Ω(y, 2R). Then Ω(x,R) ⊂
S and hence

|S| ≥ |Ω(x,R)| ≥ ARn.
On the other hand, we have

|S|
1
p · |vx,2R − vy,2R| = ‖vx,2R − vy,2R‖Lp(S)

≤ ‖vx,2R − v‖Lp(S) + ‖vy,2R − v‖Lp(S)

≤ ‖vx,2R − v‖Lp(Ω(x,2R)) + ‖vy,2R − v‖Lp(Ω(y,2R))

≤ 2 [v]Lp,λ(Ω;RN ) · (2R)λ/p.

Combining the above two estimates we have

|vx,2R − vy,2R| ≤ C [v]Lp,λ(Ω;RN ) ·R
λ−n
p = C [v]Lp,λ(Ω;RN ) ·Rα
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and hence

|ṽ(x)− ṽ(y)| ≤ C [v]Lp,λ(Ω;RN ) · |x− y|α.

This shows

[ṽ]C0,α(Ω̄;RN ) ≤ C [v]Lp,λ(Ω;RN ).

To complete the proof of this lemma, we only have to observe that, by (4.24) with R =
diam Ω,

‖ṽ‖L∞(Ω;RN ) ≤ |vΩ|+ C [v]Lp,λ(Ω;RN ) ·Rα

≤ C(Ω) ‖v‖Lp(Ω;RN ) + C(Ω) [v]Lp,λ(Ω;RN )

= C(Ω) ‖v‖Lp,λ(Ω;RN ).

This proves the lemma. �

We have thus proved that if λ > n then every v ∈ Lp,λ(Ω; RN ) has a representation
ṽ which belongs to C0,α(Ω̄; RN ) with α = (λ − n)/p. If λ > n + p then α > 1 and
any u ∈ C0,α(Ω̄; RN ) must be a constant (why?). The proof of Campanato’s theorem is
complete. �

In order to use the Campanato spaces for elliptic systems, we also need some local
version of these spaces. To disperse some technicalities, we prove the following lemma.

Lemma 4.24. Let p = 1, 2 and u ∈ Lploc(Ω; RN ). Then the map E 7→
∫
E |u − uE |p is

nondecreasing in subsets E ⊂⊂ Ω.

Proof. We prove the case p = 2 first. Let E ⊂ F ⊂⊂ Ω. Then∫
E
|u− uE |2 =

∫
E
|u− uF + uF − uE |2

=
∫
E
|u− uF |2 + 2 (uF − uE) ·

∫
E

(u− uF ) + |E| · |uF − uE |2

=
∫
E
|u− uF |2 − |E| · |uF − uE |2

≤
∫
F
|u− uF |2.

We now prove the case p = 1. Note that∫
E
|u− uE | =

∫
E
|u− uF + uF − uE |

≤
∫
E
|u− uF |+

∫
E
|uF − uE |

=
∫
F
|u− uF | −

∫
F\E
|u− uF |+ |E| · |uF − uE |.

Thus we need to prove

(4.25) |E| · |uF − uE | ≤
∫
F\E
|u− uF |.



4.5. Morrey and Campanato spaces 53

Note that, by Jensen’s inequality,∫
−
F\E
|u− uF | ≥

∣∣∣∣∣
∫
−
F\E

(u− uF )

∣∣∣∣∣
=

1
|F \ E|

∣∣∣∣∣|F \ E| · uF −
∫
F\E

u

∣∣∣∣∣
=

1
|F \ E|

∣∣∣∣|F | · uF − |E| · uF − ∫
F
u+

∫
E
u

∣∣∣∣
=

1
|F \ E|

∣∣|F | · uF − |E| · uF − |F | · uF + |E| · uE
∣∣

=
|E|
|F \ E|

|uF − uE |,

and hence (4.25) follows. �

Theorem 4.25. Let p = 1, 2 and u ∈ Lploc(Ω; RN ). Assume there exists a constant Cu > 0
and α > 0 such that ∫

Bρ

|u− uBρ |p dx ≤ Cu ρλ

holds for all balls Bρ ⊂⊂ Ω. Then for any subdomain Ω′ ⊂⊂ Ω we have u ∈ Lp,λ(Ω′; RN )
and moreover

‖u‖Lp,λ(Ω′;RN ) ≤ C(Ω′) [C1/p
u + ‖u‖Lp(Ω′;RN )].

Proof. Let Ω′ ⊂⊂ Ω be given. We will show u ∈ Lp,λ(Ω′; RN ). Let d = dist(Ω′; ∂Ω). Given
any a ∈ Ω′ and 0 < ρ < diam(Ω′). If ρ < dist(a; ∂Ω) we have by the previous lemma,∫

Ω′(a,ρ)
|u− uΩ′(a,ρ)|p dx ≤

∫
Bρ(a)

|u− uBρ(a)|p dx ≤ Cu ρλ.

If ρ ≥ dist(a; ∂Ω), then ρ ≥ d > 0 and hence∫
Ω′(a,ρ)

|u− uΩ′(a,ρ)|p dx ≤ 2p
∫

Ω′(a,ρ)
|u|p dx ≤

2p ‖u‖pLp(Ω′;Rn)

dλ
ρλ.

Therefore, for all a ∈ Ω′, 0 < ρ < diam(Ω′) it follows that∫
Ω′(a,ρ)

|u− uΩ′(a,ρ)|p ≤

[
Cu +

2p ‖u‖pLp(Ω′;Rn)

dλ

]
ρλ,

and hence by definition u ∈ Lp,λ(Ω′; RN ) and moreover

[u]Lp,λ(Ω′;RN ) ≤ C(Ω′) [C1/p
u + ‖u‖Lp(Ω′;RN )].

The proof is complete. �

Theorem 4.26 (Morrey). Let u ∈W 1,p
loc (Ω; RN ). Suppose for some β > 0 we have∫

Bρ

|Du|p dx ≤ C ρn−p+β, ∀Bρ ⊂⊂ Ω.

Then for any Ω′ ⊂⊂ Ω of type A, we have u ∈ C0,β
p (Ω̄′; RN ).
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Proof. Using the Poincaré type inequality

(4.26)
∫
BR

|u− uBR | dx ≤ CnR
∫
BR

|Du| dx,

we have for all balls Bρ ⊂⊂ Ω,∫
Bρ

|u− uBρ | dx ≤ Cn ρ

∫
Bρ

|Du| dx

≤ Cn ρ ‖Du‖Lp(Bρ;MN×n) · |Bρ|
1− 1

p

≤ C ρ · ρ
n−p+β

p · ρn(1− 1
p

)

= C ρ
n+β

p .

Therefore, by Theorem 4.25, u ∈ L1,n+β
p (Ω′; RN ) ∼= C

0,β
p (Ω̄′; RN ). �

When β = 0 Morrey’s theorem has to be replaced by the John-Nirenberg estimate; see
G-T, P. 166, Theorem 7.21.

Theorem 4.27 (John-Nirenberg). Let u ∈W 1,1(Ω; RN ) where Ω is convex. Suppsose there
exists a constant K such that

(4.27)
∫

Ω(a,R)
|Du| dx ≤ KRn−1 ∀ a ∈ Ω, R < diam Ω.

Then there exist positive constants σ0 and C depending only on n such that

(4.28)
∫

Ω
exp

( σ
K
|u− uΩ|

)
dx ≤ C (diam Ω)n,

where σ = σ0 |Ω| (diam Ω)−n.

Remark. The set of all functions u ∈W 1,1(Ω; RN ) satisfying (4.27) is the spaceBMO(Ω; RN )
introduced by John and Nirenberg, and for Ω cubes or balls it follows that

BMO(Ω; RN ) ∼= Lp,n(Ω; RN ), ∀ p ≥ 1.

For the proof of all these results and more on BMO-spaces, we refer to Gilbarg-Trudinger’s
book for a proof based on the Riesz potential, and Giaquinta’s book on the Calderon-
Zygmund cube decomposition. �

4.6. Estimates for systems with constant coefficients

We consider systems with constant coefficients. Let A = Aαβij be constants satisfying hy-
pothesis (H2). We first have some Campanato estimates for homogeneous systems.

Theorem 4.28. Let u ∈W 1,2
loc (Ω; RN ) be a weak solution of

(4.29) Dα(Aαβij Dβu
j) = 0, i = 1, 2, ..., N.

Then there exists a constant c depending on Aαβij such that for any concentric balls Bρ ⊂⊂
BR ⊂⊂ Ω, ∫

Bρ

|u|2 dx ≤ c · ( ρ
R

)n
∫
BR

|u|2 dx,(4.30) ∫
Bρ

|u− uBρ |2 dx ≤ c · ( ρ
R

)n+2

∫
BR

|u− uBR |
2 dx.(4.31)
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Proof. We do scaling first. Let BR = BR(a), where a ∈ Ω. Define

v(y) = u(a+Ry),

where y ∈ D ≡ {y ∈ Rn | a + Ry ∈ Ω}, which includes B̄1(0) in the y-space. Note that
v ∈W 1,2

loc (D; RN ) is a weak solution of

Dyα(Aαβij Dyβv
j) = 0.

Then the Caccioppoli estimates show that

‖v‖Wk,2(B1/2(0);R
N ) ≤ C(k) ‖v‖L2(B1(0);RN ), ∀ k = 1, 2, ...

and hence for all 0 < t ≤ 1/2 it follows that∫
Bt(0)

|v|2 dy ≤ c(n) tn sup
y∈B1/2(0)

|v(y)|2

≤ c(n) tn ‖v‖2Wk,2(B1/2(0);RN )

≤ c(n, k) tn ‖v‖2L2(B1(0);RN ),

where we have chosen integer k > n/2 and used the Sobolev embeddingW k,2(B1/2(0); RN ) ↪→
C0,α(B1/2(0); RN ) for some 0 < α < 1. Now if t ≥ 1/2 we easily have∫

Bt(0)
|v|2 dy ≤ 2n tn

∫
B1(0)

|v|2 dy.

Therefore we have proved∫
Bt(0)

|v|2 dy ≤ C(n) tn
∫
B1(0)

|v|2 dy, ∀ 0 < t < 1.

Rescaling back to u(x) and letting ρ = tR we have∫
Bρ(a)

|u|2 dx ≤ C(n) (
ρ

R
)n ·

∫
BR(a)

|u|2 dx, ∀ ρ < R < dist(a; ∂Ω);

this proves (4.30). Note that Du is also a weak solution of (4.29); therefore, by (4.30) it
follows that∫

Bρ(a)
|Du|2 dx ≤ C(n) (

ρ

R
)n ·

∫
BR(a)

|Du|2 dx, ∀ ρ < R < dist(a; ∂Ω).

Suppose 0 < ρ < R/2. Then we use the Poincaré inequality, the previous estimate and the
Caccioppoli inequality to obtain∫

Bρ

|u− uBρ |2 dx ≤ c(n) ρ2 ·
∫
Bρ

|Du|2 dx

≤ C(n) ρ2 (
ρ

R
)n ·

∫
BR/2

|Du|2 dx

≤ C(n) (
ρ

R
)n+2 ·

∫
BR

|u− uBR |
2 dx.
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Now if ρ ≥ R/2 we easily have∫
Bρ

|u− uBρ |2 dx =
∫
Bρ

|u− uBR |
2 dx− |Bρ| · |uBρ − uBR |

2

≤
∫
BR

|u− uBR |
2 dx

≤ 2n+2 (
ρ

R
)n+2 ·

∫
BR

|u− uBR |
2 dx.

Therefore, for all 0 < ρ < R < dist(a; ∂Ω),∫
Bρ

|u− uBρ |2 dx ≤ C(n) (
ρ

R
)n+2 ·

∫
BR

|u(x)− uBR |
2 dx.

The proof of both (4.30) and (4.31) is now complete. �

In (4.30) and (4.31), if we let R→ dist(a; ∂Ω), we see that both estimates also hold for
all balls Bρ ⊂⊂ BR ⊂ Ω. We state this fact as follows.

Corollary 4.29. Both estimates (4.30) and (4.31) hold for all balls Bρ ⊂⊂ BR ⊂ Ω.

In the following, we consider the nonhomogeneous elliptic systems with constant coef-
ficients:

(4.32) Dα(Aαβij Dβu
j) = Dαf

i
α, i = 1, 2, · · · .

Theorem 4.30. Let Aαβij satisfy hypothesis (H2) and u ∈W 1,2
loc (Ω; RN ) be a weak solution

of (4.32). Suppose f ∈ L2,λ
loc (Ω; MN×n) and 0 ≤ λ < n+ 2. Then Du ∈ L2,λ

loc (Ω; MN×n).

Corollary 4.31. Under the same assumptions, if f ∈ C0,µ
loc (Ω; MN×n) and 0 < µ < 1 then

Du ∈ C0,µ
loc (Ω; MN×n).

Proof of Theorem 4.30. Let Ω′ ⊂⊂ Ω′′ ⊂⊂ Ω. Let a ∈ Ω′ and BR(a) = BR ⊂ Ω′′. We
write u = v + w = v + (u − v), where v ∈ W 1,2(BR; RN ) is the solution of the Dirichlet
problem {

Div(ADv) = 0 in BR,
v|∂BR = u.

The existence of solution v follows by the Lax-Milgram theorem. We now by Corollary 4.29
have for all ρ < R

(4.33)
∫
Bρ

|Dv − (Dv)Bρ |2 dx ≤ c · (
ρ

R
)n+2

∫
BR

|Dv − (Dv)BR |
2 dx.

From this we have∫
Bρ

|Du− (Du)Bρ |2 dx

=
∫
Bρ

|Dv +Dw − (Dv)Bρ − (Dw)Bρ |2 dx

≤ C · ( ρ
R

)n+2

∫
BR

|Dv − (Dv)BR |
2 dx+

∫
Bρ

|Dw − (Dw)Bρ |2 dx

≤ C1 · (
ρ

R
)n+2

∫
BR

|Du− (Du)BR |
2 dx+ C2

∫
BR

|Du−Dv|2 dx.



4.6. Estimates for systems with constant coefficients 57

Since u− v ∈W 1,2
0 (BR; RN ), we use the Legendre-Hadamard condition to have

ν

∫
BR

|Du−Dv|2 dx ≤
∫
BR

AD(u− v) ·D(u− v) dx

=
∫
BR

(f − fBR) ·D(u− v) dx

≤ ν

2

∫
BR

|Du−Dv|2 dx+ Cν

∫
BR

|f − fBR |
2 dx

and hence∫
BR

|Du−Dv|2 dx ≤ Cν
∫
BR

|f − fBR |
2 dx ≤ Cν [f ]2L2,λ(Ω′′;MN×n) ·R

λ.

Combining what we proved above, we have∫
Bρ

|Du− (Du)Bρ |2 dx ≤ C1 · (
ρ

R
)n+2

∫
BR

|Du− (Du)BR |
2 dx

+ C3 [f ]2L2,λ(Ω′′;MN×n) ·R
λ.

Let

Φ(ρ) =
∫
Bρ

|Du− (Du)Bρ |2 dx.

Using the Campanato lemma below, it follows that

Φ(ρ) ≤ C4

[( ρ
R

)λ
Φ(R) + [f ]2L2,λ(Ω′′;MN×n) · ρ

λ

]
.

Now we have∫
Ω′(a,ρ)

|Du− (Du)Ω′(a,ρ)|2 ≤
∫

Ω′(a,ρ)
|Du− (Du)Bρ(a)|2

≤
∫
Bρ

|Du− (Du)Bρ |2 = Φ(ρ)

≤ C5 ρ
λ
(
‖Du‖2L2(Ω′′;MN×n) + [f ]2L2,λ(Ω′′;MN×n)

)
.

Therefore

[Du]L2,λ(Ω′;MN×n) ≤ C
(
‖Du‖L2(Ω′′;MN×n) + [f ]L2,λ(Ω′′;MN×n)

)
.

The proof is complete. �

Lemma 4.32 (Campanato Lemma). Let Φ(t) be a nonnegative nondecreasing function.
Consider the inequality

(4.34) Φ(ρ) ≤ A
[( ρ
R

)α
+ ε
]

Φ(R) +BRβ ∀ ρ ≤ R ≤ R0,

where A, B, α, β, ε are positive constants with α > β. Then there exists ε0 = ε0(A,α, β)
such that if (4.34) holds for some 0 ≤ ε ≤ ε0 then

Φ(ρ) ≤ C
[( ρ
R

)β
Φ(R) +B ρβ

]
∀ ρ ≤ R ≤ R0,

where C is a constant depending only on α, β, A.
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Proof. For 0 < τ < 1 and R ≤ R0, (4.34) is equivalent to

Φ(τR) ≤ Aτα (1 + ετ−α) Φ(R) +BRβ.

Let γ ∈ (β, α) be fixed and choose τ ∈ (0, 1) so that 2Aτα ≤ τγ . Let ε0 = τα. Then, if
(4.34) holds for some 0 ≤ ε ≤ ε0, we have for every R ≤ R0

Φ(τR) ≤ τγ Φ(R) +BRβ

and therefore for all k = 1, 2, · · ·

Φ(τk+1R) ≤ τγ Φ(τkR) +B τkβ Rβ

≤ τ (k+1)γ Φ(R) +B τkβ Rβ
k∑
j=0

τ j(γ−β)

≤ C τ (k+1)β(Φ(R) +BRβ).

Since Φ(t) is nondecreasing and τk+2R < ρ ≤ τk+1R for some k, we have

Φ(ρ) ≤ C
( ρ
R

)β
(Φ(R) +BRβ) = C

[( ρ
R

)β
Φ(R) +B ρβ

]
,

as desired. The proof is complete. �

4.7. Schauder estimates for systems with variable coefficients

In this section, we study the local regularity of weak solutions of systems with variable
coefficients. We first prove the regularity in the Morrey space L2,λ

loc (Ω) for the gradient of
the weak solutions.

Theorem 4.33. Let Aαβij (x) satisfy the hypothesis (H3) and u ∈ W 1,2
loc (Ω; RN ) be a weak

solution of system

(4.35) Dα(Aαβij (x)Dβu
j) = Dαf

i
α.

Suppose f ∈ L2,λ
loc (Ω; MN×n) and 0 ≤ λ < n. Then Du ∈ L2,λ

loc (Ω; MN×n).

Proof. Let Ω′ ⊂⊂ Ω′′ ⊂⊂ Ω. Let a ∈ Ω′ and BR(a) = BR ⊂ Ω′′. Using the standard Korn’s
freezing coefficients device, u is a weak solution of system with constant coefficients

Div(A(a)Du) = DivF, F = f + (A(a)−A(x))Du.

Let v ∈W 1,2(BR; RN ) be the solution of the Dirichlet problem{
Div(A(a)Dv) = 0 in BR,
v|∂BR = u.

Then, as before, using (4.30) instead of (4.31) we have∫
Bρ

|Du|2 ≤ c · ( ρ
R

)n
∫
BR

|Du|2 + C

∫
BR

|D(u− v)|2

≤ c · ( ρ
R

)n
∫
BR

|Du|2 + C

∫
BR

|F |2

≤ c · ( ρ
R

)n
∫
BR

|Du|2 + C

∫
BR

|f |2 + C ω(R)
∫
BR

|Du|2

≤ c
[
(
ρ

R
)n + ω(R)

] ∫
BR

|Du|2 + C ‖f‖2L2,λ(Ω′′;MN×n)R
λ,
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where ω(R) is the uniform modulus of continuity of A(x) :

ω(R) = sup
|x−y|≤R

|A(x)−A(y)|.

We choose R0 > 0 sufficiently small so that ω(R) < ε0 for all R < R0, where ε0 is the
constant appearing in the Campanato lemma above. Therefore,∫

Bρ

|Du|2 dx ≤ C(Ω′,Ω′′)
(
‖Du‖2L2(Ω′′;MN×n) + ‖f‖2L2,λ(Ω′′;MN×n)

)
ρλ.

This, by a local version similar to the Campanato space, we have

‖Du‖L2,λ(Ω′;MN×n) ≤ C(Ω′,Ω′′)
(
‖Du‖L2(Ω′′;MN×n) + ‖f‖L2,λ(Ω′′;MN×n)

)
,

which proves the theorem. �

We now study the regularity of the gradient of weak solutions in the Hölder spaces.
This is done by proving the regularity of gradient in the Campanato space L2,n+2µ

loc (Ω) for
some µ ∈ (0, 1).

Theorem 4.34. Let Aαβij ∈ C0,µ(Ω) with some 0 < µ < 1 satisfy the hypothesis (H3) and
u ∈W 1,2

loc (Ω; RN ) be a weak solution of system

(4.36) Dα(Aαβij (x)Dβu
j) = Dαf

i
α.

Suppose f ∈ C0,µ
loc (Ω; MN×n). Then Du ∈ C0,µ

loc (Ω; MN×n).

Proof. Similarly as above, we have∫
Bρ

|Du− (Du)Bρ |2 ≤ c · ( ρ
R

)n+2

∫
BR

|Du− (Du)BR |
2 + C

∫
BR

|F − fBR |
2

≤ c · ( ρ
R

)n+2

∫
BR

|Du− (Du)BR |
2 + C

∫
BR

|f − fBR |
2

+ C [A]2C0,µ R
2µ

∫
BR

|Du|2

≤ c · ( ρ
R

)n+2

∫
BR

|Du− (Du)BR |
2 + C [f ]2C0,µ(Ω′′)R

n+2µ

+ C [A]2C0,µ R
2µ

∫
BR

|Du|2.

Since by the previous theorem Du ∈ L2,n−ε
loc (Ω; MN×n) for all ε > 0 we obtain∫

Bρ

|Du− (Du)Bρ |2 ≤ A (
ρ

R
)n+2

∫
BR

|Du− (Du)BR |
2 +BRn+2µ−ε.

Using Campanato’s lemma, we have∫
Bρ

|Du− (Du)Bρ |2 ≤ C ρn+2µ−ε

and hence Du ∈ L2,n+2µ−ε
loc (Ω; MN×n) for all ε > 0. This implies Du ∈ C0,β

loc (Ω; MN×n)
for β = µ − ε

2 . In particular, Du is locally bounded. Therefore, again, using the above
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estimates, it follows that∫
Bρ

|Du− (Du)Bρ |2 ≤ c · ( ρ
R

)n+2

∫
BR

|Du− (Du)BR |
2

+ C [f ]2C0,µ(Ω′′)R
n+2µ + C [A]2C0,µ R

2µ

∫
BR

|Du|2

≤ c · ( ρ
R

)n+2

∫
BR

|Du− (Du)BR |
2

+ C [f ]2C0,µ(Ω′′)R
n+2µ + C [A]2C0,µ R

n+2µ

and using Campanato’s lemma again we have Du ∈ L2,n+2µ
loc (Ω; MN×n) and hence Du ∈

C0,µ
loc (Ω; MN×n). �

Finally we remark that the following higher order regularity result can be easily deduced.

Theorem 4.35. Let k ≥ 0, 0 < µ < 1 and Aαβij ∈ Ck,µ(Ω) satisfy the hypothesis (H3) and
u ∈W 1,2

loc (Ω; RN ) be a weak solution of system

(4.37) Dα(Aαβij (x)Dβu
j) = Dαf

i
α.

Suppose f ∈ Ck,µloc (Ω; MN×n). Then u ∈ Ck+1,µ
loc (Ω; RN ).

4.8. Systems in non-divergence form and boundary estimates

In this section, we show that the Campanato estimates can also be proved for systems that
are not in divergence form and also the global estimates are valid if the boundary ∂Ω of the
domain Ω ⊂ Rn satisfies certain smoothness condition.

We first prove the interior estimates for systems in the following form:

Aαβij (x)Dαβu
j = f i; i = 1, 2, · · · , N.

By a weak solution u to this system we mean a function u ∈ W 2,2
loc (Ω; RN ) such that the

system is satisfied almost everywhere in Ω.

Theorem 4.36. Let Aαβij , f
i ∈ C0,µ

loc (Ω) and 0 < µ < 1. If u ∈ W 2,2
loc (Ω; RN ) is a weak

solution to the system above, then u ∈ C2,µ
loc (Ω; RN ).

We now consider the regularity up to the boundary. In what follows, we assume the
boundary ∂Ω of the domain Ω is of C1,µ; that is, for any x0 ∈ ∂Ω, there exist an open set
U ⊂ Rn containing x0 and a C1,µ-diffeomorphism y = G : U → Rn such that

G(x0) = 0, G(U ∩ Ω) = B+
1 = {y ∈ Rn | |y| < 1, yn > 0};

G(U ∩ ∂Ω) = Γ1 = {y ∈ Rn | |y| < 1, yn = 0}.
This G is called (locally) flattening the boundary.

Theorem 4.37. Let ∂Ω be of C1,µ with 0 < µ < 1 and Aαβij , f
i
α ∈ C0,µ(Ω̄) and gj ∈ C1,µ(Ω̄).

Let A(x) satisfy the condition (H3). If u ∈W 1,2(Ω; RN ) is a weak solution to the problem

Div(A(x)Du) = Div f, u|∂Ω = g,

then u ∈ C1,µ(Ω̄; RN ).
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Theorem 4.38. Let ∂Ω be of C1,µ with 0 < µ < 1 and Aαβij ∈ C0,µ(Ω̄) satisfy (H3).
Assume f i ∈ C0,µ(Ω̄), gj ∈ C2,µ(Ω̄). If u ∈W 2,2(Ω; RN ) is a weak solution to the problem

Aαβij (x)Dαβu
j = f i; uj |∂Ω = gj ,

then u ∈ C2,µ(Ω̄; RN ).





Chapter 5

Partial Regularity for
Nonlinear Systems

5.1. Reduction to linear and quasilinear systems

Let us consider a system in divergence form

(5.1) DivA(Du(x)) = 0,

where A(ξ) = (Aiα(ξ)) is of C1 and satisfies a controllable growth condition; that is, for all
ξ, η ∈MN×n, letting Aαβij (ξ) = ∂Aiα(ξ)/∂ξjβ,

(5.2)


|Aiα(ξ)| ≤ c |ξ|,
|Aαβij (ξ)| ≤ L,
Aαβij (ξ) ηiαη

j
β ≥ ν |η|

2; ν > 0.

Theorem 5.1. Let u ∈ W 1,2(Ω; RN ) be a weak solution of (5.1). Then u ∈ W 2,2
loc (Ω; RN )

and Du satisfies a quasilinear system

(5.3)
∫

Ω
Aαβij (Du(x))DβDsu

j(x)Dαφ
i(x) dx = 0

for all φ ∈W 1,2
0 (Ω; RN ) with suppφ ⊂⊂ Ω.

Proof. Since ∫
Ω
A(Du(x)) ·Dφ(x) dx = 0, ∀φ ∈W 1,2

0 (Ω; RN ),

we use the well-known method of difference quotients to “linearize” the system. Let φ have
a compact support in Ω and |h| < dist(suppφ; ∂Ω) we have

1
h

∫
Ω

[A(Du(x+ hes))−A(Du(x))] ·Dφ(x) dx = 0.

