
Chapter 4

Functional Limits and
Continuity

4.1. Functional Limits

Definition 4.1 (ε-δ definition of functional limits). Let f : A→ R, and let c be a limit
point of the domain A. We say the limit of f as x approaches c is a number L and write
limx→c f(x) = L provided that, for each ε > 0, there exists a δ > 0 such that whenever
0 < |x− c| < δ and x ∈ A it follows that |f(x)− L| < ε.

Note that the condition 0 < |x − c| is simply saying x 6= c. Therefore, as known from
Calculus, the limit value L has nothing to do with whether f is defined at c or not; even
f(c) is defined (meaning c ∈ A), L may not have any relation with it.

Example 4.1. (i) Let f(x) = 3x + 1. In this case the domain A of this formula-defined
function is considered to be all real numbers, that certainly makes sense of f(x). Show
limx→2 f(x) = 7.

Proof. Let ε > 0. We need to produce a δ > 0 with the property that |f(x)− 7| < ε holds
for all x satisfying 0 < |x− 2| < δ. The ending requirement is the inequality |f(x)− 7| < ε,
which can be rewritten as

|f(x)− 7| = |(3x+ 1)− 7| = |3x− 6| = 3|x− 2| < ε.

Hence the requirement |f(x) − 7| < ε is equivalent to |x − 2| < ε/3; that is, whenever
|x− 2| < ε/3, it follows that |f(x)− 7| < ε. Therefore, we can select simply δ = ε/3 > 0 to
satisfy the definition. �

(ii) Show limx→2 x
2 = 4.

Proof. Given ε > 0, our goal is to produce a δ > 0 such that |x2 − 4| < ε for all x with
0 < |x−2| < δ. As above the domain set A = R. We start to analyze the ending requirement
|x2 − 4| < ε, which can be rewritten as

|x2 − 4| = |x+ 2||x− 2| < ε.

Unlike the previous example, in front of |x − 2| there is a function |x + 2|, not simply a
constant number; we cannot divide by |x + 2| to simply select δ = ε/|x + 2| since this δ
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depends on x. The idea is to first choose one fixed δ to control the term |x+2|. For example,
let |x− 2| < 1 (with δ1 = 1). For all such x’s, we have −1 < x− 2 < 1 and hence 1 < x < 3
and so 3 < x+ 2 < 5; that is, |x+ 2| < 5. Hence, if |x− 2| < 1 then |x+ 2| < 5 and so

|x2 − 4| = |x+ 2||x− 2| ≤ 5|x− 2| (note that this inequality holds when |x− 2| < 1).

Therefore, for all such x’s, to make |x2 − 4| < ε, it suffices to require |x− 2| < ε/5 = δ2.

Now, choose δ = min{1, ε/5}. If 0 < |x − 2| < δ, then both |x − 2| < δ1 = 1 and
|x− 2| < δ2 = ε/5 hold and hence

|x2 − 4| = |x+ 2||x− 2| ≤ 5|x− 2| < 5× ε

5
= ε,

and the limit is proved. �

Topological Version of Functional Limits. Since the statement |f(x)−L| < ε is equiv-
alent to f(x) ∈ Vε(L) and the statement |x− c| < δ is equivalent to x ∈ Vδ(c) and hence the
statement 0 < |x − c| < δ and x ∈ A simply means x ∈ (Vδ(c) \ {c}) ∩ A, we can rephrase
the ε-δ definition above by using the topological terminologies (of neighborhoods).

Definition 4.2 (Topological Definition of Functional Limits). Let f : A → R, and
let c be a limit point of the domain A. We say limx→c f(x) = L provided that

∀ ε > 0 ∃ δ > 0, f(V̂δ(c) ∩A) ⊆ Vε(L),

where V̂δ(c) = Vδ(c) \ {c} denotes the punctured neighborhood of c.

Sequential Criterion for Functional Limits. Functional limits can be completely char-
acterized by the convergence of all related sequences.

Theorem 4.1 (Sequential Criterion for Functional Limits). Let f : A→ R and c be
a limit point of A. Then the following two conditions are equivalent:

(i) lim
x→c

f(x) = L.

(ii) For all sequences (xn) satisfying xn ∈ A, xn 6= c and (xn) → c, it follows that the
sequence (f(xn))→ L.

Proof. 1. First assume (i) and we prove (ii). Let (xn) satisfy xn ∈ A, xn 6= c and (xn)→ c.
Given each ε > 0, ∃ δ > 0 such that |f(x) − L| < δ for all x ∈ A with 0 < |x − c| < δ. For
this δ > 0, ∃N ∈ N such that |xn − c| < δ for all n ≥ N in N. Since xn 6= c, we have
0 < |xn − c| < δ for all n ≥ N and thus |f(xn)− L| < ε. This proves (f(xn))→ L.

2. We now assume (ii) and prove (i). Suppose lim
x→c

f(x) 6= L. Then ∃ ε0 > 0, xn ∈ A
with 0 < |xn − c| < 1/n but |f(xn)− L| ≥ ε0 for all n = 1, 2, · · · . (This is the negation of
lim
x→c

f(x) = L.) For this sequence (xn), by (ii), (f(xn))→ L, a contradiction to |f(xn)−L| ≥
ε0 for all n = 1, 2, · · · . �

Corollary 4.2 (Divergence Criterion for Functional Limits). Let f : A → R and c be a
limit point of A. If there exist two sequences (xn) and (yn) in A, with xn 6= c and yn 6= c,
satisfying the property

limxn = lim yn = c but lim f(xn) 6= lim f(yn),

then the functional limit limx→c f(x) does not exist.

Example 4.2. Show that limx→0 sin(1/x) does not exist.
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Proof. Let xn = 1/2nπ and yn = 1/(2nπ + π/2) for all n ∈ N. Then xn 6= 0 and yn 6= 0
and limxn = lim yn = 0. But sin(1/xn) = sin(2nπ) = 0 while sin(1/yn) = sin(2nπ+ π/2) =
sin(π/2) = 1. By the corollary above, the functional limit limx→0 sin(1/x) does not exist. �

Theorem 4.3 (Algebraic Limit Theorem for Functional Limits). Let f, g : A → R
and c be a limit point of A. Assume lim

x→c
f(x) = L and lim

x→c
g(x) = M exist. Then

(i) lim
x→c

[af(x) + bg(x)] = aL+ bM for all a, b ∈ R,

(ii) lim
x→c

[f(x)g(x)] = LM,

(iii) lim
x→c

[f(x)/g(x)] = L/M, provided M 6= 0.

4.2. Combinations of Continuous Functions

Definition 4.3 (Continuous Functions). Let f : A→ R and c ∈ A.
(i) We say f is continuous at a point c ∈ A if, for each ε > 0, there exists a δ > 0

such that whenever |x− c| < δ and x ∈ A it follows that |f(x)− f(c)| < ε.
If f is not continuous at c we say f is discontinuous at c.

(ii) We say f is a continuous function on A if it is continuous at every point in A.

Note that continuity at c is not defined if f(c) is not defined, i.e., if c /∈ A. If c ∈ A is
an isolated point of A, then f is always continuous at c since for some δ > 0 the only point
x satisfying |x − c| < δ and x ∈ A is x = c and hence the condition |f(x) − f(c)| = 0 < ε
always holds. If c ∈ A is a limit point of A, then continuity of f at c is simply equivalent to

lim
x→c

f(x) = f(c).

This is the most interesting case.

Theorem 4.4 (Characterizations of Continuity). Let f : A→ R and c ∈ A be a limit
point of A. Then the following conditions are equivalent:

(i) f is continuous at c.

(ii) lim
x→c

f(x) = f(c).

(iii) ∀ ε > 0 ∃ δ > 0, f(Vδ(c) ∩A) ⊆ Vε(f(c)).

(iv) Whenever xn ∈ A and (xn)→ c it follows that (f(xn))→ f(c).

Proof. (i), (ii), and (iii) are simply a different way to describe the definition of the con-
tinuity; the condition (iv) with xn 6= c would be already equivalent to the convergence
limx→c f(x) = f(c). Details are omitted. �

Corollary 4.5 (Criterion for Discontinuity). Let f : A→ R and c ∈ A be a limit point
of A. Then f is not continuous at c if and only if for some number ε0 > 0 and sequence
(xn) in A with (xn)→ c it follows that |f(xn)− f(c)| ≥ ε0 for all n ∈ N.

Proof. Use ¬(ii) ⇐⇒ ¬(iv). �

Theorem 4.6 (Algebraic Continuity Theorem). Let f, g : A → R be continuous at a
point c ∈ A. Then

(i) af(x) + bg(x) is continuous at c for all a, b ∈ R;

(ii) f(x)g(x) is continuous at c;

(iii) f(x)/g(x) is continuous at c, provided the quotient is well defined.
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Example 4.3. Polynomials are all continuous functions on R. Hence all rational functions
(quotients of polynomials) are continuous at points where the denominator is not zero.

Example 4.4. Let

g(x) =

{
x sin(1/x) if x 6= 0

0 if x = 0.

Then g is continuous at 0.

Proof. Note that |g(x)| ≤ |x| for all x ∈ R; this is clearly true if x = 0 and is also true if
x 6= 0 by the formula of g(x) since | sin θ| ≤ 1 for all θ. Given each ε > 0, let δ = ε. Then,
whenever |x− 0| < δ, since g(0) = 0,

|g(x)− g(0)| = |g(x)| ≤ |x| < δ = ε.

So g is continuous at 0. �

Example 4.5. Function f(x) =
√
x is continuous on A = {x ∈ R : x ≥ 0} = [0,∞). This

can be shown by the definition directly or using the sequential criterion.

Theorem 4.7 (Composition of Continuous Functions). Let f : A→ R and g : B → R,
where B ⊇ f(A) and so that the composition function g ◦ f : A → R is defined by
g ◦ f(x) = g(f(x)) for x ∈ A. Then, if f is continuous at a point c ∈ A and g is continuous
at f(c) ∈ B, g ◦ f is continuous at c ∈ A as well.

Proof. Given ε > 0, there exists a τ > 0 such that

|g(y)− g(f(c))| < ε ∀ y ∈ B, |y − f(c)| < τ.

With this τ > 0, there exists a δ > 0 such that

|f(x)− f(c)| < τ ∀ x ∈ A, |x− c| < δ.

Therefore, whenever x ∈ A and |x− c| < δ, it follows that f(x) ∈ B and |f(x)− f(c)| < τ ,
and hence

|g ◦ f(x)− g ◦ f(c)| = |g(f(x))− g(f(c))| < ε.

Hence, by definition, g ◦ f is continuous at c. �

4.3. Continuous Functions on Compact Sets and Uniform Continuity

Definition 4.4. A function f : A → R is said to be bounded on a set B ⊆ A if the set
f(B) is a bounded set. If f(A) is a bounded set, we say f : A→ R is a bounded function.

Theorem 4.8 (Preservation of Compact Sets). Let f : A→ R be continuous on A. If
K ⊆ A is a compact set, then f(K) is compact as well.

Proof. Given any sequence (yn) in f(K), we show that there exists a subsequence (ynk
)

converging to some limit y ∈ f(K). This will prove that f(K) is compact. Since yn ∈ f(K),
we have yn = f(xn) for some xn ∈ K. Now (xn) is sequence contained in K. Since K is
compact, there exists a subsequence (xnk

) converging to a limit x ∈ K. By the continuity,
(f(xnk

))→ f(x). Since ynk
= f(xnk

), we have (ynk
)→ y = f(x) ∈ f(K). This proves that

f(K) is compact. �
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Remark 4.1. In contrast to this theorem, continuous functions do not preserve bounded
sets, open sets or closed sets. Consider the following examples.

(i) f(x) = 1
x is continuous in (0, 1), but f is not bounded in (0, 1). This function also

maps the closed interval A = [1,∞) to the set f(A) = (0, 1], which is not closed.

(ii) f(x) = x2 maps the open set A = (−1, 1) to the set f(A) = [0, 1), which is not open.

Theorem 4.9 (Extreme Value Theorem). If f : K → R is continuous on a compact
set K ⊆ R, then f attains its maximum and minimum values; namely, there exist numbers
x∗, x

∗ ∈ K such that f(x∗) ≤ f(x) ≤ f(x∗) for all x ∈ K.

Proof. We only prove the maximum case. Let A = f(K). Then A is compact; hence A
is bounded and closed. Let M = supA. Then f(x) ≤ M for all x ∈ K. We now show
that there exists a number x∗ ∈ K such that f(x∗) = M, which proves that the maximum
is attained. Since M = supA, for each n ∈ N, there exists a number yn ∈ A such that
yn > M − 1

n (which just states that M − 1
n is not an upper-bound for A). Since yn ≤ M ,

this implies (yn) → M. Now, since yn ∈ A = f(K) and A is compact, by definition of
compact sets, (yn) has a convergent subsequence whose limit is in A, but this subsequence
also converges to M ; therefore, M ∈ A = f(K), which means that there exists a number
x∗ ∈ K such that M = f(x∗). �

Uniform Continuity.

Definition 4.5. A function f : A → R is said to be uniformly continuous on A if, for
every ε > 0, there exists a δ > 0 such that whenever x, y ∈ A and |x− y| < δ it follows that
|f(x)− f(y)| < ε.

Remark 4.2. We only talk about the uniform continuity of a function on a given set not
at a point. From the definition, we see that every uniformly continuous function on a set A
must be continuous at every point of A and so must be a continuous function on A.

Example 4.6. Show that f(x) = 3x+ 1 is uniformly continuous on R.

Proof. Since f(x) − f(y) = 3(x − y), given each ε > 0, letting δ = ε/3, it follows that
whenever |x− y| < δ,

|f(x)− f(y)| = 3|x− y| < 3δ = ε.

So f(x) = 3x+ 1 is uniformly continuous on R. �

Example 4.7. Is function g(x) = x2 uniformly continuous on R?

Solution. Let us suppose that g(x) = x2 is uniformly continuous on R. Then ∀ ε > 0 ∃ δ > 0
such that |g(x) − g(y)| < ε for all x, y ∈ R with |x − y| < δ. However, if we choose (large
numbers) x = N + δ/2 and y = N with N ∈ N and N > 2ε/δ, then

|g(x)− g(y)| = |x− y||x+ y| = δ

2
(2N +

δ

2
) > δN > 2ε,

a contradiction; therefore, g(x) = x2 is not uniformly continuous on R. �

By negating the definition of uniform continuity, we have the following criterion for
nonuniform continuity.

Theorem 4.10 (Sequential Criterion for Nonuniform Continuity). A function f : A→
R fails to be uniformly continuous on A if and only if there exist ε0 > 0 and two sequences
(xn) and (yn) in A satisfying |xn − yn| → 0 but |f(xn)− f(yn)| ≥ ε0.



6 4. Functional Limits and Continuity

Example 4.8. The function h(x) = sin(1/x) is continuous at every point in the open
interval (0, 1). Let

xn =
1

2nπ
, yn =

1

2nπ + π
2

in (0, 1);

then xn − yn → 0 but |h(xn)− h(yn)| = 1. So h(x) is not uniformly continuous on (0, 1).

Theorem 4.11 (Uniform continuity on compact sets). Every continuous function on
a compact set K is uniformly continuous on K.

Proof. Suppose f is not uniformly continuous on K. Then ∃ ε0 > 0∃xn, yn ∈ K such that
|xn − yn| → 0 but |f(xn)− f(yn)| ≥ ε0. Since (xn) is in K and K is compact, by definition
of compact sets, there exists a convergent subsequence (xnk

) converging to a number x ∈ K
as nk →∞. We also have (ynk

)→ x from |ynk
−x| ≤ |ynk

−xnk
|+ |xnk

−x| → 0 as nk →∞.
Hence, by continuity, f(xnk

) → f(x) and f(ynk
) → f(x) and so f(xnk

) − f(ynk
) → 0; this

contradicts with |f(xnk
)− f(ynk

)| ≥ ε0. �

Remark 4.3. By Theorem 4.11, the function g(x) = x2 is uniformly continuous on all closed
intervals [a, b] but is not uniformly continuous on R (see Example 4.7). So, a function may
be uniformly continuous on one set but not uniformly continuous on another set.

Example 4.9. Let f be continuous on [0,∞) and uniformly continuous on [b,∞) for some
b > 0. Show that f is uniformly continuous on [0,∞).

Proof. Use the uniform continuity of f on both [0, b] and [b,∞). Details are left as Home-
work! �

4.4. The Intermediate Value Theorem

Theorem 4.12 (Intermediate Value Theorem (IVT)). Let f : [a, b]→ R be continuous
and f(a) 6= f(b). Assume L is a number between f(a) and f(b). Then there exists a number
c ∈ (a, b) where f(c) = L.

Proof. We discuss the proof based on the AoC; other different proofs are also given in the
text. To fix the idea, we assume f(a) < L < f(b) (the other case f(b) < L < f(a) can be
treated similarly). Consider the set

K = {x ∈ [a, b] : f(x) ≤ L}.

Since a ∈ K, K is nonempty; since K ⊆ [a, b], K is bounded. Hence by the AoC, let
c = supK. Since b is an upper-bound for K, we have c ≤ b; since a ∈ K, we have a ≤ c.
Hence c ∈ [a, b]. We prove that f(c) = L. Suppose f(c) 6= L; then the following two cases
would both reach a contradiction.

Case 1: f(c) < L. In this case, c 6= b and hence c < b. Take ε = L− f(c) and Vε(f(c)) =
(f(c) − ε, f(c) + ε). By continuity at c, there exists a δ > 0 such that f(Vδ(c) ∩ [a, b]) ⊆
Vε(f(c)). Take a number δ0 > 0 such that δ0 < min{b− c, δ}. Then c+δ0 ∈ [a, b]∩Vδ(c) and
so f(c+ δ0) ∈ Vε(f(c)); that is, f(c+ δ0) < f(c) + ε = L. Hence c+ δ0 ∈ K, a contradiction
with c = supK.

Case 2: f(c) > L. In this case, c 6= a and hence c > a. Take ε = f(c) − L and
Vε(f(c)) = (f(c)− ε, f(c) + ε). By continuity at c, there exists a δ > 0 such that f(Vδ(c) ∩
[a, b]) ⊆ Vε(f(c)). Take a number δ0 > 0 such that δ0 < min{c − a, δ}; so c − δ0 > a.
Hence [c − δ0, c] ⊆ [a, b] ∩ Vδ(c) and so f(x) ∈ Vε(f(c)) for all x ∈ [c − δ0, c]; that is,
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f(x) > f(c) − ε = L and hence x /∈ K if x ∈ [c − δ0, c]. This implies for all x ∈ K it must
follow that x < c − δ0 and hence c − δ0 is an upper-bound for K, which, by c = supK,
would imply that c ≤ c− δ0, again a contradiction. �

4.5. Sets of Discontinuity for Monotone Functions

One-sided Limits. Let f : (a, b) → R and c ∈ (a, b). We say lim
x→c+

f(x) = L if, for each

ε > 0, there exists a δ > 0 such that

|f(x)− L| < ε whenever c < x < min{c+ δ, b}.
Similarly, we say lim

x→c−
f(x) = L if, for each ε > 0, there exists a δ > 0 such that

|f(x)− L| < ε whenever max{a, c− δ} < x < c.

Theorem 4.13. Let f : (a, b) → R and c ∈ (a, b). Then lim
x→c

f(x) exists if and only if both

lim
x→c+

f(x) and lim
x→c−

f(x) exist and are equal. In this case, all these limits are the same.

Type of Discontinuity. Let f : (a, b)→ R and c ∈ (a, b). If f is discontinuous at c, then
we have the following three cases:

(a) (Removable discontinuity) lim
x→c

f(x) exists but is not equal to f(c).

(b) (Jump discontinuity) lim
x→c+

f(x) and lim
x→c−

f(x) both exist but are not equal.

(c) (Essential discontinuity) None of case (a) or (b) holds.

Definition 4.6. A function f : (a, b)→ R is said to be increasing on (a, b) (or decreasing
on (a, b)) if f(t) ≤ f(s) (or f(t) ≥ f(s)) for all a < t < s < b. A function f : (a, b) → R is
called monotone on (a, b) if it is either increasing on (a, b) or decreasing on (a, b).

Theorem 4.14. The set of discontinuity of a monotone function on (a, b) is at most count-
able.

Proof. Without loss of generality, assume f : (a, b)→ R is increasing. Let

S = {c ∈ (a, b) : f is discontinuous at c}.
Assume S 6= ∅. We show that at every c ∈ S the function f has a jump discontinuity. First
show that both lim

x→c−
f(x) and lim

x→c+
f(x) exist and satisfy that

lim
x→c−

f(x) ≤ f(c) ≤ lim
x→c+

f(x).

(Homework!) Therefore, if lim
x→c

f(x) exists, then lim
x→c

f(x) = f(c); that is f is continuous

at c. So f can not have a removable discontinuity. Hence every point c ∈ S is a jump
discontinuity of f . We now define a function h : S → Q as follows. Given c ∈ S, since
lim
x→c−

f(x) < lim
x→c+

f(x), there exists a rational number r between lim
x→c−

f(x) and lim
x→c+

f(x).

Take any such rational number r and define h(c) = r. This defines a function h : S → Q.
We show h is one-to-one. Let c, d ∈ S and c < d. We show that h(c) < h(d). This follows
from the inequalities:

h(c) < lim
x→c+

f(x) ≤ lim
x→d−

f(x) < h(d).

(Homework!) Since h : S → Q is one-to-one and Q is countable, it follows that S is at
most countable. �


