
Chapter 3

Basic Topology of R

3.1. Open and Closed Sets

We have already defined the ε-neighborhood Vε(a) of a number a ∈ R; namely, Vε(a) =
(a− ε, a+ ε), the open interval around a.

Definition 3.1. (i) Let a ∈ A. We say a is an interior point of A if there exists a
neighborhood Vε(a) of a that is completely contained in A.

(ii) A set O ⊆ R is said to be open if every element a ∈ O is an interior point of O.

Open intervals (a, b), (a,∞) and (−∞, b) are open sets in R. However, intervals of the
form [a, b], (a, b] or [a, b) are not open sets.

Theorem 3.1. (i) If Oα ⊆ R is open for each α ∈ I, so is the union
⋃
α∈I Oα.

(ii) If O1, O2, · · · , On are open sets, so is the intersection
⋂n
i=1Oi.

Part (ii) may be false for infinite number of open sets:

∞⋂
i=1

(
−1− 1

i
, 1 +

1

i

)
= [−1, 1].

Proof. To prove (i), let O =
⋃
α∈I Oα. Take any point a ∈ O. Then a ∈ Oα for some α ∈ I.

For this α, since Oα is open, there exists a neighborhood Vε(a) ⊆ Oα since a ∈ Oα. Clearly
this neighborhood Vε(a) is also contained in the union O. This proves O is open.

For (ii), let O =
⋂n
i=1Oi. Let a ∈ O. Then a ∈ Oi for each i = 1, 2, · · · , n. Since

Oi is open, there exists a neighborhood Vεi(a) ⊆ Oi for i = 1, 2, · · · , n, where εi > 0.
Let ε = min{ε1, ε2, · · · , εn}. Then ε > 0 and Vε(a) ⊆ Vεi(a). Hence Vε(a) ⊆ Oi for all
i = 1, 2, · · · , n. So Vε(a) ⊆ ∩ni=1Oi = O. Hence O is open. �

Definition 3.2. (i) A point x is called a limit point of a set A if, for every ε-neighborhood
Vε(x) of x, there exists a point y 6= x such that y ∈ Vε(x) ∩A, that is,

∀ ε > 0, (Vε(x) \ {x}) ∩A 6= ∅.

A limit point is also called a cluster point or an accumulation point. The set of all
limit points of A will be denoted by L(A).

(ii) A point a ∈ A is called an isolated point of A if a is not a limit point of A.
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(iii) A set F is called a closed set if it contains all its limit points; that is, L(F ) ⊆ F.

Theorem 3.2. A point x is a limit point of set A if and only if there exists a sequence (an)
contained in A such that an 6= x for all n ∈ N and (an)→ x.

Proof. Assume x is a limit point of A. For each n ∈ N, there exists an element an ∈ V1/n(x)
such that an ∈ A and an 6= x. This sequence (an) has the required property.

Now assume (an) is a sequence such that an ∈ A, an 6= x for all n ∈ N and (an) → x.
Given any ε > 0, there exists an N ∈ N such that |aN − x| < ε. Hence aN ∈ Vε(x) and
clearly, aN 6= x. By the definition, x is a limit of A. �

Theorem 3.3. A set F is closed if and only if the limit of every Cauchy sequence (or
convergent sequence) contained in F is also an element of F .

Proof. Let F be closed. Let (xn) be a Cauchy sequence with xn ∈ F. By the CC, (xn)→ x.
We show x ∈ F. Suppose not: x /∈ F. Then xn 6= x for all n ∈ N. By the theorem above, x
is a limit point of F and hence x ∈ F, a contradiction. So x ∈ F.

Now assume that the limit of every Cauchy sequence (or convergent sequence) contained
in F is also an element of F . We show F is closed. Let x be any limit point of F . Then, by
the theorem above, there exists a sequence (xn) with xn ∈ F , xn 6= x, such that (xn)→ x.
This implies (xn) is a Cauchy sequence in F . Hence x ∈ F. �

Example 3.1. (i) Each element in the set A = { 1n : n ∈ N} is an isolated point of A. Also
0 is the only limit point of A. Since 0 /∈ A, this set A is not closed.

(ii) Closed intervals [a,∞), (−∞, b] and [a, b] are closed sets.

(iii) The interval [a, b) = {x ∈ R : a ≤ x < b} is neither open nor closed.

(iv) Every x ∈ R is a limit point of Q; this follows from the density of Q in R.

Definition 3.3. The closure of a set A is the union of A and the set L(A) of all limit
points of A. The closure of A is usually denoted by Ā; namely Ā = A ∪ L(A).

Theorem 3.4. For any set A, the closure Ā is a closed set and is the smallest closed set
containing A.

Proof. 1. We first prove Ā is closed. Let a be a limit point of Ā. We show a ∈ Ā. If a ∈ A
then a ∈ Ā. So assume a /∈ A. Since a is a limit point of Ā, there exists a sequence (xn)
with (xn) → a and xn ∈ Ā and xn 6= a for all n ∈ N. For any n ∈ N, if xn ∈ A define
yn = xn and hence yn 6= a; if xn /∈ A, since xn ∈ Ā, then xn ∈ L(A), and in this case,
define yn ∈ A such that 0 < |yn − xn| < |xn − a| and hence yn 6= a; such a yn exists from
the definition of limit point xn with ε = |xn − a| > 0. Therefore, we obtain a sequence (yn)
with the property: yn ∈ A, yn 6= a and

|yn − a| ≤ |yn − xn|+ |xn − a| ≤ 2|xn − a| ∀n ∈ N.

Hence yn ∈ A, (yn)→ a and yn 6= a for all n ∈ N. By the theorem above, this shows that
a is a limit point of A; hence a ∈ Ā. We have proved that Ā is closed.

2. Clearly Ā contains A. To show that Ā is the smallest closed set containing A, assume
B is any closed set containing A and we want to show Ā ⊆ B. Let x ∈ Ā and we show
x ∈ B. If x ∈ A then x ∈ B. Assume x ∈ L(A). Then ∃xn ∈ A, xn 6= x such that (xn)→ x.
Since xn ∈ B, this shows that x is also a limit point of B (this actually shows that if A ⊆ B,
then L(A) ⊆ L(B)). Since B is closed, we have x ∈ B. So Ā ⊆ B. �
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Corollary 3.5. If A ⊆ B, then Ā ⊆ B̄.

Proof. Let A ⊆ B. Then A ⊆ B̄. So B̄ is a closed set containing A; hence, by Theorem
3.4, Ā ⊆ B̄. �

Complements. As above, given a set A ⊆ R, denote its complement Ac by

Ac = R \A = {x ∈ R : x /∈ A}.

Theorem 3.6. A set O is open if and only if its complement Oc = R\O is closed. Likewise,
a set F is closed if and only if its complement F c = R \ F is open.

Proof. 1. Assume O is open; we show that F = Oc is closed. Let x ∈ L(F ). Suppose
x 6∈ F. Then x ∈ O and hence Vε(x) ⊂ O for some ε > 0. This implies that Vε(x) ∩ F = ∅,
contradicting x ∈ L(F ).

2. Assume F is closed; we show that O = F c is open. Let a ∈ O; then a 6∈ F. Since F
is closed, a 6∈ L(F ); hence ∃ ε > 0 such that (Vε(a) \ {a}) ∩ F = ∅. Since a 6∈ F , it follows
that Vε(a) ∩ F = ∅ and hence Vε(a) ⊂ F c = O. Hence O is open. �

Theorem 3.7. (i) The union of a finite collection of closed sets is closed.

(ii) The intersection of an arbitrary collection of closed sets is closed.

Proof. Use De Morgan’s Laws and Theorem 3.1. �

3.2. Compact Sets

Definition 3.4. A set K ⊆ R is called compact if every sequence in K has a subsequence
that converges to a limit that is also in K.

Theorem 3.8 (Heine-Borel Theorem (HBT)). A set K ⊆ R is compact if and only if
K is bounded and closed.

Proof. First let K be compact and we show that K is bounded and closed. Assume first,
for contradiction, K is not bounded. This means that, for every number n ∈ N, there
exists a xn ∈ K such that |xn| > n. Now, since K is compact, the sequence (xn) in K
has a subsequence, say (xnk

), converging to a limit x ∈ K. However, since |xnk
| > nk ≥ k,

this convergent subsequence is not bounded, contradicting the result that every convergent
sequence be bounded. So K must be bounded. Now we show K is closed; that is, K
contains all its limit points. Assume x is a limit point of K. Then, there exists a sequence
(xn), with xn ∈ K and xn 6= x, such that (xn) → x. Since K is compact, (xn) has a
convergent subsequence whose limit is in K; however, since (xn) converges, any convergent
subsequence must have the same limit as (xn), which is x. So x ∈ K. Hence K is closed.

The proof of the converse statement is easier. For example, assume K is closed and
bounded. Let (xn) be a sequence in K. We show that (xn) has a subsequence converging
to some number in K. Since (xn) is bounded, by the BW, there exists a subsequence (xnk

)
converging to some number x ∈ R. Then (xnk

) is a Cauchy sequence in K. Since K is
closed, by Theorem 3.3 above, every Cauchy sequence in K converges to some number in
K; hence x ∈ K. By the definition of compact sets, K is compact. �

Example 3.2. Let K ⊆ R be compact. Show that both supK and inf K are in K; that is,
maxK and minK both exist.
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Proof. Exercises! �

Theorem 3.9. If K1 ⊇ K2 ⊇ K3 ⊇ · · · is a nested sequence of nonempty compact sets,
then the intersection ∩∞n=1Kn is nonempty.

Proof. For each n ∈ N, since Kn is nonempty, select an element xn ∈ Kn. Since xn ∈ K1

and K1 is compact, it follows that (xn) has a subsequence (xnk
) converging to some x ∈ K1.

We show that this x in fact belongs to every Kn for n ∈ N. Given a particular n0 ∈ N,
since nk ≥ k, we have nk ≥ n0 for all k ≥ n0. We select a subsequence of (xnk

) consisting of
terms with k ≥ n0; then this subsequence also converges to x and each of its terms is also
in the compact set Kn0 . Hence the limit x ∈ Kn0 . But n0 is arbitrary; so x ∈ ∩∞n=1Kn and
hence ∩∞n=1Kn 6= ∅. �


