
Chapter 5

Integrability on R

5.1. The Riemann Integral

Partition, Upper and Lower Sums.

Definition 5.1. Let a, b ∈ R and a < b.

(1) A partition P of interval [a, b] is a set of (ordered) points P = {x0, x1, . . . , xn}
such that

a = x0 < x1 < x2 < · · · < xn−1 < xn = b.

(2) The norm ‖P‖ of a partition P is the longest length of subintervals [xj−1, xj ],
j = 1, 2, . . . , n; that is,

‖P‖ = max
1≤j≤n

|xj − xj−1|.

(3) A refinement of partition P is a partition Q such that P ⊆ Q. In this case, we
also say that Q is finer than P .

Clearly, if P,Q are partitions of [a, b] then P ∪Q is also a partition of [a, b] and is finer
than both P and Q. And if Q is a refinement of P then ‖Q‖ ≤ ‖P‖.

Example 5.1. (The equal partitions.) Let a < b in R and n ∈ N . Let δn = (b − a)/n
and P = {a + jδn : j = 0, 1, . . . , n}. Then P is a partition of [a, b] with all n subintervals
having the same length δn = (b− a)/n; so ‖P‖ = δn = (b− a)/n.

Example 5.2. (The dyadic partitions.) For each n ∈ N, Pn = {j/2n : j = 0, 1, . . . , 2n}
is a partition of interval [0, 1], and that Pm is finer than Pn when m > n in N.

Definition 5.2. Let f be a bounded function on the finite interval [a, b]. Let P = {x0, . . . , xn}
be a partition of [a, b] and set ∆xj = xj − xj−1 for j = 1, 2, . . . , n.

(1) The upper Riemann sum of f over P is defined to be the number

U(f, P ) =
n∑
j=1

Mj(f)∆xj , where Mj(f) = sup
x∈[xj−1,xj ]

f(x).
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(2) The lower Riemann sum of f over P is defined to be the number

L(f, P ) =

n∑
j=1

mj(f)∆xj , where mj(f) = inf
x∈[xj−1,xj ]

f(x).

Clearly, from the definition, L(f, P ) ≤ U(f, P ).

Remark 5.3. When dealing with the sums, the following telescoping technique is usually
very useful: If g : N→ R, then

n∑
k=m

(g(k + 1)− g(k)) = g(n+ 1)− g(m)

for all n ≥ m in N.

Proof. Write out all terms of the sum and cancel the same terms. �

Example 5.3. If f(x) = C is constant on [a, b], then U(f, P ) = L(f, P ) = C(b− a) for all
partitions P of [a, b].

Proof. Note that Mj(f) = mj(f) = C. So

U(f, P ) = L(f, P ) =

n∑
j=1

C∆xj = C

n∑
j=1

(xj − xj−1) = C(xn − x0) = C(b− a).

�

Example 5.4. Let g(x) be the Dirichlet function:

g(x) =

{
1 x ∈ Q

0 x /∈ Q.

Then, for all partitions P of an interval [a, b], we have

U(g, P ) = b− a, L(g, P ) = 0.

Lemma 5.1. Let f : [a, b] → R be bounded. If P,Q are partitions of [a, b] and Q is finer
than P, then

L(f, P ) ≤ L(f,Q) ≤ U(f,Q) ≤ U(f,Q).

Proof. Since Q is obtained from P by adding finitely many points, by induction, we only
need to prove the case when Q is obtained from P by adding one extra point. So let

P = {x0, x1, . . . , xk−1, xk, . . . , xn}, Q = {x0, x1, . . . , xk−1, y, xk, . . . , xn},

where xk−1 < y < xk. Then

L(f, P =

n∑
j=1

mj(f)∆xj , where mj(f) = inf
x∈[xj−1,xj ]

f(x),

L(f,Q) =
k−1∑
j=1

mj(f)∆xj+

(
inf

x∈[xk−1,y]
f(x)

)
(y−xk−1)+

(
inf

x∈[y,xk]
f(x)

)
(xk−y)+

n∑
j=k+1

mj(f)∆xj .

Note that

inf
x∈[xk−1,y]

f(x) ≥ inf
x∈[xk−1,xk]

f(x) and inf
x∈[y,xk]

f(x) ≥ inf
x∈[xk−1,xk]

f(x).
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Hence (
inf

x∈[xk−1,y]
f(x)

)
(y − xk−1) +

(
inf

x∈[y,xk]
f(x)

)
(xk − y)

≥
(

inf
x∈[xk−1,xk]

f(x)

)
(y − xk−1 + xk − y) = mk(f)∆xk.

Consequently,

L(f,Q) ≥
k−1∑
j=1

mj(f)∆xj +mk(f)∆xk +

n∑
j=k+1

mj(f)∆xj = L(f, P ).

Similarly, we have U(f,Q) ≤ U(f, P ). �

Lemma 5.2. Let f : [a, b]→ R be bounded. If P,Q are any two partitions of [a, b], then

L(f, P ) ≤ U(f,Q).

Proof. Note that P ∪Q is a refinement of both P and Q. Hence, by the previous lemma,

L(f, P ) ≤ L(f, P ∪Q) ≤ U(f, P ∪Q) ≤ U(f,Q).

�

Upper and Lower Integrals.

Definition 5.4. Let f : [a, b]→ R be bounded.

(1) The upper integral of f on [a, b] is defined to be the number

(U)

∫ b

a
f = inf{U(f, P ) : P is partition of [a, b]}.

(2) The lower integral of f on [a, b] is defined to be the number

(L)

∫ b

a
f = sup{L(f, P ) : P is partition of [a, b]}.

Clearly, from the previous lemma, we have (L)
∫ b
a f ≤ (U)

∫ b
a f.

Riemann Integrability. We now introduce the Riemann integrability using the different
definition from the text, but later show that this integrability is equivalent to the one given
in the text.

Definition 5.5. Let f be a bounded function on a finite interval [a, b]. We say that f is
(Riemann) integrable on [a, b] if the upper integral and lower integral of f on [a, b] are

equal; that is, (U)
∫ b
a f = (L)

∫ b
a f. In this case, this common value is defined to be the

(Riemann) integral of f on [a, b] and is denoted by∫ b

a
f(x) dx =

∫ b

a
f := (U)

∫ b

a
f = (L)

∫ b

a
f.