63
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Now for almost every x ∈ Ω

Aiα(Du(x+ hes))−Aiα(Du(x))

=
∫ 1

0

d

dt
Aiα
(
tDu(x+ hes) + (1− t)Du(x)

)
dt

=
∫ 1

0
Aαβij

(
tDu(x+ hes) + (1− t)Du(x)

)
Dβ

(
uj(x+ hes)− uj(x)

)
dt.

Thus
1
h

[A(Du(x+ hes))−A(Du(x))] = Ã(h)(x) τh,sDu(x),

where Ã(h)(x) = (Ãαβij(h)(x)) is defined by

Ãαβij(h)(x) =
∫ 1

0
Aαβij

(
tDu(x+ hes) + (1− t)Du(x)

)
dt.

For each h we have Ã(h)(x) satisfies the hypothesis (H1) in the previous chapter; that is

|Ã(h)(x)| ≤ L, Ãαβij(h)(x) ξiαξ
j
β ≥ ν|ξ|

2.

Note also that

(5.4)
∫

Ω
Ã(h)(x) τh,sDu(x) ·Dφ(x) dx = 0.

As before, choosing φ = ζ2 τh,su as in the Caccioppoli estimates, we can prove that∫
BR/2

|τh,sDu|2 dx ≤ C(R, ν, L, ‖Du‖L2(Ω)) <∞,

which is independent of h, s. Therefore, we have u ∈W 2,2
loc (Ω; RN ). Passing to the limit for

h→ 0 in (5.4) we have ∫
Ω
Aαβij (Du(x))DβDsu

j(x)Dαφ
i(x) dx = 0

for all φ ∈ W 1,2
0 (Ω; RN ) with suppφ ⊂⊂ Ω. Since we may not have u ∈ W 2,2(Ω; RN )

globally, this may not hold for all φ ∈W 1,2
0 (Ω; RN ). This proves the theorem. �

For each fixed s = 1, 2, ... define v : Ω→ RN by vj = Dsu
j , and let

Ãαβij (x) = Aαβij (Du(x)).

Then (5.3) becomes a linear system for v : Ω→ RN

(5.5) Dα(Ãαβij (x)Dβv
j) = 0, ∀ i = 1, 2, ..., N.

The coefficients of this linear system are only known to belong to L∞(Ω) and satisfy the
hypothesis (H1) in the previous chapter; the weak solution v ∈W 1,2

loc (Ω; RN ) and we do not
have the higher regularity result from the linear theory we proved before.

Theorem 5.2. Let Aiα be of C∞ and satisfy the controllable growth condition (5.2) and let
u ∈W 1,2(Ω; RN ) be a weak solution of

DivA(Du(x)) = 0.

Let Ω0 be any open set in Ω. Then u ∈ C∞(Ω0; RN ) if u ∈ C1,µ
loc (Ω0; RN ) for some 0 < µ <

1.
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Proof. If u ∈ C1,µ
loc (Ω0; RN ) for some 0 < µ < 1, it follows that

Ãαβij (x) = Aαβij (Du) ∈ C0,µ
loc (Ω0).

Therefore from the linear system (5.5) and the Schauder estimates we proved before we
have v ∈ C1,µ

loc (Ω0; RN ); this is true for all s = 1, 2, ..., n, so u ∈ C2,µ
loc (Ω0; RN ) and thus

Ãαβij ∈ C
1,µ
loc (Ω0) and hence v ∈ C2,µ

loc (Ω0; RN ). By this “bootstrap” argument, the theorem
follows. �

Remarks. 1) This theorem shows that the C∞-regularity of weak solutions of a nonlinear
elliptic system reduces to the C1,µ-regularity of the weak solutions. In the theorem, if
Ω0 = Ω we obtain the full C∞-regularity theory. However, for general systems, this is not
the case. If Ω0 is the largest open set such that a weak solution u belongs to C1,µ

loc (Ω0; RN )
for some µ ∈ (0, 1), then the set Ω\Ω0 is called the singular set for the solution u. Further
study on the singular sets will be given later.

2) Since the C1,µ-regularity is the key issue for the weak solution u of nonlinear system
(5.1), it is desirable to study the C0,µ-regularity for the gradient Du. By Theorem 5.1,
Du satisfies the quasilinear system (5.3). This system can be written for the gradient field
U = (U js ) = (Dsu

j) from Ω to RnN as follows

(5.6)
∫

Ω
δκsAαβij (U)DβU

j
s Dαφ

i
κ dx = 0

for all φ = (φiκ) ∈ C∞0 (Ω; RnN ). Note that the coefficients of system (5.6), δκsAαβij (U), are
continuous on U ∈ RnN and satisfy the Legendre ellipticity condition:

δκsAαβij (U)P iακP
j
βs ≥ ν |P |

2 ≡ ν
n∑

α,κ=1

N∑
i=1

|P iακ|2.

The system (5.6) is called the system in variation of system (5.1). �

5.2. Full regularity for equations with one unknown function

Let N = 1; that is, we only deal with the scalar functions satisfying a single equation

(5.7) DαAα(Du(x)) = 0.

Here we assume A(p) = (Aα(p)) is of C1 and satisfies the controllable growth condition;
that is, for all p, η ∈ Rn, letting Aαβ(p) = ∂Aα(p)/∂pβ,

(5.8)


|Aα(p)| ≤ c |p|,
|Aαβ(p)| ≤ L,
Aαβ(p) ηαηβ ≥ ν |η|2; ν > 0.

We use the same or similar notation as in the previous section. Then (5.5) reduces to

(5.9) Dα(Ãαβ(x)Dβv) = 0,

with, again, the coefficients Ãαβ(x) belonging to L∞(Ω). However, in this case, we have the
following extremely important result due to De Giorgi.

Theorem 5.3 (De Giorgi ’57). Let v ∈W 1,2
loc (Ω) be a weak solution of

(5.10) Dα(aαβ(x)Dβv) = 0,
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where aαβ ∈ L∞(Ω) satisfying for a constant ν > 0

aαβ(x) pαpβ ≥ ν |p|2, ∀ p ∈ Rn.

Then v ∈ C0,µ
loc (Ω) for some 0 < µ < 1.

Theorem 5.4. Suppose u ∈W 1,2(Ω) is a weak solution of

Dα(Aα(Du(x))) = 0.

If the functions Aα ∈ C∞ satisfy the controllable growth condition (5.8) then u ∈ C∞(Ω).

Proof. From De Giorgi’s theorem, we deduce from the linear equation (5.9) that v = Dsu ∈
C0,µ
loc (Ω) for all s = 1, 2, ..., n and hence

Ãαβ(x) = Aαβ(Du(x)) ∈ C0,µ
loc (Ω).

Therefore the Schauder estimates from (5.9) imply v = Dsu ∈ C1,µ
loc (Ω) for all s = 1, 2, ...;

this implies Ãαβ ∈ C1,µ
loc (Ω) and hence v ∈ C2,µ

loc (Ω). The theorem follows by this bootstrap
argument. �

Proof of De Giorgi’s Theorem. The proof given below is due to J. Moser ’60 and uses
an iteration method.

We say a function w ∈ W 1,2(Ω) is a subsolution (or a supersolution) of equation
(5.10) if ∫

Ω
aαβ(x)DβwDαϕdx ≤ 0 (or ≥ 0), ∀ϕ ∈W 1,2

0 (Ω), ϕ ≥ 0.

We first prove some useful lemmas.

Lemma 5.5. Let w ≥ 0 be a locally bounded function in W 1,2(Ω).
(a) If w is a subsolution then for any q > 1 there exists a constant c1 = c1(q) > 0 such

that

sup
BR/2

w ≤ c1

(∫
−
BR

wq dx

) 1
q

∀ B2R ⊂ Ω.

(b) If w is a supersolution then for any 0 < q < n
n−2 there exists a constant c2 = c2(q) >

0 such that

inf
BR/2

w ≥ c2

(∫
−
BR

wq dx

) 1
q

∀ B2R ⊂ Ω.

Proof. Since the idea of proving both (a), (b) is essentially the same, using special test
functions, we prove them jointly. Let k > 0 and let w̄ = w + k. For any p 6= 0 and cut-off
function ζ ∈ W 1,∞

0 (B2R) let ϕ = ζ2 w̄p. Since w̄ ≥ k > 0 is locally bounded by assumption,
ϕ ≥ 0 is a legitimate test function and

Dϕ = 2ζw̄pDζ + pζ2w̄p−1Dw

so that testing by ϕ yields

p

∫
B2R

aαβ w̄p−1ζ2DβwDαw dx+ 2
∫
B2R

aαβ ζw̄pDβwDαζ dx{
≤ 0 if w is a subsolution,
≥ 0 if w is a supersolution.
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In the following we assume that p > 0 (or p < 0) if w is a subsolution (or a supersolution).
Therefore we have∫

B2R

|Dw|2w̄p−1ζ2 dx ≤ c

|p|

∫
B2R

|Dw| w̄
p−1

2 w̄
p+1

2 ζ|Dζ| dx

and hence ∫
B2R

|Dw|2w̄p−1ζ2 dx ≤ c

p2

∫
B2R

w̄p+1|Dζ|2 dx.

Note that

|D(ln w̄)|2 = w̄−2 |Dw̄|2,

|D(w̄
p+1

2 )|2 =
(p+ 1)2

4
w̄p−1|Dw|2,

|D(ζw̄
p+1

2 )|2 ≤ 2|D(w̄
p+1

2 )|2ζ2 + 2w̄p+1|Dζ|2.

We have

(5.11)
∫
B2R

|D(ln w̄)|2 ζ2 dx ≤ C
∫
B2R

|Dζ|2 dx,

(5.12)
∫
B2R

|D(ζw̄
p+1

2 )|2 dx ≤ c [(p+ 1)2 + 1]
∫
B2R

w̄p+1 |Dζ|2 dx; p 6= −1.

By Sobolev-Poincaré’s inequality, letting 2∗ = 2n
n−2 , we have

[∫
B2R

(
ζw̄

p+1
2
)2∗

dx

] 2
2∗

≤ c [(p+ 1)2 + 1]
∫
B2R

w̄p+1 |Dζ|2 dx; p 6= −1.

We now let Br1 ⊂ Br2 ⊂ B3R/2 and choose the cut-off function ζ as before such that
ζ ∈W 1,∞

0 (B2R) and ζ ≡ 1 on Br1 , ζ ≡ 0 in Ω \Br2 and

0 ≤ ζ ≤ 1; |Dζ| ≤ 1
r2 − r1

.

Let δ = 2∗

2 = n
n−2 and γ = p+ 1. We obtain

(5.13)

(∫
Br1

w̄δγ dx

) 1
δ

≤ c (|γ|+ 1)2

(r2 − r1)2

∫
Br2

w̄γ dx; γ 6= 0.

We now iterate (5.13) as follows. Let for i = 1, 2, ... and 0 < θ < 3

γi = δiγ, Ri =
R

2
+

θR

2i+1
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and we find that(∫
BRi+1

w̄γi+1 dx

) 1

δi+1

=

(∫
BRi+1

w̄δγi dx

) 1
δ

1

δi

≤
[
c (1 + |γi|)2

4−(i+1) θ2R2

] 1

δi

·

(∫
BRi

w̄γi dx

) 1

δi

≤
i∏

j=0

[
c (1 + |γj |)2

4−(j+1) θ2R2

] 1

δj
∫
B(1+θ)R/2

w̄γ dx

≤ C θ−nR−n+ n

δi+1

∫
B(1+θ)R/2

w̄γ dx,

using the elementary calculation
i∏

j=0

[
c (1 + |γj |)2

4−(j+1) θ2R2

] 1

δj

≤ C θ−nR−n+ n

δi+1 .

Therefore, (∫
−
BRi+1

w̄γi+1 dx

) 1

δi+1

≤ C(θ)
∫
−
B(1+θ)R/2

w̄γ dx.

For γ > 0, letting θ = 1, we have

(5.14)

(∫
−
BRi+1

w̄γi+1 dx

) 1
γi+1

≤ c1

(∫
−
BR

w̄γ dx

) 1
γ

,

while for γ < 0, letting θ = 2, we have

(5.15)

(∫
−
BRi+1

w̄γi+1 dx

) 1
γi+1

≥ c2

(∫
−
B3R/2

w̄γ dx

) 1
γ

.

Case (a): w is a subsolution. In this case p > 0 and γ = p + 1 > 1. In (5.14), letting
i→∞ we obtain

sup
BR/2

w̄ = lim
i→∞
‖w̄‖Lγi+1 (BRi+1

) ≤ c1

(∫
−
BR

w̄γ dx

) 1
γ

; γ > 1.

Letting k → 0+ yields the same estimate for w; the part (a) is proved.

Case (b): w is a supersolution. In this case, p < 0 and γ = p + 1 < 1. Let 0 < q <
n
n−2 = δ be any number given. Let 0 < q0 < q be a number determined by the lemma
below and assume k ≥ 0 is the integer satisfying q0δ

k ≤ q < q0δ
k+1. First of all, by Hölder’s

inequality, we have(∫
−
BR

w̄q dx

) 1
q

≤
(∫
−
BR

w̄qk+1 dx

) 1
qk+1

; qk+1 = q0δ
k+1.

Using (5.13) as in (5.14) we have(∫
−
BR

w̄q dx

) 1
q

≤
(∫
−
BR

w̄qk+1 dx

) 1
qk+1 ≤ C1

(∫
−
B3R/2

w̄q0 dx

) 1
q0

.
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On the other hand, in (5.15) letting i→∞ we have

inf
BR/2

w̄ = lim
i→∞
‖w̄‖Lγi+1 (BRi+1

) ≥ c2

(∫
−
B3R/2

w̄−q0 dx

) 1
−q0

.

The part (b) and hence the lemma are proved if we prove the following lemma. �

Lemma 5.6. In case (b) above, for any 0 < q < δ there exist constants q0 ∈ (0, q) and
C2 > 0 such that (∫

−
B3R/2

w̄−q0 dx

) 1
−q0

≥ C2

(∫
−
B3R/2

w̄q0 dx

) 1
q0

.

Proof. Let Br be any ball lying in B2R. Let ζ be the cut-off function such that

ζ|Br = 1; ζ|Ω\B2r
= 0; |Dζ| ≤ 2/r.

Use this ζ and the estimate (5.11) above and we have∫
Br

|D(ln w̄)|2 dx ≤ C rn−2

so that by Hölder’s inequality ∫
Br

|D(ln w̄)| dx ≤ K rn−1.

We also assume K large enough so that q0 = σ
K ∈ (0, q), where σ = σn is the constant in

the John-Nirenberg theorem for BMO functions (see Theorem 4.27, Chapter 4). From that
theorem, u = ln w̄ ∈ BMO(B3R/2) and, letting

u0 =
∫
−
B3R/2

u(x) dx,

we have ∫
B3R/2

eq0 |u−u0| dx ≤ C Rn,

and thus ∫
B3R/2

eq0 (u−u0) dx ≤ C Rn,
∫
B3R/2

eq0 (u0−u) dx ≤ C Rn.

Multiplying these two inequalities yields∫
B3R/2

eq0 u dx ·
∫
B3R/2

e−q0 u dx ≤ C R2n.

Since eq0 u = w̄q0 and e−q0 u = w̄−q0 rearranging this inequality we have(∫
−
B3R/2

w̄−q0 dx

) 1
−q0

≥ C2

(∫
−
B3R/2

w̄q0 dx

) 1
q0

.

The lemma is proved. �

Lemma 5.7. Let v ∈ W 1,2(Ω) be a weak solution of (5.10). Then v is locally bounded and
there exists c3 > 0 such that for any ball B2R ⊂ Ω we have

sup
BR

|v| ≤ c3

(∫
−
B2R

|v|2 dx
) 1

2

.
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Moreover, if v ≥ 0 then we have the following Harnack inequality:

sup
BR/2

v ≤ C inf
BR/2

v.

Proof. The Harnack inequality follows easily from Lemma 5.5. We have only to show the
first assertion. We use a similar technique as in the proof of Lemma 5.5. Let w̄ = v+ =
max{v, 0}. For any p ≥ 1 and M > 0 let H ∈ C1[0,∞) be defined by H(s) = sp for
0 ≤ s ≤ M and H(s) is linear for s ≥ M. Let ζ ∈ W 1,∞

0 (B2R). We define test function
ϕ = ζ2G(w̄), where

G(s) =
∫ s

0
|H ′(t)|2 dt, s ≥ 0.

Since G is Lipschitz and G(s) ≤ CMs this function ϕ is indeed a test function in W 1,2
0 (B2R).

Let us look at some properties of G,H:

(5.16) G(s) ≤ sG′(s), G′(s) = |H ′(s)|2, H(s) + sH ′(s) ≤ 2psp.

Note that Dϕ = ζ2G′(w̄)Dw̄ + 2ζ G(w̄)Dζ and

G(w̄) = 0, Dw̄ = 0 on {x ∈ Ω | v(x) ≤ 0},

hence testing equation (5.10) with ϕ yields∫
B2R

|Dw̄|2G′(w̄) ζ2 ≤ C

∫
B2R

ζ |Dw̄| |Dζ|G(w̄)

≤ C

∫
B2R

ζ |Dw̄| |Dζ| w̄ G′(w̄)

≤ 1
2

∫
B2R

|Dw̄|2G′(w̄) ζ2 + C

∫
B2R

|w̄|2 |Dζ|2G′(w̄).

This, combined with (5.16), yields∫
B2R

|D[ζ H(w̄)]|2 dx ≤ C p2

∫
B2R

|Dζ|2 w̄2p dx.

Using the Sobolev-Poincaré inequality, we have(∫
B2R

[ζH(w̄)]2
∗
dx

) 2
2∗

≤ C p2

∫
B2R

w̄2p |Dζ|2 dx.

The righthand side of this inequality is independent of number M, so letting M → ∞ we
have (∫

B2R

ζ2∗ w̄qδ dx

) 1
δ

≤ C q2

∫
B2R

w̄q |Dζ|2 dx,

where δ = n
n−2 , q = 2p ≥ 2. Using the special cut-off function ζ as above, we have(∫

Br1

w̄qδ dx

) 1
δ

≤ C q2

(r2 − r1)2

∫
Br2

w̄q dx

for all 0 < r1 < r2 ≤ 2R. Hence using

qi = 2δi, Ri = R+
R

2i
,
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as in the proof of part (a) of Lemma 5.5 we deduce

sup
BR

v ≤ sup
BR

w̄ ≤ c3

(∫
−
B2R

w̄2 dx

) 1
2

≤ c3

(∫
−
B2R

v2 dx

) 1
2

.

The same estimate holds also for −v, and hence we have

sup
BR

|v| ≤ c3

(∫
−
B2R

v2 dx

) 1
2

,

which proves the lemma. �

Completion of the Proof. Finally let us complete the proof of the De Giorgi theorem.
Let

M(R) = sup
BR

v, m(R) = inf
BR

v, ω(R) = M(R)−m(R).

Let B2R0 ⊂⊂ Ω. For R ≤ R0 we have M(R) − v ≥ 0 is a weak solution on BR thus by
Harnack’s inequality,

M(R)−m(R/2) ≤ c (M(R)−M(R/2)).

Since u−m(R) ≥ 0 is also a weak solution,

M(R/2)−m(R) ≤ c (m(R/2)−m(R)).

Adding these two inequalities yields

ω(R) + ω(R/2) ≤ c (ω(R)− ω(R/2))

so that

ω(R/2) ≤ c− 1
c+ 1

ω(R), ∀R ≤ R0.

From this and Lemma 5.8 below, it follows that

ω(R) ≤ C (R/R0)µ; µ = − ln η
ln 2

, η =
c− 1
c+ 1

,

and hence v ∈ C0,µ
loc (Ω). Since we can choose constant c > 0 uniformly for all R0, the constant

µ > 0 can be chosen independently of R0; hence we have proved the De Giorgi theorem.

Lemma 5.8 (De Giorgi). Assume θ(R) ≥ 0 is bounded on (0, R0) and satisfies for some
constants τ, η ∈ (0, 1)

0 ≤ θ(τR) ≤ η θ(R), ∀R ∈ (0, R0).

Then there exists a constant C > 0 such that

θ(R) ≤ C · (R/R0)β, β =
ln η
ln τ

.

Proof. Let 0 ≤ θ(R) ≤ θ0 for 0 < R < R0. Then

sup
R∈[τR0, R0)

θ(R)
Rβ

≤ θ0

τβ Rβ0
≡M0.

We use induction to show that

θ(R) ≤M0 ·Rβ, R ∈ [τ iR0, τ
i−1R0), i = 1, 2, · · · .
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Indeed, if i = 1 this is trivial by the definition of M0. Suppose this inequality is proved for
i = k − 1 then for i = k and R ∈ [τkR0, τ

k−1R0) we have R/τ ∈ [τk−1R0, τ
k−2R0) and

hence by induction assumption θ(R/τ) ≤M0 (R/τ)β. Therefore, it follows that

θ(R) = θ(τ · R
τ

) ≤ η · θ(R
τ

) ≤ ηM0
Rβ

τβ
= M0 ·Rβ

since τβ = η by the definition of β. This proves the lemma. �

5.3. No full regularity for elliptic systems

The full C∞-regularity (for smooth data) would follow for elliptic systems if De Giorgi’s
theorem were true for systems. But this is not the case. The following example due to De
Giorgi ’68 showed that his result for equations cannot be extended to systems.

Example 5.1 (De Giorgi ’68). Let B be the unit ball in Rn with n ≥ 3. Consider the
coefficients

Aαβij (x) = δαβ δij + P iα(x)P jβ(x),

where
P iα(x) = (n− 2) δαi + n

xixα
|x|2

.

It is easily seen that Aαβij ∈ L∞(B) and there exist constants 0 < ν ≤M such that

ν |ξ|2 ≤ Aαβij (x) ξiαξ
j
β ≤M |ξ|

2.

Moreover one verifies that the function

u0(x) =
x

|x|γ
, γ =

n

2

[
1−

(
(2n− 2)2 + 1

)− 1
2

]
belongs to W 1,2(B; Rn) and is a weak solution of the system

Dα(Aαβij (x)Dβu
j(x)) = 0.

But, u0 /∈ C0,µ
loc (B; Rn) since it is not bounded at x = 0.

Note that the function u0 defined above is also the unique minimizer of the energy

J(v) =
∫
B
F (x,Dv) dx ≡

∫
B

(
|Dv|2 +

(
P (x) ·Dv

))
dx

among the Dirichlet class D1,2
ϕ (B; Rn) of the boundary value ϕ(x) = x, where P (x) is the

matrix (P iα(x)) defined above.

Remarks. 1) Modifying De Giorgi’s example, Giusti-Miranda ’68 showed that a quasilinear
elliptic system of type

Div(A(u)Du) = 0

with analytic coefficients A(u) can have u = x
|x| as weak solution and thus have singularities

in dimension n ≥ 3.
2) In 1975, J. Nečas presented a functional of type∫

Ω
F (Du(x)) dx; u : Ω ⊂ Rn → Rn2

satisfying, for n ≥ 5, the strict Legendre ellipticity condition whose minimizer is function
uij(x) = xixj

|x| , which is Lipschitz but not C1.
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3) Most recently, in 1998, Müller and Šverák (ICM ’98, Berlin) showed that there exists
a smooth functional of type

I(u) =
∫

Ω
F (Du(x)) dx; u : Ω ⊂ R2 → R2

satisfying the strong Legendre-Hadamard condition such that the Euler-Lagrange equation
of I(u) on whole R2 admits

(i) nontrivial Lipschitz solutions with compact support;
(ii) Lipschitz solutions that are nowhere C1. �

We can conclude that vector valued minimizers or more generally the weak solutions of
nonlinear elliptic systems are in general non-regular and we can only hope to have a partial
regularity; that is regularity outside a certain closed set (called the singular set). The new
(unexpected) example of Müller-Šverák shows that the weak solutions for certain strongly
(Legendre-Hadamard) elliptic systems may be nowhere regular; this is in sharp contrast
with all the existing regularity theories for nonlinear systems, which establish the almost
everywhere regularity for weak solutions under the strong Legendre ellipticity condition or
for energy minimizers under certain strong Legendre-Hadamard conditions (e.g., uniformly
strict quasiconvexity).

There are also many open problems regarding the size of the singular sets and the
condition of ellipticity which can guarantee at least almost everywhere regularity of energy
minimizers in the calculus of variations. In the end of this chapter, we shall prove a theorem
of Evans regarding the quasiconvexity and partial regularity in the calculus of variations.

5.4. Almost everywhere regularity: an indirect approach

Consider the following quasilinear system, which is usually the system in variation of some
nonlinear system,

(5.17) Div(A(x, u)Du) = 0,

where the coefficient A(x, u) = (Aαβij (x, u)) satisfies

(5.18) |Aαβij (x, u)| ≤ L, Aαβij (x, u) ξiαξ
j
β ≥ ν |ξ|

2, ∀ ξ ∈MN×n.

This condition compares to the following condition we used before for functions Ã(x) =
(Ãαβij (x)) which we called the hypothesis (H1).

(H1) ‖Ã‖L∞(Ω) ≤ L, Ãαβij (x) ξiαξ
j
β ≥ ν |ξ|

2, ∀ ξ ∈MN×n.

Theorem 5.9. Assume A(x, u) is uniformly continuous on (x, u) ∈ Ω̄ × RN . Let u ∈
W 1,2(Ω; RN ) be a weak solution of (5.17). Then there exists an open set Ω0 ⊂ Ω such that
|Ω \ Ω0| = 0 and u ∈ C0,µ

loc (Ω0; RN ) for each 0 < µ < 1.

Proof. The main idea of the proof is the following. If u varies very little near a point x = a
in the sense that the quantity

(5.19) Eu(a,R) ≡ R−n
∫
BR(a)

|u(x)− uBR(a)|2 dx

is smaller than a power of R as R→ 0 then the blowing up of u will converge to a solution
of linear system with constant coefficients; the limit function (tangent map) will be regular
(Hölder continuous) at point a. The convergence of the blowing up will also be strong
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enough to conclude a is also a regular point for u. The idea is central to the regularity
theory for nonlinear systems. We shall give the details of the proof of the theorem below,
after several lemmas. �

Lemma 5.10. Let u ∈ W 1,2
loc (Ω; RN ) be a weak solution of (5.17). Then there exists a

constant C1 = C1(n,N, ν, L) such that for all a ∈ Ω and 0 < ρ < R < dist(a; ∂Ω)

(5.20)
∫
Bρ(a)

|Du|2 dx ≤ C1

(R− ρ)2

∫
BR(a)

|u|2 dx.

Proof. This follows from the standard Caccioppoli estimate for linear systems since we can
consider A(x, u(x)) = A(x) as in L∞(Ω) satisfying the hypothesis (H1). �

Lemma 5.11. Let Ãαβij be constants satisfying (H1) above with Ω = B1(0). Then there exists
a constant C2 = C2(n,N, ν, L) such that for any weak solution v ∈ W 1,2

loc ∩ L
2(B1(0); RN )

of
Dα(Ãαβij Dβv

j(x)) = 0

and all 0 < ρ < 1 we have
Ev(0, ρ) ≤ C2 ρ

2Ev(0, 1),

where Ev(a,R) is defined by (5.19).

