
Chapter 2

Sequences and Series

2.1. The Limit of a Sequence

Definition 2.1. A sequence is a function whose domain is N. If this function is denoted by
f , then the values f(n) (n ∈ N) determine the sequence uniquely, and vise-versa. Therefore,
a sequence is usually denoted by

(a1, a2, a3, a4, · · · ) or (an)∞n=1,

where an = f(n) for n ∈ N.

Throughout this course we only study sequences of real numbers; namely functions
f : N→ R.

Example 2.1. Each of the following are common ways to describe a sequence.

(i) (1, 12 ,
1
3 ,

1
4 , · · · ),

(ii) ( n
n+1)∞n=1,

(iii) (an), where an = 2n for all n ∈ N,

(iv) (xn), where x1 = 2 and xn+1 = xn+1
2 . This is the induction way or recursion way

to define a sequence.

Example 2.2. Notice the difference between a sequence (an) and a set {an : n ∈ N}:
((−1)n)∞n=1 = (−1, 1,−1, 1,−1, 1, · · · ) is a sequence, having infinitely many terms (which

can have repeated values);

{(−1)n : n ∈ N} = {1,−1} is simply a set of two elements, not a countable set nor a
sequence;

(c) = (c, c, c, c, · · · ) is the constant sequence; {c} is the set of single element c.

Definition 2.2 (Convergence of a Sequence). A sequence (an) is said to converge to a
real number a (called the limit of the sequence) if, for every number ε > 0, there exists an
N ∈ N such that whenever n ≥ N it follows that |an − a| < ε. In this case we write either
lim an = a or an → a.
If a sequence (an) does not converge to any real number, we say (an) diverges.

Given a real number a ∈ R and positive number ε > 0 the interval Vε(a) = (a− ε, a+ ε)
is the ε-neighborhood of a.
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2 2. Sequences and Series

A topological way to say lim an = a is the following: Given any ε-neighborhood Vε(a)
of a, there exists a place in the sequence after which all of the terms are in Vε(a).

Easy Fact: lim(c) = c for all constant sequences (c).

Quantifiers. The definition of lim an = a quantifies the closeness of an to a by an arbi-
trarily given ε > 0 and the truth of this closeness for all terms after a term aN . It is often
the case the smaller ε is the larger N is needed to be. However the heart of the matter in
this definition is that no matter how small ε > 0 is there always exists such an integer N
validating the requirement.

Template for a proof of lim an = a

• Let ε > 0 be arbitrary (not 1 or 1
10005

, but arbitrary; no numerical values are
known).

• Try to solve the inequality |an − a| < ε to determine how to choose an N ∈ N so
that this inequality holds for all n ≥ N. This step usually requires the most work,
almost of all of which is done prior to actually writing the formal proof.

• Now show that the N found actually works; namely for all n ≥ N the inequality
|an − a| < ε indeed holds.

Example 2.3. Show

lim(
n+ 1

n
) = 1.

Proof. Let an = n+1
n and a = 1. Then the inequality

|an − a| =
∣∣∣∣n+ 1

n
− 1

∣∣∣∣ =
1

n
< ε

is the same as n > 1
ε . The existence of N ∈ N can be deduced by the AP(i): there always

exists an N ∈ N such that N > 1
ε . The actual proof goes as follows.

Let ε > 0 be arbitrary. By the AP(i), there exists an N ∈ N such that N > 1
ε . Then

whenever n ∈ N we have 1/n ≤ 1/N < ε and hence

|an − a| =
∣∣∣∣n+ 1

n
− 1

∣∣∣∣ =
1

n
< ε.

Therefore, by definition, lim an = 1. �

2.2. The Algebraic and Order Limit Theorems

Definition 2.3. A sequence (an) is bounded above (or bounded below) if there exists
a number M such that an ≤ M (or an ≥ M) for n ∈ N. A sequence (an) is bounded if
it is both bounded above and bounded above; namely, there exists a number M > 0 such
that |an| ≤M for all n ∈ N.

Theorem 2.1. Every convergent sequence is bounded.