Example 5.5. The Dirichlet function g(x) =

{
1 x ∈ Q

0 x /∈ Q
is not Riemann integrable on any

interval [a, b] with a < b since (U)
∫ b
a g = b− a but (L)

∫ b
a g = 0.
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Theorem 5.3. If f(x) = C is constant on [a, b], then f is integrable on [a, b] and∫ b

a
f(x) dx = C(b− a).

Proof. It is easy to see that U(f, P ) = L(f, P ) = C(b− a) for all partitions P of [a, b] and

hence (U)
∫ b
a f = (L)

∫ b
a f, which proves the theorem. �

Connection of Riemann Integrals and Areas. Let f be nonnegative and bounded on
[a, b]. Imagine the region under the graph of y = f(x) defined by

R := {(x, y) : x ∈ [a, b], 0 ≤ y ≤ f(x)}.

Does R have an area, or how do we define that R has an area? Given a partition P =
{x0, x1, . . . , xn} of [a, b], look at the j-th slice Rj := {(x, y) : x ∈ [xj−1, xj ], 0 ≤ y ≤ f(x)}
and the rectangles Uj = {(x, y) : x ∈ [xj−1, xj ], 0 ≤ y ≤ Mj(f)} and Lj = {(x, y) :
x ∈ [xj−1, xj ], 0 ≤ y ≤ mj(f)}. Clearly Lj ⊆ Rj ⊆ Uj . So if Rj has an area |Rj |, then
mj(f)∆xj ≤ |Rj | ≤Mj(f)∆xj . Consequently, if R has an area |R|, then

L(f, P ) ≤ |R| ≤ U(f, P );

that is, an upper Riemann sum gives an over-estimate of |R| and a lower Riemann sum
gives an under-estimate of |R|. Hence, if the area |R| is well-defined, we must have that

(L)

∫ b

a
f ≤ |R| ≤ (U)

∫ b

a
f.

However, if (L)
∫ b
a f < (U)

∫ b
a f , then we have no reasonable way to choose a number |R|

between these two numbers and define it to be the area for R.

The Riemann integrability of f exactly states that when and only when (L)
∫ b
a f =

(U)
∫ b
a f can the proper area of the region R be defined, which equals the Riemann integral

of f on [a, b]. Therefore, if f is nonnegative and integrable on [a, b], then we say the region

has the area |R| defined by |R| =
∫ b
a f , namely,

(5.1)

∫ b

a
f(x) dx = Area of R := {(x, y) : x ∈ [a, b], 0 ≤ y ≤ f(x)}.

Criterion for Integrability. The following theorem gives an equivalent condition for
Riemann integrability.

Theorem 5.4 (Criterion for Integrability). Let f be a bounded function on a finite
interval [a, b]. Then f is integrable on [a, b] if and only if for each ε > 0 there exists a
partition Pε of [a, b] such that

U(f, Pε)− L(f, Pε) < ε.

Proof. (Sufficiency for Integrability.) Let ε > 0. Assume that there exists a partition Pε of
[a, b] such that U(f, Pε)− L(f, Pε) < ε. Then U(f, Pε) < L(f, Pε) + ε and so

(U)

∫ b

a
f ≤ U(f, Pε) < L(f, Pε) + ε ≤ (L)

∫ b

a
f + ε.

Since ε > 0 is arbitrary, this proves that (U)
∫ b
a f ≤ (L)

∫ b
a f and hence (U)

∫ b
a f = (L)

∫ b
a f.

So, by definition, f is integrable on [a, b].
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(Necessity for Integrability.) Assume f is integrable on [a, b]; namely, (U)
∫ b
a f =

(L)
∫ b
a f . Let ε > 0. Then there exist partitions P1, P2 of [a, b] such that

U(f, P1) < (U)

∫ b

a
f + ε/2, L(f, P2) > (L)

∫ b

a
f − ε/2.

Let Pε = P1∪P2. Then Pε is a partition of [a, b]. Keeping in mind that (U)
∫ b
a f = (L)

∫ b
a f ,

we have

U(f, Pε)− L(f, Pε) ≤ U(f, P1)− L(f, P2)

=

(
U(f, P1)− (U)

∫ b

a
f

)
+

(
(L)

∫ b

a
f − L(f, P2)

)
< ε/2 + ε/2 = ε.

�

Integrability of Continuous Functions.

Theorem 5.5. If f is continuous on [a, b], then f is integrable on [a, b].

Proof. Let ε > 0. Since f is uniformly continuous on [a, b], there exists a δ > 0 such that

|f(x)− f(y)| < ε

b− a
for all x, y ∈ [a, b] with |x− y| < δ.

Let P = {x0, . . . , xn} be any partition of [a, b] with norm ‖P‖ < δ. Since f is continuous on
each subinterval [xj−1, xj ], by the Extreme Value Theorem, there exist cj , dj ∈ [xj−1, xj ]
such that

Mj(f) = f(cj), mj(f) = f(dj).

Since cj − dj | ≤ ∆xj ≤ ‖P‖ < δ, we have

Mj(f)−mj(f) = f(cj)− f(dj) <
ε

b− a
.

Therefore,

U(f, P )− L(f, P ) =
n∑
j=1

(Mj(f)−mj(f))∆xj <
ε

b− a

n∑
j=1

∆xj = ε.

So, by the Criterion for Integrability, f is integrable on [a, b]. �

Example 5.6. Prove that the function

f(x) =

{
0 0 ≤ x < 1/2

1 1/2 ≤ x ≤ 1

is integrable on [0, 1]. Note that this function is not continuous on [0, 1].

Proof. Let ε > 0. Choose 0 < x1 < 1/2 < x2 < 1 such that x2 − x1 < ε. Let Pε =
{x0, x1, x2, x3} with x0 = 0 and x3 = 1. Then Pε is a partition of [0, 1], and

m1(f) = M1(f) = 0, m2(f) = 0, M2(f) = 1, m3(f) = M3(f) = 1.

We easily see that

U(f, Pε)− L(f, Pε) =

3∑
j=1

(Mj(f)−mj(f))∆xj = x2 − x1 < ε.

Therefore, by the Criterion for Integrability, f is integrable. �
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5.2. Riemann Sums

Definition 5.6. Let f : [a, b]→ R and P = {x0, x1, . . . , xn} be a partition of [a, b].

