Chapter 3

Basic Topology of R

3.1. Open and Closed Sets

We have already defined the ϵ -neighborhood $V_{\epsilon}(a)$ of a number $a \in \mathbf{R}$; namely, $V_{\epsilon}(a) = (a - \epsilon, a + \epsilon)$, the open interval around a.

Definition 3.1. (i) Let $a \in A$. We say a is an **interior point** of A if there exists a neighborhood $V_{\epsilon}(a)$ of a that is completely contained in A.

(ii) A set $O \subseteq \mathbf{R}$ is said to be **open** if every element $a \in O$ is an interior point of O.

Open intervals $(a, b), (a, \infty)$ and $(-\infty, b)$ are open sets in **R**. However, intervals of the form [a, b], (a, b] or [a, b) are not open sets.

Theorem 3.1. (i) If $O_{\alpha} \subseteq \mathbf{R}$ is open for each $\alpha \in I$, so is the union $\bigcup_{\alpha \in I} O_{\alpha}$. (ii) If O_1, O_2, \dots, O_n are open sets, so is the intersection $\bigcap_{i=1}^n O_i$.

Part (ii) may be false for infinite number of open sets:

$$\bigcap_{i=1}^{\infty} \left(-1 - \frac{1}{i}, 1 + \frac{1}{i} \right) = [-1, 1].$$

Proof. To prove (i), let $O = \bigcup_{\alpha \in I} O_{\alpha}$. Take any point $a \in O$. Then $a \in O_{\alpha}$ for some $\alpha \in I$. For this α , since O_{α} is open, there exists a neighborhood $V_{\epsilon}(a) \subseteq O_{\alpha}$ since $a \in O_{\alpha}$. Clearly this neighborhood $V_{\epsilon}(a)$ is also contained in the union O. This proves O is open.

For (ii), let $O = \bigcap_{i=1}^{n} O_i$. Let $a \in O$. Then $a \in O_i$ for each $i = 1, 2, \dots, n$. Since O_i is open, there exists a neighborhood $V_{\epsilon_i}(a) \subseteq O_i$ for $i = 1, 2, \dots, n$, where $\epsilon_i > 0$. Let $\epsilon = \min\{\epsilon_1, \epsilon_2, \dots, \epsilon_n\}$. Then $\epsilon > 0$ and $V_{\epsilon}(a) \subseteq V_{\epsilon_i}(a)$. Hence $V_{\epsilon}(a) \subseteq O_i$ for all $i = 1, 2, \dots, n$. So $V_{\epsilon}(a) \subseteq \bigcap_{i=1}^{n} O_i = O$. Hence O is open. \Box

Definition 3.2. (i) A point x is called a **limit point** of a set A if, for every ϵ -neighborhood $V_{\epsilon}(x)$ of x, there exists a point $y \neq x$ such that $y \in V_{\epsilon}(x) \cap A$, that is,

$$\forall \epsilon > 0, \quad (V_{\epsilon}(x) \setminus \{x\}) \cap A \neq \emptyset.$$

A limit point is also called a **cluster point** or an **accumulation point**. The set of all limit points of A will be denoted by L(A).

(ii) A point $a \in A$ is called an **isolated point** of A if a is not a limit point of A.

(iii) A set F is called a closed set if it contains all its limit points; that is, $L(F) \subseteq F$.

Theorem 3.2. A point x is a limit point of set A if and only if there exists a sequence (a_n) contained in A such that $a_n \neq x$ for all $n \in \mathbf{N}$ and $(a_n) \to x$.

Proof. Assume x is a limit point of A. For each $n \in \mathbf{N}$, there exists an element $a_n \in V_{1/n}(x)$ such that $a_n \in A$ and $a_n \neq x$. This sequence (a_n) has the required property.

Now assume (a_n) is a sequence such that $a_n \in A$, $a_n \neq x$ for all $n \in \mathbb{N}$ and $(a_n) \to x$. Given any $\epsilon > 0$, there exists an $N \in \mathbb{N}$ such that $|a_N - x| < \epsilon$. Hence $a_N \in V_{\epsilon}(x)$ and clearly, $a_N \neq x$. By the definition, x is a limit of A.

Theorem 3.3. A set F is closed if and only if the limit of every Cauchy sequence (or convergent sequence) contained in F is also an element of F.

Proof. Let F be closed. Let (x_n) be a Cauchy sequence with $x_n \in F$. By the CC, $(x_n) \to x$. We show $x \in F$. Suppose not: $x \notin F$. Then $x_n \neq x$ for all $n \in \mathbb{N}$. By the theorem above, x is a limit point of F and hence $x \in F$, a contradiction. So $x \in F$.

Now assume that the limit of every Cauchy sequence (or convergent sequence) contained in F is also an element of F. We show F is closed. Let x be any limit point of F. Then, by the theorem above, there exists a sequence (x_n) with $x_n \in F$, $x_n \neq x$, such that $(x_n) \rightarrow x$. This implies (x_n) is a Cauchy sequence in F. Hence $x \in F$.

EXAMPLE 3.1. (i) Each element in the set $A = \{\frac{1}{n} : n \in \mathbb{N}\}$ is an isolated point of A. Also 0 is the *only* limit point of A. Since $0 \notin A$, this set A is not closed.

- (ii) Closed intervals $[a, \infty), (-\infty, b]$ and [a, b] are closed sets.
- (iii) The interval $[a, b) = \{x \in \mathbf{R} : a \le x < b\}$ is neither open nor closed.
- (iv) Every $x \in \mathbf{R}$ is a limit point of \mathbf{Q} ; this follows from the density of \mathbf{Q} in \mathbf{R} .

Definition 3.3. The closure of a set A is the union of A and the set L(A) of all limit points of A. The closure of A is usually denoted by \overline{A} ; namely $\overline{A} = A \cup L(A)$.

Theorem 3.4. For any set A, the closure \overline{A} is a closed set and is the smallest closed set containing A.

Proof. 1. We first prove A is closed. Let a be a limit point of A. We show $a \in A$. If $a \in A$ then $a \in \overline{A}$. So assume $a \notin A$. Since a is a limit point of \overline{A} , there exists a sequence (x_n) with $(x_n) \to a$ and $x_n \in \overline{A}$ and $x_n \neq a$ for all $n \in \mathbb{N}$. For any $n \in \mathbb{N}$, if $x_n \in A$ define $y_n = x_n$ and hence $y_n \neq a$; if $x_n \notin A$, since $x_n \in \overline{A}$, then $x_n \in L(A)$, and in this case, define $y_n \in A$ such that $0 < |y_n - x_n| < |x_n - a|$ and hence $y_n \neq a$; such a y_n exists from the definition of limit point x_n with $\epsilon = |x_n - a| > 0$. Therefore, we obtain a sequence (y_n) with the property: $y_n \in A$, $y_n \neq a$ and

$$|y_n - a| \le |y_n - x_n| + |x_n - a| \le 2|x_n - a| \quad \forall n \in \mathbf{N}.$$

Hence $y_n \in A$, $(y_n) \to a$ and $y_n \neq a$ for all $n \in \mathbb{N}$. By the theorem above, this shows that a is a limit point of A; hence $a \in \overline{A}$. We have proved that \overline{A} is closed.

2. Clearly \overline{A} contains A. To show that \overline{A} is the smallest closed set containing A, assume B is any closed set containing A and we want to show $\overline{A} \subseteq B$. Let $x \in \overline{A}$ and we show $x \in B$. If $x \in A$ then $x \in B$. Assume $x \in L(A)$. Then $\exists x_n \in A, x_n \neq x$ such that $(x_n) \to x$. Since $x_n \in B$, this shows that x is also a limit point of B (this actually shows that if $A \subseteq B$, then $L(A) \subseteq L(B)$). Since B is closed, we have $x \in B$. So $\overline{A} \subseteq B$.

Corollary 3.5. If $A \subseteq B$, then $\overline{A} \subseteq \overline{B}$.

Proof. Let $A \subseteq B$. Then $A \subseteq \overline{B}$. So \overline{B} is a closed set containing A; hence, by Theorem 3.4, $\overline{A} \subseteq \overline{B}$.

Complements. As above, given a set $A \subseteq \mathbf{R}$, denote its **complement** A^c by

$$A^c = \mathbf{R} \setminus A = \{ x \in \mathbf{R} : x \notin A \}.$$

Theorem 3.6. A set O is open if and only if its complement $O^c = \mathbf{R} \setminus O$ is closed. Likewise, a set F is closed if and only if its complement $F^c = \mathbf{R} \setminus F$ is open.

Proof. 1. Assume O is open; we show that $F = O^c$ is closed. Let $x \in L(F)$. Suppose $x \notin F$. Then $x \in O$ and hence $V_{\epsilon}(x) \subset O$ for some $\epsilon > 0$. This implies that $V_{\epsilon}(x) \cap F = \emptyset$, contradicting $x \in L(F)$.

2. Assume F is closed; we show that $O = F^c$ is open. Let $a \in O$; then $a \notin F$. Since F is closed, $a \notin L(F)$; hence $\exists \epsilon > 0$ such that $(V_{\epsilon}(a) \setminus \{a\}) \cap F = \emptyset$. Since $a \notin F$, it follows that $V_{\epsilon}(a) \cap F = \emptyset$ and hence $V_{\epsilon}(a) \subset F^c = O$. Hence O is open. \Box

Theorem 3.7. (i) The union of a finite collection of closed sets is closed.

(ii) The intersection of an arbitrary collection of closed sets is closed.

Proof. Use **De Morgan's Laws** and Theorem 3.1.

3.2. Compact Sets

Definition 3.4. A set $K \subseteq \mathbf{R}$ is called **compact** if every sequence in K has a subsequence that converges to a limit that is also in K.

Theorem 3.8 (Heine-Borel Theorem (HBT)). A set $K \subseteq \mathbb{R}$ is compact if and only if K is bounded and closed.

Proof. First let K be compact and we show that K is bounded and closed. Assume first, for contradiction, K is not bounded. This means that, for every number $n \in \mathbb{N}$, there exists a $x_n \in K$ such that $|x_n| > n$. Now, since K is compact, the sequence (x_n) in K has a subsequence, say (x_{n_k}) , converging to a limit $x \in K$. However, since $|x_{n_k}| > n_k \ge k$, this convergent subsequence is not bounded, contradicting the result that every convergent sequence be bounded. So K must be bounded. Now we show K is closed; that is, K contains all its limit points. Assume x is a limit point of K. Then, there exists a sequence (x_n) , with $x_n \in K$ and $x_n \neq x$, such that $(x_n) \to x$. Since K is compact, (x_n) has a convergent subsequence whose limit is in K; however, since (x_n) converges, any convergent subsequence must have the same limit as (x_n) , which is x. So $x \in K$. Hence K is closed.

The proof of the converse statement is easier. For example, assume K is closed and bounded. Let (x_n) be a sequence in K. We show that (x_n) has a subsequence converging to some number in K. Since (x_n) is bounded, by the BW, there exists a subsequence (x_{n_k}) converging to some number $x \in \mathbf{R}$. Then (x_{n_k}) is a Cauchy sequence in K. Since K is closed, by Theorem 3.3 above, every Cauchy sequence in K converges to some number in K; hence $x \in K$. By the definition of compact sets, K is compact.

EXAMPLE 3.2. Let $K \subseteq \mathbf{R}$ be compact. Show that both $\sup K$ and $\inf K$ are in K; that is, $\max K$ and $\min K$ both exist.

Proof. Exercises!

Theorem 3.9. If $K_1 \supseteq K_2 \supseteq K_3 \supseteq \cdots$ is a nested sequence of nonempty compact sets, then the intersection $\bigcap_{n=1}^{\infty} K_n$ is nonempty.

Proof. For each $n \in \mathbf{N}$, since K_n is nonempty, select an element $x_n \in K_n$. Since $x_n \in K_1$ and K_1 is compact, it follows that (x_n) has a subsequence (x_{n_k}) converging to some $x \in K_1$. We show that this x in fact belongs to every K_n for $n \in \mathbf{N}$. Given a particular $n_0 \in \mathbf{N}$, since $n_k \geq k$, we have $n_k \geq n_0$ for all $k \geq n_0$. We select a subsequence of (x_{n_k}) consisting of terms with $k \geq n_0$; then this subsequence also converges to x and each of its terms is also in the compact set K_{n_0} . Hence the limit $x \in K_{n_0}$. But n_0 is arbitrary; so $x \in \bigcap_{n=1}^{\infty} K_n$ and hence $\bigcap_{n=1}^{\infty} K_n \neq \emptyset$.