Proof. This is simply the Campanato inequality (4.31) we proved before. �

Lemma 5.12 (Compactness Lemma). Let Ã(h)(x) be a sequence of functions satisfying
(H1) above with the same constants L, ν > 0 in Ω = B1(0). Assume Ã(h)(x) converges to
Ã(x) for almost every x ∈ B1(0) as h→ 0. Suppose v(h) ∈W

1,2
loc ∩L

2(B1(0); RN ) is a weak
solution of

Dα(Ãαβij(h)(x)Dβv
j
(h)(x)) = 0

and v(h) ⇀ v weakly in L2(B1(0); RN ). Then v ∈W 1,2
loc ∩L

2(B1(0); RN ) and for all 0 < ρ < 1

v(h) → v strongly in L2(Bρ(0); RN ),

Dv(h) ⇀ Dv weakly in L2(Bρ(0); RN ).

Moreover, v is a weak solution of

Dα(Ãαβij (x)Dβv
j(x)) = 0.

Proof. First of all, since Ã(h)(x) satisfies the Legendre condition (H1), the weak solution
v(h) satisfies a Caccioppoli-type inequality similar to (5.10). Since {v(h)} is bounded in
L2(B1(0); RN ) we thus have for 0 < ρ < 1 that {Dv(h)} is bounded in L2(Bρ(0); MN×n);
therefore, the convergence part of the lemma follows. We now prove the weak limit v is a
weak solution of

(5.21) Dα(Ãαβij (x)Dβv
j(x)) = 0.

Let φ ∈ C∞0 (B1(0); RN ) and suppφ ⊂ Bρ(0) for some 0 < ρ < 1. From the systems satisfied
by v(h) we have ∫

Bρ(0)
Ãαβij(h)(x)Dβv

j
(h)(x)Dαφ

i(x) dx = 0.
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By assumption and Lebesgue’s bounded convergence theorem, Ã(h) → Ã strongly in L2(Bρ(0))
as h→ 0; therefore we can pass to the limit in the previous equation to deduce∫

Bρ(0)
Ãαβij (x)Dβv

j(x)Dαφ
i(x) dx = 0,

and hence v is a weak solution of (5.21); the proof is complete. �

Remark. We notice that the assumption that the sequence of coefficients satisfy the uni-
form Legendre condition cannot be replaced with the Legendre-Hadamard condition since
in that case the Caccioppoli inequality (5.20) may not hold. �

The following important lemma is similar to the Schoen-Uhlenbeck ε-regularity theorem
for harmonic maps.

Theorem 5.13 (Main Lemma). For all 0 < τ < 1 there exist two positive constants
ε0 = ε0(τ, n,N, ν, L) and R0 = R0(τ, n,N, ν, L) such that if u ∈ W 1,2(Ω; RN ) is a weak
solution to system (5.17) then for any a ∈ Ω and R < min{R0, dist(a; ∂Ω)} the condition

(5.22) Eu(a,R) < ε20

implies

(5.23) Eu(a, τR) ≤ 2C2 τ
2Eu(a,R),

where C2 = C2(n,N, ν, L) is the constant in Lemma 5.11.

Proof. We use the contradiction method. Suppose the result is not true. Then there exist
τ0 ∈ (0, 1), a sequence of points ah ∈ Ω, a sequence εh → 0+, a sequence Rh → 0+ and a
sequence uh of weak solutions of (5.17) such that

Euh(ah, Rh) = ε2h, Euh(ah, τ0Rh) > 2C2 τ
2
0 ε

2
h.

Now the following is the blowing up technique. Let

vh(y) = ε−1
h

[
uh(ah +Rhy)− (uh)BRh (ah)

]
.

Let
Ã(h)(y) = A

(
ah +Rhy, εhvh(y) + (uh)BRh (ah)

)
, y ∈ B1(0).

Then it is easily seen that vh ∈W 1,2(B1(0); RN ) is a weak solution of

Div(Ã(h)(y)Dvh(y)) = 0,

and satisfies (vh)B1(0) = 0; moreover,

Evh(0, 1) =
∫
B1(0)

|vh(y)|2 dy = 1,

(5.24) Evh(0, τ0) > 2C2 τ
2
0 .

Now, passing to a subsequence, still labeled the same, as h→ 0, we have

(5.25)


vh ⇀ v weakly in L2(B1(0); RN ),
εh vh(y)→ 0 a.e. in B1(0),
Aαβij

(
ah, (uh)BRh (ah)

)
→ Ãαβij , some constant,

and hence using the uniform continuity of Aαβij (x, u) we have

Ã(h)(y)→ Ã = (Ãαβij ) a.e. in B1(0).
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From the compactness lemma above, we obtain v is a weak solution of

Div(ÃDv(y)) = 0

and hence by Lemma 5.11 we must have

Ev(0, τ0) ≤ C2 τ
2
0 Ev(0, 1).

On the other hand, using the semicontinuity of the norm in L2(B1(0); RN ) we have Ev(0, 1) ≤
1, and by (5.24) and the strong convergence of vh to v in L2(Bρ(0); RN ) for all ρ < 1 we
have

Ev(0, τ0) > 2C2 τ
2
0 ,

which is a contradiction with the previous estimate we have above. �

Proof of Theorem 5.9. Let 0 < µ < 1 and choose τ ∈ (0, 1) in such a way that
2C2 τ

2−2µ ≤ 1. Let

(5.26) Ω0 =
{
a ∈ Ω

∣∣∣Eu(a,R) < ε20 ∃ R < min{R0, dist(a; ∂Ω)}
}
,

where ε0, R0 are the constants determined in the main lemma above. From the main lemma,
we have for any a ∈ Ω0

Eu(a, τR) ≤ 2C2 τ
2Eu(a,R) ≤ τ2µEu(a,R)

and hence Eu(a, τR) ≤ Eu(a,R) < ε20, and therefore we can use the main lemma again to
have

Eu(a, τ2R) ≤ τ4µEu(a,R).
By induction we get for every k

Eu(a, τkR) ≤ τ2µk Eu(a,R)

and hence for every ρ < R (note that ρnEu(a, ρ) is nondecreasing in ρ)

(5.27) Eu(a, ρ) ≤ τ−n−2µ (
ρ

R
)2µEu(a,R).

On the other hand, since Eu(a,R) is continuous in a, if Eu(a,R) < ε20 then there exists
a ball Br(a) ⊂ Ω such that for all x ∈ Br(a) we have

Eu(x,R) < ε20.

Therefore, Ω0 is an open set in Ω and moreover, similarly as (5.27),

Eu(x, ρ) ≤ τ−n−2µ (
ρ

R
)2µEu(x,R), ∀ x ∈ Br(a).

Hence for every x ∈ Br(a), we have∫
Bρ(x)

|u(y)− uBρ(x)|2 dy ≤ Cu · ρn+2µ,

where Cu = Cu(τ,R) <∞ is some constant. By the (local) Campanato theorem, this shows
that u ∈ C0,µ

loc (Br(a); RN ). Hence u ∈ C0,µ
loc (Ω0; RN ).

To complete the proof, we show |Ω \ Ω0| = 0. By Lebesgue’s differentiation theorem,
Eu(x,R) → 0 as R → 0+ for almost every x ∈ Ω and, for these x, we have x ∈ Ω0 and
hence |Ω \ Ω0| = 0; moreover, the singular set is given by

Ω \ Ω0 = {a ∈ Ω | lim inf
R→0+

Eu(a,R) > 0}.

The proof of Theoerm 5.9 is now complete.
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Remark. We would like to remark also that Theorem 5.9 holds even under the weaker
assumption that the coefficients Aαβij (x, u) be only continuous in Ω ×RN . More precisely
the following theorem is true; its proof is similar to the one for Theorem 5.9 given above.
(See also the proof for energy minimizers later.) �

Theorem 5.14. Assume A(x, u) is continuous on (x, u) ∈ Ω×RN . Let u ∈ W 1,2(Ω; RN )
be a weak solution of (5.17). Then for every M0 > 0, there exist positive constants ε0, R0

such that if for some a ∈ Ω and R < min{R0, dist(a; ∂Ω)} we have

|uBR(a)| < M0, Eu(a,R) < ε20

then u is of C0,µ in a neighborhood of a for all µ ∈ (0, 1). Therefore, in this case, u ∈
C0,µ
loc (Ω0; RN ), where

Ω0 = {a ∈ Ω | lim inf
R→0+

Eu(a,R) = 0 and sup
R
|uBR(a)| < +∞},

and thus again |Ω \ Ω0| = 0.

Applying this theorem to the system in variation (5.6) of the nonlinear system (5.1), we
have the following theorem.

Theorem 5.15. Let Aiα(ξ) be of C1 in ξ ∈ MN×n and satisfy the controllable growth
condition (5.2) and let u ∈W 1,2(Ω; RN ) be a weak solution of

DivA(Du(x)) = 0.

Then u ∈ C1,µ
loc (Ω0; RN ) for each µ ∈ (0, 1), where

Ω0 = {a ∈ Ω | lim inf
R→0+

EDu(a,R) = 0 and sup
R
|(Du)BR(a)| < +∞}

is an open set in Ω and |Ω \ Ω0| = 0. Furthermore, if Aiα is of C∞ then u ∈ C∞(Ω0; RN ).

5.5. Reverse Hölder inequality with increasing supports

Let us consider a weak solution u ∈W 1,2(Ω; RN ) of the linear system

Dα(Aαβij (x)Dβu
j) = 0,

where Aαβij ∈ L∞(Ω) satisfies the Legendre condition

Aαβij (x) ξiαξ
j
β ≥ ν |ξ|

2.

Then we have the Caccioppoli inequality∫
BR/2

|Du|2 dx ≤ c

R2

∫
BR

|u− uBR |
2 dx, ∀ BR ⊂ Ω

and using the Sobolev-Poincaré inequality∫
BR

|u− uBR |
2 dx ≤ Cn,p

(∫
BR

|Du|q dx
) 2
q

,

where 2 = q∗ = nq
n−q and thus q = 2n

n+2 < 2, it follows that

(5.28)

(∫
−
BR/2

|Du|2 dx

) 1
2

≤ c1

(∫
−
BR

|Du|q dx
) 1
q

.
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Except for the fact that the integration is on different increasing sets, the inequality
(5.28) can be seen as a reverse Hölder inequality. If the domains of integration were the
same, then the reverse Hölder inequality would imply a higher integrability of Du in Lp for
some p > 2; this is the well-known result of F. Gehring ’73.

The following local higher integrability result based on the reverse Hölder inequality
with increasing supports is due to Giaquinta and Modica ’79. The proof we will give is
mainly due to E. Stredulinsky ’80.

Theorem 5.16. Let q > 1 and f ∈ Lqloc(B), f ≥ 0. Suppose that

(∫
−
BR/2

f q dx

) 1
q

≤ b
∫
−
BR

f dx, ∀BR ⊂ B,

where b > 0 is a constant. Then there exists an ε = ε(n, b, q) > 0 such that f ∈ Lploc(B) for
all p ∈ (q, q + ε). Moreover, for all BR ⊂ B, we have

(∫
−
BR/2

fp dx

) 1
p

≤ C(n, b, q, p)
(∫
−
BR

f q dx

) 1
q

.

Before proving this theorem, we quickly give an application of this result to obtain a
higher integrability for energy minimizers.

Theorem 5.17. Assume that F : MN×n → R satisfies

m |ξ|p ≤ F (ξ) ≤M |ξ|p; 1 ≤ p <∞.

Let u ∈ W 1,p
loc (Ω; RN ) be a local spherical quasi-minimizer of I(v) =

∫
Ω F (Dv(x)) dx in

the sense that, for any ball BR(a) ⊂⊂ Ω,

∫
BR(a)

F (Du) ≤ C
∫
BR(a)

F (D(u+ φ)), ∀φ ∈W 1,p
0 (BR(a); RN ),

where C > 0 is a constant. Then u ∈W 1,q
loc (Ω; RN ) for some constant q > p.

Proof. Let BR = BR(a) ⊂⊂ Ω be fixed. For any R/2 ≤ s < r ≤ R, let ζ ∈ W 1,∞
0 (Ω) be a

cut-off function satisfying supp ζ ⊆ Br ≡ Br(a) and

0 ≤ ζ ≤ 1, ζ|Bs ≡ 1, |Dζ(x)| ≤ 1
r − s

.

Let A ≡ Br \Bs and

φ = −ζ(u− λ) ∈W 1,p
0 (Br; RN ),
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where λ ∈ RN is a constant determined later. We have

m

∫
Bs

|Du|p dx ≤ m

∫
Br

|Du|p dx ≤
∫
Br

F (Du) dx

≤ C

∫
Br

F (D(u+ φ)) dx

≤ C0

∫
Br

|D(u− ζ(u− λ))|p dx

= C0

∫
A
|D(u− ζ(u− λ))|p dx

= C0

∫
A
|(1− ζ)Du− (u− λ)⊗Dζ|p dx

≤ C0

∫
A
|Du|p dx+

C0

(r − s)p

∫
BR

|u− λ|p dx.

Now filling the hole (Widman’s technique), i.e., adding C0

∫
Bs
|Du|p dx to both sides, we

have

(5.29)
∫
Bs

|Du|p dx ≤ θ
∫
Br

|Du|p dx+
C1

(r − s)p

∫
BR

|u− λ|p dx,

where θ = C0
C0+m < 1. We need a lemma.

Lemma 5.18. Let f(t) be a nonnegative bounded function on [τ0, τ1], where τ0 ≥ 0. Suppose
that for τ0 ≤ s < r ≤ τ1 we have

f(s) ≤ θf(r) +
(
A(r − s)−α +B

)
,

where A, B, α, θ are nonnegative constants and 0 < θ < 1. Then for all τ0 ≤ ρ < R ≤ τ1

we have

(5.30) f(ρ) ≤ C
(
A(R− ρ)−α +B

)
,

where C is a constant depending on α and θ.