(1) A Riemann sum of f with respect to P generated by a sample {tj} of points
tj ∈ [xj−1, xj ] is the sum

S(f, P, {tj}) =
n∑
j=1

f(tj)∆xj .

(2) Let I(f) ∈ R be a number. We say that the Riemann sums of f converge to
I(f) as ‖P‖ → 0 if for each ε > 0 there exists a partition Pε of [a, b] such that

|S(f, P, {tj})− I(f)| < ε

for every partition P finer than Pε and every sample {tj} with tj chosen in the
j-th subinterval of P. In this case, we also say that the limit

I(f) = lim
‖P‖→0

S(f, P, {tj}) = lim
‖P‖→0

n∑
j=1

f(tj)∆xj

exists. (Note that in the definition, we could also require ‖Pε‖ < ε.)

Theorem 5.6 (Second Criterion for Integrability). Let f be a bounded function on a
finite interval [a, b]. Then f is integrable on [a, b] if and only if the limit

I(f) = lim
‖P‖→0

S(f, P, {tj}) = lim
‖P‖→0

n∑
j=1

f(tj)∆xj

exists. In this case, we have I(f) =
∫ b
a f(x) dx.

Proof. (Sufficiency for Integrability.) Assume that the limit

I(f) = lim
‖P‖→0

S(f, P, {tj}) = lim
‖P‖→0

n∑
j=1

f(tj)∆xj

exists. Let ε > 0. Then there exists a partition Pε = {x0, . . . , xn} of [a, b] such that

|
n∑
j=1

f(tj)∆xj − I(f)| < ε/3

for every sample {tj} with tj ∈ [xj−1, xj ]. By the definition of mj(f),Mj(f), we select
tj , sj ∈ [xj−1, xj ] such that

f(tj) > Mj(f)− ε

6(b− a)
, f(sj) < mj(f) +

ε

6(b− a)
,
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and hence Mj(f)−mj(f) < f(tj)− f(sj) + ε/(3(b− a)). So we have

U(f, Pε)− L(f, Pε) =

n∑
j=1

(Mj(f)−mj(f))∆xj

≤
n∑
j=1

(f(tj)− f(sj))∆xj +
ε

3(b− a)

n∑
j=1

∆xj

≤

∣∣∣∣∣∣
n∑
j=1

f(tj)∆xj − I(f)

∣∣∣∣∣∣+

∣∣∣∣∣∣I(f)−
n∑
j=1

f(sj)∆xj

∣∣∣∣∣∣+
ε

3

<
ε

3
+
ε

3
+
ε

3
= ε.

By the criterion for integrability, f is integrable on [a, b].

(Necessity for Integrability.) Suppose that f is integrable on [a, b] and that ε > 0. There
exist partitions P1, P2 of [a, b] such that

L(f, P1) >

∫ b

a
f − ε, U(f, P2) <

∫ b

a
f + ε.

Let Pε = P1 ∪ P2 be the refinement of P1, P2 on [a, b]. Then

L(f, Pε) ≥ L(f, P1) >

∫ b

a
f − ε, U(f, Pε) ≤ U(f, P2) <

∫ b

a
f + ε.

Let P = {x0, . . . , xn} be any partition of [a, b] finer than Pε and {tj} be any sample in P.
Then mj(f) ≤ f(tj) ≤Mj(f) and

L(f, P ) ≥ L(f, Pε) >

∫ b

a
f − ε, U(f, P ) ≤ U(f, Pε) <

∫ b

a
f + ε.

Hence ∫ b

a
f − ε < L(f, P ) ≤

n∑
j=1

f(tj)∆xj ≤ U(f, P ) <

∫ b

a
f + ε.

We conclude that ∣∣∣∣S(f, P, {tj})−
∫ b

a
f

∣∣∣∣ < ε

for every partition P finer than Pε and every sample {tj} chosen in P. This proves that the

Riemann sums of f converge to I(f) =
∫ b
a f as ‖P‖ → 0. �

Properties of Integrable Functions.

Theorem 5.7 (Linear Property). If f, g are integrable on [a, b] and α, β ∈ R, then
αf + βg is integrable on [a, b], and∫ b

a
(αf(x) + βg(x)) dx = α

∫ b

a
f(x) dx+ β

∫ b

a
g(x) dx.

Proof. Use Riemann sums and the Triangle Inequality. �

Theorem 5.8 (Additivity Property). Let a, b ∈ R with a < b, and f be integrable on
[a, b]. Then f is integrable on each subinterval [c, d] of [a, b]. Moreover,

(5.2)

∫ b

a
f(x) dx =

∫ c

a
f(x) dx+

∫ b

c
f(x) dx
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for all c ∈ (a, b). Conversely, if a < c < b, f : [a, b] → R and f is integrable on [a, c] and
[c, b], then f is integrable on [a, b], and (5.2) holds.

Proof. 1. Assume that f is integrable on [a, b]. Let [c, d] be a subinterval of [a, b]. Let ε > 0.
Choose a partition P of [a, b] such that

U(f, P )− L(f, P ) < ε.

Let P ′ = P ∪ {c, d} and P1 = P ′ ∩ [c, d]. Then P ′ is a refinement of P on [a, b] and P1 is a
partition of [c, d], which is part of partition P ′ of [a, b]. Therefore, we have

U(f, P1)− L(f, P1) ≤ U(f, P ′)− L(f, P ′) ≤ U(f, P )− L(f, P ) < ε,

where U(f, P1), L(f, P1) are defined with P1 being a partition on [c, d]. Hence, by the Cri-
terion for Integrability, f is integrable on [c, d].

2. Assume that a < c < b, f : [a, b] → R and f is integrable on [a, c] and [c, b]. Let
ε > 0. Choose partitions P1 of [a, c] and P2 of [c, b] such that

U(f, P1)− L(f, P1) < ε/2, U(f, P2)− L(f, P2) < ε/2.

Let P = P1 ∪ P2. Then P is a partition of [a, b], and we have

U(f, P )− L(f, P ) = (U(f, P1) + U(f, P2))− (L(f, P1) + L(f, P2)) < ε/2 + ε/2 = ε.

Hence, by the Criterion for Integrability, f is integrable on [a, b].

