Functional Limits and Continuity

4.1. Functional Limits

Definition 4.1 ($\epsilon-\delta$ definition of functional limits). Let $f: A \rightarrow \mathbf{R}$, and let c be a limit point of the domain A. We say the limit of f as x approaches c is a number L and write $\lim _{x \rightarrow c} f(x)=L$ provided that, for each $\epsilon>0$, there exists a $\delta>0$ such that whenever $0<|x-c|<\delta$ and $x \in A$ it follows that $|f(x)-L|<\epsilon$.

Note that the condition $0<|x-c|$ is simply saying $x \neq c$. Therefore, as known from Calculus, the limit value L has nothing to do with whether f is defined at c or not; even $f(c)$ is defined (meaning $c \in A$), L may not have any relation with it.

Example 4.1. (i) Let $f(x)=3 x+1$. In this case the domain A of this formula-defined function is considered to be all real numbers, that certainly makes sense of $f(x)$. Show $\lim _{x \rightarrow 2} f(x)=7$.

Proof. Let $\epsilon>0$. We need to produce a $\delta>0$ with the property that $|f(x)-7|<\epsilon$ holds for all x satisfying $0<|x-2|<\delta$. The ending requirement is the inequality $|f(x)-7|<\epsilon$, which can be rewritten as

$$
|f(x)-7|=|(3 x+1)-7|=|3 x-6|=3|x-2|<\epsilon
$$

Hence the requirement $|f(x)-7|<\epsilon$ is equivalent to $|x-2|<\epsilon / 3$; that is, whenever $|x-2|<\epsilon / 3$, it follows that $|f(x)-7|<\epsilon$. Therefore, we can select simply $\delta=\epsilon / 3>0$ to satisfy the definition.
(ii) Show $\lim _{x \rightarrow 2} x^{2}=4$.

Proof. Given $\epsilon>0$, our goal is to produce a $\delta>0$ such that $\left|x^{2}-4\right|<\epsilon$ for all x with $0<|x-2|<\delta$. As above the domain set $A=\mathbf{R}$. We start to analyze the ending requirement $\left|x^{2}-4\right|<\epsilon$, which can be rewritten as

$$
\left|x^{2}-4\right|=|x+2||x-2|<\epsilon
$$

Unlike the previous example, in front of $|x-2|$ there is a function $|x+2|$, not simply a constant number; we cannot divide by $|x+2|$ to simply select $\delta=\epsilon /|x+2|$ since this δ
depends on x. The idea is to first choose one fixed δ to control the term $|x+2|$. For example, let $|x-2|<1$ (with $\delta_{1}=1$). For all such x 's, we have $-1<x-2<1$ and hence $1<x<3$ and so $3<x+2<5$; that is, $|x+2|<5$. Hence, if $|x-2|<1$ then $|x+2|<5$ and so

$$
\left|x^{2}-4\right|=|x+2||x-2| \leq 5|x-2| \quad \text { (note that this inequality holds when }|x-2|<1 \text {). }
$$

Therefore, for all such x 's, to make $\left|x^{2}-4\right|<\epsilon$, it suffices to require $|x-2|<\epsilon / 5=\delta_{2}$.
Now, choose $\delta=\min \{1, \epsilon / 5\}$. If $0<|x-2|<\delta$, then both $|x-2|<\delta_{1}=1$ and $|x-2|<\delta_{2}=\epsilon / 5$ hold and hence

$$
\left|x^{2}-4\right|=|x+2||x-2| \leq 5|x-2|<5 \times \frac{\epsilon}{5}=\epsilon
$$

and the limit is proved.
Topological Version of Functional Limits. Since the statement $|f(x)-L|<\epsilon$ is equivalent to $f(x) \in V_{\epsilon}(L)$ and the statement $|x-c|<\delta$ is equivalent to $x \in V_{\delta}(c)$ and hence the statement $0<|x-c|<\delta$ and $x \in A$ simply means $x \in\left(V_{\delta}(c) \backslash\{c\}\right) \cap A$, we can rephrase the $\epsilon-\delta$ definition above by using the topological terminologies (of neighborhoods).