Proof. For fixed τ0 ≤ ρ < R ≤ τ1 let us define a sequence {ri} by

r0 = ρ, ri+1 − ri = (1− τ) τ i (R− ρ),

where 0 < τ < 1 is to be selected. By iteration, we have

f(r0) ≤ θk f(rk) +
[

A

(1− τ)α
(R− ρ)−α +B

] k−1∑
i=0

θi τ−iα.

If we choose τ in such a way that τ−αθ < 1 and pass to the limit for k → ∞ in the above
inequality, we get (5.30) with C = (1− τ)−α(1− θτ−α)−1. �

From (5.29) and the lemma above (with B = 0, ρ = R/2) we have∫
BR/2

|Du|p dx ≤ C2

Rp

∫
BR

|u− λ|p dx.

Now we choose λ = uBR =
∫
−BRu and use the Sobolev-Poincaré inequality∫

BR

|u− uBR |
p dx ≤ σn

(∫
BR

|Du|
np
n+p dx

)n+p
p
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to obtain ∫
−
BR/2

|Du|p dx ≤ C3

(∫
−
BR

|Du|
np
n+p dx

)n+p
p

.

Let f = |Du|
np
n+p and q = p+n

p > 1. Then we have(∫
−
BR/2

f q dx

) 1
q

≤ b
∫
−
BR

f dx,

and therefore by the theorem above we have f ∈ Laloc(Ω) for some a > q. This implies
|Du| ∈ Ldloc(Ω) for some d > p. The theorem is proved. �

Remarks. 1) If p = n we have u ∈ W 1,q
loc (Ω; RN ) for some q > n and hence the Sobolev

embedding theorem implies that u ∈ C0,α
loc (Ω; RN ) for some 0 < α < 1. This is first proved

by Morrey in the case when n = 2.
2) Any weak solution u ∈W 1,2

loc (Ω; RN ) of a system

Div(A(x, u,Du)Du) = 0,

with A(x, u, ξ) satisfying

ν|ξ|2 ≤ A(x, u, ξ)ξ · ξ, |A(x, u, ξ)ξ| ≤ L |ξ|,

is a local spherical quasi-minimizer of the Dirichlet integral I(v) =
∫

Ω |Dv|
2 dx. Indeed, if∫

Ω
A(x, u,Du)Du ·Dφdx = 0, ∀ φ ∈W 1,2

0 (Ω; RN ),

taking v = u+ φ with suppφ ⊂ BR(a) ⊂⊂ Ω, we get

ν

∫
BR(a)

|Du|2 dx ≤
∫
BR(a)

A(x, u,Du)Du ·Dudx

=
∫
BR(a)

A(x, u,Du)Du ·Dv dx

≤ L

(∫
BR(a)

|Du|2dx

)1/2(∫
BR(a)

|Dv|2dx

)1/2

and hence ∫
BR(a)

|Du|2 dx ≤ (
L

ν
)2

∫
BR(a)

|Dv|2 dx.

Therefore, by the theorem above, u ∈W 1,p
loc (Ω; RN ) for some p > 2. �

Proof of Theorem 5.16. The main idea of the proof is to use the method of cube decom-
positions of Calderón-Zygmund. First of all, we change balls to cubes.

Let BR ⊂⊂ B be given. We let Q0, Q1, Q2 be the cubes with sides parallel to the
coordinate axese and with the same center as BR such that

BR/2 ⊂ Q0 ⊂⊂ Q1 ⊂⊂ Q2 ⊂ BR.

For any function g ∈ L1
loc(R

n) and r > 0 we define a local maximal function

Mr(g)(x) = sup
0<ρ<r

∫
−
Bρ(x)

|g(y)| dy.
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Select r > 0 sufficiently small so that B2r(x) ⊂ Q2 for all x ∈ Q̄1. Note that we can choose
r = cnR and |Q0|/|Q2| = dn, |Q0|/|Q2| = en, constants depending only on the dimension
n.

Let f̃ = f · χQ2 . By assumption, we have

(5.31) Mr(f̃ q)(x) ≤ bM q
∞(f̃)(x), ∀x ∈ Q1.

We want to show that

(5.32)
(∫

Q0

f̃p dx

) 1
p

≤ C
(∫

Q2

f̃ q dx

) 1
q

for p ∈ (q, q + ε), where ε = ε(n, b, q) > 0 and C = C(n, b, q, p) > 0 are some constants.
In the following, we assume |Q0| = 1. In this case, the number r = rn above depends

only on the dimension n. We follow E. Stredulinsky ’80. Let

R(t) =
1
2

+

(
c0 k

q/n

kq/n − 1

)
t−q/n,

where k > 1 is a constant to be determined later and c0 > 0 is a constant making R(1/k) =
(sideQ1)/2. Then R(t) is decreasing and R(t)→ 1/2 as t→∞ and

R(t)−R(tk) = c0 t
−q/n.

Let Qt be the cube concentric to Q0 with side-length equal to 2R(t). So we have

Q0 ⊂ Qs ⊂ Qt ⊂ Q1, ∀ s > t > 1/k

and Q1/k = Q1 and Qt → Q0 as t→∞. Let

E(t) = {x ∈ Q2 | f̃(x) > t}, Et = E(t) ∩Qt, E0
t = E(t) ∩Q0.

Finally let m = mn be the least integer such that diamQ1/2m ≤ r = rn and νn = 2nm;
define a constant δ > 0 by

δ = min
{
ν−1/q
n ,

(
cn0 |B1|

)1/q
}
.

The remainder of the proof will be divided into several steps.
In what follows, without loss of generality, we assume ‖f̃‖Lq(Q2) = δ; otherwise, replace

f̃ by δ‖f̃‖−1
Lq(Q2)

f̃ .

Step 1 (Cube decomposition). Fix s ≥ 1. We have∫
−
Qs

f̃ q ≤
∫
Q2

f̃ q = δq ≤ ν−1
n ≤ ν−1

n sq.

Subdivide the cube Qs dyadically m = mn times so that the diameter of each subcubes =
diamQs/2m ≤ diamQ1/2m ≤ r. For each such subcube Q∫

−
Q
f̃ q ≤ |Qs|

|Q|

∫
−
Qs

f̃ q ≤ 2nm (ν−1
n sq) = sq.

Now subdivide further each Q as in the Calderón-Zygmund decomposition to get {Pi},
disjoint subcubes of Qs, such that

f̃ q(x) ≤ sq, a.e. x ∈ Qs \ ∪iPi,

sq <

∫
−
Pi

f̃ q ≤ 2n sq.
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Let G = ∪iPi and we have

Es ⊆ G,
∫
G
f̃ q ≤ 2n sq |G|.

The initial subdivision guarantees that diamPi ≤ r. Given x ∈ Pi, consider ball Bρ(x) with
ρ = diamPi ≤ r; then

sq <

∫
−
Pi

f̃ q ≤ |Bρ(x)|
|Pi|

∫
−
Bρ(x)

f̃ q ≤ anMr(f̃ q)(x).

Therefore, by (5.31)

(5.33) sq < anbM
q
∞(f̃)(x), ∀x ∈ G.

Step 2 (Basic estimates). We now select k > 1 such that kq = 3qanb. From (5.33) with
s = kt we have

3t < M∞(f̃)(x), ∀x ∈ G.

Hence, given x ∈ G, there exists a ball Bρ(x) such that

(5.34) 3t <
∫
−
Bρ(x)

f̃ .

We claim that Bρ(x) ⊆ Qt. It is sufficient to show ρ ≤ c0 t
−q/n; indeed, if we denote the

center of Qt by q̄ = (q̄α) then for any y ∈ Bρ(x), since x ∈ Qs, we have

|yα − q̄α| ≤ |y − x|+ |xα − q̄α| ≤ ρ+R(s)

≤ c0 t
−q/n +R(kt) = R(t)

and hence Bρ(x) ⊆ Qt. The definition of set E(t) gives∫
Bρ(x)

f̃ ≤
∫
Bρ(x)∩E(t)

f̃ + t|Bρ(x)|.

From this and (5.34) we get

t |Bρ(x)| ≤
∫
Bρ(x)∩E(t)

f̃ ≤ t1−q
∫
E(t)

f̃ q

and, since
∫
f̃ q = δq ≤ cn0 |B1| by the definition of δ, it follows that

|Bρ(x)| ≤ t−q δq ≤ |B1| cn0 t−q,

and hence ρ ≤ c0 t
−q/n; so Bρ(x) ⊆ Qt. Using this, we have

|Bρ(x)| ≤ 1
t

∫
Bρ(x)∩Et

f̃ .

Since these balls {Bρ(x)} cover the set G, using a basic covering lemma (Stein’s book),
we obtain a disjoint collection of balls {Bi = Bρi(xi)} such that |G| ≤ 5n

∑
i |Bi| and
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consequently ∫
Es

f̃ q ≤
∫
G
f̃ q ≤ 2n sq |G|

≤ 2n sq 5n
∑
i

|Bi|

≤ 10n sq t−1

∫
Et

f̃

= 10n k sq−1

∫
Es/k

f̃ .

Step 3 (Reduction to Stieltjes integral form). Let h(s) =
∫
Es
f̃ then h is nonincreasing, right

continuous and h(t)→ 0 as t→∞. Since

tq−1 h(t) ≤
∫
Et

f̃ q → 0 as t→∞,

we can integrate by parts to get

−
∫ ∞
s

tq−1 dh(t) = (q − 1)
∫ ∞
s

tq−2 h(t) dt+ sq−1 h(s)

= (q − 1)
∫ ∞
s

tq−2

∫
Et

f̃(y) dy dt+ sq−1 h(s)

≤ (q − 1)
∫
Es

f̃(y)
∫ f̃

s
tq−2 dt dy + sq−1 h(s)

=
∫
Es

f̃ q(y) dy ≤ k 10n sq−1

∫
Es/k

f̃(y) dy;

hence, with a = k 10n depending only on n, b, q, we have

(5.35) −
∫ ∞
s

tq−1 dh(t) ≤ a sq−1 h(s/k), ∀ s ≥ 1.

Note that we also have for any p > 1

(5.36) −
∫ ∞
s

tp−1 dh(t) ≥
∫
E0
s

f̃p(y) dy, ∀ s ≥ 1.

We need a lemma mainly due to F. Gehring ’73.

Lemma 5.19 (Gehring ’73). Suppose (5.35) holds. Let p ≥ q satisfy 1 > akp−1 (p−q)/(p−
1). Then

−
∫ ∞

1
tp−1 dh(t) ≤ c1

(
−
∫ ∞

1
tq−1 dh(t)

)
+ c2 h(1/k).
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Proof. Let Ijp = −
∫ j

1 t
p−1 dh(t). Integration by parts yields Ijp = Ijq + (p− q) J, where

J =
∫ j

1
tp−q−1

(
−
∫ j

t
sq−1 dh(s)

)
dt

≤ a

∫ j

1
tp−2 h(t/k) dt

= a kp−1

∫ j/k

1/k
tp−2 h(t) dt

=
a kp−1

p− 1

[( j
k

)p−1
h(
j

k
)− (

1
k

)p−1h(
1
k

)−
∫ j/k

1/k
tp−1 dh(t)

]

≤ a kp−1

p− 1

[
−
∫ j

1/k
tp−1 dh(t)− jp−q

kp−1

∫ ∞
j

tq−1 dh(t)

]
.

Therefore,

Ijp ≤ Ijq +
p− q
p− 1

a kp−1

(
−
∫ j

1/k
tp−1 dh(t)

)

+
[(

p− q
p− 1

)
a− 1

]
jp−q

(
−
∫ ∞
j

tq−1 dh(t)
)

−
∫ ∞
j

sq−1 dh(s).

Note that the third term on the righthand side of this inequality is ≤ 0 and let j →∞ we
arrive at [

1− p− q
p− 1

a kp−1

]
I∞p ≤ I∞q +

p− q
p− 1

a kp−1

(
−
∫ 1

1/k
tp−1 dh(t)

)
and the lemma is proved since −

∫ 1
1/k t

p−1 dh(t) ≤ h(1/k). �

Step 4 (Completion of the proof). We use (5.36) with s = 1 and the lemma above to get,
for p ∈ (q, q + ε) with some ε = ε(n, b, q) > 0,∫

E0
1

f̃p ≤ c1

∫
E1

f̃ q + c2 h(1/k).

Since f̃p ≤ f̃ q when f̃ ≤ 1 it follows that∫
Q0

f̃p ≤ (c1 + 1)
∫
Q2

f̃ q + c2 k
q−1

∫
Q2

f̃ q

≤ C δq = C(n, b, q, p) δp.

After renormalization we have(∫
Q0

f̃p
)1/p

≤ C(n, b, q, p)
(∫

Q2

f̃ q
)1/q

.

A dilation argument can also remove the assumption |Q0| = 1.
The proof of Theorem 5.16 is now complete.
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5.6. Singular set of solutions of quasilinear systems

From Theorem 5.14, we see that the singular set Su ⊆ Σ1 ∪ Σ2, where

Σ1 =

{
a ∈ Ω

∣∣∣ lim inf
R→0+

R−n
∫
BR(a)

|u− uBR(a)|2 dx > 0

}
,

Σ2 = {a ∈ Ω | sup
R>0
|uBR(a)| =∞}.

By Caccioppoli’s inequality (Lemma 5.10) and Poincaré’s inequality, we know

Σ1 =

{
a ∈ Ω

∣∣∣ lim inf
R→0+

R2−n
∫
BR(a)

|Du|2 dx > 0

}
.

Note that by Hölder’s inequality for any p > 2

R2−n
∫
BR(a)

|Du|2 dx ≤ C

(
Rp−n

∫
BR(a)

|Du|p dx

) 2
p

.

Therefore

(5.37) Σ1 ∪ Σ2 ⊆ Ep ∪ G,
where

Ep =

{
a ∈ Ω

∣∣ lim inf
R→0+

Rp−n
∫
BR(a)

|Du|p dx > 0

}
,

G = {a ∈ Ω | sup
R>0
|uBR(a)| =∞} ∪ {a ∈ Ω | 6 ∃ lim

R→0+
uBR(a)}.

By the higher integrability theorem above, there exists a number p > 2 such that
u ∈W 1,p

loc (Ω; RN ); therefore, we need to estimate the set Ep and G for such functions u.
We need to recall the definition and some properties of Hausdorff measures.

Let X be a metric space and F a family of subsets of X containing the empty set ∅.
Let h : F → [0, ∞] be a function such that h(∅) = 0. For any ε > 0 and subset E of X we
define

µε(E) = inf

∑
j∈Z+

h(Fj)
∣∣∣E ⊆ ⋃

j∈Z+

Fj , Fj ∈ F , diamFj < ε


and, since µε ≥ µδ if 0 < ε < δ,

µ(E) = lim
ε→0+

µε(E) = sup
ε>0

µε(E).

In this way, µ(E) is called the Carathéodory construction for F and h. Note that the set
function µ(E) is an outer measure with respect to which all Borel sets are measurable.

To define the k-dimensional Hausdorff measure in Rn we let X = Rn, F the family of
all open sets in Rn and for k = 0, 1, · · ·

h(F ) = hk(F ) = ωk 2−k(diamF )k,

where ωk is the Lebesgue measure of unit ball of Rk. The Carathéodory construction µ
for this choice of F and hk is called the k-dimensional Hausdorff measure in Rn and
denoted by Hk.

Note that H0(E) = number of points of E and that if Hk(E) < ∞ then Hk+ε(E) = 0
for all ε > 0.
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We define the Hausdorff dimension of E by

dimHE = inf{k > 0 |Hk(E) = 0}.

Remark. If we choose the family F to be the set of all open balls, using the same hk,
we obtain the so-called k-dimensional spherical Hausdorff measure Sk. But, in general,
Hk 6= Sk. However, we can easily verify that

Hk(E) ≤ Sk(E) ≤ 2kHk(E).

Therefore, the family of subsets of Hk-measure zero coincides with that of Sk-measure zero;
hence, in particular, the Hausdorff dimension is the same from both constructions. �

Theorem 5.20. Let Ω be an open set in Rn. Let v ∈ L1
loc(Ω), 0 ≤ α < n and

E =

{
a ∈ Ω

∣∣∣ lim sup
R→0+

R−α
∫
BR(a)

|v| dx > 0

}
.

Then Hα(E) = 0 and hence dimHE ≤ α.

Proof. It is sufficient to show that for each compact set K ⊂ Ω

Hα(E ∩K) = 0.

Let F = E ∩K and

F k =

{
a ∈ F

∣∣∣ lim sup
R→0+

R−α
∫
BR(a)

|v| dx > 1
k

}
.

Then F = ∪∞k=1F
k. It is sufficient to prove

Hα(F k) = 0, ∀ k = 1, 2, · · · .
Let K ⊂ Q ⊂ Q̄ ⊂ Ω and let d = dist(K; ∂Ω). Then for any fixed ε ∈ (0, d) there exists for
each a ∈ F k a number ra ∈ (0, ε) such that

r−αa

∫
Bra (a)

|v| dx > 1
2k
.

From Besicovitch’s theorem (Stein’s book) there exists a countable family of disjoint balls
{Bi} with

Bi = Brai (ai); ai ∈ F k

such that

F k ⊆
∞⋃
i=1

B5rai
(ai).

Letting ri = rai , we get ∑
i

rαi ≤ 2k
∑
i

∫
Bri (ai)

|v| dx

≤ 2k
∫
∪iBri (ai)

|v| dx.

Now since α < n we have∣∣∣⋃
i

Bri(ai)
∣∣∣ = ωn

∑
i

rni ≤ ωn ε
n−α

∑
i

rαi

≤ 2kωn εn−α
∫
Q
|v| dx,



5.6. Singular set of solutions of quasilinear systems 87

which goes to zero as ε→ 0+. This implies

lim
ε→0+

∑
i

rαi = 0.

Note that by definition, since F k ⊆ ∪iB5ri(ai) and diam(B5ri(ai)) < δ = 10ε, it follows that

Hαδ (F k) ≤ C
∑
i

rαi

and thus we have
Hα(F k) = lim

δ→0+
Hαδ (F k) = 0,

as desired. The proof is complete. �

From this theorem, for the set Ep in (5.37), we have Hn−p(Ep) = 0. For the set G in
(5.37), we now prove

(5.38) Hn−p+ε(G) = 0, ∀ ε > 0.

(Note that, in general, it is not true that Hn−p(G) = 0.) By Theorem 5.20, this will be
proved if we show that

G ⊆ E ≡

{
a ∈ Ω

∣∣∣ lim sup
R→0+

R−(n−p+ε)
∫
BR(a)

|Du|p dx > 0

}
, ∀ ε > 0.

To see this, we assume a /∈ E for some ε > 0. Since the function R 7→ uBR(a) is absolutely
continuous in the interval (0, dist(a; ∂Ω)) and∣∣∣∣ ddRuBR(a)

∣∣∣∣ ≤
(∫
−
BR(a)

|Du|p dx

)1/p

,

using a /∈ E, we have

sup
0<R<R0

{
R−(n−p+ε)

∫
BR(a)

|Du|p dx

}1/p

= L <∞,

where R0 = min{1, 1
2 dist(a; ∂Ω)}. This implies∣∣∣∣ ddRuBR(a)

∣∣∣∣ ≤ LR−1+ ε
p

and hence, for 0 < s < r < R0

|uBr(a) − uBs(a)| ≤
∫ r

s

∣∣∣∣ ddRuBR(a)

∣∣∣∣ dR ≤ Lp

ε

∣∣∣r εp − s εp ∣∣∣ ,
which implies that a /∈ G, by the definition of set G; this shows G ⊆ E, as claimed.

Now (5.38) together with (5.37) and Hn−p(Ep) = 0 shows that

Hn−p+ε(Su) = 0, ∀ε > 0.

Obviously, p−ε > 2 for all sufficiently small ε > 0; thus we have proved the following result,
modifying Theorem 5.14.

Theorem 5.21. Assume A(x, u) is continuous on (x, u) ∈ Ω×RN . Let u ∈W 1,2(Ω; RN ) be
a weak solution of (5.17). Then there exists an open set Ω0 ⊂ Ω such that u ∈ C0,µ

loc (Ω0; RN )
for all 0 < µ < 1 and Hn−p(Ω \ Ω0) = 0 for some p > 2.
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Remarks. 1) If n = 2 then we have H0(Ω \ Ω0) = 0 and thus Ω0 = Ω; so, we have the
full regularity for weak solutions in two dimension. This implies that every weak solution
to a smooth 2× 2 strongly (Legendre) elliptic system is smooth; compare with Müller and
Šverák’s example for smooth 2× 2 strongly Legendre-Hadamard elliptic systems.

2) It has been conjectured that

dimH Su = n− 3; Hn−3+ε(Su) = 0, ∀ ε > 0.

This conjecture is still open in general. �

5.7. Quasiconvexity and partial regularity

In this section, we prove a result of Evans concerning the partial regularity of energy mini-
mizers in the calculus of variations.

We assume F : MN×n → R is a C2 function satisfying

(5.39)


0 ≤ F (ξ) ≤ |ξ|2 + 1,
|DF (ξ)| ≤ L (|ξ|+ 1),
|D2F (ξ)| ≤ L.

Note that we do not assume the Legendre ellipticity condition on F (ξ).
Recall that F is uniformly strict quasiconvex if for any ball B ⊂ Rn,

(5.40)
∫
−
B
F (ξ +Dφ(x)) dx ≥ F (ξ) + γ

∫
−
B
|Dφ|2 dx

for all ξ ∈MN×n and φ ∈W 1,2
0 (B; RN ), where γ > 0 is a constant.

Theorem 5.22 (Evans ’86). Assume F (ξ) is uniformly strict quasiconvex. Suppose u ∈
W 1,2
loc (Ω; RN ) is a local minimizer of the functional

I(v) =
∫

Ω
F (Dv(x)) dx

in the sense that

(5.41) I(u) ≤ I(u+ φ); ∀φ ∈W 1,2
0 (Ω′; RN ), Ω′ ⊂⊂ Ω.

Then there exists an open set Ω0 ⊂ Ω such that |Ω \Ω0| = 0 and u ∈ C1,µ
loc (Ω0; RN ) for each

µ ∈ (0, 1).

We prove several lemmas before proving this theorem.

Lemma 5.23. Let F (ξ) be uniformly strict quasiconvex. Then F satisfies the Legendre-
Hadamard condition; that is,

F
ξiαξ

j
β
(ξ) pαpβ qiqj ≥ 2γ |p|2 |q|2.

Proof. For any ξ ∈MN×n and φ ∈W 1,2
0 (B; RN ), let us consider function

f(t) =
∫
B
F (ξ + tDφ(x)) dx− t2γ

∫
B
|Dφ(x)|2 dx.

Then we have f(t) ≥ f(0) for all t ∈ R and f is of C2 and hence f ′′(0) ≥ 0; this implies∫
B
F
ξiαξ

j
β
(ξ)Dαφ

i(x)Dβφ
j(x) dx ≥ 2γ

∫
B
|Dφ(x)|2 dx,



5.7. Quasiconvexity and partial regularity 89

which, being valid for all φ ∈W 1,2
0 (B; RN ), implies that the constants Aαβij = F

ξiαξ
j
β
(ξ) define

a coercive bilinear form on H = W 1,2
0 (B; RN ) and thus, as before using the “sawtooth” like

test function φ we can prove

F
ξiαξ

j
β
(ξ) pαpβ qiqj ≥ 2γ |p|2 |q|2;

that is, the Legendre-Hadamard condition must hold. This proves the lemma. �

In the following we always assume F satisfies the assumptions stated in the theorem
and u is a local minimizer of I(v) defined before.

Lemma 5.24. There exists a constant C1 = C1(n,L, γ) such that for all A ∈ MN×n and
λ ∈ RN we have ∫

−
BR/2(a)

|Du−A|2 dx ≤ C1

R2

∫
−
BR(a)

|u− λ−Ax|2 dx

for all balls BR(a) ⊂⊂ Ω.

Proof. We denote Bρ = Bρ(a). Let BR ⊂⊂ Ω be fixed. For any R/2 ≤ s < r ≤ R, let
ζ ∈W 1,∞

0 (Ω) be a cut-off function used before which satisfies supp ζ ⊆ Br ≡ Br(a) and

0 ≤ ζ ≤ 1, ζ|Bs ≡ 1, |Dζ(x)| ≤ 1
r − s

.

Define
φ(x) = ζ(u− λ−Ax), ψ(x) = (1− ζ) (u− λ−Ax);

then φ ∈ W 1,2
0 (Br; RN ), ψ ∈ W 1,2(Br; RN ), and Dφ + Dψ = Du − A. We have, by the

uniform strict quasiconvexity,∫
Br

[F (A) + γ |Dφ|2] dx ≤
∫
Br

F (A+Dφ) dx

=
∫
Br

F (Du−Dψ)) dx

≤
∫
Br

[
F (Du)−DF (Du)Dψ + C |Dψ|2

]
dx.

Since u is a local minimizer, we have∫
Br

F (Du) dx ≤
∫
Br

F (Du−Dφ) dx =
∫
Br

F (A+Dψ) dx

≤
∫
Br

[
F (A) +DF (A)Dψ + C |Dψ|2

]
dx.

Combining the previous two inequalities, canceling the term
∫
Br
F (A) dx, we have

γ

∫
Br

|Dφ|2 dx ≤
∫
Br

[(
DF (A)−DF (Du)

)
Dψ + C|Dψ|2

]
dx.

From the definition of φ and the quardratic growth of F we have

(5.42)
∫
Bs

|Du−A|2 dx ≤ C
∫
Br

[
|Du−A| |Dψ|+ |Dψ|2

]
dx.

Note that ψ = 0 on Bs, and

|Dψ| ≤ |Du−A|+ 1
r − s

|u− λ−Ax|;
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hence from (5.42) we have∫
Bs

|Du−A|2 dx ≤ C
∫
Br\Bs

|Du−A|2 dx+
C

(r − s)2

∫
BR

|u− λ−Ax|2 dx

and by filling the hole again we have∫
Bs

|Du−A|2 dx ≤ θ
∫
Br

|Du−A|2 dx+
C

(r − s)2

∫
BR

|u− λ−Ax|2 dx,

where θ = C
C+1 < 1. This inequality is valid for all R/2 ≤ s < r ≤ R. We thus use Lemma

5.18 to derive ∫
BR/2

|Du−A|2 dx ≤ C1

R2

∫
BR

|u− λ−Ax|2 dx.

The lemma is proved. �

Define (compare with (5.19) before)

Φu(a, r) =
∫
−
Br(a)

|Du− (Du)a,r|2 dx, (Du)a,r =
∫
−
Br(a)

Dudx.

Theorem 5.25 (Main Lemma). For each M > 0 there exists a constant C2(M) with the
property that for each 0 < τ < 1

4 there exists ε(M, τ) > 0 such that for every ball Br(a) ⊂⊂ Ω
the conditions

|(Du)a,r| ≤M, |(Du)a,τr| ≤M
and Φu(a, r) ≤ ε(M, τ) imply

(5.43) Φu(a, τr) ≤ C2(M) τ2 Φu(a, r).

Proof. As in Theorem 5.13, we prove by a contradiction method. Suppose there exists
M0 > 0 we cannot find C2(M0) with the required property. Then, for some τ ∈ (0, 1

4), we
would find balls Brm(am) ⊂⊂ Ω for each m = 1, 2, ... such that

|(Du)am,rm | ≤M0, |(Du)am,τrm | ≤M0

and
Φu(am, rm) ≡ λ2

m → 0 as m→∞,
but

(5.44) Φu(am, τrm) > mτ2 λ2
m ∀m = 1, 2, · · · .

For simplicity, we denote

bm = uam,rm , cm = uam,2τrm , em = uam,τrm ;

Bm = (Du)am,rm , Em = (Du)am,τrm .
By Lemma 5.24, we have

(5.45)
∫
−
Bτrm (am)

|Du− Em|2 dx ≤ C1

(2τ rm)2

∫
−
B2τrm (am)

|u− cm − Em(x− am)|2 dx.

We now use the blowing up technique. Let

vm(z) =
u(am + rm z)− bm − rmBm z

λm rm
, z ∈ B1(0) ≡ B1.

Then

Dvm(z) =
Du(am + rm z)−Bm

λm
, (vm)B1 = 0, (Dvm)B1 = 0.
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Let
fm = (vm)B2τ , gm = (vm)Bτ , Gm = (Dvm)Bτ .

Now we have ∫
−
B1

|Dvm|2 dz = 1

and hence, since (vm)B1 = 0, by Sobolev-Poincaré’s inequality∫
−
B1

|vm|2 dz ≤ cn.

By (5.45) we also have

(5.46)
∫
−
Bτ

|Dvm −Gm|2 dz ≤
C1

τ2

∫
−
B2τ

|vm − fm −Gmz|2 dz.

Since |Bm| ≤M0 we can have a subsequence relabeled the same such that

(5.47)


Bm → B in MN×n,

vm → v strongly in L2(B1; RN ),
Dvm ⇀ Dv weakly in L2(B1; MN×n).

Lemma 5.26. v = v(z) is a weak solution in B1 of the linear system

Dzα(F
ξiαξ

j
β
(B)Dzβv

j(z)) = 0, i = 1, 2, · · · , N.

Proof. It is not difficult to see that u = u(x) is a weak solution in Ω of the Euler-Lagrange
equations

∂

∂xα

(
∂F

∂ξiα
(Du(x))

)
= 0, i = 1, 2, · · · , N.

Let φ ∈ C∞0 (B1; RN ). We use ψ(x) = φ(x−amrm
) as a test function in the system for u and

then change variables to obtain

0 =
∫
B1

[
Fξiα(λmDvm +Bm)− Fξiα(Bm)

]
Dzαφ

i(z) dz

=
∫
B1

[∫ 1

0
F
ξiαξ

j
β
(sλmDvm +Bm) ds

]
Dzβv

j
mDzαφ

i dz.

By (5.47) we can also assume λmDvm(z)→ 0 for almost every z ∈ B1 as m→∞. Therefore,
letting m→∞, by Lebesgue’s dominated convergence theorem we have∫

B1

F
ξiαξ

j
β
(B)Dzβv

j
mDzαφ

i dz = 0

for all φ ∈ C∞0 (B1; RN ) and the lemma is proved. �

Using this lemma, since the coefficients F
ξiαξ

j
β
(B) of this system satisfy the hypothesis

(H2) considered before, we have

sup
B1/2

|D2v|2 ≤ C
∫
−
B1

|Dv|2 dz ≤ C.

Using a Poincaré type inequality (see Gilbarg-Trudinger, P.164)

‖u− uS‖Lp(D) ≤ cn |S|
1
n
−1 (diamD)n ‖Du‖Lp(D)
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for any convex domain D, subset S ⊂ D and u ∈W 1,p(D), we obtain

(5.48)
∫
−
B2τ

|Dv − (Dv)0,τ |2 dz ≤ C τ2.

Therefore

lim
m→∞

∫
−
B2τ

|vm − fm −Gm z|2 dz =
∫
−
B2τ

|v − (v)0,2τ − (Dv)0,τ z|2 dz

(by Poincaré type inequality) ≤ C τ2

∫
−
B2τ

|Dv − (Dv)0,τ |2 dz

(by (5.48)) ≤ C τ4.

From this and (5.46), we have

lim sup
m→∞

∫
−
Bτ

|Dvm −Gm|2 dz ≤ C3 τ
2.

However if we scale (5.44) we would get∫
−
Bτ

|Dvm −Gm|2 dz > mτ2.

This contradicts with the previous estimate since C3 > 0 is independent of m. The proof is
complete. �

Lemma 5.27. Let M > 0 and τ satisfy

(5.49) 0 < τ < min{1/4, (C2(2M))−1/2},

where C2(2M) is the constant from the main lemma above, with 2M replacing M. Then
there exists a number η(M, τ) > 0 such that, for every ball Br(a) ⊂⊂ Ω, the validity of three
inequalities

|(Du)a,r| ≤M, |(Du)a,τr| ≤M, Φu(a, r) ≤ η(M, τ)

implies

(5.50) Φu(a, τ l r) ≤ [C2(2M) τ2]l Φu(a, r), ∀ l = 1, 2, · · · .

Proof. For M, τ satisfying the given condition, define

(5.51) η(M, τ) = min
{
ε(2M, τ),

τ2nM2

4

(
1−

√
C2(2M) τ

)2
}
,

where ε(2M, τ) is the constant from Main Lemma (Theorem 5.25), with 2M replacing M.
We prove (5.50) by induction on l. The case l = 1 is immediate from the main lemma since
Φu(a, r) ≤ η(M, τ) ≤ ε(2M, τ). Now assume (5.50) holds for all l = 1, 2, · · · , k. We claim

|(Du)a,τkr| ≤ 3M/2,(5.52)

|(Du)a,τk+1r| ≤ 2M,(5.53)

Φu(a, τkr) ≤ ε(2M, τ).(5.54)

We prove these relations below. Once these relations are proved, the Main Lemma (with
2M replacing M and τkr replacing r) and the induction assumption will yield

Φu(a, τk+1 r) ≤ C2(2M) τ2 Φu(a, τk r)

≤ [C2(2M) τ2]k+1 Φu(a, r),
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which proves (5.50) for l = k + 1 and hence it holds for all l = 1, 2, · · · ; the lemma will be
proved. Therefore, we need only to prove (5.52)-(5.54) under the assumption that (5.50)
holds for l = 1, 2, · · · , k.

Proof of (5.52). For all l = 0, 1, ... we have

|(Du)a,τ l+1r − (Du)a,τ lr| ≤
∫
−
B(a,τ l+1r)

|Du− (Du)a,τ lr| dx

≤ 1
τn

(∫
−
B(a,τ lr)

|Du− (Du)a,τ lr|2 dx

) 1
2

≤ 1
τn

Φu(a, τ lr)
1
2 .

Consequently,

|(Du)a,τkr| ≤ |(Du)a,r|+
k−1∑
l=1

|(Du)a,τ l+1r − (Du)a,τ lr|

≤ M +
1
τn

k−1∑
l=1

Φu(a, τ lr)1/2

≤ M +
1
τn

k−1∑
l=1

[(C2(2M) τ2 )l Φu(a, r)]1/2

≤ M +
1
τn
η(M, τ)1/2 (1−

√
C2(2M) τ)−1

≤ 3M/2.

Proof of (5.53). By the estimates above we have

|(Du)a,τk+1r − (Du)a,τkr| ≤
1
τn

Φu(a, τkr)
1
2

≤ 1
τn

[C2(2M) τ2]k/2 Φu(a, r)1/2

≤ η(M, τ)1/2

τn

≤ M/2,

and hence

|(Du)a,τk+1r| ≤ |(Du)a,τk+1r − (Du)a,τkr|+ |(Du)a,τkr| ≤ 2M.

Proof of (5.54). We easily have

Φu(a, τkr) ≤ (C2(2M) τ2)k Φu(a, r)

≤ Φu(a, r) ≤ η(M, τ)

≤ ε(2M, τ).

Therefore, (5.52)-(5.54) and hence the lemma are proved. �
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Proof of Theorem 5.22. Set

(5.55) Ω0 =
{
a ∈ Ω

∣∣ ∃ lim
r→0+

|(Du)a,r| <∞, lim
r→0+

Φu(a, r) = 0
}
.

Since u ∈ W 1,2
loc (Ω; RN ), we easily see |Ω \ Ω0| = 0. We shall prove Ω0 is open and that

u ∈ C1,µ(Ω0; RN ) for each µ ∈ (0, 1). Indeed, for each a ∈ Ω0, there exists a number
M = M(a) such that

|(Du)a,s| ≤M, ∀ 0 < s < dist(a; ∂Ω).

For each µ ∈ (0, 1) we select τ , 0 < τ < min{1/4, C2(2M)−1/2}, so that

C2(2M) τ2−2µ ≤ 1.

Next, from the definition of Ω0, we choose r, 0 < r < 1
2 dist(a; ∂Ω), such that

Φu(a, r) < η(M, τ).

Since the mappings
a 7→ Φu(a, r), (Du)a,r, (Du)a,τr

are continuous, we have a ball BR(a) ⊂ Br(a) ⊂⊂ Ω such that

Φu(x, r) < η(M, τ), |(Du)x,r| < M, |(Du)x,τr| < M

for all x ∈ BR(a). Consequently, Lemma 5.27 implies

Φu(x, τ lr) ≤
(
C2(2M) τ2

)l Φu(x, r), ∀ l = 1, 2, ...

and hence in view of the choice of τ we have

Φu(x, τ lr) ≤ τ2µ l Φu(x, r) ≤ (τ l r)2µ r−2µ η(M, τ)

for all l = 1, 2, · · · and x ∈ BR(a). This implies∫
Bρ(x)

|Du− (Du)x,ρ|2 dy ≤ C(M, τ, r) ρn+2µ

for all x ∈ BR(a) and 0 < ρ < dist(x;BR(a)). Therefore by the local Campanato estimate
we have

Du ∈ C0,µ(BR/2(a); MN×n).

This in turn implies BR/2(a) ⊂ Ω0 by the definition of Ω0 and so Ω0 is an open set and
u ∈ C1,µ

loc (Ω0; RN ) for all 0 < µ < 1. Theorem 5.22 is proved.

Remark. The C1,µ-partial regularity for minimizers has been extended to functionals of
type

I(u) =
∫

Ω
F (x, u,Du) dx,

where F (x, u, ξ) is uniformly strictly quasiconvex in ξ and Hölder continuous in (x, u); see
Acerbi-Fusco ’87, Fusco-Hutchinson ’85, and Giaquinta-Modica ’86. The following theorem
is the most general one in this direction. �

Theorem 5.28 (Acerbi-Fusco ’87). Let F : Ω×RN ×MN×n → R satisfy that Fξξ(x, u, ξ)
is continuous and, for some p ≥ 2,

|F (x, u, ξ)| ≤ L(1 + |ξ|p),
|F (x, u, ξ)− F (y, v, ξ)| ≤ L(1 + |ξ|p)ω(|x− y|p + |u− v|p),
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where 0 ≤ ω(t) ≤ tσ, 0 < σ < 1/p and ω is bounded, concave and increasing. Assume there
exist constants γ > 0, C0 such that for all (x0, u0, ξ0)

(5.56)
∫
B
F (x0, u0, ξ0 +Dφ) dx ≥

∫
B

[
F (x0, u0, ξ0) + γ

(
|Dφ|2 + |Dφ|p

)]
dx,

(5.57)
∫
B
F (x0, u0, Dφ(x)) dx ≥

∫
B

(
C0 + γ |Dφ(x)|p

)
dx

for all balls B and φ ∈ C∞0 (B; RN ). Let u ∈ W 1,p
loc (Ω; RN ) be a local minimizer of the

functional I defined by F as above. Then there exists an open set Ω0 of Ω such that
|Ω \ Ω0| = 0 and u ∈ C1,µ

loc (Ω0; RN ) for some 0 < µ < 1.
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[12] De Giorgi, E., Sulla differenziabilitá e l’analiticitá delle estremali degli integrali multipli regolari, Mem.
Accad. Sci. Torino cl. Sci. Fis. Mat. Nat. (3), 3 (1957), 25-43.

[13] De Giorgi, E., Un esempio di estremali discontinue per un problema variazionale di tipo ellittico, Boll.
UMI, 4 (1968), 135–137.

[14] Evans, L. C., Quasiconvexity and partial regularity in the calculus of variations, Arch. Rational Mech.
Anal., 95 (1986), 227–252.

[15] Evans, L. C., “Partial Differential Equations,” AMS-GSM, Vol. 19, 1998.

[16] Fusco, N. and J. Hutchinson, C1,α partial regularity of functions minimising quasiconvex integrals,
Manuscripta Math., 54 (1985), 121–143.

[17] Gehring, F. W., The Lp-integrability of the partial derivatives of a quasiconformal mapping, Acta Math.,
130 (1973), 265–277.

[18] Giaquinta, M., “Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems,”
Princeton University Press, 1983.

[19] Giaquinta, M., “Introduction to Regularity Theory for Nonlinear Elliptic Systems,” Birkhäuser, 1993.
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[42] Stein, E. M., “Singular Integrals and Differentiability Properties of Functions,” Princeton Univ. Press,
1970.

[43] Stredulinsky, E. W., Higher integrability from reverse Hölder inequalities, Indiana Univ. Math. J., 29
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