3. To verify the additivity property (5.2), suppose that P is a partition of [a, b]. Let
P0 = P ∪ {c}, P1 = P0 ∩ [a, c], and P2 = P0 ∩ [c, b]. Then P0 = P1 ∪ P2 and

U(f, P ) ≥ U(f, P0) = U(f, P1) + U(f, P2) ≥
∫ c

a
f +

∫ b

c
f,

L(f, P ) ≤ L(f, P0) = L(f, P1) + L(f, P2) ≤
∫ c

a
f +

∫ b

c
f.

Hence (U)
∫ b
a f ≥

∫ c
a f +

∫ b
c f and (L)

∫ b
a f ≤

∫ c
a f +

∫ b
c f ; so

∫ b
a f =

∫ c
a f +

∫ b
c f. �

Theorem 5.9 (Order Property). Let a, b ∈ R with a < b. If f, g are integrable on [a, b]
and f(x) ≤ g(x) for all x ∈ [a, b], then∫ b

a
f(x) dx ≤

∫ b

a
g(x) dx.

In particular, if m ≤ f(x) ≤M for all x ∈ [a, b], then

m(b− a) ≤
∫ b

a
f(x) dx ≤M(b− a).

Proof. For all partitions P,Q of [a, b], we have L(f,Q) ≤ U(f, P ) ≤ U(g, P ). So∫ b

a
f(x) dx = (L)

∫ b

a
f ≤ (U)

∫ b

a
g =

∫ b

a
g(x) dx.

The special case follows easily. �

Theorem 5.10. If f is (Riemann) integrable on [a, b], then |f | is (Riemann) integrable on
[a, b], and ∣∣∣∣∫ b

a
f(x) dx

∣∣∣∣ ≤ ∫ b

a
|f(x)| dx.
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Proof. Let P = {x0, . . . , xn} be a partition of [a, b]. We claim that

(5.3) Mj(|f |)−mj(|f |) ≤Mj(f)−mj(f) ∀ j = 1, 2, . . . , n.

Indeed, let ε > 0 and let x, y ∈ [xj−1, xj ] be such that

Mj(|f |) < |f(x)|+ ε/2, mj(|f |) > |f(y)| − ε/2.

Then Mj(|f |)−mj(|f |) < |f(x)| − |f(y)|+ ε. If f(x), f(y) are both ≥ 0 then

|f(x)| − |f(y)| = f(x)− f(y) ≤Mj(f)−mj(f);

if f(x), f(y) are both ≤ 0 then

|f(x)| − |f(y)| = f(y)− f(x) ≤Mj(f)−mj(f);

if f(x) ≤ 0 ≤ f(y), then Mj(f) ≥ 0 ≥ mj(f) and

|f(x)| − |f(y)| = −f(x)− f(y) ≤ −f(x) ≤ −mj(f) ≤Mj(f)−mj(f);

finally, if f(x) ≥ 0 ≥ f(y), then Mj(f) ≥ 0 ≥ mj(f) and

|f(x)| − |f(y)| = f(x) + f(y) ≤ f(x) ≤Mj(f) ≤Mj(f)−mj(f).

Therefore, in any cases, we have |f(x)| − |f(y)| ≤Mj(f)−mj(f). This proves

Mj(|f |)−mj(|f |) < |f(x)| − |f(y)|+ ε ≤Mj(f)−mj(f) + ε

for all ε > 0; hence (5.3) follows. Let ε > 0 and choose a partition P of [a, b] such that
U(f, P )− L(f, P ) < ε. Then by (5.3) we have

U(|f |, P )− L(|f |, P ) ≤ U(f, P )− L(f, P ) < ε,

which proves that |f | is integrable on [a, b]. Using the inequality −|f | ≤ f ≤ |f | and the
Linear and Order Properties above, we easily have that

−
∫ b

a
|f(x)| dx ≤

∫ b

a
f(x) dx ≤

∫ b

a
|f(x)| dx,

which completes the proof. �

Remark 5.7. The converse of the previous theorem is false. Indeed, consider the function

h(x) =

{
1 x ∈ Q

−1 x /∈ Q.

Then |h(x)| = 1 is constant and hence is Riemann integrable on an interval [a, b]; however,
it is easily seen that

(U)

∫ b

a
h = b− a > 0, (L)

∫ b

a
h = a− b < 0,

and hence h is not Riemann integrable on [a, b].

Corollary 5.11. If f is (Riemann) integrable on [a, b], then f2 is (Riemann) integrable on
[a, b].

Proof. Since f is bounded on [a, b], assume |f(x)| ≤ M for all x ∈ [a, b]. Let P be any
partition of [a, b]. Then Mj(|f |) ≤ M and mj(|f |) ≤ M . Note that Mj(f

2) = Mj(|f |2) =
(Mj(|f |))2 and similarly mj(f

2) = (mj(|f |))2 (Verify!) and hence

Mj(f
2)−mj(f

2) = (Mj(|f |))2 − (mj(|f |))2

= (Mj(|f |) +mj(|f |)) (Mj(|f |)−mj(|f |)) ≤ 2M(Mj(|f |)−mj(|f |)).
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This implies that

U(f2, P )− L(f2, P ) ≤ 2M(U(|f |, P )− L(|f |, P )),

from which the integrability of f2 is a consequence of the integrability of |f | proved above.
�

Theorem 5.12. If f, g are integrable on [a, b], then so is fg.

Proof. Use the Corollary above and the identity

fg =
(f + g)2 − f2 − g2

2
.

�

Mean Value Theorems for Integrals. We continue to assume that a, b ∈ R with a < b.

Theorem 5.13 (First Mean Value Theorem for Integrals). Suppose that f and g are
integrable on [a, b] with g(x) ≥ 0 for all x ∈ [a, b]. Let

m = inf
x∈[a,b]

f(x), M = sup
x∈[a,b]

f(x).

Then there exists a number c ∈ [m,M ] such that∫ b

a
f(x)g(x) dx = c

∫ b

a
g(x) dx.

In particular, if f is continuous on [a, b], then there exists an x0 ∈ [a, b] such that∫ b

a
f(x)g(x) dx = f(x0)

∫ b

a
g(x) dx.

Proof. Since m ≤ f(x) ≤ M, g(x) ≥ 0 on [a, b], we have mg(x) ≤ f(x)g(x) ≤ Mg(x) for
all x ∈ [a, b], and hence, by the Linear and Order Properties,

m

∫ b

a
g ≤

∫ b

a
fg ≤M

∫ b

a
g.