Definition 4.2 (Topological Definition of Functional Limits). Let $f: A \rightarrow \mathbf{R}$, and let c be a limit point of the domain A. We say $\lim _{x \rightarrow c} f(x)=L$ provided that

$$
\forall \epsilon>0 \quad \exists \delta>0, \quad f\left(\hat{V}_{\delta}(c) \cap A\right) \subseteq V_{\epsilon}(L)
$$

where $\hat{V}_{\delta}(c)=V_{\delta}(c) \backslash\{c\}$ denotes the punctured neighborhood of c.
Sequential Criterion for Functional Limits. Functional limits can be completely characterized by the convergence of all related sequences.
Theorem 4.1 (Sequential Criterion for Functional Limits). Let $f: A \rightarrow \mathbf{R}$ and c be a limit point of A. Then the following two conditions are equivalent:
(i) $\lim _{x \rightarrow c} f(x)=L$.
(ii) For all sequences $\left(x_{n}\right)$ satisfying $x_{n} \in A, x_{n} \neq c$ and $\left(x_{n}\right) \rightarrow c$, it follows that the sequence $\left(f\left(x_{n}\right)\right) \rightarrow L$.

Proof. 1. First assume (i) and we prove (ii). Let (x_{n}) satisfy $x_{n} \in A, x_{n} \neq c$ and $\left(x_{n}\right) \rightarrow c$. Given each $\epsilon>0, \exists \delta>0$ such that $|f(x)-L|<\delta$ for all $x \in A$ with $0<|x-c|<\delta$. For this $\delta>0, \exists N \in \mathbf{N}$ such that $\left|x_{n}-c\right|<\delta$ for all $n \geq N$ in \mathbf{N}. Since $x_{n} \neq c$, we have $0<\left|x_{n}-c\right|<\delta$ for all $n \geq N$ and thus $\left|f\left(x_{n}\right)-L\right|<\epsilon$. This proves $\left(f\left(x_{n}\right)\right) \rightarrow L$.
2. We now assume (ii) and prove (i). Suppose $\lim _{x \rightarrow c} f(x) \neq L$. Then $\exists \epsilon_{0}>0, x_{n} \in A$ with $0<\left|x_{n}-c\right|<1 / n$ but $\left|f\left(x_{n}\right)-L\right| \geq \epsilon_{0}$ for all $n=1,2, \cdots$. (This is the negation of $\lim _{x \rightarrow c} f(x)=L$.) For this sequence $\left(x_{n}\right)$, by (ii), $\left(f\left(x_{n}\right)\right) \rightarrow L$, a contradiction to $\left|f\left(x_{n}\right)-L\right| \geq$ ϵ_{0} for all $n=1,2, \cdots$.

Corollary 4.2 (Divergence Criterion for Functional Limits). Let $f: A \rightarrow \mathbf{R}$ and c be a limit point of A. If there exist two sequences $\left(x_{n}\right)$ and $\left(y_{n}\right)$ in A, with $x_{n} \neq c$ and $y_{n} \neq c$, satisfying the property

$$
\lim x_{n}=\lim y_{n}=c \quad \text { but } \quad \lim f\left(x_{n}\right) \neq \lim f\left(y_{n}\right),
$$

then the functional limit $\lim _{x \rightarrow c} f(x)$ does not exist.
Example 4.2. Show that $\lim _{x \rightarrow 0} \sin (1 / x)$ does not exist.

Proof. Let $x_{n}=1 / 2 n \pi$ and $y_{n}=1 /(2 n \pi+\pi / 2)$ for all $n \in \mathbf{N}$. Then $x_{n} \neq 0$ and $y_{n} \neq 0$ and $\lim x_{n}=\lim y_{n}=0$. But $\sin \left(1 / x_{n}\right)=\sin (2 n \pi)=0$ while $\sin \left(1 / y_{n}\right)=\sin (2 n \pi+\pi / 2)=$ $\sin (\pi / 2)=1$. By the corollary above, the functional $\operatorname{limit}^{\lim } \lim _{x \rightarrow 0} \sin (1 / x)$ does not exist.
Theorem 4.3 (Algebraic Limit Theorem for Functional Limits). Let $f, g: A \rightarrow \mathbf{R}$ and c be a limit point of A. Assume $\lim _{x \rightarrow c} f(x)=L$ and $\lim _{x \rightarrow c} g(x)=M$ exist. Then
(i) $\lim _{x \rightarrow c}[a f(x)+b g(x)]=a L+b M$ for all $a, b \in \mathbf{R}$,
(ii) $\lim _{x \rightarrow c}[f(x) g(x)]=L M$,
(iii) $\lim _{x \rightarrow c}[f(x) / g(x)]=L / M$, provided $M \neq 0$.

4.2. Combinations of Continuous Functions

Definition 4.3 (Continuous Functions). Let $f: A \rightarrow \mathbf{R}$ and $c \in A$.
(i) We say f is continuous at a point $c \in A$ if, for each $\epsilon>0$, there exists a $\delta>0$ such that whenever $|x-c|<\delta$ and $x \in A$ it follows that $|f(x)-f(c)|<\epsilon$. If f is not continuous at c we say f is discontinuous at c.
(ii) We say f is a continuous function on A if it is continuous at every point in A.

Note that continuity at c is not defined if $f(c)$ is not defined, i.e., if $c \notin A$. If $c \in A$ is an isolated point of A, then f is always continuous at c since for some $\delta>0$ the only point x satisfying $|x-c|<\delta$ and $x \in A$ is $x=c$ and hence the condition $|f(x)-f(c)|=0<\epsilon$ always holds. If $c \in A$ is a limit point of A, then continuity of f at c is simply equivalent to

$$
\lim _{x \rightarrow c} f(x)=f(c) .
$$

This is the most interesting case.
Theorem 4.4 (Characterizations of Continuity). Let $f: A \rightarrow \mathbf{R}$ and $c \in A$ be a limit point of A. Then the following conditions are equivalent:
(i) f is continuous at c.
(ii) $\lim _{x \rightarrow c} f(x)=f(c)$.
(iii) $\forall \epsilon>0 \exists \delta>0, \quad f\left(V_{\delta}(c) \cap A\right) \subseteq V_{\epsilon}(f(c))$.
(iv) Whenever $x_{n} \in A$ and $\left(x_{n}\right) \rightarrow c$ it follows that $\left(f\left(x_{n}\right)\right) \rightarrow f(c)$.

Proof. (i), (ii), and (iii) are simply a different way to describe the definition of the continuity; the condition (iv) with $x_{n} \neq c$ would be already equivalent to the convergence $\lim _{x \rightarrow c} f(x)=f(c)$. Details are omitted.
Corollary 4.5 (Criterion for Discontinuity). Let $f: A \rightarrow \mathbf{R}$ and $c \in A$ be a limit point of A. Then f is not continuous at c if and only if for some number $\epsilon_{0}>0$ and sequence $\left(x_{n}\right)$ in A with $\left(x_{n}\right) \rightarrow c$ it follows that $\left|f\left(x_{n}\right)-f(c)\right| \geq \epsilon_{0}$ for all $n \in \mathbf{N}$.

Proof. Use $\neg(i i) \Longleftrightarrow \neg(i v)$.
Theorem 4.6 (Algebraic Continuity Theorem). Let $f, g: A \rightarrow \mathbf{R}$ be continuous at a point $c \in A$. Then
(i) $a f(x)+b g(x)$ is continuous at c for all $a, b \in \mathbf{R}$;
(ii) $f(x) g(x)$ is continuous at c;
(iii) $f(x) / g(x)$ is continuous at c, provided the quotient is well defined.

Example 4.3. Polynomials are all continuous functions on R. Hence all rational functions (quotients of polynomials) are continuous at points where the denominator is not zero.

Example 4.4. Let

$$
g(x)= \begin{cases}x \sin (1 / x) & \text { if } x \neq 0 \\ 0 & \text { if } x=0\end{cases}
$$

Then g is continuous at 0 .
Proof. Note that $|g(x)| \leq|x|$ for all $x \in \mathbf{R}$; this is clearly true if $x=0$ and is also true if $x \neq 0$ by the formula of $g(x)$ since $|\sin \theta| \leq 1$ for all θ. Given each $\epsilon>0$, let $\delta=\epsilon$. Then, whenever $|x-0|<\delta$, since $g(0)=0$,

$$
|g(x)-g(0)|=|g(x)| \leq|x|<\delta=\epsilon
$$

So g is continuous at 0 .
Example 4.5. Function $f(x)=\sqrt{x}$ is continuous on $A=\{x \in \mathbf{R}: x \geq 0\}=[0, \infty)$. This can be shown by the definition directly or using the sequential criterion.

Theorem 4.7 (Composition of Continuous Functions). Let $f: A \rightarrow \mathbf{R}$ and $g: B \rightarrow \mathbf{R}$, where $B \supseteq f(A)$ and so that the composition function $g \circ f: A \rightarrow \mathbf{R}$ is defined by $g \circ f(x)=g(f(x))$ for $x \in A$. Then, if f is continuous at a point $c \in A$ and g is continuous at $f(c) \in B, g \circ f$ is continuous at $c \in A$ as well.

Proof. Given $\epsilon>0$, there exists a $\tau>0$ such that

$$
|g(y)-g(f(c))|<\epsilon \quad \forall y \in B,|y-f(c)|<\tau
$$

With this $\tau>0$, there exists a $\delta>0$ such that

$$
|f(x)-f(c)|<\tau \quad \forall x \in A,|x-c|<\delta
$$

Therefore, whenever $x \in A$ and $|x-c|<\delta$, it follows that $f(x) \in B$ and $|f(x)-f(c)|<\tau$, and hence

$$
|g \circ f(x)-g \circ f(c)|=|g(f(x))-g(f(c))|<\epsilon
$$

Hence, by definition, $g \circ f$ is continuous at c.

4.3. Continuous Functions on Compact Sets and Uniform Continuity

Definition 4.4. A function $f: A \rightarrow \mathbf{R}$ is said to be bounded on a set $B \subseteq A$ if the set $f(B)$ is a bounded set. If $f(A)$ is a bounded set, we say $f: A \rightarrow \mathbf{R}$ is a bounded function.

Theorem 4.8 (Preservation of Compact Sets). Let $f: A \rightarrow \mathbf{R}$ be continuous on A. If $K \subseteq A$ is a compact set, then $f(K)$ is compact as well.

Proof. Given any sequence $\left(y_{n}\right)$ in $f(K)$, we show that there exists a subsequence $\left(y_{n_{k}}\right)$ converging to some limit $y \in f(K)$. This will prove that $f(K)$ is compact. Since $y_{n} \in f(K)$, we have $y_{n}=f\left(x_{n}\right)$ for some $x_{n} \in K$. Now $\left(x_{n}\right)$ is sequence contained in K. Since K is compact, there exists a subsequence $\left(x_{n_{k}}\right)$ converging to a limit $x \in K$. By the continuity, $\left(f\left(x_{n_{k}}\right)\right) \rightarrow f(x)$. Since $y_{n_{k}}=f\left(x_{n_{k}}\right)$, we have $\left(y_{n_{k}}\right) \rightarrow y=f(x) \in f(K)$. This proves that $f(K)$ is compact.

Remark 4.1. In contrast to this theorem, continuous functions do not preserve bounded sets, open sets or closed sets. Consider the following examples.
(i) $f(x)=\frac{1}{x}$ is continuous in $(0,1)$, but f is not bounded in $(0,1)$. This function also maps the closed interval $A=[1, \infty)$ to the set $f(A)=(0,1]$, which is not closed.
(ii) $f(x)=x^{2}$ maps the open set $A=(-1,1)$ to the set $f(A)=[0,1)$, which is not open.

Theorem 4.9 (Extreme Value Theorem). If $f: K \rightarrow \mathbf{R}$ is continuous on a compact set $K \subseteq \mathbf{R}$, then f attains its maximum and minimum values; namely, there exist numbers $x_{*}, x^{*} \in K$ such that $f\left(x_{*}\right) \leq f(x) \leq f\left(x^{*}\right)$ for all $x \in K$.

