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Chapter 1

Part I — Sobolev Spaces

LECTURE 1 — 1/7/19
1.1. Overview

The course will cover Chapters 5, 6, and part of 8 of Evans’s book, but will have plenty of
additional materials and change of order of the material.

These chapters will cover Sobolev spaces, second-order elliptic equations, and some basic
material on the calculus of variations.

1.1.1. Motivation: Poisson’s equation. Consider

Au=f in Q C R",
Uu=g on Jf.

For nice domain 2 and nice f, g, this can be solved by Green’s formula or Perron’s method.
What about f not even continuous?

ExampLE 1.1. If Q@ = (—1,1), f = 2sgn(x) and g(—1) = —1,¢(1) = 1, then any solution u
must have u(z) = 22 for x > 0 and u(x) = —2? for z < 0, but then «”(0) does not exist;
hence the problem does not have a classical solution — namely, solutions having all orders
of derivatives appearing in the equation at every point of the domain.

Much of the modern theory of PDE is built upon a treatment of the PDE in some
reasonable (or physical) ways to lower the order of derivatives for the functions appearing
in the equation and define a suitable sense that these functions solve the equation weakly;
the nutshell is that such a definition of weak solutions recovers the classical solutions when
the weak solutions are smooth.

Since for all u € C%(Q) and ¢ € C§°(£2), we have

/quud:r::—/Du-qudx,
Q Q

so, a C%(Q) solution to the Poisson equation above must satisfy

(1.1) /Q(Du-Dcz5+f¢)d:Jc:O Vo e Cr Q).

HI
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This identity only needs, for example, Du exists and is integrable and also f is integrable.
This is a way to lower the order of required derivatives in the equation. Even then we still
encounter a problem whether given such a f (and nice g) there exists a function v with Du
integrable that satisfies the above identity. The space of u € C(f2) is in general not enough
for the existence of such w; this requires the study of Sobolev space.

Related to the Poisson equation, let us also consider the following quantity

I(u):/ﬂ(;\puﬁwu) dz.

This quantity is well-defined if Du,u, f € L?(Q2). If we have such a u that minimizes I(v)
among all such v’s satisfying the given boundary condition, then we would have that the
(quadratic) function

hie) =I(u+e€p) VeeR, ¢ € Ci°(Q),

takes minimum at € = 0. This gives h'(0) = 0, which again becomes the identity (1.1) above.

1.1.2. Examples of function spaces. Let () be an open subset of R, n > 1. The set
C(92) of (real-valued) continuous functions defined on €2 is an infinite dimensional vector
space with the usual definitions of addition and scalar multiplication:

(f+9)(x) = f(z) +g(z) for f,geC(), zeQ
(af)(z) =af(x) for aeR, feC(Q), zel.

C(9) consists of those functions which are uniformly continuous on Q. Each such function
has a continuous extension to Q. Cp(f2) consists of those functions which are continuous
in 2 and have compact support in 2. (The support of a function f defined on 2 is the
closure of the set {x € Q: f(x) # 0} and is denoted by supp(f).) The latter two spaces are
clearly subspaces of C'(2).

For each n-tuple a = (a1, ..., a;,) of nonnegative integers, we denote by D® the partial

derivative
DY ... Den. Dy = 0/0x;
of order |a| = aj + -+ + ap. If |a] = 0, then D® = I(identity).

For integers m > 0, let C™(2) be the collection of all f € C(§2) such that D*f € C(Q)
for all a with |of < m. We write f € C®(Q) iff f € C™(Q) for all m > 0. For
m > 0, define CJ*(2) = Cp(2) N C™(N2) and let C§°(2) = Cu(2) N C>°(2). The spaces
C™(2),C™(Q),CFH (), C3°(2) are all subspaces of the vector space C(2). Similar defini-

tions can be given for C™(2) etc.
For m > 0, define X to be the set of all f € C™ () for which
1 lmee = D sup|[D*f(z)] < oo.
|af<m

Then X is a Banach space with norm || - ||;,00. To prove, for example, the completeness
when m = 0, we let {f,} be a Cauchy sequence in X, i.e., assume for any € > 0 there is a
number N(g) such that for all x € Q

sup | fn(z) — fm(x)| <e if m,n > N(e).
€N
But this means that {f,(x)} is a uniformly Cauchy sequence of bounded continuous func-

tions, and thus converges uniformly to a bounded continuous function f(x). Letting m — oo
in the above inequality shows that || f,, — fl/m,c0 — 0.
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Note that the same proof is valid for the set of bounded continuous scalar-valued func-
tions defined on a nonempty subset of a normed space X.

EXAMPLE 1.2. Let 2 be a nonempty Lebesgue measurable set in R™. For p € [1,00), we
denote by LP(Q) the set of equivalence classes of Lebesgue measurable functions on 2 for

which 1
1l = ( / If(:c)lpd:c>p “ .

(Two functions belong to the same equivalence class, i.e., are equivalent, if they differ
only on a set of measure 0.) Let L*>(€2) denote the set of equivalence classes of Lebesgue
measurable functions on €2 for which

[flloo = ess-sup,eq|f ()] < oo
Then LP(Q),1 < p < oo, are Banach spaces with norms || - ||,. For p € [1,00] we write
felLl (Q)iff f € LP(K) for each compact set K C (.

loc
For the sake of convenience, we will also consider LP(2) as a set of functions. With this
convention in mind, we can assert that Cy(2) C LP(Q). In fact, if p € [1, 00), then as we shall
show later, Cy(2) is dense in LP(Q2). The space LP({2) is also separable if p € [1,00). This
follows easily, when € is compact, from the last remark and the Weierstrass approximation
theorem.

Recall that if p,q € [1,00] with p~! + ¢~! = 1, then Hélder’s inequality is that if
f € LP(Q) and g € LI(Q), then fg € L1() and
[fallr) < 1fllr@)llgllLa)-

This extends to the general Holder’s inequality: If p; € [1, o0] and Zle p% = 1 then for
fi € Lpi(Q)
[f1fe- - fellor) < fille @l follzee @) - - - L fell ow -

1.1.3. Banach spaces. A (real) vector space is a set X, whose elements are called
vectors, and in which two operations, addition and scalar multiplication, are defined
as follows:

(a) To every pair of vectors x and y corresponds a vector z + y in such a way that
r+y=y+z and r+(y+2z)=(x+y) + =z

X contains a unique vector 0 (the zero vector or origin of X) such that x+0 =z
for every x € X, and to each x € X corresponds a unique vector —z such that

z+ (—x)=0.
(b) To every pair (o, z), with @ € R and x € X, corresponds a vector ax in such a
way that

lz =z, a(fzx) = (af)z
and such that the two distributive laws
alx+y) = ar+ ay, (a+ B)x = ax + px
hold.

A nonempty subset M of a vector space X is called a subspace of X if ax + Sy € M
for all x,y € M and all o, 8 € R.
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A subset M of a vector space X is said to be convex if tx + (1 — t)y € M whenever
t€(0,1), x,y € M. (Clearly, every subspace of X is convex.)

Let z1,...,x, be elements of a vector space X. The set of all ayz1 + -+ + apx,, with
a; € R, is called the span of z1,...,x, and is denoted by span{x1,...,z,}. The elements
r1,...,T, are said to be linearly independent if ayxz1 + -+ + ayx, = 0 implies that
a; = 0 for each i; otherwise, the elements x1,...,x, are said to be linearly dependent.
An arbitrary collection of vectors is said to be linearly independent if every finite subset of
distinct elements is linearly independent.

The dimension of a vector space X, denoted by dim X, is either 0, a positive integer
or co. If X = {0} then dim X = 0; if there exist linearly independent {uy,...,u,} such
that span{zi,...,x2,} = X, then dim X = n and {u1,...,u,} is called a basis for X; in all
other cases dim X = oo.

1.1.4. Normed Spaces. A (real) vector space X is said to be a normed space if to
every x € X there is associated a nonnegative real number ||z||, called the norm of z, in
such a way that

(@) ||z +yl <|lz|| +|ly|]| for all z and y in X (Triangle inequality)

(b) |laz|| = |af||z|| for all z € X and all « € R

() ||lz|| >0 if x # 0.
Note that (b) and (c) imply that ||z|| = 0 iff z = 0. Moreover, it easily follows from (a) that

ezl =yl < llz =yl Va,y e X.

1.1.5. Completeness and Banach Spaces. A sequence {z,} in a normed space X is
called a Cauchy sequence if, for each € > 0, there exists an integer N such that ||z, —
Zn|| < € for all m,n > N.

We say a sequence {z,,} converges to z in X and write xz,, — z if lim,,_,o ||z, — || =0
and, in this case, z is called the limit of {z,}.

A normed space X is called complete if every Cauchy sequence in X converges to a
limit in X.

A complete (real) normed space is called a (real) Banach space. A Banach space

is separable if it contains a countable dense set. It can be shown that a subspace of a
separable Banach space is itself separable.

1.1.6. Hilbert Spaces. Let H be a real vector space. H is said to be an inner product
space if to every pair of vectors x and y in H there corresponds a real-valued function
(z,y), called the inner product of x and y, such that

(a) (z,y) = (y,z) for all x,y € H
(b) (x+y,2) =(z,2)+ (y,2) for all x,y,z € H
(¢) (A\z,y) = Az,y) forall z,y € H, A€ R
(d) (z,z) >0 for all z € H, and (z,x) = 0 if and only if z = 0.
For x € H we set
(1.2) lz]| = (2, )"/
Theorem 1.3. If H is an inner product space, then for all x and y in H, it follows that
(@) |(z,y)| < |lz|l|lyll (Cauchy-Schwarz inequality);
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(b) [lz +yll < [lz[| +[lyll ~ (Triangle inequality);
() o +yl* + llo =yl = 2(|l=|* + ly|?) (Parallelogram law).
Proof. (a) is obvious if x = 0, and otherwise it follows by taking 6 = —(z,y)/||z||* in
0 < (|62 +y* = [6]*|l[|* + 26 (z, y) + |y
This identity, with § = 1, and (a) imply (b). (c) follows easily by using (1.2). O

If H is complete under this norm, then H is said to be a Hilbert space.

EXAMPLE 1.4. The space L?(f2) is a Hilbert space with inner product

(f.9) = /Q f(@)g(x)dz Y f.g € L3(9).

LECTURE 2 — 1/9/19
1.2. Sobolev Spaces

1.2.1. Holder Spaces. Let f: 2 - R and 0 < v < 1. The the a-th Hoélder seminorm
of f is defined by

Definition 1.1. For & € N*,0 < v < 1, the Holder space C*7(Q) is the set of all
functions f € C*(Q) for which the norm

Ifllora@y = D ID* florgy + D, [D* floon@

la|<k la|=k
is finite.

Theorem 1.5. The Hélder space C*7(Q) is a Banach space under the given norm.
Proof. Exercise. U

1.2.2. Weak Derivatives. Let 2 be a nonempty open set in R™. Suppose u € C™(2) and
¢ € C*(Q2). Then by integration by parts

(1.3) /uDangm: (—1)|a|/vg0dx, la] <m
Q Q

where v = D%u. Motivated by (1.3), we now enlarge the class of functions for which the
notion of derivative can introduced.

Definition 1.2. Let u € L}, (). A function v € L}, () is called the a'*-weak partial

loc
derivative of u, written v = D“u, provided

(1.4) /uDo‘godx = (—1)le / vpdx for all ¢ € C5°(Q).
Q Q

Lemma 1.6. An o'"-weak partial derivative D®u, if exists, then must be unique in L}OC(Q).
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Proof. Suppose v, ¥ are both the at?-weak partial derivative of u. Then

/ uDpdz = (—1)l / vpdz = (—1)1 / vpdz
Q Q Q
for all ¢ € C5°(€2). Then

/Q(U—@)godl‘ =0 Yypel§Nn).

This implies v = ¥ in L} (). O

loc

If a function v has an ordinary a‘-partial derivative lying in L}OC(Q), then it is clearly

the at?-weak partial derivative.

In contrast to the corresponding classical derivative, the weak partial derivative D%u is
defined at once for the order o without assuming the existence of the corresponding partial
derivatives of lower orders. In fact, the weak partial derivatives of lower orders may not
exist.

EXAMPLE 1.7. Let Q = (—1,1)? C R? and let
I ze(0,1)x(
u(z) =49 -1 z€(-1,0) x

0 elsewhere.

0,1),
(_1)0)7

Show the weak partial derivatives D10y = w,, and DYy = wu,, do not exist, but
DUy =y 4, = 0 exists.

Proof. Exercise. OJ

ExAMPLE 1.8. (a) The function u(z) = |z1| has in the ball Q = B(0,1) the weak partial
derivatives u,, = sgn o1, uy, = 0,i = 2,...,n. In fact, for any ¢ € C}(Q)

/\xﬂgpxldm:/ xlgoxldx—/ 1Py, dx
Q Q+ Q-

where QT = QN (21 > 0), Q7 = QN (z1 <0). Since z1¢ = 0 on N and also for z; = 0,
an application of the divergence theorem yields

/|:L‘1|g0x1d$:—/ npdm+/ gpd:z::—/(sgn x1)pde.
Q o+ - Q

Hence |z1|z, = sgn 1. Similarly, since for ¢ > 2

/’331|<Pmid$=/(|$1!90)xidx=—/ Opdx
Q Q Q

|z1]|z, = 0 for ¢ = 2,...,n. Note that the function |z;| has no classical derivative with
respect to x1 in €.

(b) By the above computation, the function u(z) = |z| has the weak derivative u/(z) =
sgn x on the interval Q = (—1,1). On the other hand, sgn z does not have a weak derivative
on {2 due to the discontinuity at z = 0.
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1.2.3. Sobolev Spaces. Fix 1 < p < oo and let k£ be a nonnegative integer. We define
WHEP(Q) = {u:ue LP(Q), DY e LP(Q), 0 < |a| < k},
where D%u denotes the o' weak derivative. When k = 0, W*P?(Q) will mean LP((Q).
A norm on W*P(Q) is defined by
15 lulley = lulhero = {UQ Vst [DruPdn)E 1S p < oo
2 laj<k D%l L () if p = oo.
The space W*P(Q) with this norm is called the Sobolev space of order k and power p.

We define the space Wf P(Q) to be the closure of the space C§°(£2) with respect to the
norm || - ||x

Remark 1.3. The spaces W#2(Q) and I/Vég 2(Q)) are special since they become a Hilbert
space under the inner product

(U, Vg2 = (U, V)yr2() = / Z D*uD*vdz.
la|<k

Since we shall be dealing mostly with these spaces in the sequel, we introduce the special
notation:

HY (€)= WE2(Q), H(©) = Wy (@).
EXAMPLE 1.9. Let Q = B(0,1/2) C R? and define u(x) = In(In(2/r)), =z € Q, where
r=|z| = (x3 4+ 23)/2. Then u € HY(Q) but u ¢ L>®(Q).

Proof. First of all u is unbounded near z = 0; next u € L?(2), for

[kt = [ [ simnteimyparas

and a simple application of L’Hopital’s rule shows that the integrand is bounded and thus
the integral is finite. Similarly, it is easy to check that the classical partial derivative

—cosf
rin(2/r)’
also belongs to L?(£2). Now we show that the defining equation for the weak derivative is
met. So, ug, is also the weak zi-derivative of u and u,, € L?(f2). Similarly, weak x — 2-
derivative u,, € L*(9); hence by definition u € W2(Q) = HY(Q).

To show u,, is the weak xi-derivative of u, let Q. = {x : ¢ < r < 1/2} and choose
¢ € C3°(€2). Then by the divergence theorem and the absolute continuity of integrals

/ugpxldx— hm/ UPg, dr = hH(l) [—/ﬂ uxlapd:c+/ ugonlds}
- r=e¢

where n = (n1,n2) is the unit outward normal to Q. on r = . But (ds = df)

27
/ upnids| < / lu(e)| |¢ledd < 2mecIn(In(2/e)) — 0
r=¢ 0

/unpmlda::—/umcpdm.
Q Q

Uy, = where z; = rcosf

as € — 0. Thus
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LECTURE 4 — 1/14/19

From the definition of weak partial derivatives, we can verify certain properties of Sobolev
functions that are usually true for smooth functions.

Theorem 1.10. (Properties of Sobolev functions) Assume u,v € W*?(Q). Then

(1) D € Wk=IelP(Q) and DP(D*u) = D*(DPu) = DPu for all multi-indices o, 3
with |a| + |8 < k.