If
∫ b
a g = 0, then

∫ b
a fg = 0 and so any c ∈ [m,M ] will prove the result. So assume

∫ b
a g > 0

and let c =
∫ b
a fg∫ b
a g

. This c will prove the theorem since m ≤ c ≤ M. In particular, if f is

continuous, then by the Intermediate Value Theorem, there exists an x0 ∈ [a, b] such
that f(x0) = c. �

Remark 5.8. The First Mean Value Theorem for Integrals above states that if f is
integrable on [a, b] with a < b, then

inf
x∈[a,b]

f(x) ≤ 1

b− a

∫ b

a
f(x) dx ≤ sup

x∈[a,b]
f(x).

In particular, if f is continuous on [a, b], then there exists an x0 ∈ [a, b] such that

f(x0) =
1

b− a

∫ b

a
f(x) dx.

In general, the number 1
b−a

∫ b
a f(x) dx is called the mean-value or the average of integrable

function f on [a, b].
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Theorem 5.14. If f is integrable on [a, b] and define

F (x) =

∫ x

a
f(t) dt and G(x) =

∫ b

x
f(t) dt

for all x ∈ [a, b], where we define F (a) = 0 and G(b) = 0, then F and G are well-defined
and are continuous on [a, b].

Proof. Since f is bounded on [a, b], assume |f(x)| ≤M for all x ∈ [a, b]. For any x < y in
[a, b] we have that

F (y) =

∫ y

a
f(t) dt =

∫ x

a
f(t) dt+

∫ y

x
f(t) dt = F (x) +

∫ y

x
f(t) dt

and so

|F (y)− F (x)| =
∣∣∣∣∫ y

x
f(t) dt

∣∣∣∣ ≤ ∫ y

x
|f(t)| dt ≤M(y − x),

which shows that |F (x)−F (y)| ≤M |x− y| for all x, y ∈ [a, b]. Similarly, we also show that
|G(x) − G(y)| ≤ M |x − y| for all x, y ∈ [a, b]. Hence F and G are both well-defined and
continuous on [a, b]. �

Remark 5.9. Sometimes functions defined by F (x) =
∫ x
a f(t) dt are also considered for

x < a. For such a purpose, we extend the integral
∫ b
a f(x) dx to the case a ≥ b as follows.

We always define ∫ a

a
f(x) dx = 0

for all functions f defined and bounded in some interval containing a. If b < a and f is
integrable on interval [b, a], then we define∫ b

a
f(x) dx = −

∫ a

b
f(x) dx.

Example 5.7. If f(x) =

{
1 x ≥ 0

−1 x < 0,
then the function F (x) =

∫ x
0 f(t) dt is defined for

all x ∈ R and is given by F (x) = |x| for all x ∈ R.

Theorem 5.15 (Second Mean Value Theorem for Integrals). Suppose that f and g
are integrable on [a, b] with g(x) ≥ 0 for all x ∈ [a, b]. If m,M are two numbers satisfying

m ≤ inf
x∈[a,b]

f(x), M ≥ sup
x∈[a,b]

f(x),

then there exists a number c ∈ [a, b] such that∫ b

a
f(x)g(x) dx = m

∫ c

a
g(x) dx+M

∫ b

c
g(x) dx.

In particular, if f(x) ≥ 0 for all x ∈ [a, b], then there exists a number c ∈ [a, b] such that∫ b

a
f(x)g(x) dx = M

∫ b

c
g(x) dx.

Proof. Let

F (x) = m

∫ x

a
g(t) dt+M

∫ b

x
g(t) dt ∀ x ∈ [a, b].
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Then F is continuous on [a, b] and by the Order Property,

F (b) = m

∫ b

a
g ≤

∫ b

a
fg ≤M

∫ b

a
g = F (a).

Hence by the Intermediate Value Theorem again, there exists c ∈ [a, b] such that

F (c) =
∫ b
a fg. �

5.3. The Fundamental Theorem of Calculus

Theorem 5.16 (Fundamental Theorem of Calculus). Let a, b ∈ R with a < b and
f : [a, b]→ R.

(1) If f is continuous on [a, b] and F (x) =
∫ x
a f(t) dt, then F ∈ C1[a, b] and

F ′(x) =
d

dx

(∫ x

a
f(t) dt

)
= f(x) ∀ x ∈ [a, b].

(2) If f is Riemann integrable on [a, b] and G is a continuous function on [a, b] which
is differentiable in (a, b) with G′(x) = f(x) for all x ∈ (a, b), then∫ x

a
f(t) dt = G(x)−G(a) ∀ x ∈ [a, b].

Proof. Let us prove the second part only. Let ε > 0. Since f is integrable on [a, x], choose
a partition P = {x0, . . . , xn} of [a, x] (so x0 = a, xn = x) such that∣∣∣∣∣∣

n∑
j=1

f(tj)∆xj −
∫ x

a
f(t)dt

∣∣∣∣∣∣ < ε

for any choice of sample {tj} with tj ∈ [xj−1, xj ]. Since G is continuous on [xj−1, xj ] and
differentiable in (xj−1, xj), by the Mean Value Theorem, we choose tj ∈ (xj−1, xj) such
that G(xj)−G(xj−1) = G′(tj)∆xj = f(tj)∆xj . Therefore∣∣∣∣G(x)−G(a)−

∫ x

a
f(t) dt

∣∣∣∣ =

∣∣∣∣∣∣
n∑
j=1

(G(xj)−G(xj−1))−
∫ x

a
f(t)dt

∣∣∣∣∣∣
=

∣∣∣∣∣∣
n∑
j=1

f(tj)∆xj −
∫ x

a
f(t)dt

∣∣∣∣∣∣ < ε.

Since ε > 0 is arbitrary, we have G(x)−G(a)−
∫ x
a f(t) dt = 0. �

Theorem 5.17 (Integration by Parts). Suppose that f, g are differentiable on [a, b] with
f ′, g′ Riemann integrable on [a, b]. Then∫ b

a
f ′(x)g(x) dx = f(b)g(b)− f(a)g(a)−

∫ b

a
f(x)g′(x) dx,

which can also be written as∫ b

a
f ′(x)g(x) dx = f(x)g(x)

∣∣b
a
−
∫ b

a
f(x)g′(x) dx,

with the notation h(x)|ba := h(b)− h(a).
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Proof. Let G(x) = f(x)g(x) for x ∈ [a, b]. Then G is differentiable on [a, b] and G′(x) =
f ′(x)g(x) + f(x)g′(x) := h(x) for all x ∈ [a, b]. Since f, g, f ′, g′ are all integrable on [a, b], it
follows that h, f ′g and fg′ are all integrable on [a, b]. Hence by the second part of FTC,∫ b

a
h(x) dx = G(b)−G(a).

However, by the Linear Property,∫ b

a
h(x) dx =

∫ b

a
f ′(x)g(x)dx+

∫ b

a
f(x)g′(x)dx.

So regrouping, we prove the theorem. �

Example 5.8. Find
∫ π/2
0 x sinx dx.

Solution. Let f(x) = − cosx and g(x) = x. Then f ′(x)g(x) = x sinx and so∫ π/2

0
x sinx dx = f(x)g(x)

∣∣∣π/2
0
−
∫ π/2

0
f(x)g′(x) dx

= (0− 0) +

∫ π/2

0
cosx dx = sinx|π/20 = 1.

�

Inverse Function Theorem on R. We have the following result.

Theorem 5.18 (Inverse Function Theorem on R). Let I be an open interval and
f : I → R be one-to-one and continuous. Then J := f(I) is an open interval and the
inverse function f−1 is continuous on J. If f ′(a) exists and is nonzero for some a ∈ I, then
the inverse function f−1 is differentiable at b = f(a) and (f−1)′(b) = 1/f ′(a).

Proof. 1. We first show that f must be strictly monotone on I. Suppose not. Then
there exist points h, k, l ∈ I such that h < k < l but f(k) does not lie between f(h) and
f(l). Since f(h) 6= f(l), with loss of generality, we may assume f(h) < f(l); then either
f(k) < f(h) < f(l) or f(h) < f(l) < f(k). Hence by the one-dimensional Intermediate
Value Theorem, either there exists x1 ∈ (k, l) such that f(x1) = f(h) or there exists x2 ∈
(h, k) such that f(x2) = f(l). In either cases, since f is one-to-one, we have contradiction:
x1 = h ∈ (k, l) or x2 = l ∈ (h, k). Therefore, f must be strictly monotone on I. Without
loss of generality, in the following, we assume that f is strictly increasing on I; that is,
f(x) < f(y) for all x < y in I.

2. Let I = (α, β). We claim that J := f(I) = (f(α+), f(β−)) is an open interval.
It is clear that if a ∈ (α, β), then a ∈ (α′, β′) for some α′, β′ with α < α′ < β′ < β
and thus f(α′) < f(a) < f(β′). Since f(α+) < f(α′) < f(β′) < f(β−), it follows that
f(a) ∈ (f(α+), f(β−)), which proves that f(I) ⊆ (f(α+), f(β−)). Conversely, let b ∈
(f(α+), f(β−)); namely, f(α+) < b < f(β−). Then there exist α′, β′ with α < α′ < β′ < β
such that f(α′) < b < f(β′). Since f is continuous, by the IVT, there exists a ∈ (α′, β′)
such that f(a) = b and thus b ∈ f(I), which proves that (f(α+), f(β−)) ⊆ f(I). Therefore,
J := f(I) = (f(α+), f(β−)) and is thus an open interval.

3. We now prove that f−1 is continuous on J. Suppose that f−1 is not continuous at
some point y0 ∈ J. Then there exists a sequence {yn} in J and a number ε0 > 0 with
(yn)→ y0 but

|f−1(yn)− f−1(y0)| > ε0 ∀ n ∈ N.
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Since yn 6= y0 for all n ∈ N, without loss of generality, we assume that there exists a
subsequence (ynj ) with ynj > y0 for all j ∈ N. Hence

f−1(ynj ) > f−1(y0) + ε0 > f−1(y0).

Since f−1(ynj ), f
−1(y0) ∈ I and I is an open interval, we have f−1(y0) + ε0 ∈ I = f−1(J)

and thus f−1(y0) + ε0 = f−1(z0) for some z0 ∈ J. Then

f−1(ynj ) > f−1(z0) > f−1(y0).

This implies ynj > z0 > y0 for all j ∈ N, which is a contradiction to the convergence

(yn)→ y0. So f−1 is continuous on J = f(I).

4. Now assume f ′(a) exists and is nonzero at some a ∈ I, and we prove that f−1 is
differentiable at b = f(a) ∈ J and (f−1)′(b) = 1/f ′(a). We choose an interval (c, d) ⊂ I such
that a ∈ (c, d). Then f(c) < b = f(a) < f(d). Choose δ > 0 so small that b+h ∈ (f(c), f(d))
for all |h| < δ. Fix such an h 6= 0 and set x = f−1(b+h). Then f(x)− f(a) = b+h− b = h.
By the continuity of f−1, we have that x→ a if and only if h→ 0. Therefore,

lim
h→0

f−1(b+ h)− f−1(b)
h

= lim
x→a

x− a
f(x)− f(a)

=
1

f ′(a)
.

�

Theorem 5.19 (Change of Variables). Let φ ∈ C1[a, b] with φ′ 6= 0 on [a, b]. Let
φ([a, b]) = [c, d]. If f is integrable on [c, d], then f(φ(x))|φ′(x)| is integrable on [a, b], and∫ d

c
f(t) dt =

∫ b

a
f(φ(x))|φ′(x)| dx.

Proof. By the assumption, φ′ is either positive on [a, b] or negative on [a, b]. We consider
only the case when φ′(x) > 0 for all x ∈ [a, b]. In this case φ is strictly increasing on
[a, b] and φ([a, b]) = [c, d] = [φ(a), φ(b)]. Also the inverse function φ−1 : [c, d] → [a, b] is
also differentiable. Assume |f(x)| ≤ M for all x ∈ [a, b]. Let ε > 0. Since φ′ is uniformly
continuous on [a, b], choose δ > 0 such that

|φ′(s)− φ′(t)| < ε

2M(b− a)
∀ s, t ∈ [a, b], |s− t| < δ.

Since φ−1 is uniformly continuous on [c, d], choose η > 0 such that

|φ−1(y)− φ−1(z)| < δ ∀ y, z ∈ [c, d], |y − z| < η.