Proof. We only prove the maximum case. Let $A=f(K)$. Then A is compact; hence A is bounded and closed. Let $M=\sup A$. Then $f(x) \leq M$ for all $x \in K$. We now show that there exists a number $x^{*} \in K$ such that $f\left(x^{*}\right)=M$, which proves that the maximum is attained. Since $M=\sup A$, for each $n \in \mathbf{N}$, there exists a number $y_{n} \in A$ such that $y_{n}>M-\frac{1}{n}$ (which just states that $M-\frac{1}{n}$ is not an upper-bound for A). Since $y_{n} \leq M$, this implies $\left(y_{n}\right) \rightarrow M$. Now, since $y_{n} \in A=f(K)$ and A is compact, by definition of compact sets, $\left(y_{n}\right)$ has a convergent subsequence whose limit is in A, but this subsequence also converges to M; therefore, $M \in A=f(K)$, which means that there exists a number $x^{*} \in K$ such that $M=f\left(x^{*}\right)$.

Uniform Continuity.

Definition 4.5. A function $f: A \rightarrow \mathbf{R}$ is said to be uniformly continuous on A if, for every $\epsilon>0$, there exists a $\delta>0$ such that whenever $x, y \in A$ and $|x-y|<\delta$ it follows that $|f(x)-f(y)|<\epsilon$.
Remark 4.2. We only talk about the uniform continuity of a function on a given set not at a point. From the definition, we see that every uniformly continuous function on a set A must be continuous at every point of A and so must be a continuous function on A.
Example 4.6. Show that $f(x)=3 x+1$ is uniformly continuous on \mathbf{R}.
Proof. Since $f(x)-f(y)=3(x-y)$, given each $\epsilon>0$, letting $\delta=\epsilon / 3$, it follows that whenever $|x-y|<\delta$,

$$
|f(x)-f(y)|=3|x-y|<3 \delta=\epsilon
$$

So $f(x)=3 x+1$ is uniformly continuous on \mathbf{R}.
Example 4.7. Is function $g(x)=x^{2}$ uniformly continuous on \mathbf{R} ?
Solution. Let us suppose that $g(x)=x^{2}$ is uniformly continuous on \mathbf{R}. Then $\forall \epsilon>0 \exists \delta>0$ such that $|g(x)-g(y)|<\epsilon$ for all $x, y \in \mathbf{R}$ with $|x-y|<\delta$. However, if we choose (large numbers) $x=N+\delta / 2$ and $y=N$ with $N \in \mathbf{N}$ and $N>2 \epsilon / \delta$, then

$$
|g(x)-g(y)|=|x-y||x+y|=\frac{\delta}{2}\left(2 N+\frac{\delta}{2}\right)>\delta N>2 \epsilon,
$$

a contradiction; therefore, $g(x)=x^{2}$ is not uniformly continuous on \mathbf{R}.
By negating the definition of uniform continuity, we have the following criterion for nonuniform continuity.

Theorem 4.10 (Sequential Criterion for Nonuniform Continuity). A function $f: A \rightarrow$ \mathbf{R} fails to be uniformly continuous on A if and only if there exist $\epsilon_{0}>0$ and two sequences $\left(x_{n}\right)$ and $\left(y_{n}\right)$ in A satisfying $\left|x_{n}-y_{n}\right| \rightarrow 0$ but $\left|f\left(x_{n}\right)-f\left(y_{n}\right)\right| \geq \epsilon_{0}$.

Example 4.8. The function $h(x)=\sin (1 / x)$ is continuous at every point in the open interval $(0,1)$. Let

$$
x_{n}=\frac{1}{2 n \pi}, \quad y_{n}=\frac{1}{2 n \pi+\frac{\pi}{2}} \quad \text { in }(0,1) ;
$$

then $x_{n}-y_{n} \rightarrow 0$ but $\left|h\left(x_{n}\right)-h\left(y_{n}\right)\right|=1$. So $h(x)$ is not uniformly continuous on $(0,1)$.
Theorem 4.11 (Uniform continuity on compact sets). Every continuous function on a compact set K is uniformly continuous on K.

Proof. Suppose f is not uniformly continuous on K. Then $\exists \epsilon_{0}>0 \exists x_{n}, y_{n} \in K$ such that $\left|x_{n}-y_{n}\right| \rightarrow 0$ but $\left|f\left(x_{n}\right)-f\left(y_{n}\right)\right| \geq \epsilon_{0}$. Since $\left(x_{n}\right)$ is in K and K is compact, by definition of compact sets, there exists a convergent subsequence $\left(x_{n_{k}}\right)$ converging to a number $x \in K$ as $n_{k} \rightarrow \infty$. We also have $\left(y_{n_{k}}\right) \rightarrow x$ from $\left|y_{n_{k}}-x\right| \leq\left|y_{n_{k}}-x_{n_{k}}\right|+\left|x_{n_{k}}-x\right| \rightarrow 0$ as $n_{k} \rightarrow \infty$. Hence, by continuity, $f\left(x_{n_{k}}\right) \rightarrow f(x)$ and $f\left(y_{n_{k}}\right) \rightarrow f(x)$ and so $f\left(x_{n_{k}}\right)-f\left(y_{n_{k}}\right) \rightarrow 0$; this contradicts with $\left|f\left(x_{n_{k}}\right)-f\left(y_{n_{k}}\right)\right| \geq \epsilon_{0}$.
Remark 4.3. By Theorem 4.11, the function $g(x)=x^{2}$ is uniformly continuous on all closed intervals $[a, b]$ but is not uniformly continuous on \mathbf{R} (see Example 4.7). So, a function may be uniformly continuous on one set but not uniformly continuous on another set.

Example 4.9. Let f be continuous on $[0, \infty)$ and uniformly continuous on $[b, \infty)$ for some $b>0$. Show that f is uniformly continuous on $[0, \infty)$.

Proof. Use the uniform continuity of f on both $[0, b]$ and $[b, \infty)$. Details are left as Homework!

4.4. The Intermediate Value Theorem

Theorem 4.12 (Intermediate Value Theorem (IVT)). Let $f:[a, b] \rightarrow \mathbf{R}$ be continuous and $f(a) \neq f(b)$. Assume L is a number between $f(a)$ and $f(b)$. Then there exists a number $c \in(a, b)$ where $f(c)=L$.

Proof. We discuss the proof based on the AoC; other different proofs are also given in the text. To fix the idea, we assume $f(a)<L<f(b)$ (the other case $f(b)<L<f(a)$ can be treated similarly). Consider the set

$$
K=\{x \in[a, b]: f(x) \leq L\} .
$$

Since $a \in K, K$ is nonempty; since $K \subseteq[a, b], K$ is bounded. Hence by the AoC, let $c=\sup K$. Since b is an upper-bound for K, we have $c \leq b$; since $a \in K$, we have $a \leq c$. Hence $c \in[a, b]$. We prove that $f(c)=L$. Suppose $f(c) \neq L$; then the following two cases would both reach a contradiction.

Case 1: $f(c)<L$. In this case, $c \neq b$ and hence $c<b$. Take $\epsilon=L-f(c)$ and $V_{\epsilon}(f(c))=$ $(f(c)-\epsilon, f(c)+\epsilon)$. By continuity at c, there exists a $\delta>0$ such that $f\left(V_{\delta}(c) \cap[a, b]\right) \subseteq$ $V_{\epsilon}(f(c))$. Take a number $\delta_{0}>0$ such that $\delta_{0}<\min \{b-c, \delta\}$. Then $c+\delta_{0} \in[a, b] \cap V_{\delta}(c)$ and so $f\left(c+\delta_{0}\right) \in V_{\epsilon}(f(c))$; that is, $f\left(c+\delta_{0}\right)<f(c)+\epsilon=L$. Hence $c+\delta_{0} \in K$, a contradiction with $c=\sup K$.

Case 2: $f(c)>L$. In this case, $c \neq a$ and hence $c>a$. Take $\epsilon=f(c)-L$ and $V_{\epsilon}(f(c))=(f(c)-\epsilon, f(c)+\epsilon)$. By continuity at c, there exists a $\delta>0$ such that $f\left(V_{\delta}(c) \cap\right.$ $[a, b]) \subseteq V_{\epsilon}(f(c))$. Take a number $\delta_{0}>0$ such that $\delta_{0}<\min \{c-a, \delta\}$; so $c-\delta_{0}>a$. Hence $\left[c-\delta_{0}, c\right] \subseteq[a, b] \cap V_{\delta}(c)$ and so $f(x) \in V_{\epsilon}(f(c))$ for all $x \in\left[c-\delta_{0}, c\right]$; that is,
$f(x)>f(c)-\epsilon=L$ and hence $x \notin K$ if $x \in\left[c-\delta_{0}, c\right]$. This implies for all $x \in K$ it must follow that $x<c-\delta_{0}$ and hence $c-\delta_{0}$ is an upper-bound for K, which, by $c=\sup K$, would imply that $c \leq c-\delta_{0}$, again a contradiction.

4.5. Sets of Discontinuity for Monotone Functions

One-sided Limits. Let $f:(a, b) \rightarrow \mathbf{R}$ and $c \in(a, b)$. We say $\lim _{x \rightarrow c^{+}} f(x)=L$ if, for each $\epsilon>0$, there exists a $\delta>0$ such that

$$
|f(x)-L|<\epsilon \quad \text { whenever } c<x<\min \{c+\delta, b\} .
$$

Similarly, we say $\lim _{x \rightarrow c^{-}} f(x)=L$ if, for each $\epsilon>0$, there exists a $\delta>0$ such that

$$
|f(x)-L|<\epsilon \quad \text { whenever } \max \{a, c-\delta\}<x<c .
$$

Theorem 4.13. Let $f:(a, b) \rightarrow \mathbf{R}$ and $c \in(a, b)$. Then $\lim _{x \rightarrow c} f(x)$ exists if and only if both $\lim _{x \rightarrow c^{+}} f(x)$ and $\lim _{x \rightarrow c^{-}} f(x)$ exist and are equal. In this case, all these limits are the same.

Type of Discontinuity. Let $f:(a, b) \rightarrow \mathbf{R}$ and $c \in(a, b)$. If f is discontinuous at c, then we have the following three cases:
(a) (Removable discontinuity) $\lim _{x \rightarrow c} f(x)$ exists but is not equal to $f(c)$.
(b) (Jump discontinuity) $\lim _{x \rightarrow c^{+}} f(x)$ and $\lim _{x \rightarrow c^{-}} f(x)$ both exist but are not equal.
(c) (Essential discontinuity) None of case (a) or (b) holds.

Definition 4.6. A function $f:(a, b) \rightarrow \mathbf{R}$ is said to be increasing on (a, b) (or decreasing on (a, b)) if $f(t) \leq f(s)$ (or $f(t) \geq f(s)$) for all $a<t<s<b$. A function $f:(a, b) \rightarrow \mathbf{R}$ is called monotone on (a, b) if it is either increasing on (a, b) or decreasing on (a, b).

Theorem 4.14. The set of discontinuity of a monotone function on (a, b) is at most countable.

Proof. Without loss of generality, assume $f:(a, b) \rightarrow \mathbf{R}$ is increasing. Let

$$
S=\{c \in(a, b): f \text { is discontinuous at } c\} .
$$

Assume $S \neq \emptyset$. We show that at every $c \in S$ the function f has a jump discontinuity. First show that both $\lim _{x \rightarrow c^{-}} f(x)$ and $\lim _{x \rightarrow c^{+}} f(x)$ exist and satisfy that

$$
\lim _{x \rightarrow c^{-}} f(x) \leq f(c) \leq \lim _{x \rightarrow c^{+}} f(x) .
$$

(Homework!) Therefore, if $\lim _{x \rightarrow c} f(x)$ exists, then $\lim _{x \rightarrow c} f(x)=f(c)$; that is f is continuous at c. So f can not have a removable discontinuity. Hence every point $c \in S$ is a jump discontinuity of f. We now define a function $h: S \rightarrow \mathbf{Q}$ as follows. Given $c \in S$, since $\lim _{x \rightarrow c^{-}} f(x)<\lim _{x \rightarrow c^{+}} f(x)$, there exists a rational number r between $\lim _{x \rightarrow c^{-}} f(x)$ and $\lim _{x \rightarrow c^{+}} f(x)$. Take any such rational number r and define $h(c)=r$. This defines a function $h: S \rightarrow \mathbf{Q}$. We show h is one-to-one. Let $c, d \in S$ and $c<d$. We show that $h(c)<h(d)$. This follows from the inequalities:

$$
h(c)<\lim _{x \rightarrow c^{+}} f(x) \leq \lim _{x \rightarrow d^{-}} f(x)<h(d) .
$$

(Homework!) Since $h: S \rightarrow \mathbf{Q}$ is one-to-one and \mathbf{Q} is countable, it follows that S is at most countable.