Proof. Let (an)→ a. Then there exists an N ∈ N such that

|an − a| < 1 ∀ n ≥ N.
Hence, by the triangle inequality, |an| = |(an−a)+a| ≤ |an−a|+ |a| ≤ |a|+ l for all n ≥ N.
Now let

M = max{|a1|, |a2|, · · · , |aN−1|, |a|+ 1}.
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Then |an| ≤M for all n ∈ N. This proves (an) is bounded. �

Theorem 2.2 (Algebraic Limit Theorem). Let lim an = a and lim bn = b. Then

(i) lim(can) = ca, for all c ∈ R;

(ii) lim(an + bn) = a+ b;

(iii) lim(anbn) = ab;

(iv) lim(an/bn) = a/b, provided bn 6= 0 and b 6= 0.

Warning: We can use these formulas only when the limits lim an and lim bn both exist.

Proof. Include only the product and quotient formula.
Proof of (iii): Note that

anbn − ab = anbn − anb+ anb− ab = an(bn − b) + (an − a)b.

Therefore, by the triangle inequality,

|anbn − ab| ≤ |an(bn − b)|+ |(an − a)b| = |an||bn − b|+ |an − a||b|.

In order to make |anbn − ab| < ε, it suffices to make each of the two terms on the right of
above inequalities < ε/2. Since (an) converges, it is bounded and so |an| ≤ M (∀ n ∈ N)
for some number M > 0. Hence the two terms are bounded as follows:

|an||bn − b| ≤M |bn − b|, |an − a||b| ≤ |an − a|(|b|+ 1)

(here changing |b| to |b|+ 1 to make it positive).
Now, given arbitrary ε > 0, since (an)→ a, we have N1 ∈ N such that

|an − a| <
ε

2(|b|+ 1)
∀ n ≥ N1.

Using (bn)→ b, we have N2 ∈ N such that

|bn − b| <
ε

2M
∀ n ≥ N2.

Let N = max{N1, N2} (or N = N1 + N2). Then, for this N , whenever n ≥ N , it follows
that

|an − a| <
ε

2(|b|+ 1)
, |bn − b| <

ε

2M

and hence

|an − a||b| ≤
ε|b|

2(|b|+ 1)
<
ε

2
,

|an||bn − b| ≤M |bn − b| ≤
εM

2M
=
ε

2
.

Finally, it follows that whenever n ≥ N

|anbn − ab| ≤ |an||bn − b|+ |an − a||b| < ε/2 + ε/2 = ε.

Hence (anbn)→ ab.

Proof of (iv): Note that

an
bn
− a

b
=
ban − abn

bnb
=
b(an − a) + a(b− bn)

bnb
.
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First, using (bn) → b 6= 0, with ε = |b|/2 > 0, there exists an N1 ∈ N such that |bn − b| <
|b|/2 for all n ≥ N1. Hence, by a form of the triangle inequality, |bn| ≥ |b| − |bn − b| ≥ |b|/2
for all n ≥ N1. For all such n, |bnb| ≥ |b|2/2 and∣∣∣∣anbn − a

b

∣∣∣∣ ≤ |b||an − a||bnb|
+
|a||b− bn|
|bnb|

≤ 2

|b|
|an − a|+

2|a|
|b|2
|bn − b| ≤

2

|b|
|an − a|+

2|a|+ 1

|b|2
|bn − b|.

Then we proceed as above to select N2 and N3 in N such that

2

|b|
|an − a| < ε/2 whenever n ≥ N2

and

2|a|+ 1

|b|2
|bn − b| < ε/2 whenever n ≥ N3.

Finally, let N = max{N1, N2, N3}. Then, whenever n ≥ N , it follows that∣∣∣∣anbn − a

b

∣∣∣∣ < ε/2 + ε/2 = ε.

�

Theorem 2.3 (Order Limit Theorem). Assume both lim an = a and lim bn = b exist. If
an ≤ bn for all n ≥ N , where N ∈ N is some number, then a ≤ b.

Proof. We use the proof by contradiction. Suppose a > b. Then lim(an − bn) = a− b > 0.
(The following argument was used above in the proof of (iv) of the theorem.) Using ε =
a−b
2 > 0, we have an N ∈ N such that

|(an − bn)− (a− b)| < ε =
a− b

2
∀ n ≥ N.