Since f is integrable on [c, d], choose a partition Pε of [c, d] such that ‖Pε‖ < η such that∣∣∣∣S(f, P, {uj})−
∫ d

c
f(t) dt

∣∣∣∣ < ε/2

for every partition P = {y0, y1, . . . , yn} of [c, d] finer than Pε and every choice of sample

uj ∈ [yj−1, yj ]. Let P̃ε = φ−1(Pε). Then P̃ε is a partition of [a, b] and ‖P̃ε‖ < δ (by the

choice of η). Now let P̃ = {x0, x1, . . . , xn} be any partition of [a, b] finer than P̃ε and let

tj ∈ [xj−1, xj ] be any sample points. Let P = φ(P̃ ) = {y0, y1, . . . , yn} with yj = φ(xj)
and let uj = φ(tj). Then P is a partition of [c, d] finer than Pε. By the MVT, choose
cj ∈ [xj−1, xj ] such that yj − yj−1 = φ(xj)− φ(xj−1) = φ′(cj)∆xj . Then

f(φ(tj))φ
′(cj)∆xj = f(uj)∆yj .
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Hence, ∣∣∣∣∣∣
n∑
j=1

f(φ(tj))φ
′(tj)∆xj −

∫ d

c
f(t) dt

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
n∑
j=1

f(φ(tj))(φ
′(tj)− φ′(cj))∆xj

∣∣∣∣∣∣+

∣∣∣∣∣∣
n∑
j=1

f(φ(tj))φ
′(cj)∆xj −

∫ d

c
f(t) dt

∣∣∣∣∣∣
≤M

n∑
j=1

|φ′(tj)− φ′(cj)|∆xj +

∣∣∣∣∣∣
n∑
j=1

f(uj)∆yj −
∫ d

c
f(t) dt

∣∣∣∣∣∣
≤M

n∑
j=1

ε∆xj
2M(b− a)

+

∣∣∣∣∣∣
n∑
j=1

f(uj)∆yj −
∫ d

c
f(t) dt

∣∣∣∣∣∣
< ε/2 + ε/2 = ε.

This completes the proof. �

Remark 5.10. The difficult part of the part is to show that f(φ(x))|φ′(x)| is integrable
on [a, b] when we only know f(t) is integrable on [c, d]. These two functions are defined on
different intervals and f is not assumed to be continuous. If we assume f is continuous then
the proof is much easier (see next theorem).

Theorem 5.20 (Change of Variables for Continuous Integrands). Suppose that
φ ∈ C1[a, b] and f is continuous on some interval containing the set φ([a, b]). Then∫ φ(b)

φ(a)
f(t) dt =

∫ b

a
f(φ(x))φ′(x) dx.

Note that the integral on the lefthand side still makes sense even when φ(b) ≤ φ(a).

Proof. Define

G(x) =

∫ x

a
f(φ(t))φ′(t) dt ∀ x ∈ [a, b],

F (u) =

∫ u

φ(a)
f(t) dt ∀ u ∈ φ([a, b]),

where the integral even when u ≤ φ(a) is well-defined as above. Then, by FTC, G′(x) =
f(φ(x))φ′(x) and F ′(u) = f(u). Hence by the Chain Rule,

(G(x)− F (φ(x)))′ = G′(x)− F ′(φ(x))φ′(x) = 0

for all x ∈ [a, b]. Therefore, G(x)−F (φ(x)) is constant on [a, b], which can be evaluated to be
zero by choosing x = a. So G(x) = F (φ(x)) for all x ∈ [a, b]; in particular, G(b) = F (φ(b)),
which exactly proves the theorem. �
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5.4. Improper Riemann Integration

In this section, we extend the Riemann integrals to unbounded intervals or unbounded
functions or both.

We first make the following motivating fact about the Riemann integrals.

Lemma 5.21. Let a, b ∈ R with a < b and let f be integrable on [a, b]. Then∫ b

a
f(x) dx = lim

c→a+

(
lim
d→b−

∫ d

c
f(x) dx

)
.

Proof. Let F (x) =
∫ x
a f(t) dt for all x ∈ [a, b]. Then F is continuous on [a, b] and hence∫ b

a
f(x) dx = F (b)− F (a) = lim

c→a+
( lim
d→b−

(F (d)− F (c))) = lim
c→a+

(
lim
d→b−

∫ d

c
f(x) dx

)
.

�

Improper Integrability.

Definition 5.11. Let (a, b) be a nonempty, open (possibly unbounded) interval and f : (a, b)→
R be a function.

(1) We say that f is locally integrable on (a, b) if f is integrable on each finite
closed interval [c, d] of (a, b).

(2) We say that f is improperly (Riemann) integrable on (a, b) if f is locally
integrable on (a, b) and the limit

(5.4)

∫ b

a
f(x) dx = lim

c→a+

(
lim
d→b−

∫ d

c
f(x) dx

)
exists and is finite. In this case, this limit is called the improper Riemann
integral of f on (a, b). Sometimes we also use the notation∫ b

a
f(x) dx =

∫ b−

a+
f(x) dx

to distinguish the improper integrals from the Riemann integrals defined earlier.

Lemma 5.22. The order of limits in (5.4) does not matter. In particular, if the limit in
(5.4) exists and is finite, then the limit

lim
d→b−

(
lim
c→a+

∫ d

c
f(x) dx

)
exists and equals

∫ b
a f(x) dx.

Proof. Let x0 ∈ (a, b). Then

lim
c→a+

(
lim
d→b−

∫ d

c
f(x) dx

)
= lim

c→a+

(∫ x0

c
f(x) dx+ lim

d→b−

∫ d

x0

f(x) dx

)

(5.5) = lim
c→a+

∫ x0

c
f(x) dx+ lim

d→b−

∫ d

x0

f(x) dx.
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Since, for each c, limd→b−
∫ d
c f(x)dx exists, we have

lim
x0→b−

(
lim
d→b−

∫ d

x0

f(x) dx

)
= lim

x0→b−

[
lim
d→b−

(∫ d

c
f(x) dx−

∫ x0

c
f(x) dx

)]
= lim

x0→b−

[
lim
d→b−

∫ d

c
f(x) dx−

∫ x0

c
f(x) dx

]
= lim

d→b−

∫ d

c
f(x) dx− lim

x0→b−

∫ x0

c
f(x) dx = 0.

Therefore, in (5.5) letting x0 → b−, we obtain that

lim
x0→b−

(
lim
c→a+

∫ x0

c
f(x) dx

)
= lim

c→a+

(
lim
d→b−

∫ d

c
f(x) dx

)
:=

∫ b−

a+
f(x) dx.

�

Remark 5.12. (i) If f is integrable on [c, b] for all c ∈ (a, b), then the improper Riemann
integral of f on (a, b) is also given by∫ b

a
f(x) dx = lim

c→a+

∫ b

c
f(x) dx :=

∫ b

a+
f(x) dx.

If this limit exists and is finite, we also say that f is improperly integrable on (a, b].
The similar situation applies at the endpoint b, in which case we say that f is improperly
integrable on [a, b).

(ii) It is easily seen that f is improperly integrable on (a, b) if and only if f is improperly
integrable on (a, c] and also improperly integrable on [c, b), where c ∈ (a, b) is some number.
In this case, we have that∫ b−

a+
f(x) dx =

∫ c

a+
f(x) dx+

∫ b−

c
f(x) dx.

Example 5.9. Show that function f(x) = 1/
√
x is improperly integrable on (0, 1].

Proof. Exercise! �

Example 5.10. Show that function f(x) = 1/x2 is improperly integrable on [1,∞).

Proof. Exercise! �

Properties of Improper Integrals.

Theorem 5.23 (Linear Property). If f, g are improperly integrable on (a, b) and α, β ∈
R, then αf + βg is improperly integrable on (a, b), and∫ b

a
(αf(x) + βg(x)) dx = α

∫ b

a
f(x) dx+ β

∫ b

a
g(x) dx.

Proof. Use the Linear Property of integrals on each subinterval [c, d] of (a, b). �

Theorem 5.24 (Comparison Theorem for Improper Integrals). Suppose that f, g
are locally integrable on (a, b) and 0 ≤ f(x) ≤ g(x) for all x ∈ (a, b). If g is improperly
integrable on (a, b), then f is also improperly integrable on (a, b) and∫ b

a
f(x) dx ≤

∫ b

a
g(x) dx.
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Proof. Fix c ∈ (a, b). Let F (d) =
∫ d
c f(x) dx and G(d) =

∫ d
c g(x)dx for d ∈ [c, b). Then by

the Order Property, F (d) ≤ G(d). Note that F and G are increasing on [c, b) and G(b−)
exists. Hence F is bounded above by G(b−) and so F (d−) exists and is finite. This shows
that f is improperly integrable on [c, b). By the similar argument, we also show that f is
improperly integrable on (a, c]; thus f is improperly integrable on (a, b). The order property∫ b

a
f(x) dx ≤

∫ b

a
g(x) dx.

follows easily from the order property of the Riemann integrals of f and g on each subinterval
[c, d] of (a, b). �

Example 5.11. Show that f(x) = (sinx)/x3/2 is improperly integrable on (0, 1].

Proof. Since 0 ≤ sinx ≤ x for all x ∈ [0, 1] (use elementary calculus to prove it!), it follows
that

0 ≤ f(x) ≤ x · x−3/2 = x−1/2 ∀ x ∈ (0, 1].

Since x−1/2 is improperly integrable on (0, 1], by the theorem above, f is improperly inte-
grable on (0, 1]. �

Example 5.12. Show that f(x) = (lnx)/x5/2 is improperly integrable on [1,∞).

Proof. Since 0 ≤ lnx ≤ x for all x ≥ 1 (use elementary calculus to prove it!), it follows
that

0 ≤ f(x) ≤ x · x−5/2 = x−3/2 ∀ x ≥ 1.

Since x−3/2 is improperly integrable on [1,∞), by the theorem above, f is improperly
integrable on [1,∞). �

Lemma 5.25. If f is bounded and locally integrable on (a, b) and |g| is improperly integrable
on (a, b), then |fg| is improperly integrable on (a, b).

Proof. Use 0 ≤ |fg| ≤M |g| and the Comparison Theorem above. �

Absolute and Conditional Improper Integrability.

Definition 5.13. Let f : (a, b)→ R.

(1) We say that f is absolutely integrable on (a, b) if f is locally integrable on (a, b)
and |f | is improperly integrable on (a, b).

(2) We say that f is conditionally integrable on (a, b) if f is improperly integrable
on (a, b) but |f | is not improperly integrable on (a, b).

Theorem 5.26. If f is absolutely integrable on (a, b), then f is improperly integrable on
(a, b) and ∣∣∣∣∫ b

a
f(x) dx

∣∣∣∣ ≤ ∫ b

a
|f(x)| dx.

Proof. Since 0 ≤ |f | + f ≤ 2|f |, by the Comparison Theorem, f + |f | is improperly
integrable on (a, b). Hence, by the Linear Property, f = (|f | + f) − |f | is also improperly
integrable on (a, b). Moreover, for all c < d in (a, b),∣∣∣∣∫ d

c
f(x) dx

∣∣∣∣ ≤ ∫ d

c
|f(x)| dx.

We then complete the proof by taking the limit as c→ a+ and d→ b−. �
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The converse of Theorem 5.26 is false.

Example 5.13. Prove that f(x) =
sinx

x
is conditionally integrable on [1,∞).

Proof. Integrating by parts, we have for all d > 1,∫ d

1

sinx

x
dx = −cosx

x

∣∣∣d
1
−
∫ d

1

cosx

x2
dx.

Since 1/x2 is absolutely integrable on [1,∞), we have (cosx)/x2 is absolutely integrable
on [1,∞); hence (cosx)/x2 is improperly integrable on [1,∞). Taking the limit as d → ∞
above, we have ∫ ∞

1

sinx

x
dx = cos(1)−

∫ ∞
1

cosx

x2
dx

exists and is finite. This proves that (sinx)/x is improperly integrable on [1,∞).

We now show that | sinx|/x is not improperly integrable on [1,∞), which proves that
(sinx)/x is conditionally integrable on [1,∞). Note that if n ∈ N and n ≥ 2 then∫ nπ

1

| sinx|
x

dx ≥
n∑
k=2

∫ kπ

(k−1)π

| sinx|
x

dx ≥
n∑
k=2

1

kπ

∫ kπ

(k−1)π
| sinx| dx =

2

π

n∑
k=2

1

k
.

Hence

lim
n→∞

∫ nπ

1

| sinx|
x

dx =∞.

So | sinx|/x is not improperly integrable on [1,∞). �


