Chapter 8

Basic Topology of R

3.1. Open and Closed Sets

We have already defined the e-neighborhood V. (a) of a number a € R; namely, V(a) =
(a — €,a + €), the open interval around a.

Definition 3.1. (i) Let a € A. We say a is an interior point of A if there exists a
neighborhood V,(a) of a that is completely contained in A.

(ii) A set O C R is said to be open if every element a € O is an interior point of O.

Open intervals (a,b), (a,00) and (—o0, b) are open sets in R. However, intervals of the
form [a, b], (a,b] or [a,b) are not open sets.
Theorem 3.1. (i) If On C R is open for each o € I, so is the union | J,c; Oa-

(ii) If O1,04,- -, Oy, are open sets, so is the intersection [, O;.

Part (ii) may be false for infinite number of open sets:
~ 1 1
(-1-=1+=)=[-1,1].
; i i
=1
Proof. To prove (i), let O = |J,c; Oa- Take any point a € O. Then a € O, for some a € 1.
For this «, since O, is open, there exists a neighborhood V,(a) C O, since a € O,. Clearly
this neighborhood V;(a) is also contained in the union O. This proves O is open.

For (ii), let O = N 0;. Let a € O. Then a € O; for each ¢ = 1,2,--- ,n. Since

O; is open, there exists a neighborhood V,(a) C O; for i = 1,2,--- ,n, where ¢; > 0.
Let € = min{e;, €2, -+ ,€,}. Then € > 0 and Vi(a) C V,,(a). Hence Vi(a) C O; for all
i=1,2,---,n. S0 Ve(a) €N ,0; = O. Hence O is open. O

Definition 3.2. (i) A point z is called a limit point of a set A if, for every e-neighborhood
Ve(x) of x, there exists a point y # x such that y € V() N A, that is,

Ve>0, (Vix)\{z})nA=0.

A limit point is also called a cluster point or an accumulation point. The set of all
limit points of A will be denoted by L(A).

(ii) A point a € A is called an isolated point of A if a is not a limit point of A.
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(iii) A set F is called a closed set if it contains all its limit points; that is, L(F') C F.

Theorem 3.2. A point x is a limit point of set A if and only if there exists a sequence (a)
contained in A such that a,, # x for alln € N and (a,) — .

Proof. Assume 7 is a limit point of A. For each n € N, there exists an element a,, € V}/,,(7)
such that a,, € A and a,, # x. This sequence (a,,) has the required property.

Now assume (ay,) is a sequence such that a,, € A, a, # x for all n € N and (a,) — =.
Given any e > 0, there exists an N € N such that |axy — x| < €. Hence ay € Vi(z) and
clearly, ay # x. By the definition, z is a limit of A. O

Theorem 3.3. A set F' is closed if and only if the limit of every Cauchy sequence (or
convergent sequence) contained in F' is also an element of F.

Proof. Let F be closed. Let (z,,) be a Cauchy sequence with x,, € F. By the CC, (z,,) — x.
We show z € F. Suppose not: x ¢ F. Then z, # x for all n € N. By the theorem above,
is a limit point of F' and hence x € F, a contradiction. So z € F.

Now assume that the limit of every Cauchy sequence (or convergent sequence) contained
in F is also an element of F'. We show F' is closed. Let x be any limit point of F. Then, by
the theorem above, there exists a sequence (z,,) with z,, € F, x,, # z, such that (x,) — x.
This implies (x,,) is a Cauchy sequence in F. Hence x € F. O

ExaMPLE 3.1. (i) Each element in the set A = {1 : n € N} is an isolated point of A. Also
0 is the only limit point of A. Since 0 ¢ A, this set A is not closed.

(ii) Closed intervals [a, c0), (—o0, b] and [a, b] are closed sets.
(iii) The interval [a,b) = {z € R : a <z < b} is neither open nor closed.
(iv) Every z € R is a limit point of Q; this follows from the density of Q in R.

Definition 3.3. The closure of a set A is the union of A and the set L(A) of all limit
points of A. The closure of A is usually denoted by A; namely A = AU L(A).

Theorem 3.4. For any set A, the closure A is a closed set and is the smallest closed set
containing A.

Proof. 1. We first prove A is closed. Let a be a limit point of A. We show a € A. If a € A
then a € A. So assume a ¢ A. Since a is a limit point of A, there exists a sequence (z,)
with (2,) — a and z,, € A and x,, # a for all n € N. For any n € N, if z,, € A define
Yn = T, and hence y, # a; if ¥, ¢ A, since z,, € A, then z,, € L(A), and in this case,
define y,, € A such that 0 < |y, — z,| < |z, — a| and hence y,, # a; such a y, exists from
the definition of limit point x,, with € = |z, —a| > 0. Therefore, we obtain a sequence (y)
with the property: y, € A, y, # a and

Y — a| < |yn — xn| + |20 —a| < 2|2, —a] Vn e N.

Hence y, € A, (y,) — a and y,, # a for all n € N. By the theorem above, this shows that
a is a limit point of A; hence a € A. We have proved that A is closed.

2. Clearly A contains A. To show that A is the smallest closed set containing A, assume
B is any closed set containing A and we want to show A C B. Let 2 € A and we show
x € B.If v € Athen x € B. Assume z € L(A). Then 3z, € A, z,, # x such that (z,) — =.
Since x,, € B, this shows that x is also a limit point of B (this actually shows that if A C B,
then L(A) C L(B)). Since B is closed, we have z € B. So A C B. O
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Corollary 3.5. If A C B, then A C B.

Proof. Let A C B. Then A C B. So B is a closed set containing A; hence, by Theorem
3.4, AC B. O

Complements. As above, given a set A C R, denote its complement A° by
A=R\A={zeR: z ¢ A}.

Theorem 3.6. A set O is open if and only if its complement O¢ = R\ O is closed. Likewise,
a set F' is closed if and only if its complement F° =R\ F is open.

Proof. 1. Assume O is open; we show that F' = O¢ is closed. Let = € L(F'). Suppose
x & F. Then z € O and hence V.(z) C O for some € > 0. This implies that V.(x) N F = 0,
contradicting = € L(F).

2. Assume F' is closed; we show that O = F¢ is open. Let a € O; then a ¢ F. Since F
is closed, a ¢ L(F); hence Je > 0 such that (Vi(a) \ {a}) N F = 0. Since a ¢ F, it follows
that Ve(a) N F = ) and hence V(a) C F° = O. Hence O is open. O

Theorem 3.7. (i) The union of a finite collection of closed sets is closed.

(ii) The intersection of an arbitrary collection of closed sets is closed.

Proof. Use De Morgan’s Laws and Theorem 3.1. O

3.2. Compact Sets

Definition 3.4. A set K C R is called compact if every sequence in K has a subsequence
that converges to a limit that is also in K.

Theorem 3.8 (Heine-Borel Theorem (HBT)). A set K C R is compact if and only if
K is bounded and closed.

Proof. First let K be compact and we show that K is bounded and closed. Assume first,
for contradiction, K is not bounded. This means that, for every number n € N, there
exists a z, € K such that |z,| > n. Now, since K is compact, the sequence (z,) in K
has a subsequence, say (z,, ), converging to a limit z € K. However, since |z, | > n > k,
this convergent subsequence is not bounded, contradicting the result that every convergent
sequence be bounded. So K must be bounded. Now we show K is closed; that is, K
contains all its limit points. Assume z is a limit point of K. Then, there exists a sequence
(zp), with z, € K and z, # x, such that (z,) — x. Since K is compact, (x,) has a
convergent subsequence whose limit is in K; however, since (x,) converges, any convergent
subsequence must have the same limit as (x,), which is z. So x € K. Hence K is closed.

The proof of the converse statement is easier. For example, assume K is closed and
bounded. Let (z,) be a sequence in K. We show that (x,) has a subsequence converging
to some number in K. Since (z,) is bounded, by the BW, there exists a subsequence (zy,,)
converging to some number z € R. Then (z,,) is a Cauchy sequence in K. Since K is
closed, by Theorem 3.3 above, every Cauchy sequence in K converges to some number in
K; hence x € K. By the definition of compact sets, K is compact. O

ExaMpPLE 3.2. Let K C R be compact. Show that both sup K and inf K are in K; that is,
max K and min K both exist.
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Proof. Exercises! O

Theorem 3.9. If K1 O Ko O K3 O --- is a nested sequence of nonempty compact sets,
then the intersection N;2_ Ky, is nonempty.

Proof. For each n € N, since K,, is nonempty, select an element z,, € K,,. Since z,, € K3
and K is compact, it follows that (z,) has a subsequence (x,, ) converging to some x € Kj.
We show that this z in fact belongs to every K, for n € N. Given a particular ng € N,
since ny > k, we have ny > ng for all £ > ny. We select a subsequence of (z,, ) consisting of
terms with k > ng; then this subsequence also converges to x and each of its terms is also
in the compact set K,,,. Hence the limit x € K,,,. But ng is arbitrary; so x € N72, K,, and
hence N2, K,, # . O