Hence a− b− ε < an − bn < a− b+ ε for all n ≥ N. But a− b− ε = a−b
2 > 0; this implies

that an− bn > a− b− ε > 0 for all n ≥ N. So an > bn for all n ≥ N . This is a contradiction
to the assumption an ≤ bn for all n ∈ N. Hence we must have a ≤ b. �

Example 2.4. (Exercise 2.3.2.) Let xn ≥ 0 for all n ∈ N and lim(xn) = x. Show
lim(
√
xn) =

√
x.

Proof. We must have x ≥ 0 by the order limit theorem. We prove the statement in two
cases.

Case 1: x = 0. Note that
√
xn < ε if and only if xn < ε2.

Case 2: x > 0. In this case

|
√
xn −

√
x| = |xn − x|√

xn +
√
x
≤ |xn − x|√

x
.

�
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2.3. The Monotone Convergence Theorem and a First Look at Infinite
Series

Definition 2.4. A sequence (an) is called increasing if an ≤ an+1 for all n ∈ N and
decreasing if an ≥ an+1 for all n ∈ N. A sequence is said to be monotone if it is either
increasing or decreasing.

Theorem 2.4 (Monotone Convergence Theorem (MCT)). If an increasing (or de-
creasing) sequence is bounded above (or below) then it converges. In fact, the limit equals
the supremum (or the infimum) of the set consisting of the terms of the sequence.

Proof. We only prove the theorem for the increasing sequence. Let (an) be an increasing
sequence and, for some number M , an ≤M for all n ∈ N. Consider the set S = {an : n ∈
N}. Then S is nonempty and bounded above (with M being an upper-bound). So by the
AoC, a = supS exists. We now prove lim an = a. Since a is an upper-bound for S,

an ≤ a ∀ n ∈ N.

On the other hand, given arbitrary ε > 0, since a = supS, by the Lemma before, there
exists an element aN ∈ S such that a− ε < aN . Then, by the monotonicity of an,

an ≥ aN > a− ε ∀ n ≥ N.

Combining above inequalities, we have a− ε < an ≤ a < an + ε; that is, |an − a| < ε for all
n ≥ N. Hence lim an = a. �

The MCT is useful for the study of infinite series because it asserts the convergence
of a sequence without explicit mention of the actual limit; of course, without needing to
checking the definition involving arbitrary ε > 0.

Example 2.5. (Exercise 2.4.4.) Show that the sequence

√
2,

√
2
√

2,

√
2

√
2
√

2, · · ·

converges and find the limit.

Solution. Let an be the n-th term of this sequence; that is, a1 =
√

2, a2 =
√

2
√

2, · · · . We
have

an+1 =
√

2an; hence a2n+1 = 2an, ∀ n = 1, 2, 3, · · · .
Use induction and we can show that

√
2 ≤ an ≤ 2 and an ≤ an+1 for all n ∈ N.

Hence (an) is bounded and increasing. Therefore, by the MCT, lim an = a exists. Moreover.
the order limit theorem says

√
2 ≤ a ≤ 2. Since lim(an+1) = a, taking the limit on both sides

of a2n+1 = 2an, we have a2 = 2a. Since a 6= 0, it follows that a = 2; that is, lim an = 2. �

Limit Superior and Limit Inferior*. This is covered in Exercise 2.4.6.

Let (an) be a bounded sequence. Let

xn = inf{ak | k ≥ n} = inf{an, an+1, an+2, · · · },
yn = sup{ak | k ≥ n} = sup{an, an+1, an+2, · · · }.

Then (xn) is increasing and bounded, and (yn) is decreasing and bounded. Hence, by the
MCT, both limxn = x and lim yn = y exist.



6 2. Sequences and Series

Definition 2.5 (Limit superior and limit inferior). Define

lim inf an = limxn = x, lim sup an = lim yn = y

to be the limit inferior and limit superior of sequence (an), respectively.

Theorem 2.5. One has that lim inf an ≤ lim sup an. Furthermore, lim an exists if and only
if lim inf an = lim sup an.

Proof. 1. The first statement is easy from the order limit theorem and the inequality

(2.1) xn ≤ an ≤ yn ∀ n ∈ N,

where xn, yn are defined as above.

2. Assume lim inf an = lim sup an = l; hence limxn = lim yn = l. Then, from (2.1) and
the Squeeze Theorem, lim an = l.

3. Now assume lim inf an < lim sup an. Take two numbers a, b such that lim inf an <
a < b < lim sup an. Since limxn < a and xn is increasing, it follows that xk < a ∀ k ∈ N.
So, as xk = inf{an | n ≥ k}, ∀ k ∈ N, ∃nk ≥ k such that ank

< a. Similarly, ∀ k ∈ N,
∃mk ≥ k such that amk

> b. Hence

(2.2) amk
− ank

> b− a ∀ k ∈ N.

We show that (an) does not converge. For a contradiction, suppose that (an) → l. Then,
for ε = b−a

4 > 0, ∃N ∈ N such that

|an − l| < (b− a)/4 ∀ n ≥ N.

Let k ≥ N ; then mk, nk ≥ k ≥ N . Hence |amk
− l| < b−a

4 and |ank
− l| < b−a

4 . This implies

|amk
− ank

| ≤ |amk
− l|+ |ank

− l| < (b− a)/2,

contradicting with (2.2) above. This completes the proof. �

A First Look at Infinite Series. Let (bn) be a sequence. An infinite series of (bn) is
a formal expression of the form

∞∑
n=1

bn = b1 + b2 + b3 + · · · .

The corresponding sequence of partial sums (sn) is defined by

sn = b1 + b2 + · · ·+ bn ∀ n ∈ N.

We say the series
∑∞

n=1 bn converges (to B ∈ R) if lim sn = B. In this case, we write∑∞
n=1 bn = B and B is called the value or the sum of the infinite series. If a series does not

converge then we say it diverges.

Note that if bn ≥ 0 then its partial sum sequence (sn) is increasing. Therefore, in this
case, to show the series to converge, by the MCT, it suffices to show that (sn) is bounded
above.

Example 2.6. (i) Consider
∞∑
n=1

1

n2
.

Note that

bn =
1

n2
<

1

n(n− 1)
=

1

n− 1
− 1

n
∀ n ≥ 2.
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We have

sn = b1 + b2 + · · ·+ bn < 1 +

(
1

1
− 1

2

)
+

(
1

2
− 1

3

)
+ · · ·+

(
1

n− 1
− 1

n

)
= 2− 1

n
< 2.

That is, (sn) is bounded above; hence (sn) converges, so does the infinite series
∑∞

n=1
1
n2 .

But we do not know the value of the series.

(ii) Consider the harmonic series:
∞∑
n=1

1

n
.

We show this series diverges by showing its partial sum sequence (sn) is not bounded. Note

sn = 1 +
1

2
+

1

3
+ · · ·+ 1

n
.

s4 = 1 +
1

2
+

(
1

3
+

1

4

)
> 1 +

1

2
+

(
1

4
+

1

4

)
= 1 +

1

2
+

1

2
.

We can look at s8 to see s8 > 21
2 . In general, look at s2k and we find that

s2k = 1 +
1

2
+

(
1

3
+

1

4

)
+

(
1

5
+ · · ·+ 1

8

)
+ · · ·+

(
1

2k−1 + 1
+ · · ·+ 1

2k

)
> 1 +

1

2
+

(
1

4
+

1

4

)
+

(
1

8
+ · · ·+ 1

8

)
+ · · ·+

(
1

2k
+ · · ·+ 1

2k

)
= 1 +

1

2
+ 2× 1

4
+ 4× 1

8
+ · · ·+ 2k−1 × 1

2k

= 1 + k × 1

2
=
k + 2

2
.

Hence (sn) can not be bounded above by any number. This proves that the harmonic series
diverges.

2.4. Subsequences and the Bolzano-Weierstrass Theorem

We know that every convergent sequence is bounded; however, every bounded sequence
may not be convergent, e.g., ((−1)n) is a bounded sequence, but diverges. But part of the
sequence consists of only number 1 and, as a sequence itself, does converge. This is in fact
valid for all bounded sequences. But we need to use the subsequences.

Definition 2.6. Let (an) be a sequence, and let n1 < n2 < n3 < · · · be an increasing
sequence of natural numbers. Then the sequence

(ank
)∞k=1 = (an1 , an2 , an3 , · · · )

is called a subsequence of (an).

Note that order of the terms in a subsequence is the same as in the original sequence.

Theorem 2.6. Any subsequence of a convergent sequence converges to the same limit as
the original convergent sequence.

Therefore if a sequence has two subsequences converging to two distinct limits then the
sequence must diverge. On the other hand, if we know a sequence converges, then we may
use some of its subsequence to find the limit.
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Example 2.7. Let 0 < b < 1. Show that (bn)→ 0.

Proof. Note that

b > b2 > b3 > b4 > · · · > 0.

Hence the sequence (an) = (bn) is a decreasing sequence and bounded below by 0. By the
MCT, s = lim(bn) exists. By the order theorem 0 ≤ s ≤ b < 1. We consider its subsequence
(a2n) = (b2n), by the theorem above, lim(a2n) = s. However, a2n = b2n = bnbn and hence,
by the product rule,

s = lim(a2n) = lim(bnbn) = lim(bn) lim(bn) = s× s = s2.

Hence s(1− s) = 0; but s < 1 so we have s = 0. Therefore (bn)→ 0. �

Theorem 2.7 (Bolzano-Weierstrass Theorem (BW)). Every bounded sequence con-
tains a convergent subsequence.

Proof. Let (an) be a bounded sequence; namely there exists a number M > 0 such that
|an| ≤M for all n ∈ N. Bisect the closed interval [−M,M ] into two closed intervals [−M, 0]
and [0,M ]. Now it must be that at least one of these two intervals contains an infinite
number of terms of (an). Select one interval for which this is the case and call it I1. Let
an1 be a term such that an1 ∈ I1. Next, bisect I1 into two closed intervals meeting at the
mid-point of I1. Let I2 be one half that again contains an infinite number of terms of the
original sequence. There must be a term an2 ∈ I2 with n2 > n1 (if not, I2 would contain
only finite number of terms Ik with k ≤ n1). Continue in this way, and we construct the
closed interval Ik by taking a half of Ik−1 that contains an infinite number of terms of (an)
and then select a term ank

∈ Ik, where nk > nk−1 > · · · > n1. Therefore we obtain a
subsequence (ank

) of (an). We want to show (ank
) converges. First, using the NIP, we have

a point a ∈ Ik for all k ∈ N. Since both a and ank
are in Ik, it follows that |ank

− a| ≤ the
length of the interval Ik. But note that the length of Ik is M(1/2)k−1. Hence, given any
ε > 0, there exists a N ∈ N such that for all k ≥ N we have |ank

− a| < ε. This proves
lim ank

= a. �

Homework II. Exercises: 1.5.4, 2.2.1(b), 2.3.2, 2.4.4, 2.5.5

2.5. The Cauchy Criterion

Definition 2.7. A sequence (an) of real numbers is called a Cauchy sequence if, for
every ε > 0, there exists an N ∈ N such that whenever m,n ≥ N in N it follows that
|an − am| < ε.

Theorem 2.8. Every convergent sequence is a Cauchy sequence.

Proof. Assume (an) is a convergent sequence with limit a. Then, for every ε > 0, there
exists an N ∈ N such that whenever n ≥ N in N it follows that |an − a| < ε/2. (Notice
here we use ε/2 in place of ε in the definition.) Hence, whenever n,m ≥ N in N, it follows
by the triangle inequality that

|an − am| = |(an − a) + (a− am)| ≤ |an − a|+ |am − a| <
ε

2
+
ε

2
= ε.

Hence, by the definition, (an) is a Cauchy sequence. �

Theorem 2.9. Every Cauchy sequence is bounded.
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Proof. Let (an) be Cauchy. Then there exists an N ∈ N such that |an − am| < 1 for all
n,m ∈ N and n,m ≥ N. With m = N we have |an − aN | < 1 for all n ≥ N. Hence, by the
triangle inequality, |an| ≤ |an − aN |+ |aN | ≤ |aN |+ 1 for all n ≥ N. Let

M = max{|a1|, |a2|, · · · , |aN−1|, |aN |+ 1}.

Then it follows that |an| ≤M for all n ∈ N. Hence (an) is bounded. �

Theorem 2.10 (Cauchy’s Criterion (CC)). A sequence of real numbers converges if and
only if it is a Cauchy sequence.

Proof. We have already shown that a convergent sequence is Cauchy. We need to prove
that every Cauchy sequence converges. So let (an) be a Cauchy sequence. The previous
theorem asserts that (an) is bounded. Hence, by the BW, (an) has a convergent subsequence
(ank

); let lim ank
= a.

We now show that the whole sequence (an) converges to a, using the definition of
convergence. Given any ε > 0, first since (an) is Cauchy, there exists an N1 ∈ N such that

|am − an| < ε/2 ∀ n,m ≥ N1.

Secondly, since lim ank
= a, there exists an N2 ∈ N such that

|ank
− a| < ε/2 ∀ k ≥ N2.

Let N = max{N1, N2}. We claim that whenever m ≥ N it follows that |am − a| < ε; this
proves that lim am = a and hence completes the proof. To prove this claim, assume m ≥ N .
Then m ≥ N2 and hence

|anm − a| < ε/2.

Also note that since 1 ≤ n1 < n2 < n3 < · · · are natural numbers, it follows that nk ≥ k
for all k ∈ N. Hence nm ≥ m ≥ N1. So

|am − anm | < ε/2.

Combining the previous two inequalities and using the triangle inequality again, we have

|am − a| ≤ |am − anm |+ |anm − a| < ε/2 + ε/2 = ε.

This completes the proof. �

Completeness Revisited. We have so far proved the NIP and the MCT from the AoC
and proved the BW from NIP (hence from the AoC) and proved the CC from the BW.
Each statement has its own way to characterize the property of R which we called the com-
pleteness. However it seems that the AoC is the center step iin deriving other statements.
In fact, each of these statements (AoC, NIP, MCT, BW, CC) implies all other statements.
You can try to prove these implications in Exercise 2.6.6.

2.6. Properties of Infinite Series

As above, an infinite series
∑∞

k=1 ak is said to converge (to the sum A) if lim sn = A, where
(sn) is the sequence of the partial sums of the series defined by

sn =

n∑
k=1

ak ∀ n ∈ N.
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Theorem 2.11 (Algebraic Limit Theorems for Series). If
∑∞

k=1 ak = A and
∑∞

k=1 bk =
B, then

∞∑
k=1

(cak + dbk) = cA+ dB for all c, d ∈ R.

Note that there is no similar rule for the series of product
∑∞

k=1(akbk) or quotient∑∞
k=1(ak/bk).

Theorem 2.12 (Cauchy Criterion for Series). The series
∑∞

k=1 ak converges if and
only if, given any ε > 0, there exists an N ∈ N such that whenever n > m ≥ N it follows
that

|am+1 + am+2 + · · ·+ an| < ε.

Proof. Note that sn − sm = am+1 + am+2 + · · ·+ an. �

Theorem 2.13. If
∑∞

k=1 ak converges, then (ak)→ 0.

Proof. ak = sk − sk−1. �

This easy result is often used to show a series diverges by showing the sequence of terms
does not converge to 0. However, it can not be used to show the convergence simply from
the limit (ak)→ 0, as seen from the divergent harmonic series.

Theorem 2.14 (Comparison Test). Assume (ak) and (bk) are sequences satisfying

0 ≤ ak ≤ bk ∀ k ≥ N,

where N ∈ N is some integer.

(i) If
∑∞

k=1 bk converges, then
∑∞

k=1 ak converges.

(ii) If
∑∞

k=1 ak diverges, then
∑∞

k=1 bk diverges.

Proof. Note that (i), (ii) state the same thing. Both follow from the Cauch Criterion for
Series or the MCT. However, note that no information on the convergence of (larger) series∑∞

k=1 bk if we know that the (smaller) series
∑∞

k=1 ak converges. �

Example 2.8. (Geometric Series.) A series of the form

(2.3)

∞∑
k=0

ark = a+ ar + ar2 + ar3 + · · ·

is called a geometric series of ratio r. If r 6= 1 then the partial sum

sn = a+ ar + ar2 + · · ·+ arn−1 =
a(1− rn)

1− r
(r 6= 1), n ∈ N.

The sequence (sn) converges if and only if |r| < 1. Therefore the geometric series (2.3)
converges if and only if its ratio r satisfies |r| < 1. In this case, the sum of the convergent
geometric series is given by

(2.4)
∞∑
k=0

ark = a+ ar + ar2 + ar3 + · · · = a

1− r
when |r| < 1.

The well-known ratio test and root test are based on comparison with geometric
series; they are given in the Exercises.
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Theorem 2.15 (Absolute Convergence Test). If the series
∑∞

k=1 |ak| converges, then∑∞
k=1 ak converges as well.

Proof. Use the CC for series. �

Definition 2.8. We say that the series
∑∞

k=1 ak converges absolutely if
∑∞

k=1 |ak| con-
verges. We say that the series

∑∞
k=1 ak converges conditionally if

∑∞
k=1 ak converges

but
∑∞

k=1 |ak| diverges.

Theorem 2.16 (Alternating Series Test). Let (an) satisfy

a1 ≥ a2 ≥ a3 ≥ · · · ≥ 0, (an)→ 0.

Then the alternating series
∑∞

k=1(−1)k+1ak converges.

Proof. This is Exercise 2.7.1. We study the sequence of partial sums of series
∑∞

k=1(−1)k+1ak:

sn = a1 − a2 + a3 − a4 + a5 − a6 + · · ·+ (−1)n+1an.

If n > m ≥ 1, then sn − sm = (−1)m+1(am+1 − am+2 + · · ·+ (−1)n−m−1an). We claim

|sn − sm| = |am+1 − am+2 + · · ·+ (−1)n−m−1an|
= am+1 − am+2 + · · ·+ (−1)n−m−1an

≤ am+1.

(2.5)

The sum inside the absolue value has k = n −m terms with the last term (−1)n−m−1an
being −an if k is even and being +an if k is odd. By grouping the terms inside the absolute
value by consecutive pairs, like am+1 − am+2 ≥ 0, am+3 − am+4 ≥ 0, etc, we can see this
sum is always ≥ 0. Then, if k = n−m is even, we have

am+1−am+2+· · ·−an = am+1−(am+2−am+3)−(am+4−am+5)−· · ·−(an−2−an−1)−an ≤ am+1;

if k = n−m is odd, we have

am+1−am+2+ · · ·+an = am+1−(am+2−am+3)−(am+4−am+5)−· · ·−(an−1−an) ≤ am+1.

Since am+1 → 0, using (2.5), we deduce that (sk) is Cauchy and hence the proof is done. �

Other Tests. There are other useful tests (e.g., Dirichlet’s test and Abel’s test) that
can be proved using the summation by parts; see Exercises 2.7.12-14. Later we will prove
Abel’s test in applications to power series.

Example 2.9. (i) The alternating harmonic series:
∞∑
n=1

(−1)n+1

n
= 1− 1

2
+

1

3
− 1

4
+ · · ·

converges by the alternating series test. But since the series of absolute values
∑ 1

n
diverges, this alternating series converges conditionally.

(ii) The series
∞∑
n=1

(−1)n+1

n2
= 1− 1

22
+

1

32
− 1

42
+ · · ·

is also a convergent alternating series, but converges absolutely because the absolute series∑ 1
n2 converges. So there are two tests we can use to see the convergence of this series;

however, the alternating series test only asserts the convergence but does not tell whether
the convergence is conditional or absolute.
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(iii) Often, you should first try to use the absolute convergence test; if it does not
work, try to use other tests.

Rearrangements. Given two series
∑∞

n=1 an and
∑∞

n=1 bn, we say
∑∞

n=1 bn is a re-
arrangement of

∑∞
n=1 an if there exists a 1-1 and onto function f : N→ N such that

bn = af(n) ∀ n ∈ N.

Since, using the inverse function f−1 of f , we also have an = bf−1(n) for all n ∈ N, we

see every term of
∑∞

n=1 bn appears exactly once in
∑∞

n=1 an and vice-versa, every term of∑∞
n=1 an appears exactly once in

∑∞
n=1 bn. Now if

∑∞
n=1 bn and

∑∞
n=1 an both converge, is∑∞

n=1 bn =
∑∞

n=1 an?

Example 2.10. Consider the alternating harmonic series

S =
∞∑
n=1

(−1)n+1 1

n
= 1− 1

2
+

1

3
− 1

4
+

1

5
− 1

6
+ · · · .

Then
1

2
S =

1

2
− 1

4
+

1

6
− 1

8
+ · · ·+ (−1)n+1 1

2n
+ · · · .

So

S +
1

2
S =

3

2
S = 1 +

1

3
− 1

2
+

1

5
+

1

7
− 1

4
+

1

9
+

1

11
− 1

6
+ · · ·

becomes a rearrangement of S = 1 − 1
2 + 1

3 −
1
4 + 1

5 −
1
6 + · · · ; but certainly they are not

equal.

Theorem 2.17. If
∑∞

n=1 |an| converges, then, for any rearrangement function f : N→ N,
it follows that

∞∑
n=1

an =
∞∑
n=1

af(n).

Proof. Let bk = af(k) for k ∈ N. For n,m ∈ N, define

sn = a1 + a2 + · · ·+ an; tm = b1 + b2 + · · ·+ bm.

Let (sn)→ A. We show that (tm)→ A. Given any ε > 0, we find an N ∈ N such that

|sN −A| < ε/2,
n∑

k=m+1

|ak| < ε/2 ∀ n > m ≥ N.

Since f : N → N is 1-1 and onto, let {i1, i2, · · · , iN} ⊆ N be such that f(ik) = k for each
k = 1, 2, · · · , N. Let

M = max{i1, i2, · · · , iN}.
ThenM ≥ N. Letm ∈ N be such thatm ≥M. Then, since {i1, i2, · · · , iN} ⊆ {1, 2, 3, · · · ,m},
it follows that

tm = b1 + b2 + · · ·+ bm = af(1) + af(2) + · · ·+ af(m)

= af(i1) + af(i2) + · · ·+ af(iN ) +
∑
j∈J

af(j)

= a1 + a2 + · · ·+ aN +
∑
j∈J

af(j)

= SN +
∑
j∈J

af(j),
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where J = {1, 2, 3, · · · ,m} \ {i1, i2, · · · , iN}. Since J ∩ {i1, i2, · · · , iN} = ∅, we have f(j) ≥
N + 1 for all j ∈ J. Let K = max{f(j) : j ∈ J} ≥ N + 1. Then N + 1 ≤ f(j) ≤ K for all
j ∈ J and hence ∣∣∣∣∣∣

∑
j∈J

af(j)

∣∣∣∣∣∣ ≤
∑
j∈J
|af(j)| ≤

K∑
k=N+1

|ak| < ε/2.

Finally, it follows that, for all m ≥M ,

|tm −A| ≤ |SN −A|+

∣∣∣∣∣∣
∑
j∈J

af(j)

∣∣∣∣∣∣
< ε/2 +

∑
j∈J
|af(j)|

< ε/2 + ε/2 = ε.

This proves (tm)→ A. �

Example 2.11. (Hints for some exercises.)

#3 Assume an = pn + qn and |an| = pn− qn. Then, at least one of the series
∑
pn and∑

qn diverges if
∑
an diverges.

If
∑
an converges conditionally, then both

∑
pn and

∑
qn diverge. This is

because |an| = 2pn − an and |an| = 2qn + an; hence either convergence of
∑
pn or∑

qn will imply the convergence of
∑
|an|.

#5 (a) If
∑
|an| < ∞, then

∑
a2n < ∞. This is because (an) is bounded and hence

a2n ≤M |an| and then using the comparison test.
(b) If an ≤ 0 and

∑
an < ∞, then

∑√
an could diverge or converge. Take

an = 1/n4 or an = 1/n2.

#10 If an > 0 and lim(nan) = l 6= 0, then l > 0 and hence an >
l
2
1
n for n ≥ N for some

N ∈ N. Hence
∑
an diverges.

If lim(n2an) = l, then (n2an) is bounded and hence |an| ≤ M
n2 ; so

∑
an con-

verges absolutely.