(2) For each A\, € R, Mu+ pv € WFP(Q) and D*(\u + pv) = AD% + uD%v for all
la| < k.

(3) IfU is an open subset of Q then u € WHP(U), with the same D%u as the restrictions
on U.

(4) If p € CE(Q) then ou € WFP(Q) and the Leibniz formula holds: for all |a| < k,

(1.6) D(pu) = > (;“)(Dﬁso)(m*ﬁu),
BLla

where (g) = Fap

Proof. Direct deduction from the definition of weak partial derivatives. The property (2)
asserts that W*P(Q) is a vector space. O

Theorem 1.11. W*P(Q) is a Banach space under the norm (1.5).

Proof. We prove that W*P(Q) is complete with respect to the norm (1.5). We prove this
for 1 < p < oo; the case p = oo is similar. Let {u,} be a Cauchy sequence of elements in
WkEP(Q), i.e.,

[tn = umll}, = Z / | D%y, — D%, |Pdzz — 0 as m,n — oo.
Q
|la|<k

Then for any «, |a| <k, when m,n — oo
/Q | D%y, — D%upy [Pdx — 0
and, in particular, when |a| =0
/ |tn, — U [Pdz — 0.
Q

Since LP(2) is complete, it follows that there are functions u® € LP(Q2), |a| < k such that
D%u,, — u® in LP(Q2). Note that, for each ¢ € C§°(Q2),

/uDagpdxe/unDo‘goda::(—1)“'/@Daundx%(—l)al/uagpdm.
Q Q Q Q

Hence u® = D € LP(Q), and thus u® € W*P(Q). As D%, — u® = D in LP(Q) for
all |a| < k, it follows that ||u, — u°||x, — 0 as n — oo. This proves the completeness of
WHP(Q); hence it is a Banach space. O
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1.3. Approximations

1.3.1. Mollifiers. Let = € R" and let B(z, h) denote the open ball with center at x and
radius h. For each h > 0, let wy(z) € C*°(R™) satisfy

anla) 2 0 suppan € BO.B), [ wn)de= [ e =1
n B(0,h)
Such functions are called mollifiers. For example, let
ey {FE (2P =171, el <L
0, lz| > 1,
where k > 0 is chosen so that [, w(x)dz = 1. Then, a family of mollifiers can be taken as
wp(x) = h™"w(x/h) for h > 0.
Let Q be a nonempty open set in R” and let u € L'(2). We set u = 0 outside Q. Define
for each A > 0 the mollified function

un(z) = /Q wn(z — y)uly)dy

where wy, is a mollifier.

Remark 1.4. There are two other forms in which u; can be represented, namely

(17) wnle) = [ wne—pulldy = [ o= ul)dy

B(x,h)

the latter equality being valid since wj vanishes outside the (open) ball B(z,h). Thus
the values of up(z) depend only on the values of u on the ball B(z,h). In particular, if
dist(z, supp(u)) > h, then up(z) = 0.

Theorem 1.12. Let Q be a nonempty open set in R™. Then
(a) up € C®(R™).

(b) If supp(u) is a compact subset of Q, then up, € C§°(Q2) for all h sufficiently
small.

Proof. Since u is integrable and wy, € C*°, the Lebesgue theorem on differentiating integrals
implies that for |o| < 0o

Dup(a) = /Q u(y) Dwn(x — y)dy

ie., up € C°(R™). Statement (b) follows from the remark preceding the theorem. O

LECTURE 5 — 1/16/19

With respect to a bounded set  we construct another set Q" as follows: with each point
z € Q as center, draw a ball of radius h; the union of these balls is then Q. Clearly
Q" 5 Q. Moreover, u;, can be nonzero only in Q).

Corollary 1.13. Let Q) be a nonempty bounded open set in R™ and let h > 0 be any number.
Then there exists a function n € C*°(R™) such that

0<n(x) <1; nlx)=1, 2€ QW; nx) =0, = (QBEM).

Such a function is called a cut-off function for €.
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Proof. Let y(z) be the characteristic function of the set Q%) : y(z) = 1 forz € Q@M x(z) =
0 for z & Q2" and set

) = o) = [ wnle— y)x(w)ds
Then
wa) = [ wnle =y € CF®Y),

n

0 < nx) < / wn(z — y)dy =1,

and

fB wh(x - y)dy = 17 T e Q(h)a
x) = wp(z — dy = (@:h)
n(x) /B(a:,h) n(@ —y)x(y)dy {0, v € QU

In particular, if Q' CC €, then there is a function n € C5°(€2) such that
n(z) =1for z € ¥, and 0 < n(x) < 1in Q.
Henceforth, the notation ' CC 2 means that ', Q are open sets, ()’ is bounded, and that
O cQ.
1.3.2. Approximation Theorems.

Lemma 1.14. Let Q be a nonempty bounded open set in R™. Then every u € LP(Q) is
p-mean continuous, i.e.,

/|u(x+z)u(m)|pd$ﬁo as z — 0.
Q

Proof. Choose a > 0 large enough so that  is strictly contained in the ball B(0,a). Then
the function
Jou(z) ifzeQ,
Ulw) = { 0 ifze B(0,2a)\Q

belongs to LP(B(0,2a)). For € > 0, there is a function U € C(B(0,2a)) which satisfies the
inequality ||U — U]| L7(B(0,24)) < €/3. By multiplying U by an appropriate cut-off function,
it can be assumed that U(z) = 0 for z € B(0,2a) \ B(0,a). Therefore for |z| < a,

IU(z +2) = U@ + 2)l|e(B(0,20)) = IV (2) = U(@) | Lo(B0,0) < /3.

Since function U is uniformly continuous in B(0,2a), there is a 0 < § < a such that
1U(x + 2z) = U(x) ||l o(B(0,20)) < €/3 whenever |z| < 8. Hence for |z] < § we easily see that
|u(x + 2) —u(z)||pr = [|[U(x + 2) = U(@) || 1r(B(0,20)) < €- O

Theorem 1.15. Let Q be a nonempty open set in R™. Ifu € LP(Q) (1 <p < ), then

() [lunlly < fully
(b) |lup —ul[p =0 as h—0.

Ifu € C*(Q) and Q is compact, then, for all ' CC Q,

(¢) llun —uller@y —0 as h—0.
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Proof. 1. If 1 < p < oo, let ¢ = p/(p — 1). Then w, = wh/pwl/q and Holder’s inequality

implies
/Qwh(x —y)lu(y)[Pdy (/Q wn( — y)dy>p/q

< /Q wn (@ — y)|u(y)Pdy

which obviously holds also for p = 1. An application of Fubini’s Theorem gives

/ @i < [ ([ e o) lutwPas < [ oty

which implies (a
2. To prove (b), let w(x) = h"wp(hz). Then w(z) € C*>°(R™) and satisfies

w(z)>0; w(x)=0 for |z|>1

/n w(x)dx = /B(o,l) w(x)dx = 1.

Using the change of variable z = (z — y)/h we have

wn() - u(x) = /B 1) @ entz — )y

Jun () [”

IN

= / [u(z — hz) —u(z)|w(z)dz.
B(0,1)
Hence by Holder’s inequality
lup(x) — u(x)P < d/ |lu(x — hz) — u(x)|Pdz
B(0,1)
and so by Fubini’s Theorem
/ lup(x) — u(z)Pde < d/ (/ lu(z — hz) — u(x)|Pdz)dz
Q B(0,1) JQ

The right-hand side goes to zero as h — 0 since every u € LP(2) is p-mean continuous.

3. We now prove (c¢) for k = 0. Let ', Q" be such that Q" cC Q" cC Q. Let hg be the
shortest distance between 0€) and 9Q”. Take h < hg. Then

un(z) — u(x) = /B o H) @ )y

If 2 € €, then in the above integral ¥y € ©Q”. Now wu is uniformly continuous in Q" and
wp, > 0, and therefore for an arbitrary € > 0 we have

fun(@) — u(w)] < e /B ey =

provided h is sufficiently small. The case £ > 1 is handled similarly and is left as an
exercise. g

Remark 1.5. In (c) of the theorem above, we cannot replace ' by . Let uw =1 for x €
[0,1] and consider uy(z) = fol wh(z — y)dy, where wy(y) = wp(—y). Now [" L wn(y)dy =1
and so up(0) = 1/2 for all h < 1. Thus up(0) — 1/2 # 1 = u(O) Moreover for x € (0,1)
and h sufficiently small, (x — h,z + h) C (0,1) and so up(x f wh x —y)dy = 1 which
implies up(x) — 1 for all z € (0,1).
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Corollary 1.16. Let 2 be a nonempty open set in R™. Then C§°(S2) is dense in LP(SY) for
all 1 < p < .

Proof. Suppose first that Q is bounded and let ' CC Q. For a given u € LP(Q) set

ou(x), zed
v(@) = { 0, zcO\.

/ |u—v|pdx:/ |u|Pdz.
Q o\

By the absolute continuity of integrals, we can choose ' so that the integral on the right
is arbitrarily small, i.e., [[u — v||, < /2. Since supp(v) is a compact subset of €2, Theorems
1.12(b) and 1.15(b) imply that for h sufficiently small, vy, (z) € C§°(Q2) with [[v—wv|l, < /2,
and therefore ||u — vy ||, < e. If Q is unbounded, choose a ball B large enough so that

/ luPde < £/2
o\

where €' = QN B, and repeat the proof just given. O

Then

1.3.3. Local Interior Approximation. We now consider the following local approxima-
tion theorem.

Theorem 1.17. Let Q be a nonempty open set in R™ and suppose u,v € L} (). Then

loc
v = D% if and only if for each compact set S C Q there exists a sequence of functions {up}

in C°°(Q) such that ||up — ul[r1(sy = 0, [|[D%up — v||p1(g) — 0 ash — 0.

Proof. 1. (Necessity) Suppose v = D%u. Let S C Q be compact, and choose d > 0 small
enough so that the sets Q' = §@/2) Q" = S gatisfy O cc Q" cc Q. For z € R" define

w(e) = [ ante—gudy, o) = [ wnle e

Clearly, up, vy, € C°°(R") for h > 0. Moreover, from Theorem 1.15 we have [juj, —ul|11(g) <
|un —ull L1 (qry — 0. Now we note that if € Q" and 0 < h < d/2, then wy(z—y) € CF°(Q").
Thus by Theorem 1.12 and the definition of weak derivative,

Dup(z) = / u(y)Dew(x — y)dy = (—1)l ) Dywn(a = y)dy

= / wp(z —y) - v(y)dy = vp().

Thus, || D%up, — v||z1(s) — 0.
2. (Sufficiency) Let ¢ € C§°(2); we claim

/uDaapda:: (—1)a|/vg0dx.
Q Q

To see this, choose a compact subset S of Q such that S D supp(y). Let {up} be the
sequence as given. Then as h — oo

/ uD%pdx + / upD%p dx = (—1)“'/ ©Dupdx — (—1)°! / vodz,
Q Q Q Q
which is the claim. O

Theorem 1.18. Let Q be a domain in R™. If u € L} (Q) has a weak derivative D®u = 0
in ) whenever |a| =1, then u =const. a.e. in Q.
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Proof. Given a subdomain €' CC Q, choose ' cC Q" cC Q and define
wle) = [ wnle-pul)dy (@R,

Let z € ' and 0 < h < dist(Q',09"). Then the function p(y) = wp(z — y) is in C§(Q").
Since Du = 0 in ) weakly, it follows that

Dus(a) = | Dante = y)utw)dy =~ | u()Dely)dy = | Dulwely) dy =0

for all z € @ and 0 < h < dist(©Y,09"). Thus up(z) = ¢(h), a constant, in Q' for each
0 < h < dist(€,09"). Since [Jup —ul[L1(qy = llc(h) —ull L1y — 0 as b — 0, it follows that

le(h1) = e(h2) ||l L1y = le(h1) — c(he)|mes(Q') — 0 as hy, hy — 0.

Consequently, ¢(h) — ¢ in R as h — 0. Hence u(z) = c a.e. in §'; therefore, we have proved
that u is constant on any subdomain €' CC €. However, since 2 is connected, v must be
constant on €. O

We now note some properties of W*P(Q) which follow easily from the results of this
and the previous section.

(a) If ' € Q and if u € WFP(Q), then u € WFP(Q).

(b) If u € WkP(Q) and |a(z)|r00 < 00, then au € WHP(Q). In this case any weak
derivative D(au) is computed according to the usual Leibniz’ rule of differentiating
the product of functions.

(c) If u € WFP(Q) and wuy is its mollified function, then for any compact set S C
Q, [[un, — ullywrr(sy — 0 as h — 0. If in addition, u has compact support in €2, then
llun — ul|kp — 0 as h — 0.

1.3.4. Chain Rules.

Theorem 1.19. Let Q be an open set in R™. Let f € CL(R), |f'(s)| < M for alls € R and
suppose u has a weak partial derivative D*u for some |a| = 1. Then the composite function
fou has the a-weak partial derivative D*(f ou) = f'(u)DYu. Moreover, if f(0) =0 and if
u € WIP(Q), then fou € WHP(Q).

Proof. 1. Let S C Q be any compact set. According to Theorem 1.17, there exists a
sequence {uy} C C°°(Q) such that [[up, — ullpig) — 0, [|[D%up — D%l|p1(g) — 0 as h — 0.
Thus

/fuh u)|dx < sup|f|/|uh—udx—>0ash—>0
and

/ |f' (up)DYup, — f'(u)D%u|dz < sup f’|/ |D%up, — D%uldz
S S

/ F(un) — F'(w)||D"ulda.

Since |lup—ul|L1(5) — 0, there exists a subsequence of {uy, }, which we call {u;} again, which
converges a.e.in S to u. Moreover, since f’ is continuous, one has f'(up(z)) — f'(u(x))
a.e.in S. Hence the last integral tends to zero by the dominated convergence theorem.
Consequently, the sequences {f(us)}, {f'(un)D%us} converge to f(u), f'(u)D% in L'(S)
respectively, and the first conclusion follows by an application of Theorem 1.17 again.



14 1. Part I — Sobolev Spaces

2. If f(0) = 0, the mean value theorem implies |f(s)| < M]|s| for all s € R. Thus,
|f(u(z))| < Mlu(z)| for all x € Q and so fowu € LP(Q) if w € LP(Q). Similarly,
f'(u(x)) D% € LP(Q) if u € WHP(Q), which shows that fou € WLHP(Q). O

Corollary 1.20. Let Q be a bounded open set in R™. If u has an o' weak derivative D%u
for some |a| =1, then so does |u| and

D% if u>0
D%|u| = 0 if u=20
D% if u<0
i.e., D¥u| = (sgnu)D%u with the properly defined sgn function. In particular, if u €
WLr(Q), then |u| € WHP(Q).

Proof. The positive and negative parts of u are defined by

u” = max{u,0}, v~ = min{u, 0}.
We show that if D%u exists then D®u™ exists and that
D%y ifu >0
(1.8) poyt =7 Beow
0 if u <0.
Then the result for |u| follows easily from the relations |u| = «™ —u~ and u= = —(—u)™.

To prove (1.8), for h > 0 define

1
[ (2HhDE—h if s>0
fh(s)_{o it s<0.

Clearly f, € C'(R) and f} is bounded on R. By Theorem 1.19, f,(u) has a weak derivative,
and for any ¢ € C5°(Q)

uD%u

/Q fn(u) Do pdic = — /Q D (fi(u))pdez = — / DT

Upon letting h — 0, it follows that f;(u) — w™, and so by the dominating convergence

theorem
/u+DO‘g0dx = —/ pD%udr = —/ vodz,
Q u>0 Q

where

D% if u >0,

'U prd

0 if u <0,

which establishes the desired result for u™. O

Theorem 1.21. If u,, — u in WHP(Q) then u}l, — ut in WHP(Q). Moreover, if u €
W, P(2), then ut,u™, |u| € WyP(Q).

Proof. Without loss of generality, we assume wu,,(x) — u(x) as m — oo for all x €
where ' C Q is measurable and |2\ Q| = 0. Clearly, from |at — b"| < |a — b for all
a,b € R, we have

[, = ™ || o) < Jttm — ul| o) = O.
We only prove the case when 1 < p < 0o; the case p = oo can be proved by taking p — oo.
By (1.8), we have

| Duyy, — Du+||]£p(g) = [ Dupm — Du”ip(Am) + HDUHip(Bm) + ||Dum||]2p(cm)
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< Dt — Dullqy + 1Dl . + (1Dt — Dull oy + 1Dl o)

< (1+2P)|[Dup, — D“Hip(g) + HD“Hip(Bm) + QPHDUHZip(cm),
where A,, = {z € U | up(x) > 0, u(z) > 0} and
By ={z€Q |un(z) <0, uz) >0}, Cpn={xecQ|un(z)>0,ux) <0}
As up(x) = u(x) on €, it follows that (Real Analysis Exercise!)
lim |Bp|= lim |Cy,|=0.
Hence || Dul|rr(B,,) + [[Dull tr(c,,) — 0 and thus
lim ||Du;, — Du™|| o) = 0.
m—o0
This proves u,, — u™ in W1P(Q).
Finally, let u € Wol’p(Q) and u;, € C5°(Q) be such that u, — u in WHP(Q). Clearly

uf € Wy P(Q) and uyf, — ut in WP(Q); this proves ut € W,?(2). The conclusion for u~
and |u| follows easily from the identities v~ = —(—u)" and |u] = u™ —u~. O

1.3.5. Partition of Unity. To establish a global interior approximation for a Sobolev
function in W*P(Q), we need the following well-known result of partition of unity.

Theorem 1.22. (Partition of Unity) Let Q@ = UxcaQy, where {Q\} is a collection of
open sets. Then there exist C* functions ¥;(x) (i =1,2,...) such that for each i

(a) 0 <i(z) <1,
b) suppy; CC Qy, for some \; € A,

(b)
(c) Y2, vi(x) =1 for every x € Q,

(d) Vo € Q 3B(x,7) such that Ik, Yi|pury =0 Vi > k.

Such a sequence {;} is called a C*° partition of unity for 2 subordinate to {Q2,}.

Proof. Let U,, = B(0,m)NQ for m = 1,2,... and Uy = U_; = (). Then, for each x € Q,
there exist m = m(x) > 0 and A = A(z) € A such that

T € Um—‘rl \ Un C Unq2\ Um—la T € Q)\(m)

So we choose 7, > 0 such that B(x,72) C Qy) N (Upngz \ Um—1). Let ¢, € C®(B(x,74))
be such that 0 < ¢, <1 and ¢z|p(y,r,/2) = 1-

For each m > 0, since Uy, 1 \ Uy, is compact, we choose a finite covering of this set by
balls {B(x,r;/2)}. Let {B(x;,72,/2)} be the collection of all such finite coverings over all
m =0,1,2,..., and let ¢; be the corresponding cut-off functions on B(x;,r,,). Clearly, a
small ball B(x,r) will only intersect a finite number of the balls {B(x;, )}, so for some
k, ¢i| B(z,ry = 0 for all i > k. This implies that the sum ¢(z) = 3772, ¢s(x) is locally a finite
sum and thus is smooth in 2, and also ¥ (x) > 0 for each x € Q. Thus the functions v; = %
provide the partition of unity. O
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1.3.6. Global Interior Approximation. The following global interior approximation
theorem is known as the Meyers-Serrin Theorem: H = W.

Theorem 1.23. (Meyers-Serrin Theorem) Let Q be open in R", u € WFP(Q) and
1 < p < o0o. Then there exist functions u,, € C=(Q) N W¥*P(Q) such that
U — u in WEP(Q).

In other words, C>®(2) N WHFP(Q) is dense in WHP(Q).

Proof. 1. We have Q = U2, where ; = {z € Q : [z| < i, dist(z,00Q) > 1/i}. Set
Vi = Qit3\ Qiy1. Choose an open set Vj CC Q so that Q = U2 V.
2. Let {(;}2, be a smooth partition of unity subordinate to the open sets {V;}5°; that
is, .
GECP(VA), 0<¢G <1, Y ¢G=1on%
i=0
Let u € W*P(Q). Then (u € W*P(Q) and supp({u) C Vi
3. Fix § > 0. Choose ¢; > 0 so small that v’ = we; * (Cju) satisfies

) J . _
Ju* = Gullyrr) < gir1>  SuPPU’ C Wi = Qi \ Q.

Note that V; € W;. Let v = ) %, u?. For each U cC Q, W; NU = 0 for all sufficiently
large i; so v|y is a finite sum and thus v € C°°(U), which implies v € C*°(Q2). Also, as
u =7 2,Gu in Q, we have

o o

‘ 1
v — UHwk,p(U) < Z Ju* — Cz’UHWW(Q) < 52 91 0.
i=0 i=0

O

This is independent of U CC €; hence [[v — ul[yyr.pq) < 0.

Remark 1.6. The result holds when = R". From this one can show that W1P(R") =
W, P(R™) for 1 < p < oo. However for bounded domains €2 it follows that W1P(Q) #
Wol’p(Q) (see the trace operator later).
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ExaAMPLE 1.24. Is the approximation true when p = co?
No. Let Q = (—1,1) and u(z) = |z|. Show there is no function v € C°(2) such that

|u — || Lo < 1/4.
1.3.7. Approximation up to the Boundary.
Theorem 1.25. Let Q be open, bounded and 0 € C'. Let u € WEP(Q), 1 < p < oc.

Then there exist functions uy, € C*°(Q) such that
U — u in WEP(Q).

In other words, C>(Q) is dense in W*P(Q).

Proof. See Evans’s textbook. O

Exercise 1.7. Prove the product rule for weak derivatives:
D;(uv) = (D;u)v 4+ u(D;v)
where u, D;u are locally LP(Q), v, D;v are locally LI(Q2) (p > 1,1/p+1/q =1).
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Exercise 1.8. (a) If u € Wg’p(Q) and v € C*(Q), prove that uv € Wég’p(Q).
(b) If u € WkP(Q) and v € C¥(Q), prove that uv € Wéc’p(Q).

LECTURE 7 — 1/23/19
1.4. Extensions

If Q C €, then any function u(z) € C§(Q) has an obvious extension U(x) € C§(¢Y') by
zero outside Q2. From the definition of WP (Q) it follows that the function u(z) € WP (§2)
and extended as being equal to zero in 2\ belongs to Wéf P(€). In general, a function
u € WFP(Q) and extended by zero to ' will not belong to WP (€). (Consider the function
u(x) =1in Q.)

We now consider a more general extension result.

Theorem 1.26. Let ), € be bounded open sets in R", Q cCc ¥, k>1,1<p < oo, and
let O be C*.

(a) There exists a linear operator Ey: C*(Q) — CE(QY) such that for each u €
C*(Q),

(i) Byu = u in Q,

(i) [|Eruller@y < Clluller@y and [|[Eullyrs oy < Cllullyrrqy for a constant
C depending only on k, p, Q and .

(b) There exists a linear operator E: WFP(Q) — Wéf’p(Q’) such that for each u €
Wk,p(Q)7

(i) Eu = u almost everywhere (a.e.) in €,

(i) [[Eullwrray < Cllullwesqy for a constant C' depending only on k, p, Q
and €.
(c) There exists a linear operator Ey: CK(0Q) — CF(Q) such that for each u €
Ck(09),

(i) Eau = u on 09,

(i) [[Baullorq) < Cllullekaq) for a constant C' depending only on k, @ and
.

Proof. 1. Suppose first that u € C*(Q). Let y = 1 (x) define a C* diffeomorphism that

straightens the boundary near 2% = (x(l), ...,22) € 9Q. In particular, we assume there is a
ball B = B(2°,r) such that (BN Q) C R (ie., y, > 0), p(BNIN) C OR%. (e.g., we
could choose y; = x; — x? fori=1,...,n—1and y, = z, — @(1,...,2Tn_1), where ¢ is of

class C*. Moreover, without loss of generality, we can assume ¥, > 0 if z € BN Q.)
2. Let G and G™ = G NRY be respectively, a ball and half-ball in the image of 1) such

that ¢(z%) € G. Setting a(y) = uo ' (y) and y = (Y1, -, Yn-1,Yn) = (¥, yn), we define
an extension U(y) of u(y) into y, < 0 by
k+1
U yn) =Y citi(y', —yn/i); yn <0
i=1
where the ¢; are constants determined by the system of equations
k+1

(1.9)  a(-1/)m =1, m=0,1,....k

=1
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Note that the determinant of the system (1.9) is nonzero since it is a Vandemonde determi-
nant. One verifies readily that the extended function U is continuous with all derivatives
up to order k in G. For example,

k+1
hrn Uly) = Zc, a(y’,0) = u(y’,0)

by virtue of (1.9) with m = 0. A similar computation shows that

lim Uy, (y) = 4y, (y,0), i=1,...,n— 1

y—(y'0)
Finally
k+1
lim U =Y ¢(—=1/d)uy,, (v,0) =14, (y,0
Ui (4) g (— 1)y, (4, 0) = 1y, (4. 0)

by virtue of (1.9) with m = 1. Similarly we can handle the higher derivatives. Thus
w = U o € CF(B’) for some ball B’ = B'(2°) and w = u in B'NQ, (If z € B' N Q, then
Y(r) € G and w(z) = U(Y(x)) = a(v(z)) = uw(yp~1(x)) = u(z)) so that w provides a C*

extension of u into Q U B’. Moreover,
sup [u(y)| = sup [u(¢~! ()| < sup |u(z)|
G+ Gt Q

and since x € B’ implies ¥(z) € G
sup [U (¢ ()| < esup [a(y)| < esup [u(z)].
B’ G+ Q

Since a similar computation for the derivatives holds, it follows that there is a constant
¢ > 0, independent of u, such that

lwller@upny < clluller@),  Nlwlwrs@upy < Cllullwrsg)-

3. Now consider a finite covering of 92 by balls B;, ¢ = 1,..., N, such as B in the
preceding, and let {w;} be the corresponding C* extensions. We may assume the balls B;
are so small that their union with Q is contained in . Let Qg CC Q be such that Qg and
the balls B; provide a finite open covering of Q. Let {n;}, i = 1,..., N, be a partition of
unity subordinate to this covering and set

w = uno + Zwmz‘

with the understanding that w;n; = 0 if ; = 0. Then w = Fju is an extension of u into €/
and has the required properties. Thus (a) is established.

4. We now prove (b). We only give the proof for the case 1 < p < oo; the case p = 0o
is left as an exercise. (Hint: track all the constants involved for each p < co and show they
do not blow up as p — 00.). Solet 1 < p < oo and u € W*P(Q). Then by Theorem 1.25,
there exist functions u,, € C*(Q) such that u,, — u in W*P(Q). Let Q c Q" C &/, and
let Uy, be the extension of u,, to " as given in (a). Then

[Um = Ullwrp@ry < cllum — wllwrpq)

which implies that {U,,} is a Cauchy sequence and so converges to a U € Wéc P(Q)"), since
Un € CE(Q"). Now extend U,,,U by 0 to €. Tt is easy to see that U = Fu is the desired
extension.

5. We now prove (c). At any point 2 € 9 let the mapping 1 and the ball G' be defined
as in (a). By definition, u € C*(0) implies that @ = u o~ € C¥(G N IR™). We define
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d(y,yn) = a(y') in G and set ®(z) = ® o y)(x) for x € Y~ 1(G). Clearly, ® € C*(B) for
some ball B = B(z?) and ® = u on BN JQ. Now let {B;} be a finite covering of 9 by
balls such as B and let ®; be the corresponding C* functions defined on B;. For each i, we
define the function U;(x) as follows: in the ball B; take it equal to ®;, outside B; take it
equal to zero if x ¢ 9 and equal to u(z) if € 9. The proof can now be completed as in
(a) by use of an appropriate partition of unity. O

1.5. Trace Theorem

Unless otherwise stated, €2 will denote a bounded open connected set in R”, i.e., a bounded
domain. Let I' be a surface which lies in €2 and has the representation

zn = (), o' = (1,...,2p-1)

where ¢(z') is Lipschitz continuous in U. Here U is the projection of I onto the coordinate
plane z, = 0. Let p > 1. A function u defined on T is said to belong to LP(I") if

1
P
o) = ( /F |u<sc>|f’ds) < o0,

[u@ras = [ . eap(1+ 2(32@’))2) .

Thus LP(T') reduces to a space of the type LP(U) where U is a domain in R?~!.

where

1.5.1. The Trace Operator. For every function u € C(£2), its values you = u|p on I' are
uniquely given. The function ~yu will be called the trace of the function u on I'. Note that
u € LP(T) since you € C(I).

On the other hand, if we consider a function u defined a.e. in Q (i.e., functions are
considered equal if they coincide a.e.), then the values of v on I' are not uniquely determined
since meas(I') = 0. In particular, since 02 has measure 0, there exist infinitely many
extensions of u to Q that are equal a.e. We shall therefore introduce the concept of trace for
functions in W1P(Q) so that if in addition, u € C(Q2), the new definition of trace reduces
to the definition given above.
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In the rest of this section, we assume 1 < p < oco.
Lemma 1.27. Let Q be bounded with 9Q € Ct. Then for u € C1(Q),
(1.10) H’YO“HLP(aQ) < C”UHLP

where the constant ¢ > 0 does not depend on u.

Proof. 1. Let 2° € 99. Assume 09 is flat near z°, lying in the plane {x, = 0}. Choose a
ball B centered x° such that B = BN {x, > 0} C Q and let B be the concentric ball of
half radius with B. Select a cut-off function ¢ € C§°(B) with 0 < ¢ <1 and (|5 = 1. Let

I = 90N B and write 2/ = (x1,...,2p—1). Then

/ P da? < / Cluf? da’ = — / (), du
r {zn=0} B+



20 1. Part I — Sobolev Spaces

= [ (e, + pluP sgna)u, €) da
Bt
< c/ ([ul? + | Dul?) dz < c/(\uyu \DulP) da
B+ Q

where we used Young’s inequality.

2. Let 29 € 0. If 09 is not flat near 2°, then we flatten the boundary near x° by a
function z,, = ¢(2') as usual and use dS = (1 + |D|?)"/2da’ to still obtain

/|u|pds < 0/(|u|p+ \Dul?) dz
N Q

where I is some open set of O containing z°.

3. Since 95 is compact, there exist finitely many (N) points 2¥ € 9Q and open sets I';
of 9 such that 99 = Uf\ilfi and

/ ulP dS < c/(yu\uwum de (i=1,... N).
T; Q

Consequently, if we write vyo(u) = u|oq, then

o)l o0) < Cllullwirg)-
t

Remark 1.9. If 1 < p < o0, by examining the Steps 1 and 2 of the proof above and using
Young’s inequality with ¢, we also have

C1

(111) o) om) < 7 Vulle + 28Dl V0 <5 <1
p—1

where constants ci, co depend only on p and €2, but not on 8 and u.

Since 1 < p < oo and thus C®(Q)) = W'P(Q), the bounded linear operator 7o :
C>®(Q) c WP(Q) — LP(09) can be uniquely extended to a bounded linear operator
Y0 : WHP(Q) — LP(09) such that (1.10) and (1.11) remain true for all u € W1P(Q).

More precisely, we obtain you in the following way: Let u € W1P(Q). We choose a

sequence {u,} C C*®(Q) with |ju, — ul|1,, — 0. Then

170 (tm) — ’YO(un)HLP(BQ) < cljum — unll1po — 0.
Hence {yo(u,)} is a Cauchy sequence in LP(99); so there exists a function in LP(0%2),
defined to be yo(u), such that |[youn — YoullLr90) — 0. Furthermore, this function o(u)
is independent of the sequence {u,} in the sense that if v; € C*°(2) and |Jv; — ulj1, — 0,
then lim;_ Y0(v;) = 70(w); this is thanks to

70(v5) —v0(uj)lzra0) < cllv; —ujllip0 — 0.
The function you (as an element of LP(9€2)) will be called the trace of the function u €

W12(Q) on the boundary 9. (|[youllLr(aq) will be denoted by [|ul|zr(aq).) Thus the trace
of a function is defined for any element u € W1P(Q).

The above discussion partly proves the following:

Theorem 1.28. (Trace operator) Suppose 02 € C'. Then there is a unique bounded
linear operator o : WiP(Q) — LP(0Q) such that you = ulspq for u € C(Q) N WP(Q),
and ~o(au) = yoa - You for a(z) € C1(Q), u € WHP(Q). Moreover, N'(v) = Wol’p(ﬂ) and
R(70) = LP(09).
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Proof. 1. Suppose u € C(Q) N W1P(Q). Then the function u,, € C*(Q) constructed in
the proof of the global approximation Theorem 1.25 also converges uniformly to u on €.
Hence um,|on — u|spqo uniformly on 99; on the other hand, wm|sa = Yo(um) — Yo(u) in
LP(09), and hence u|pq = you in LP(0N).

2. Now au € W'P(Q) if a € C1(Q) and u € WP(Q), and consequently, yo(au) is
defined. Let {u,} C C1(Q) with |Ju, —ul[1, — 0. Then

’Yo(twn) = Y04 - YoUn

and the desired product formula follows by virtue of the continuity of ~g.

3. Ifu e W&’p(Q), then there is a sequence {u,} C C}(Q) with [ju, — ull1, — O.
But uplgno = 0 and as n — 00, uplan — You in LP(0Q) which implies you = 0. Hence
W,y P(Q) € N (7). The opposite inclusion N(y) € W, P(€) is more difficult to prove.

4. Suppose u € N(y0). If u € WP(Q) has compact support in 2, then by an earlier
remark, u € T/VO1 P(Q). If u does not have compact support in €2, then it can be shown that
there exists a sequence of cut-off functions 7y such that gu € W1P(Q) has compact support
in ©, and moreover, ||nyu — ul|1,, — 0. By using the corresponding mollified functions, it
follows that u € Wol’p(Q) and N (y9) C Wol’p(Q). Details can be found in Evans’s book.

5. Finally, to prove R(yp) = LP(99), let f € LP(012) and let € > 0 be given. Then there
is a u € C'(99Q) such that [|u— f[|r@90) < e. If welet U € C'(Q) be the extension of u into
Q, then clearly [|[voU — f||1r(a0) < €, which is the desired result since U € WP(Q). O

Remark 1.10. We note that the function u = 1 belongs to WHP(Q) N C(Q) and its trace
on 0N is 1. Hence this function does not belong to T/VO1 P(2), which establishes the earlier
assertion that Wol’p(Q) # W1P(Q). In fact, for all bounded open sets €2, 1 ¢ Wol’p(Q), which
follows from the embedding theorems proved later.

1.5.2. Higher-Order Trace Operators. Let u € W*P(Q), k > 1. Since any weak
derivative D®u of order |a| < k belongs to W1P(Q), this derivative has a trace yoD%
belonging to LP(0€2). Moreover

[1D%ul[Lra) < cl[D%ullip < cllullryp

for constant ¢ > 0 independent of wu.

Assuming the boundary 992 € C', the unit outward normal vector n to 9 exists and is
bounded. Thus, the concept of traces makes it possible to introduce du/dn for u € WP ().
More precisely, if u € W?2P(€2), then there exist traces of the functions u, D;u so that, if n;
are the direction cosines of the normal, we may define

n

nu =Y (v0(Diw))n;.

i=1

The trace operator 71 : W2P(Q) — LP(09) is continuous and yju = (Ou/0n)|gq for u €
CHQ) N W2P(Q).
For a function u € C*(Q) we define the various traces of normal derivatives given by
M ,
’YjU:%’m, 0<j<k-1

Each «y; can be extended by continuity to all of WFP(Q) and we obtain the following:
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Theorem 1.29. (Higher-order traces) Suppose 02 € C*. Then there is a unique con-
tinuous linear operator v = (Yo, V1, .., Yk—1) : WFP(Q) — H?;OI WkE=1=3P(9Q) such that
for u € C*(Q)
M ,
You = u’aﬂv ViU = %bﬂa J = 17"'7k_ 1.
Moreover, N (v) = Wéf’p(Q) and R(v) = H?;é Wh=1=32(90).
The Sobolev space W#~175(9Q) can be defined locally. However, this space is not the

range of 7;; the range of ; is actually a fractional Sobolev space on the boundary 0f2. For
example, vo(H'(Q)) = H'/2(9). We will not study such Sobolev spaces.
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1.5.3. Green’s Identities. In this section we assume that p = 2 and we continue to
assume {2 is a bounded domain.

Theorem 1.30. (Integration by Parts) Let u,v € HY(Q) and let 9Q € Ct. Then for
anyi=1,...,n

(1.12) /vDiudx:/ (’you-vgv)nidS—/uDivd:E.
Q o0 Q

(D;ju, D;v are weak derivatives.)

Proof. Let {u,} and {v,} be sequences of functions in C*(Q) with [lun, — ul 1) —
0, [lvn — v|[g1(0) — 0 as n — oco. Formula (1.12) holds for u,, vy,

/UnDiundmz/ unvnnidS—/unDivnda:
Q o0 Q

and upon letting n — oo relation (1.12) follows. O

Corollary 1.31. Let 0Q € C*.
(a) Ifve HY(Q) and u € H*(Q) then
/ vAudx :/ You - y1udS — / (Vu - Vu)dr (Green’s 1st identity).
Q o9 Q
(b) If u,v € H*(Q) then

/(vAu — uAv)dx = / (Yov - Mu — you - y1v)dS (Green’s 2nd identity).
Q o0

Proof. If in (1.12) we replace u by D;u and sum from 1 to n, then Green’s 1st identity
is obtained. Interchanging the roles of u,v in Green’s 1st identity and subtracting the two
identities yields Green’s 2nd identity. g

Exercise 1.11. Establish the following one-dimensional version of the trace theorem: If

u € WHP(Q), where Q = (a,b), then
lull ooy = (Ju(@)? + [u(®)?)/? < const [[ullwiro

where the constant is independent of w.
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1.6. Embedding Theorems

In what follows, let (X, | - [|x) and (Y, || - ||y) be two normed spaces, with X C Y as sets.
We say that X is continuously embedded into Y and also write X C Y if there exists a
constant C' > 0 such that

lully < Cllullx VueX.

We consider the following question: Is W*P(Q) continuously embedded into certain other
spaces? Certainly, by definition, W*P?(Q) ¢ W/P(Q) for all 0 < j < k, but such embeddings
are not interesting. Are there other spaces not directly from defintion? The answer will be
yes, but which other spaces depend upon whether 1 < kp < n, kp =n, n < kp < oo.

A series of special results will be needed. We start with k£ = 1.

1.6.1. Gagliardo-Nirenberg-Sobolev Inequality. Suppose 1 < p < n. Do there exist
constants C' > 0 and 1 < ¢ < oo such that

(1.13) lullLany < CllDullprmny

for all w € C3°(R™)? The point is that the constants C' and ¢ should not depend on u.

We shall show that if such an inequality holds, then ¢ must have a specific form. For
this, choose any u € C§°(R"), u # 0, and define for A > 0

ur(z) =u(Az) (x €R").

1
[ uaftde = [ uOwirde = 5 [ Juto) iy

AP
/ |Duy [Pdx = )\p/ | Du(A\x)|Pdx = / | Du(y)[Pdy.

Inserting these inequalities into (1.13) we find

Now

and

1 A
WHUHLQ(R") < CWHDUHLP(R")
and so
(1.14) Joll ey < CN/P40/4 Dt oy

If1—n/p+mn/q>0 (or <0), then we can upon sending A to 0 (or co) in (1.14) obtain a
contradiction (v = 0). Thus we must have 1 —n/p + n/q = 0; that is, ¢ = p*, where

(1.15) pr= 2
n—p
is called the Sobolev conjugate of p. Note that then
1 1 1 .
(1.16) —=—-——, p >p
p p n

Next we prove that the inequality (1.13) indeed holds for ¢ = p*.

Lemma 1.32. (Gagliardo-Nirenberg-Sobolev Inequality) Assume 1 < p < n. Then
there is a constant C, depending only on p and n, such that

(1.17) [ull o= mny < CllDul| Lo (wn)
for all uw € C}(R™).
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Proof. First assume p = 1. Since u has compact support, for each ¢ = 1,...,n we have
T4
u(z) = / Ug, (T15 -+ i1, Yis Tids - - -5 T )Y
—0o0
and so

|u(w)|§/ Du(@r, gy wa)ldys (= 1,...,m).

—00

Consequently

(1.18) u(a)] 77 < 1:1 (/

—00

oo

1
=1
|Du(a¢1,...,yi,...,mn)\dyi> .

Integrate this inequality with respect to z:

1
o0 n oo I ¢} n—1
| e < [ ||</ |Durdyi) dy
—o0 —00 ;4 —o0
= </ !DU\dw) / H(/ \DUIdyi> dxy
—00 —00 ;9 —0o0

1

oo L n 0o oo n—1
n—1
</ ]Du\dgﬂ) (l |/ / |Du\dm1dyi>
—0o0 j—g9J —00 J—00

the last inequality resulting from the extended Holder inequality.

N

IN

We continue by integrating with respect to zo, ..., z, and applying the extended Holder
inequality to eventually find (pull out an integral at each step)

n 0o ) n%
/ |u(x)|%dx H</ / |Du|d931...dyi...d:zn) '
" =1 \/—oo  J-oo
==
= </ |Du|d:z:>

which is estimate (1.17) for p = 1. Mr. Minh Le showed me an elegant proof of this case
by using induction to show

IN

_1

n n—1
/R Ju|"—T dx < (H HuxiHU(Rn)) Yu € CLR™).

=1
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Now consider the case that 1 < p < n. Let v = |u|?, where v > 1 is to be selected. Note
that D;v = v|u|?"tD;u; thus v € C}(R™). So, using the above case of p = 1 for u = v, we

have
n—1
(/ \u(x)\ﬂ”ldw) < [ 1Dlufjas
n RTL
= o [ Dulds

Rn
p(y—1) ijl %
< v / lu| =T dx / |Du|Pdx | .
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We choose 7 so that the powers of |u| on both sides are equal; namely, -5 = %. This

(n=1)

gives v = n—p > 1, in which case

wm  ply—=1)  np
n—1 p—1 n—p

Thus, the above estimate becomes

1
*

</ ]u|p*dx>p < p(:_—;) </ |Du|pdx>‘l’.

Theorem 1.33. (Gagliardo-Nirenberg-Sobolev-Poincaré’s Inequality) Let 2 C R™
be any open set and 1 <p < n. Ifu € Wol’p(Q), then u € LP (Q) and

0

(1.19) [ull L) < ClIDul|Lr (),

where the constant C' depends only on p and n.

Proof. Let u € Wol’p(Q) and let u,, € C§°(Q) be such that u, — u in WHP(Q). Extend
U, by zero outside € so that u,, € C§°(R™). By Lemma 1.32, we have

Hum — ulHLp*(Rn) < CHDUm — DUlHLp(Rn) Vl,m;

hence {u,,} is a Cauchy sequence in LP*(R") and thus u,, — @ in L?" (R™). One must have
@ =u a.e.in Q and thus u = @ € LP*(Q2). Again Lemma 1.32 gives

[umll e (@) = lumll Lo* @ny < CllDum||zo@n) = CllDum| e (0,
and taking m — oo proves (1.19). O

Theorem 1.34. (Poincaré’s Inequality) Let @ C R™ be bounded and open. Assume
1<p<nandqe[l,p*. Ifuec Wol’p(ﬂ), then u € LY(Q) and

[ull ey < CllDull e,
where the constant C' depends only on p,q,n and 2.
Proof. The result follows from Theorem 1.33 since, from |2| < co and Holder’s inequal-
ity,
1_1
[ull oy < [92]e P [Jull Lo
for every g € [1,p*]. O

Remark 1.12. A Poincaré type of inequality is an estimate of the LY norm of certain
quantities involving u by the LP norm of Du. We will have the other type of Poincaré’s
inequalities later.

Theorem 1.35. Let 2 C R" be bounded and open with 02 € C*. Assume 1 < p < n, and
u € WHP(Q). Then u € LP"(Q) and

(1.20) [ull o 0y < Cllullwrre)

where the constant C' depends only on p,n and 2.
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Proof. Since 9 € C!, there exists an extension U € WHP(R") such that U = u in Q, U
has compact support and

(1.21) [Ul[w1e@ny < Cllullwrog)-

Moreover, since U has compact support, there exist mollified functions u,, € C§°(R™) such
that u,, — U in WHP(R"). Now according to Lemma 1.32,

[um — wl| o= gny < Cl|Dum — Duy|| Lo gny
for all I,m > 1; whence u,,, — U in LP" (R") as well. Since Lemma 1.32 also implies

[um |l o= @y < Cll DU || Lo(®n),
we get in the limit that
1U| o= (mny < CIDU| Lo wn)-

This inequality and (1.21) complete the proof. O
The case p = n. Since WH*(Q) ¢ WHP(Q) for all p < n, we have the continuous em-
bedding W1™(Q) ¢ L"(Q) for all 1 < r < co. However, we do not have the embedding
Whn(Q) c L®(); for example, function v = Inln(1 + ﬁ) € Wtn(B(0,1)) but not to
L>(B(0,1)) if n > 2.

In fact, the space W1™(Q) is embedded into the space of functions of bounded mean

oscillation in 2, namely, BMO(f2); however, we shall not study this embedding in this
course.
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1.6.2. Morrey’s Inequality. We now turn to the case n < p < co.

The next result shows that if u € WHP(2), then u is in fact Holder continuous, after
possibly being redefined on a set of measure zero.

Theorem 1.36. (Morrey’s Inequality) Assumen < p < oo. Then there exists a constant
C, depending only on p and n, such that
(1.22) HUHCOJ—%(Rn) < C’HuHWLp(Rn), Vuce€ Cl(Rn).

Proof. We first prove the following inequality: for all z € R™, r > 0 and all u € C*(R"),

r [ Du(y)|
1.23 / u(y) — u(x)|dy < dy.
( ) B(z,r) ’ ( ) ( )’ " JB(z,r) |.CC - y|n—1

To prove this, note that, for any w with |w| =1 and 0 < s <,

/0 %u(az + tw)dt'

/ Du(zx + tw) - wdt‘
0

lu(z + sw) —u(x)| =

IN

/ | Du(z + sw)| dt.
0
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Now we integrate w over dB(0, 1) to obtain
/ lu(x + sw) —u(z)|dS < / / |Du(x + sw)| dSdt
dB(0,1) 0 JoB(0,1)
D
o,
B(z,s) ‘l‘ - y‘
D
< [,
B(z,r) |$ - y|n

Multiply both sides by s”~! and integrate over s € (0,7) and we obtain (1.23).
To establish the bound on [[u[|co(gn), We observe that, by (1.23), for xz € R™,

O S oy L ) @l |/ ) dy

7

1/P p
c(/ Du<y>|pdy) /B ( 1)|y—x|*p—1 dy +c||u||Lp<Rn>

Cllullwe@mny

IN

IN

for n < p < 0o, where C' is a constant depending on p, n; here we have used the fact

(1—n)p p—1
ly—x| 71 dy=wp,—— <0 Vn<p<oo.
B(z,1) p—n

To establish the bound on the semi-norm [u],, v =1— %, take any two points z,y € R".
Let r = |x — y| and W = B(x,r) N B(y,r). Then

(1.24) lu(z) — u(y)| < |W|/ lu(x) — u( |dz+|W|/ lu(y) —u(z)|d=.

Note that |[W| = gr", r = |v —y| and [, < mm{fB(I T),fB(y »}- Hence, using (1.23), by
Hoélder’s inequality, we obtain

/ lu(z) —u(z)|dz < / lu(z) —u(z)|dz < r/ |Du(2)||z — 2| " dz
w B(z,r) " JB(x,r)

p—1

r" Hp (d=n)p P
— / |Du(z)|P dz / |z — x| =1 dz
n B(z,r) B(z,r)

"o pTTl
Cr™ | Dull Lo (B /S p=1 8" ds
0

< C Py HDUHLP(B(x,r))

IN

IN

n

-1
for n <p < oo, where y=1-% and C' = CH(%)I’T; similarly,

/W u(y) — u(2)|dz < Cr" | Dul| 1o Byr)-
Hence, by (1.24) and noting that B(x,r) U B(y,r) C B(z,2r), we have
(1.25) u(z) —u(y)] < Clz =yl [|Dull (B2 Yy € Blx,r).

This inequality, also of independent importance itself, and the bound on ||u||co above com-
plete the proof. U
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Theorem 1.37. (Estimates for WP(Q), n < p < o) Let Q C R™ be bounded and open,
with 0Q € C1. Assume n < p < 0o, and u € WHP(Q). Then, after possibly redefining u on
a null set, w e C"'7 % (Q) and

HUHCOJ*%(Q) < CHUHWLP(Q)

where the constant C depends only on p,n and €.

Proof. Since 92 € C1, there exists an extension U € WHP(R") such that U = u in Q, U
has compact support K and

(1.26) 1T lwrp@mny < Cr(n, p, 2, K)|lullwrrq)-

1. First assume n < p < oo. Since U has compact support, the mollified functions
U € C°(R™) of U satisfy that u,, — U in WHP(R™). According to Morrey’s inequality,

[um = wllco-n/p@ny < Ca(n, p)|lum — wllwiegn)

for all [,m > 1; whence there is a function u* € C%'="/P(R") such that u,, — u* in
CO1=n/P(R™). Thus u* = u a.e. in Q. Since we also have

[umllco.1-nsp(mny < Co(n, p)[umllwregn)
we get in the limit that
(1.27) [u* (| coa—n/o@ny < Co2(n, DU | wimgn)-

This inequality and (1.26) complete the proof if n < p < oo.

2. Assume p = oco. Note that the constants C; and Co in (1.26) and (1.27) remain
bounded as p — co. Thus u* determined above is also in C%!(R™) with the C%!-norm less
than or equal to Cflullyy1.00(q)- O
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1.6.3. General Embedding Theorems. We can now combine the above estimates to
obtain more general embedding theorems.

We summarize these results in the following theorem.

Theorem 1.38. (General Sobolev Inequalities) Let Q C R™ be bounded and open with
00 € C'. Assume 1 < p < oo and k is a positive integer.

(a) Let 0<j <k, 1<pg<ocandi=1—"d Then
WEP(Q) c WH(Q).
In particular, if kp < n and ¢ = np/(n — kp), then
WEP(Q) C L9(Q);
that 1is,
(1.28) ullLa) < Cllullwes o)

where the constant C' depends only on k,p,n and €.
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(b) If kp=mn and 1 < r < oo, then
WHEP(Q) C L7 (Q);
that is,
(1.29) [ullr @) < Cllullwerqy,
where the constant C depends only on k,p,r,n and 2.
(c) If kp>n and m =k — [7] — 1, then
W2 (Q) c C™(Q);
that is,
(1.30) [ullgma@y < Cllullwrs ),
where
I if % is not an integer,
- any positive number < 1 if% is an integer,

and the constant C' depends only on k,p,n,~v and S2.

All above results are valid for W(l;g P(Q) spaces on arbitrary bounded domains €.

Proof. (a) Assume 0 < j < k, 1 < p,q < oo with % = % — k%] Let u € WFP(Q). Since

D% € LP(Q) for all |a| < k, the Gagliardo-Nirenberg-Sobolev inequality implies
HDBUHLP*(Q) < Cllullwrr

if 3] <k —1, and so u € WF1P"(Q). Moreover, ||[ullx_1, < ¢||ullkp. Similarly, we find

u € WF2P"(Q), where
1 1 1 1 2

p* p* mn p n
Moreover, ||u|k—2p < c||u|k—1,+. Continuing, this proves W*P(Q) C W54(Q).
In particular, with j = 0, we have that W*P(Q) c W%4(Q) = L(Q) with % = % - %
The stated estimate (1.28) follows from combining the relevant estimates at each stage of
the above argument.

(b) Assume kp = n and 1 < r < oco. Then there exists a p’ € (1,p) such that kp’ < n

/
and ¢ = nfl;cp, > r. Thus

WHhP(Q) c WRP'(Q) c LY (Q) c L'(Q).
(c) Assume kp > n and m =k —[7] — 1. As proved above, WkP(Q) Cc Wi4(Q) if

1 1 k—3j
(1.31) 0<-=--""2<1.
qQ p n
(i) Assume 7 is not an integer. Let j = k—[%] = m+1. Thus ¢ > n and hence, by Mor-

rey’s inequality and induction, W74(Q) C C’jfl’k%(ﬂ); hence WkP(Q) C C’jfl’k%(ﬁ).
Butj—lzmand1—%:fyinthiscase.

n

(i) Assume 2 is an integer. In this case, let j = k+1— 3 =m+2in (1.31); then

¢ = n. So WkP(Q) c Wm+2n(Q) ¢ WmHLr(Q) ¢ ™17 (Q) for all n < r < co. The result

follows in this case if vy =1 — .
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In a similar manner the embeddings for Wéﬂ P(2) can be established without the smooth-
ness of 0€).

O

1.7. Compactness

We now consider the compactness of the embeddings. Note that if X and Y are Banach
spaces with X C Y then we say that X is compactly embedded in Y, written X CC Y,
provided

(1) |lully < Cllu|lx (u € X) for some constant C'; that is, the embedding is continuous;

(ii) each bounded sequence in X has a convergent subsequence in Y.

We summarize the compactness results in the following theorem. Parts (a) and (b) are
also called the Rellich-Kondrachov Compactness Theorem.

Theorem 1.39. (Compactness Theorem) Let Q@ C R" be bounded and open.
If 1 <p<mn, then
(a) the embedding Wol’p(Q) C L) is compact for each 1 < q¢ < np/(n — p);
(b) assuming O € C, the embedding W1P(Q) C LI(Q) is compact for each 1 <

q <np/(n—p).

If p=mn, then
(c) assuming O € C1, the embedding WP (2) C LI(Q) is compact for each 1 <
q < o0.

If p > n, then

(d) assuming 0Q € C', the embedding WP(Q) C C*¥(Q) is compact for each
0<a<1l-(n/p).

If 1 < p < oo, then
(e) assuming 0Q € C, vy : WHP(Q) — LP(9R) is compact.
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Proof. (a)&(b) We prove (b) as the proof of (a) is similar. Let 1 <p <n and 1 < ¢ < p*.
Assume {u,,} is a bounded sequence in W1P(Q). By extension, we assume each wu,, has
compact support in a bounded open set V' in R" and {u,} is a bounded sequence in
WLP(V). Let

e __
Upy = We * Uy,

be the mollifying sequence of u,,. We also assume each u;,, has compact support in V' as
well.

(i) We first claim that
(1.32) gl_I)I(l) |5y, — tumllragy = 0 uniformly in m.

To prove this, note that if u,, is smooth then

1 xr—z
us () — um(z) = — w U (2) — um () dz
= (%) — tim () /B(m< ) (tm(2) — i ()

en €
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1
= —5/ w(y)/ Dy, (x — ety) - y dtdy.
B(0,1) 0
Thus

/ lus, (2) — um ()| dz Se/ w(y / / | Dty x—aty)]dxdtdy<£/ | Dt (2)| dz.
v B(0,1)

By approximation, this estimate holds if u,, € WP(V). Hence
[|um, — Um||L1(V) < 5||Dum||L1(V) < 5C||Dum||Lp(V)-

(In fact, the similar estimate also shows that |lus, — uml/zevy < €[|Duml|pr(v), which is
enough for (1.32) if 1 < ¢ < p.) In general, to estimate the L?-norm, we use the interpo-
lation inequality for I” norms to have

0 —0
[urn = wmllLaqvy < llum — uml 71y llum, — wml ILP*(V)’

where 6 € (0, 1] is such that =60+ (1- 9) —: namely 0 = %. Therefore, since {u,}
and {uf,} are bounded in VV1 P(V), we have

[, = tim || Loy < C€°
for a constant C' independent of m, which proves (1.32).

ii) Next we claim that for each € > 0 the sequence {u¢, }°°_, is uniformly bounded and
_ mJIm=1 Yy
equicontinuous in C(V'). This is easy from
- C
[ ll oo (vy = llwe * wmll poo vy < [lwellLoe lumllpr vy < =
and

C
gn—l—l :

| Dus, || oo (vy = [[Dwe * tm || poo vy < [[Dwell oo Jtm || vy <

(iii) Given each § > 0, we claim that there exists a subsequence {u,,} such that
lim sup [wm; — tmy[|Lavy < 0.
J,k—o0
To see this, first select € > 0 such that ||u;, — wm| ra(v) < 0/2 for all m. Then, since {ug,}
is uniformly bounded and equicontinuous in C(V), by the Arzela-Ascoli theorem, we
obtain a subsequence {ufn]} of {u$,} which converges uniformly on V. In partcular,

lim sup Hu — U, lLa(vy = 0.
J,k—00

Hence, by the triangle inequality,

lmsup ||t — || vy < 0.
J,k—00

(iv) To obtain a subsequence of {uy,} which converges in LY(V), we use § =1, 3,1, ...
and a standard diagonalization process. This completes the proof of (a)&(b).

(c) Let {up,} be a bounded Sequence in Wh?(Q) and 1 < ¢ < oco. Take a number
p € (1,n) such that ¢ < p* . Then {u,,} is also bounded in W?(Q). By (b), {um}

has a subsequence which converges in L9(£2); this proves (c).

(d) By Morrey’s inequality, the embedding is continuous if 5 =1 — (n/p). Now use the
fact that C%% is compact in C%® if & < 3. Hint: Use the interpolation inequality for
Hélder nomrs

g ull 277

[u]COvO‘ = Yoo,
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(Exercise!)

(e) Let 1 < p < oo and {u,,} be a bounded sequence in WP(Q). By the inequality
(1.11),

C1
(1.33) H'YOum”ip(aQ) < 711||um||12p(9) +Cef VO< B <1,

where the constants ¢, Co do not depend on u,, or 8. By (b)-(d), {um} has a subsequence
{tm, } which is Cauchy in LP(Q): given 0 < e < 1, an N can be found such that

1 .
Ity = twmy oy < €77 Vjk > N.
Now choose 3 = ¢ and apply the inequality (1.33) to wm,; — um, to obtain
[v0tm; —Youm 175 (a0) < (c1 +C2)e Vi k> N;

this shows that the sequence {youm,} is Cauchy and thus converges in LP(9<2). O

Noncompact Embeddings. We point out the following noncompact emdedding results.

(i) Unbounded domains. The boundedness of € is essential in the above theorem. For
example, let I = (0,1) and I; = (j,j + 1). Let f € C3(I) and define f; to be the same
function defined on I; by translation. We can normalize f so that || f|[y1.n;) = 1. The same
is then true for each f; and thus {f;} is a bounded sequence in WP (R). Clearly f € LI(R)
for every 1 < g < oo. Further, if

HfHLCI(R) = ||f||Lq(1) =a>0
then for any j # k we have

j+1 k+1
1= il = [ 151+ [ 1l = 20

J

and so f; cannot have a convergent subsequence in LI(R). Thus none of the embeddings
WLHP(R) € LI(R) can be compact. This example generalizes to n dimensional space and to
open sets like a half-space.

(ii) Critical powers. The embedding I/VO1 P(Q) C LP"(Q) is not compact if Q is bounded open
and 1 < p < n. For example, let {B(a;,r;)} be a family of disjoint open balls compactly
supported in Q. Take a nontrivial function ¢ € C5°(B(0,1)). Let

4u@) = {rj‘w(x;;i) itz € Blag, ),
0 if v € Q\ B(ai,ri).

Then ¢; € Wy™(Q) and Dgi(x) = r; * Do(Z-% )X (g, ) (x); thus

pillLr@) = rillollLr(B0,1))s  1Pdill o) = DOl Le(B(0,1))-

Since {r;} is bounded, it follows that {¢;} is a bounded sequence in WO1 P(Q). But, for all
i # j, since B(ai, ;) N B(aj, ;) =0,

16: = &3l ) = 13l e ) T 103170 @) = 20070 (0.

Hence {¢;} cannot have a subsequence which is Cauchy in LP" ().
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1.8. Additional Topics
1.8.1. Equivalent Norms of W1?(Q).

Definition 1.13. Two norms || - || and | - | on a vector space X are equivalent if there
exist constants ¢y, co € (0,00) such that

allz)| <zl < eflz|| for all z € X.
Note that the property of a set to be open, closed, compact, or complete in a normed space
is not affected if the norm is replaced by an equivalent norm.
Recall that a seminorm g on a vector space has all the properties of a norm except

that ¢(u) = 0 need not imply u = 0.

Theorem 1.40. Let Q be bounded domain (open, connected) in R™ with 0Q € C' and
1 <p<oo. Set

n 1/10
mn=<ég;mmmm+mwwj

where q : WHP(Q) — R is a seminorm with the following two properties:

(i) There is a constant d > 0 such that
q(uw) < dllull, Yue WHP(Q).
(ii) If u = constant, then q(u) = 0 implies u = 0.

Then || - || is an equivalent norm on WP ().

Proof. It is easy to check that || - || satisfies the triangle inequality and | ku| = |k|||ul|| for
all k € R,u € WHP(Q). Furthermore, if ||u|| = 0 then Du = 0 and q(u) = 0. Since  is
connected, this implies u = C' is constant (Exercise!) and ¢(C) = 0; thus by (ii), C' = 0.
This proves ||u|| defines a norm on W1P((Q).

To show ||u|| is equivalent to ||u||1p, by (i), it suffices to prove that there is a constant
¢ > 0 such that

(1.34) lully < cllul Ve W),

We use a compactness proof. Suppose (1.34) is false. Then there exists a sequence v, €
WLP(Q) such that ||v,|l1,p > nl|vall. Set up = vn/||vnll1p. So

(1.35) lunllip=1 and 1> n|u,|.

According to Theorem 1.39, there is a subsequence, call it again {u, }, which converges to u
in LP(2). From (1.35) we have ||u,| — 0 and therefore Du,, — 0 in LP(Q2) and ¢(u,) — 0.
From u, — u, Du, — 0 both in LP(), we have u € W'P(Q) and Du = 0 a.e. in €
hence u = C, a constant, a.e. in {2, which implies u,, — C in WHP(Q). Since ||uy|/1, = 1,
it follows that ||Cl}1, = 1 and thus C' # 0. However, since ¢ is semi-norm, by (i), we have
lg(un) — q(C)] < q(uy, — C) < d|lu, — C|l1p — 0, and thus ¢(C) = 0, which implies C' = 0
by (ii). We thus derive a contradiction. O
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EXAMPLE 1.41. Let ©Q be a bounded domain in R" with 9Q € C!'. Assume a(x) €
C(Q),0(x) € C(OQ) with a > 0 (£ 0), ¢ > 0 (£ 0). Then the following norms are
equivalent to || - ||, on WhP(Q):

(1.36) lul| = (/an;miuv’dﬁ '/Qudxp

1/p
) with ¢(u |fQ udm’

1/p

n p
(1.37) |lul| = </ Z |DiuPdz + ‘/ 'youdS’ ) with g(u) = | [,o y0udS| .
0= o0

1/p
(1.38) ||lu|l = (/ Z|D u]pdx—i—/ ahou]pdS) with g(u (faQa]'you\pdS)l/p

=1

1/p
(1.39) llul| = </QZ | Diu|Pdz +/ a]u|pd:c> with q(u) = (fﬂa\u|pd:v)1/p.

Clearly property (ii) of Theorem 1.40 is satisfied for each of these semi-norms g(u). In order
to verify condition (i), one uses the trace theorem in (1.37) and (1.38).

Theorem 1.42. (Poincaré’s inequalities) Let Q2 be a bounded domain in R™ with 0N €
C' and 1 < p < 0o. Then there exist constants Ci,Co depending only on p,n and Q such
that

(1.40) / |u(z)|Pdx < Cl/ Z |DijulPde Yu e V[/'Ol’p(Q)7
Q Q4
and
(1.41) / |u(z u)olPdr < Cg/ Z\Diu|pd:ﬁ Yue Whr(Q).
Q

=1

Proof. For (1.40), use the equivalent norm (1.37), while for (1.41), use the equivalent norm
(1.36) for function u — (u)q. Note that by the Sobolev embedding, (1.40) also holds for all
bounded open sets €. O

1.8.2. Difference Quotients. For later use in elliptic regularity theory, we study the
difference quotient approximations to weak derivatives.

Assume u € L} (). Let {e1, -+ ,e,} be the standard basis of R™. Define the i-th
difference quotient of size h of u by

u(z + he;) — u(x)

h )

Then D!'u is defined on Qp; = {x € Q|2 + he; € Q}. Note that

Dhu(z) = h # 0.

Qp = {z € Q] dist(x;002) > |h|} C Qp;.

We have the following properties of Dl'u. (Exercise!)
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Lemma 1.43. (a) If u € W'P(Q) then Diu € WHP(Qy,;) and
D(D!'u) = DIM(Du)  on Q.
(b) (integration-by-parts) If either u or v has compact support Q' CC  then

/ uDlhvd:z = —/ vDi_hudx V0 < |h| < dist(Q; 09).
Q Q

(¢) (product rule) D(¢u)(x) = ¢(x) Diu(x) + u(z + he;) Dio(z).

Theorem 1.44. (Difference quotient and weak derivatives)
(a) Let u € WHP(Q). Then Diu € LP(QY) for any Q' CC Q and 0 < |h| < dist(Q'; 99).
Moreover,
I DM ul| Lo (ory < || Ditl| Lo (-

(b) Letu € LP(Q), 1 < p < 00, and Q' CC Q. If there exists a constant K > 0 such that
. h
lim inf || Di*ul| o (o) < K,
then the weak derivative Dyu exists in Q' and satisfies || Diul rpqry < K.

Assertion (b) is false if p = 1. (Exercise!)

LECTURE 15 - 2/13/19
Proof. (a) First assume u € C1(Q) N WHP(Q) and 0 < h < dist(€Y', 9€). Then

1 h
Dlu(x) = h/ Dju(x + te;) dt;
0
thus, by Hoélder’s inequality,
1 h
Dru@)P < 5 [ Dt +te)p
0

and hence,

1 h
/ | Dju(x) P da < / / |Diu(y) [P dy dt S/ |Diul? dz,
o h Jo JB.(an Q

where Bi(Q)) = {z € Q| dist(z; Q) < t} C Bp(2) € Q for all 0 < ¢ < h. The extension of
this inequality to arbitrary functions in WP (Q) follows by a straight-forward approximation
argument. The same inequality also holds when 0 < —h < dist(£Y/, 99).

(b) Since 1 < p < oo, there exists a sequence {h,,} tending to zero and a function
v € LP(Y) with |jv]|,o < K such that Dy — v in LP(Q') as m — oc. This implies that
for all ¢ € C§°(Y)

lim d)DZ}-Zmu dx = Qv dx.
Q/

m—0o0 Q/
Now for |h,| < dist(supp ¢; 9€'), we have
DIy dr = _/ uD; "™ ¢ da.

’

Q/
Since D?mu — v in LP(Q) and D;hmqﬁ — D;¢ uniformly on Q' as h,, — 0, we have

/(bvda::—/ uD;¢ dzx,
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which shows v = D;u € LP(') in the weak sense and || Dju||1»(r) < K. O

Remark 1.14. Variants of Theorem 1.44 can be valid even for domains ' C Q with
IV NON # 0. For example if €2 is the open half-ball B(0,1)N{z,, > 0}, Q' = B(0,1/2)n{x,, >
0}, and if u € WHP(QQ), then we have the bounds on all the tangential difference quotients
(but not the normal difference quotient) on the part of z,, = 0:

I DMul| ooy < 1 Diull o) V1<i<n—1, 0<|h|<1/2.
Also, if u € LP(Q2) and for some i = 1,2,...,n— 1,

lim inf || D! N< K
iminf || Di'ul|r () < K,

then Dju exists in LP(Q') and || Dyul| 1y < K.
We will need this remark for studying elliptic boundary regularity later.

1.8.3. Lipschitz Functions and W1 (Q).

Theorem 1.45. Let Q be open bounded and 02 € C'. Then w is Lipschitz continuous in
Q if and only if u € WH°(Q).

Proof. By Theorem 1.37, we only need to show that if w is Lipschitz continuous in {2 then
u € WH°(Q). Assume u is Lipschitz in Q. Define %: R — R by
u(z) = ml(_rzl{u(y) + [Du]corly — x|} Vo eR™
ye

Then @(x) = u(x) for all z € Q and @ is Lipschitz continuous on R" with [Dii]con =
[Du]coi(q)- (Exercise!) For the difference quotient of @, we have

HD._ha”Loo (R™) < [Du]co,1(g)

for all h # 0. Hence {D;"u} is bounded in L} _(R™) and thus there exists a function
v; € L2 (R™) such that

—hg ~ 2
D, "4 —v; weakly in L

(R™),
for a subsequence {Di_hk&} with hy — 0. Clearly [[v;[|poo(mny < [Du]co.1(0). We now show

vilo = Diju weakly in Q. Given ¢ € C§°(Q2) C Cg°(R"™),

/uqﬁx dr = 11m DM ¢ dx = — hm (D; ") dr

:_/nwdx:_/gviqﬁdx.

This proves v;|q = D;u weakly in 2. Hence u € W1H°(Q). O

Theorem 1.46. Let u € VVlf)’f(Q) for some n < p < oco. Then u differentiable a.e. in )
and its gradient equals its weak gradient a.e.

Proof. Assumen < p < oo; the case p = oo follows easily. By Morrey’s theorem, we assume
u is Holder continuous on . Let Du be the weak gradient of u. Then Du € L? (). Hence,
for a.e. x € Q,

lim |Du(x) — Du(z)|P dz = 0.

r—0 B(z,r)
Fix any such point z and consider function

v(y) = u(y) — u(z) — Du(z) - (y — ).
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Then v € Wlif(Q) and thus, by (1.25), for all y € Q with |y — 2| < 3 dist(z, 9Q),

1/p
lo(y) — v(@)| < O (/ |Dv<z>|pdz) ,
B(z,2r)

where r = |z — y|. This inequality gives

1/p
luy) — w(z) — Du(z) - (y —2)| < Cr (][B( |Du(z) — Du(z)[? dZ) = o(|lz —yl)

z,2r)
as y — x. Hence, u is differentiable at x with Jacobian gradient Du = Du(z). O

Theorem 1.47. (Rademacher’s Theorem) FEvery locally Lipschitz continuous function
is differentiable almost everywhere.

1.8.4. Fourier Transform Methods. For a function u € L!(R"), we define the Fourier
transform of u by

. 1 iz
u(y) = W/Rne Yyu(z)dxr VyeR",
and the inverse Fourier transform by
1

a(y) = / e“Vu(z)de VyeR™

(2m)"/? Jr
Theorem 1.48. (Plancherel’s Theorem) Assume u € L'(R™) N L2(R™). Then 4, 4 €
L*(R™) and

@]l L2y = 18]l L2mny = [lull L2(rny.-

Since L'(R™) N L?(R") is dense in L?(R™), we can use this result to extend the Fourier
transforms onto L?(R™). We still use the same notations for them.

Theorem 1.49. (Properties of Fourier Tranforms) Assume u,v € L?>(R"). Then
(i) Jgnutdz = [p, 00 dy,
(ii) EOTu(y) = (iy)*a(y) for each multiindex o such that D®u € L?(R™),
(iil) u = 1.
Next we use the Fourier transform to characterize the spaces H*(R™).

Theorem 1.50. Let k be a nonnegative integer. Then, a function u € L*(R™) belongs to
HFE(R™) if and only if
(1+yl*)aly) € L*(R™).
In addition, there exists a constant C' such that
CH Jullgr ey < 1L+ 191*) dll L2my < C llull s ny
for all uw € HF(R™).
Proof. 1. Assume u € HF(R"). Then D% € L?*(R") for all multiindices o with |

k. Hence Dou = (iy)®a € L2(R") with ||[D%2 = ||[Dou|2 = ||y®a| 2. With a
(k,0,...,0),...,a=(0,...,0,k), we have

/ yafdy < © / |DFufdz
R” Rn

A
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and hence
| Py < gy < .

2. Suppose (1 + |y|*)a € L2(R™). Let |a| < k. Then
1)l 72y < /R P @ dy < CII(1+ yl*)a] 2 gny < oo
Let uq = ((iy)®a)" € L*(R™). Then, for all ¢ € C§°(R"),
| wroyuds = [ Doidy = [ (irdidy= (1) [ .

This proves 1, = D% (which must be real) in the weak sense. Hence u € H*(R™). Clearly,
one also has

||Dau||L2(R") = ||Ua||L2(Rn) = H(iy)afLH%z(Rn)

< / el afdy < ClL + [yl 2 ).

Definition 1.15. For any s > 0, define the fractional Sobolev space H*(R") by
H*(R") = {u € L*(R") | (1 +|y|*) & € L*(R™)},
equipped with the norm given by by
[ullrsmny = 11+ [9]°) @l L2Rn)-
Theorem 1.51. If s > &, then H*(R™) C L>(R").
Proof. Let s > n/2 and u € H*(R™). Then
Il wey = 11+ [y*)a @+ |y[*) " o @n
1L+ yl*)all L2y |1+ [y1°) 7 22 m)
C HUHHS(R")7

IN N

where C' = [|(1+ [y[*) || 2(rn) < o0 since s > &. Therefore,

x 1 . C
1wl oo @ny = (8| oo (mr) < WH“HU(R") < W l|w]| s (rny-



Chapter 2

Part II — Second-Order
Linear Elliptic
Equations

LECTURE 16 — 2/15/19
2.1. Differential Equations in Divergence Form

2.1.1. Linear Elliptic Equations. We study the Dirichlet boundary value problem (BVP)

{Lu:f in Q,

2.1
(2.1) u=0 on Of.

Here 2 C R" denotes a bounded domain, f is a given function in L?(Q2) (or more generally,
an element in the dual space of H}(Q2)) and L is a second-order linear differential
operator having either the divergence form

(2.2) Luz—ZDi(aij )Dju) —|—Zb )Diu + c(z)u

ij=1

or else the nondivergence form

n
Luz—Za” ZﬂH—Zb )Diu + c(z)u

ij=1
with given real coefficients a;j(x), b;(x) and c(x). We also assume

az-j(:v) = aji(x) (’L,] = 1, cen ,n).

Remark 2.1. If the coefficients a;; are C' functions, then an operator in divergence form
can be rewritten into nondivergence form, and vice versa. However, there are definite
advantages to considering the two different representations of L separately. The divergence
form is most natural for energy methods, based on integration by parts, and nondivergence
form is most appropriate for maximum principle techniques. We focus on the operators in
divergence form.

39
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Definition 2.2. The differential operator L (in either form) is said to be uniformly el-
liptic in © if there exists a number 6 > 0 such that for almost every x € ) and every real
vector € = (&1,...,&,) € R?

n

(2.3) D a(@)&s = 0> |6

ij=1 i=1

Or, equivalently, the symmetric matrix A(xz) = (a;j(x)) is positive definite with smallest
eigenvalue > 0 for a.e. x € Q.

2.1.2. Weak Solutions. We assume Lu is in the divergence form (2.2) and assume a;;, b;, ¢ €
L>®(Q) and f € L*(Q).

How should we define a weak or generalized solution of the equation Lu = f in Q7
Assume the derivatives appearing in Lu are all classical derivatives; then for a test function
v € C§°(Q) we have by integration by parts

/ ( z”: a;jDjuD;v + zn:bi(D,;u)v + cuv) dr = / fvdz.
0 P 0

,j=1

By approximation we find the same identity holds for all v € H}(Q2). The left-hand side
of this identity also makes sense if only u € H'(£2). This motivates the definition of weak
solutions.

Definition 2.3. A function u € H'(f) is called a weak solution of equation Lu = f in
Q) provided the following variational formulation holds:

(2.4) / < Z a;jDjuD;v + (Z biD;u + cu)v) dx = / fodz Y ve HH Q).
2,J=1 =1

By a weak solution to the Dirichlet BVP (2.1) with L given by (2.2) we mean a weak
solution u of Lu = f in Q that belongs to HE ().

Exercise 2.4. Consider the following weak formulation: Given f € L?(Q2). Find u € H'(Q)
satisfying

/Du-Dvdx:/fvdx Vo e HY(Q).
Q Q

Find the boundary value problem solved by u. What is the necessary condition for the
existence of such a u?

To study the existence of weak solutions and the equations Lu = f with more general
right-hand side f, we need some functional analysis.

2.1.3. Some Functional Analysis.

Definition 2.5. Let X be a normed vector space with norm || - ||. The dual space of X,
denoted by X*, is the space of all linear bounded functionals f: X — R with the norm

[fllx = sup{(f,u) [ u € X, [Jul| <1},

where ( , ) is the pairing between X and X*; namely, (f,u) = f(u) for all f € X* and
ue X.

Theorem 2.1. X* with the given norm is always a Banach space.
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Theorem 2.2. (Riesz Representation Theorem) Let H be a (real) Hilbert space with

inner product (-,-) and norm || -||. Then, for each f € H*, there exists a unique uw € H such
that
(2.5) (f,v) = (u,v) VYveH.

Moreover, the map J: H* — H defined by Jf = u is a linear isometry from H* onto H;
that is, J is one-to-one and onto and || f|| g+ = ||J f]| for all f € H*.

Proof. Let f € H*. Clearly, the element u satisfying (2.5) is unique; we prove the existence
of such aw € H. If f =0 then let w = Jf = 0. Assume f # 0. Then (f,z) # 0 for some
x € H. Let

V={yeHd: (fy) =0}
Then V is a closed subspace of H and V' # H since x ¢ V. Let
= inf ||z —y|.
p= inf o=yl
The following is a direct method of Calculus of Variations. There exists a sequence
Yn € V such that ||y, — z|| — p. Note that, for n,m =1,2,...,

Ym + Yn - »TH2

lm = 9l = 2l — 211 + llgm — 2l1?) — 222

Since ¥nt¥n € V' and thus |22 — z|| > 4, it follows that
[ym — yn||2 < 2(llym — xHQ + llyn — xHQ) - 4M2-

Thus
Hm (lym — yall* < 2(6” + 4%) — 4p° = 0,
,N—00

m
which proves that {y,} is Cauchy in H; hence y, — y as n — oo for some yg € H. This
implies ||yo — x|| = p. Also, as V' is closed, one has yy € V. Therefore,

lz —wol < [lz -yl YyeV.

This implies that, for each z € V, the quadratic function h(t) = ||z —yo +tz||* has minimum
at t = 0; hence h/(0) = 0, which gives

(r —yo,2) =0 VzeVW

Since x ¢ V and yg € V, one has x — yo # 0; hence, let
(f,x)

U= ——"—-—=(x—1yg) € H,
R
so that (f,u) = ||ul|?> > 0. For each v € H, let z = v — %u Then
(f,v)
f?Z:fy,U_ f,u :O
(1.3 = (Fooh = P
and hence z € V. Consequently (u, z) = 0, and thus
(f,v)

(u,u) = (f,v) VveH,

(u7 U) =

(f,u)
proving (2.5). Therefore, Jf = u defines a map J: H* — H. Clearly J is linear and one-to-
one. To show J is onto, let w € H and define f,: H — R by (fy,v) = (u,v) for all v € H.
Then f, € H* and J(f,) = u, proving the surjectivity of J onto H. Finally, to show J is
an isometry, let f € H* and v = Jf € H. Since

(f;0) = (u,0) < ullllol < lull Vo e H, o] <1,
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it follows that
£l = sup{(f,v) [ v € H, [lof| <1} < lul] = | f]]
If f =0 then ||Jf]| = ||u|| = 0. Assume f # 0. Then u = Jf # 0 and thus

1f 1= = (f, T ||> (u, T II) [ull = NI £1-

Therefore ||Jf|| = || f||m= for all f € H*. O

For general boundary conditions, we need to study the Dirichlet problem (2.1) with
more general right-hand sides f. For this purpose, we study the dual space of H&(Q)

Theorem 2.3. (Characterization of H~1(2)) Let H=Y(Q) = (H}(Q))*. Then, for each
f € H (), there exist functions fO, f*, ..., f"* in L*(Q) such that

(2.6) (f,v) = / (f% +) fiDiv) dr Yov € H3(Q).
& i=1
In this case, we write f = f0 — S D;ft. One also has

(2.7) I fllzr-1(q) = inf {(/QZ ’fi’2d:c> 1/2‘ O L e L2(Q) satisfy (2.6)} )
i=0

Proof. Note that the inner product in H}(€2) is defined by

(u,v) = /Q(uv + Du - Dv)dz.

By the Riesz Representation Theorem, there exists a unique u € H}(2) such that
(f0) = (u,v) Yo e Hy(Q),
and |||l z-1(0) = |ull g3 ()- This establishes (2.6) with the functions fO=u, f = Du.
To prove (2.7), let ¢°, ..., g" be any functions in L?(2) such that

(f,v) = / (gov + ZgiDiv>da: Yo e Hy().
@ i=1
With v = u € H(Q) determined above, we have
[ (17 R)da = [ (DuP + wt)do = (1) = [ (88 + Yo' r)da
€ Yizo & @ i=1

This implies (why?)

/Q(glfw)dxg/ﬂ(g,gi,z)dx

sy = Iy = (1)< [ (1)
=0

which proves (2.7). The proof also shows that the infimum in (2.7) is in fact a minimum. [

Hence
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Definition 2.6. Let X denote a real vector space. A map B : X x X — R is called a
bilinear form if

Blou + fv,w] = aBlu, w] + 8B[v, w),
Blw, au + v] = aBlw,u] + BBw, v]
for all u,v,w € X and all o, 8 € R.

2.1.4. Weak Solutions for General Right-hand Side f.

Definition 2.7. (i) The bilinear form B[u, v] associated with the divergence form operator
L given by (2.2) is defined by

n

(2.8) Blu,v] = / ( Z aijDjuD;v + (Z b;Diu + cu)v) dx
1,j=1 =1
for all u,v € H(Q).
(ii) Let f = fO—>" | Dift € HY(Q), where fO fl,...,f* € L*(Q). We say that
u € HY(Q) is a weak solution of Lu = f in  provided Blu,v] = (f,v) for all v € H}(Q);
that is,

/ ( zn: a;; DjuD;v 4 (Zn: biD;u + cu)y) dr = /
Q

ij=1 i=1 Q

(fov + zn:fiDiv) dr Yve Hy().
i=1

(iii) A weak solution u to the Dirichlet problem

{Lu =03 Difi in Q,

2.9
(2:9) vw=0 on 0f)

with L given by (2.2) is a weak solution u of Lu = f in  that belongs to H}({2).

Remark 2.8. For general boundary condition u = g on 92, we assume g = yo(w) for some
w € HY(Q). In this case, let & = u — w; then the Dirichlet problem

Lu=f in Q,
u=g on 0f)

is equivalent to the Dirichlet problem with zero boundary condition

Li=f in Q,
=0 on 09,

where f = f—Lw e H ~1(Q). Therefore, for general boundary value problems it is necessary
to study (2.9) with right-hand side in H~1(Q).

2.1.5. General Linear PDE Systems in Divergence Form. For N unknown func-
tions, ul,--- ,ul, we write u = (u!,---,u") and define that v € X(Q;RY) if each
uF € X(Q), where X is a symbol of any function spaces we have learned; for instance,
X =Whr O, CkY, ete. If u € WIP(Q;RY) then we use Du to denote the N x n Jacobi
matrix

Du = (Diuk = auk/awi)1§k§N,1§z‘§n-
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A general second-order linear operator Lu of PDE system in divergence form is given
by

(2.10) Lu = —div A(x, u, Du) + b(z, u, Du),

where A(z, s, Du) = (A¥(z,u, Du)), 1 <i<n,1 <k < N, and b(z, s, Du) = (b*(z,u, Du)),
1 < k < N, are linear operators of v and Du given by

A¥(z, u, Du) = Z af}(x) Djul + Z d™(z) o,

1<I<N, 1<j<n 1<I<N
(2.11) k ki l Kl !
b"(x,u, Du) = Z bi'(z) Dju’ + Z () u',

1<j<n, 1<ISN 1<ISN

with given coefficient functions af} (z), b8 (), F(x) and d¥(z).

Remark 2.9. Even when N = 1 the form (2.10) with (2.11) is more general than (2.2)
because of the term d(x)u inside A(z,u, Du), which cannot be included into the term
b(x) - Du if d is not smooth.

Definition 2.10. (i) The bilinear form associated with Lu given by (2.10) and (2.11) is
defined by

. U, V| = a; - D;uw D™ + d;"w Dv™ + 070" Diu + ¢ uv T
212 B leDJ LDk dfl LDk béfl ij l kLR d
Q

for all u,v € H'(;RY); here the conventional summation notation is used (i.e.,
repeated indices are summed up).

(i) Let F = (f',...,fN) with f¥ € H-Y(Q) for each & = 1,2,...,N. A function
u € HY(;RY) is called a weak solution of Lu = F in § provided

Blu,v] = (F,v) Yve HHQRY),
where (F,v) is the pairing between HJ(Q;RY) and its dual H~1(£;R") given by

N
(F,v) = Z(fk,vk> for all v = (v¥) € H}(Q;RY).
k=1

(iii) A weak solution u to the Dirichlet BVP

Lu=F in €,
(2.13)

v =0 on 0N

is a weak solution u of Lu = F in § that belongs to Hg(Q;RY).

Ellipticity Conditions for Systems.

Definition 2.11. Let Lu be defined by (2.10) and (2.11).

(i) L is said to satisfy the (uniform, strong) Legendre ellipticity condition if there
exists a 6 > 0 such that, for almost every = € €, it holds

n N
(2.14) Z Z af}(:v) n¥ 77;» >0 |n* for all N x n matrix n = (n¥).
ij=1k,l=1
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(ii) L is said to satisfy the (uniform, strong) Legendre-Hadamard condition if for
almost every x € (2, it holds

n N
(2.15) Z Z af}(m) *d'pip; > 0|p*lq]* VpeR™ g RV,
ij=1k,l=1

Remark 2.12. The Legendre condition (2.14) implies the Legendre-Hadamard condition
(2.15), and they are equivalent if N =1 or n = 1.

However, if N > 1 and n > 1, then the Legendre-Hadamard condition does not imply
the Legendre ellipticity condition. For example, let n = N = 2 and € > 0. Define constants
af} (not uniquely) by

2

D afj & el = dete +elg
i,,k,l=1

Use such af}’s to define an operator Lu as above. Show that Lu satisfies the Legendre-

Hadamard condition holds for all € > 0, but satisfies the Legendre condition if and only if
e>1/2.

LECTURE 18 — 2/20/19
2.2. Existence of Weak Solutions
2.2.1. Contraction Mapping Theorem.

Definition 2.13. Let X be a normed vector space. A map T: X — X (not necessarily
linear) is called a contraction if there exists a number 6 € [0, 1) such that

(2.16) IT(uw) —T)| <0O||lu—2v| VYVu,veX.

Theorem 2.4. (Contraction Mapping Theorem) Let X be a Banach space andT: X —
X be a contraction. Then T has a unique fixed point in X; that is, there exists a unique
x € X such that T(z) = x.

Proof. Assume T satisfies (2.16). The fixed point of 7" must be unique, for if T'(z) = x
and T'(y) =y then ||z —y|| = || T(z) — T(y)|| < 8|z —y|| and thus ||z —y|| =0as 0 <6 < 1.
We now prove the existence of a fixed point. Fix any x¢ € X. Let

x1 =T (xg), xo =T(x1), -+ ,xp =T(Tp_1), -
Then {x,} is a sequence in X satisfying
lzn = 2n-1ll = 1T (zn-1) = T(wn-2)|| < Ollzn-1 — a2l < -+ <" a1 — o]
Hence, for all m > n > 0,

m—1 m—1 ‘ ®© o
[2m = 2l <D i — @il < Jlar — ol Y 07 < [loy — 2ol > 6" = |1 — o] o
i=n i=n i=n

This shows that {z,} is Cauchy in X; thus, z,, — = for some = € X. Hence
|z = T(@)|| < [lz — zn| + [|T(2n-1) = T(@)[| < [[#n — 2| + 0l|zn—1 — || =0,
which shows that z is a fixed point of T'. U
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2.2.2. Lax-Milgram Theorem. Let H denote a real Hilbert space with inner product
(+,+) and norm || - ||. We denote by (,) the pairing between H and its dual H*.

The following theorem generalizes the Riesz Representation Theorem.

Theorem 2.5. (Lax-Milgram Theorem) Let B: H — H be a bilinear form. Assume
(i) B is bounded; i.e., |Bu,v]| < aflu||||v]|, and
(ii) B is strongly positive; i.e., Blu,u] > B|ul?,
where a, B are positive constants. (Strong positivity is also called the coercivity for B.)
Let f € H*. Then there exists a unique element uw € H such that
(2.17) Blu,v] = (f,v), YwveH.

Moreover, the solution u satisfies ||ul| < % IIf1]-

Proof. For each fixed u € H, the functional v — Blu,v] is in H*, and hence by the Riesz
Representation Theorem, there exists a unique element w = Au € H such that
Blu,v] = (w,v) YwveH.

It can be easily shown that A : H — H is linear. From (i), ||Aul|?> = Blu, Au] < a|ul||| Aul|,
and hence [|Au|| < aflu| for all v € H; that is, A is bounded. Furthermore, by (ii),
Bllul|? < Blu,u] = (Au,u) < ||Aul|||u|| and hence ||Au|| > B||u|| for all u € H. By the Riesz
Representation Theorem again, we have a unique wg € H such that (f,v) = (wo,v) for all
ve H and | fl| = [lwoll-

We show that the equation Au = wp has a (unique) solution. There are many different
proofs for this, and here we use the Contraction Mapping Theorem. Note that the
solution u to equation Au = wyg is equivalent to the fixed-point of the map T: H — H
defined by T'(v) = v — tAv + twy (v € H) for any fixed ¢ > 0. For all v,w € H we have
|T(v) — T(w)|| = ||(I —tA)(v — w)||. We compute that, for all u € H,

I = tA)ul® = JJull? + ]| Aul® = 2t(Au, u) < |[ul®(1 + 0 — 261).

Nowlet 0 < t < min{%, Z—é}, so that § = 14+t?a? -2t € (0,1). Hence the map T: H — H
is a contraction on H and thus has a unique fixed point u; this fixed point u solves Au = wy.
Therefore

Blu,v] = (Au,v) = (wp,v) = (f,v) Vv € H,
hence u is a solution of (2.17); clearly such a solution must be unique, by (ii). Moreover,
we have || f|| = ||wo|| = ||Aul|| > B||u|| and hence ||u|| < % || Il. The proof is complete. O

Remark 2.14. If B is also symmetric; that is, Blu,v] = Blv,u] for all u,v € H, then
((u,v)) = Blu,v] is an inner product which makes H an equivalent Hilbert space. In this
case, the Lax-Milgram Theorem is just the Riesz Representation Theorem. In general, the

Lax-Milgram Theorem is primarily significant in that it does not require the symmetry of
Blu,v].

2.2.3. Energy Estimates. Let B[u,v] be the bilinear form defined by (2.8) or (2.12)
above. From the Hoélder inequality,

/Q fods

it is easy to see that B[u,v] satisfies the boundedness:

| Blu, v]| < alul[[[o]

<[ fllz2@)llgll 2
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for all u,v in the respective Hilbert spaces H = H}(Q) or H = H} (;RY).

However, the strong positivity (or coercivity) for B is not always guaranteed, but involves
estimating the quadratic form B[u, u]; such estimates are usually called energy estimates
or Garding’s estimates.

LECTURE 19 — 2/25/19
Garding’s Estimates for (2.8).

Theorem 2.6. Assume the ellipticity condition (2.3) holds. Then, there are constants
B >0 and v > 0 such that

(2.18) Blu,ul = Blul® ~ ylulfaq Vue HYQ).

Proof. Note that, by the ellipticity,

Blu,u] > 9/ Z | Dyul|*dz + / (Z biD;u + cu)u dx.
@ i=1 € =1

Let m = max{||b;|| () |1 < i < n} and ko = [[c| (). Then
(b Diu,u)2| < m|[Dyullz||ull2
< (m/2)(ell Diul3 + (1/¢)[ull3)

where we have used the Cauchy inequality with : |a8| < (¢/2)a? + (1/2¢)3?. Combining
the estimates we find

Blu,u] > (6 — me/2)||Dul|72(qy — (ko +mn/2¢)|ul|72 (o).

By choosing e > 0 sufficiently small so that § —me/2 > 0 we arrive at the desired inequality,
using the Poincare inequality: [|ul| g1(q) < Cl|Dul|12(q) for all u € Hg (). O

Theorem 2.7. (First Existence Theorem for weak solutions) Let § > 0, > 0 be
the constants in (2.18). Then, for each X\ > v and for each f € H (), the Dirichlet
boundary value problem

Lu+ A\u = in <
(2.19) {u+ u=f in Q,

u=20 on 02

has a unique weak solution u € H}(Y), which also satisfies
1
llull 1) < BHfHH*l(Q)-

Proof. Let A > ~ and define
B*u,v] = Blu,v] + Au,v)s Yu,v € H.

Then BMu,v] is the bilinear form associated with differential operator Lu + Au. Moreover,
BMu, v] satisfies the boundedness and coercivity, with B u,u] > B|lu|>. Thus the result
follows from the Lax-Milgram Theorem. U

Remark 2.15. For elliptic operators Lu with b;(z) = 0 and c¢(x) > 0, we have v = 0
in (2.18) and hence Theorem 2.7 holds with v = 0. This includes the special case of the
Laplace operator Lu = —Au.
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ExampPLE 2.8. Consider the Neumann boundary value problem

(2.20) {éﬁAj =f 211[1%9

A function u € H(Q) is said to be a weak solution to (2.20) if

(2.21) /QDu-Dvd:ﬁ:/vad:r Vove  HY(Q).

Obviously, taking v = 1 € H'(Q), a necessary condition to have a weak solution is

Jo f(z)dz = 0. We show that this is also sufficient for the existence of a weak solution.
Note that, if u is a weak solution, then u + ¢, for all constants ¢, is also a weak solution.
Therefore, to fix the constants, we consider the vector space

H = {u e H'(Q)| /Qu(x)dz: :o}

equipped with inner product
(u,v)g = / Du - Dvdz.
Q

By the equivalent norm theorem or Poincaré’s inequality, it follows that H with this
inner product, is indeed a Hilbert space, and (f, ) 12(0) is a bounded linear functional on
H:

((fs w2l < [ fll2@llvllzz@) < 1@ llvlla-

Hence the Riesz Representation Theorem implies that there exists a unique u € H such
that

(2.22) (u,w)g = (f,w)r2), VweH.

It follows that u is a weak solution to the Neumann problem since for any v € H* () we
take w = v —c € H, where ¢ = ﬁ Jq vdz, in (2.22) and obtain (2.21) using [, fdx = 0.

ExXAMPLE 2.9. Let us consider the nonhomogeneous Dirichlet boundary value problem

(2.23) —Au=f in Q,
U= on 012,

where f € L?(Q) and ¢ is the trace of a function w € H! ().

Note that it is not sufficient to just require that ¢ € L?(9) since the trace operator is
not onto. If, for example, ¢ € C*(9N), then ¢ has a C! extension to 2, which is the desired
w.

Definition 2.16. A function v € H'(Q) is called a weak solution of (2.23) if u — w €
H(Q) and if

/ Du - Dvdz = / fvde Yo € HH Q).
Q Q
Let u be a weak solution of (2.23) and set @ = u — w. Then @ € H{(Q) satisfies

(2.24) /QDfl, - Dvdx = /Q(fv — Dw- Dv)dx Vv e H}(Q).
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Therefore, &t = u —w € Hg(Q) is a weak solution of the problem

{—A&:f in €,

(2.25) -
u=20 on 0f),

where f = f +div(Dw) = f+Aw € H1(Q). The Lax-Milgram theorem yields the existence
of a unique @ € Hg(Q) of (2.25). Thus, (2.23) has a unique weak solution v € H(f2).

LECTURE 20 — 2/27/19

Garding’s Estimates for (2.12). Assume Q C R" is a bounded open set. Let H =
H(Q;RY) be equipped with the equivalent inner product

n N
(u,v)g = Z Z/DjulDivkdx Vu,v € H.
Q

ij=1kl=1

and let ||u|| g be the associated equivalent norm. Define the bilinear form associated with
the leading term of L by

n N
Afu,v] = Z Z /Qafjl(:v) Dju' Div* d.

i,j=1k,l=1
Theorem 2.10. Assume that either coefficients af} satisfy the Legendre condition or a!

ij
are all constants and satisfy the Legendre-Hadamard condition. Then

(2.26) Alu,u) > 0ul|3, VucH.

Proof. The conclusion in the first case follows easily from the pointwise inequality by
Legendre condition. We prove the second case when af} are constants and satisfy the
Legendre-Hadamard condition

n N
>N allddpip; = 0lpPlal* VpeR", g e RV
ij=1 k=1

We prove

n N
Alu,u] = Z Z /Qaf}DjulDiukdmZH/Q\Dude Vu e C(Q;RY);
ig=1 k=1

then the estimate (2.26) follows by approximation. Let u € C§°(€2;RY). We extend u onto
R™ by zero outside 2 and thus consider u as functions in C§°(R™; RY). Consider the Fourier
transforms of u,

i(y) = (27)"2 / eIV y(z)dz (y € RY).

Then, for any u, v € C§°(R™"; RY),
[ u@) oo = [ ) Tdy, D) = g o);

the last identity can also be written as l/?\u(y) =iu(y) ®y. Now, using these identities, with
an abuse of the index i and the imaginary number i, we have

——

/n af} Dk (z) Djul(a:) dr = / af} @“(y) Djul(y) dy

n
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= /R ail yiy; b (y) ul(y) dy = Re (/R afl yi v ub (y) ul (y) dy> :
Write 4(y) = n + i€ with n, £ € RV, Then
Re (@(y) Jl(y)> =Py + ¢hel.

Therefore, by the Legendre-Hadamard condition,

Yy (i P ) ) ) = Ol (P + 16) = 015 o)

t,7=1k,]l=1
Hence,
Alu, u ZZ/aleu ) Djul () dz
i,j=1k,l=1
=Re > (/ af}yiyjuk(y)ul(y)dy>
ij=1kl=1 \/R"
>0 [ WPl Pdy=6 [ i) dy
R® R™
:9/ \m(y>\2dy:9/ |Du(z) 2 de.
R® R™
The proof is complete. O

Theorem 2.11. (Garding’s Estimate for Systems) Let Blu,v] be defined by (2.12).
Assume that either

(2.27) {ag Ekfoo ’(52) Safjsfy the Legendre condition,
bit, ¢, dit € L(Q),
or
(2.28) {af} € C(Q) satisfy the Legendre-Hadamard condition,
biL KL dft e L),

Then there exist constants 8 > 0 and v > 0 such that
(2.29) Blu,u] > Blull}y —ylul?: Vue H = HYQRY).

Proof. We only prove the case (2.28); the proof for case (2.27) is similar and much easier.

1. By uniform continuity of af} on Q, there exists € > 0 such that

0 _
aj(x) —ay ()| <5 Va,yeQ oyl <e
We claim
(2.30) /af]l(x) Diu*Djul dz > = / |Du(x)|? do = Z / |Dyu”(x)]? dx
Q 1<i<n

1<k<N

for all test functions u € C§°(Q;RY) with diam(suppu) < e. To prove this, we use a
freezing coefficient method. Fix any point xy € supp u. Then, by Theorem 2.10,

/aff(x) Diuijul dx:/af;(xo) Diuijul dm+/ ( kjl(x) akl( ))Du Dju Udx
Q Q supp u
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0
ZG/]Du(:U)]Qd:):— / | Du()|? dz,
Q 2 Ja
which proves (2.30).

2. Now assume u € C§° (Q;RY), with arbitrary compact support. We cover {0 by
finitely many open balls {B,/4(2™)} with ™ € Q and m = 1,2,..., M. For each m, let
Cm € C3°(Beja(z™)) with (p(z) =1 for x € B.j4(z™). Since every = € € belongs to a ball
B/4(z™) and thus (m(z) = 1, it follows that Z]Ail CJQ(:I:) > 1 for all z € Q. Define

Cm () ’
( Z]Ail CJQ(Qf)) i

Then ¢, € CF°(Bej2(2™)) and SSM_ 02, (x) = 1 for all z € €. (This is a special case of
the partition of unity.) We thus have

om(z) =

m=12 ..M.

M
af} (z) Diu® Djut = Z (afj(m) @2, Diu® Djul>

m=1

ai} (%) Di(pm u*) Dj(pmu')

a;; (z) (cpm u! Dy, Diu® 4 @ u® Dipr, Dijul 4+ uF ! Digpy, ngpm) .
Since ppmu € C§° (2N Bejo(z™); RY) and diam(Q N B, j2(z™)) < €, we have by (2.30)

6
kl k l ky\ |2
| ati@ Dt Di ity e = § 57 [ 1D da

1<i<n

1<k<N
0
=5 3 [ (Dl + IDigl? [ + 2o " Din Dit ) da
i<n Q
0
> 5 Z /Q (Sogn ’Dzuk|2 dz + 2o, u® Dipm Dzuk) dx
1<i<n
1<k<N
g 2 k|2 2 0 2 2 2
27 % [ hlDatde—Clullig = § [ @ IDuP do = Cllulfae)
1<i<n
1<k<N

where we have used the Cauchy inequality with e. Then by (2.31) and the fact that
SM w2 =10nQ,

0
| i@ Dt D o= § [ |Dup dz = M fulfoy = Ca oo [ Dl
The terms in Blu,u] involving b, ¢ and d can all be estimated by

Co([lull 20 1 Dullp2(q) + HUH%Q(Q))'

Finally, using the Cauchy inequality with € again, we have
0
Blu,u] 2 Sllully o) — Calluldaq) ¥ ue CRORY)

and, by density, the estimate holds for all u € H}(€2; RY). This completes the proof. O
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Theorem 2.12. (First Existence Theorem for weak solutions of systems) Under
the hypotheses of Theorem 2.11, let § > 0, v > 0 be the constants in (2.29). Then, for each
A > and each F € H=1(Q;RYN), the Dirichlet problem

L Au=F in Q
(2.32) U+ AU m §),
u=0 on 0N

has a unique weak solution u in H&(Q;RN). Moreover, the solution u satisfies

1
leller < 5 Il

Proof. Note that the bilinear form B*[u,v] = Blu,v] + X (u,v) 2 satisfies the condition of
the Lax-Milgram theorem on H = H}(Q;RY) for all A > ; thus, the result follows from
the Lax-Milgram theorem. O

Fix A > 7. Let F € L*(Q;RY). Define F € H-Y(Q;RY) by (F,v) = (F,v)2 for all
v € HY(;RY). Then [ Fllg-1 < [[Fllpz. Let u = KF € HE(Q;RY) be the unique weak

solution to Lu + A\u = F in Q; that is, formally, v = KF = (L + M)~ F. In this way, we
defined an operator K: L2(Q;RY) — L2(Q;RY). Note that K is linear and maps L?(€2; RY)
into H}(;RY) with

1, ~ 1
(2.33) I|KF || g < BHFHH*I < < 1F| e

Recall the following definition.

Definition 2.17. Let X, Y be two Banach spaces. A linear operator T: X — Y is called a
compact operator if ||Tully < Cllu||x for all u € X and for each bounded sequence {u;}
in X there exists a subsequence {u;, } such that {Tu;, } converges in Y.

Corollary 2.13. Given A > v as in Theorem 2.12, the operator K = (L+XI)~': L2(;RY) —
L2(;RN) defined above is a compact linear operator.

Proof. By (2.33), K is a bounded linear operator from L?(Q;RY) into H}(€;RY). By the
Rellich-Kondrachov Theorem, H}(;RY) is compactly embedded in L*(Q;RY) and
hence, as a linear operator from L?(£;RY) to L?(;RY), K is compact. O

2.2.4. More Functional Analysis. Let H be a (real) Hilbert space with inner product
(-, -) and norm || - ||.
Definition 2.18. Let T: H — H be a bounded linear operator on H.

(1) We define the nullspace or kernel of T' to be N(T) = {z € H| Tx = 0}, and
define the range of T to be R(T) = {Tz| z € H}.

(2) We define the Hilbert adjoint operator of T" to be the operator 7*: H — H by
(Tx,y) = (=, T"y) Vaz,y€ H.
T is called symmetric if 7" = T.

Theorem 2.14. Let T: H — H be a bounded linear operator on H. Then T*: H — H is
linear and bounded with ||T*|| = ||T'||. Moreover, if T is compact, then T* is also compact.
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Proof. 1. By definition, T is linear. Note also that
1Tyl = (T*y, T*y) = (TT*y,y) < ITT*y|llyll < ITIT*yllly| vy e H,
which gives ||[T*y|| < ||T||||y|| and hence || T%|| < ||T"||. The other direction follows similarly
or by the identity (7%)* =T.
2. Assume T is compact. Let {z,} be any bounded sequence in H. Then {T™x,} is

also bounded in H; thus, by the compactness of T', there exists a subsequence {T*zy, } such
that {TT*xy, } is a Cauchy sequence in H. Note that

HT*xnk - T*xn]‘H2 = (T*(‘T"lc - ‘Tnj)7T*(mnk - xng)) = (TT*(xnk - xnj)7xnk - xnj)
<|\TT*zp, — TT*mnjHHxnk — || < CI|TT"zy, — TT*xnjH;

thus {T"z,, } is a Cauchy sequence in H. This proves the compactness of T*. O

For a subspace V of H we denote by V' the orthogonal space of V defined by
Vi={z e H|(v,y)=0 VyeV}.

Lemma 2.15. Let V be a subspace of H. Then for each w € H there exist unique elements
v €V and w € V* such that u = v + w. The operators Py: H — V and Py.: H — V*+
defined by Pyu = v and Py,iu = w are called the orthogonal projections onto V and
VL, respectively.

Proof. Let p = dist(u, V). Assume v € V and ||vy, — u|| = p. As in the proof of the Riesz
Representation Theorem, for n,m =1,2,...,

Um + VU
[vm —vall* = 2([[om —wll* + [[vn —ul|?) — 4] =" 5 —ull? < 2([[om =l + o, —ull?) — 44
This proves that {v;} is a Cauchy sequence in H. So assume v, — v; then v € V.
Also, for all z € V, h(t) = |lu — v + tz||?> assumes the minimum at ¢ = 0; this implies

h'(0) = 2(u — v, 2) = 0, which holds for all z € V, and hence w = u — v € VL. This proves
the existence of v € V and w € VL. If o and w’ are other elements satisfying this property
then v —v' = w' —w € VN (V+) = {0}. This proves the uniqueness of v, w. O

Lemma 2.16. Let A: H — H be a linear bounded operator. Then R(A) = (N(4%))*.

Proof. Given any y € R(A) and z € N (4*), let y = Az for some z € H. Then
(y,2) = (Azx, z) = (x, A%2) = 0.

Thus R(A) C (N (A*)*. Since (N (A*)* is closed, we have R(A) C (N(A*))*. To show the
opposite inclusion, let u € (N(A*))*. By the lemma above, u = v + w for some v € R(A)
and w € (R(A))*. Since w € (R(A))*, we have (r, A*w) = (Az,w) = 0 for all x € H, and
thus A*w = 0; that is, w € N (A*) and thus (u,w) = 0, which gives (w,w) = 0, w = 0 and
thus u = v € R(A). O

LECTURE 22 — 3/11/19

Theorem 2.17. (Fredholm Alternative) Let T: H — H be a compact linear operator
on H. Then

(i) dmN(I = T) = dim N (I — T*) < oo.

(i) R(I —T) = (NI —T*)*.
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Remark 2.19. (i) Note that (i) and (ii) of the theorem imply that
(2.34) NI -T)={0} & R(I-T)=H;

that is, I — T is onto if and only if it is one-to-one. Therefore, either equation (I —T)u = f
has a unique solution u € H for each f] € H, or else, (I — T)u = 0 has a nontrivial
solution u € H (in this case dim N (I — T) is also finite); this dichotomy is the Fredholm
alternative.

(ii) Moreover, by (i) and (ii) of the theorem, given f € H, the equation (I —T)u = f is
solvable for w if and only if there exist functions gi,...,gq4 in H such that

(2.35) (f.9) =0 Yi=1,2,....d,
where d = dim N (I — T*) < oo and g1, ..., gq are linearly independent in N (I — T*).

Proof of Theorem 2.17. 1. Suppose dim N (I — T) is not finite; then there exists a se-
quence {u} in N(I —T) such that (ug,u;) = di; for all k, j. Since Tuy, = uy, it follows
that for all k& # j,

1 Tug, = Tuj|* = lug = wjl* = Jugll® + g |* = 2(ur, u;) = 2,

and hence {Tui} cannot have a subsequence that is Cauchy in H; this contradicts the
compactness of 7. So dimN (I — T') < oc.

2. We claim there exists a constant § > 0 such that
(2.36) |u— Tul| > 6)jul| Yue (NI —T))>*

Suppose this is not true; then there exists a sequence {u}in (NM(I — T))* with [jug| = 1
but |lup — Tug|| < 1/k for all k. Since T' is compact, there exists a subsequence {T'uy, }
converging to y € H as k; — oo. Then |lug, — y|| < |Jug, — Tug, || + || Tur, — y|| — 0; that
is, ug, — y. Hence ||y|| = 1 and Tuy, — Ty, which implies Ty = y and thus y € N(I — T).
Since ug € (N(I —T))*, one has (y,ux,) = 0, which implies (y,y) = 0, a contradiction to
Iyl = 1.

3. Let A=1—T. Since A* =1 — T, (ii) will follow from Lemma 2.16 if we show that
R(A) is closed. So let vy, € R(A) and vy, — v € H. Let vy, = Aug, and ug = x) + yx, where
z, € N(A) and y;, € (N(A))*. Then v, = Ay,. By (2.36),

1 1
lye — y;ll < gllAyk — Ay;ll = gllvk — vl

and thus {y;} is Cauchy in (M (A))*. Hence y, — y for some y € (N (A))*. This implies
vy = Ay — Ay and thus v = Ay € R(A). This proves the closedness of R(A) and hence
completes the proof of (ii).

4. Next we assert
dim N (I — T) > dim(R(I — T))*.

Again write A = I — T. Suppose instead dimN'(A4) < dim(R(A))*. Then there exists a
bounded linear operator P: N (A) — (R(A))* that is one-to-one but not onto. Define
Q = PII: H — H, where II: H — N(A) is the orthogonal projection onto N (A). Then
@ is compact since dim R(Q) < co. We claim N (I — T — Q) = {0}. Indeed if Tu + Qu =
u then Au = Qu € (R(A))* and hence Qu = Au = 0, which implies u € N(A) and
Qu = Pu = 0; thus u = 0 as P is one-to-one. Now claim Hy = (I — T — Q)(H) = H. If
not, suppose Hy # H. Since I — T — @ is one-to-one, Hy = (I — T — Q)(Hy) # Hy, -,
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H,=(I-T-Q)(Hi-1) # Hp_y for all k = 2,3,---. Choose up € Hy, ||ux| = 1 and
up € Hkﬁ_l. Let K =T+ Q. Then K is compact (why?) and, for [ > k, from

Kup, — Ku; = —(uk —Kuk) + (ul - Kul) + (uk - ul),

it follows that ||Kug — K| > 1; this contradicts the compactness of K. Thus [ — T — Q
is also onto. However, take an element v € (R(A))* but v ¢ R(P). Then equation

v=I-T—-Q)u=Au— Qu

has no solution v € H as, otherwise, one would have Au = v 4+ Qu € (R(A))* and thus
Au =0 and v = —Qu € R(Q) = R(P), a contradiction.

5. Finally, we prove dim N (I — T) = dim (I — T*). Note that, by (ii), (R(I — T))* =
N (I —T*) and thus, by Step 4,

dim N (I — T) > dim(R(I —T))* = dim N (I —T™).
The opposite inequality follows by using the identity (77)* = T. O
2.2.5. Adjoint Bilinear Form and Adjoint Operator. We study the general linear

system Lu whose bilinear form B[u, v] is defined by (2.12) above on H = H}(€; RY), where
N > 1.

Definition 2.20. The adjoint bilinear form B* of B is defined by
B*[u,v] = Blv,u] Y u,veH=H}Q;RY).
This bilinear form B*[u,v] is associated to the formal adjoint of Lu of the form
(2.37) L*u = —div A*(z, u, Du) 4+ b*(z, u, Du),
with A*(x,u, Du) = (A¥) and b*(x,u, Du) = (b*) given by

N
Ak (x,u, Du) = Z df}(w) Djul + Z Jfl(x) ul,
1<I<N,1<j<n =1
(2.38) N
V¥ (x,u, Du) = Z Efl(x) Dju + Z M (x)ul,
1<j<n, I<ISN =1
where

afl =dly, At =ulF, W=dF HM=d" (1<ij<n 1<kI<N).
Note that the Legendre or Legendre-Hadamard condition for L*u is the same as that of Lu,
and also that B*[u,u] = Blu,u].

Remark 2.21. Suppose B[u, v] satisfies the Garding’s estimate in Theorem 2.11. Let A > ~
and K = (L + M)~': L2(Q;RY) — L2(;RN). Then K* = (L* + M)~ L.

Theorem 2.18. (Second Existence Theorem for weak solutions) Assume the con-

ditions of Theorem 2.11 hold.

(i) Precisely one of the following statements holds:
either

(2.39)

for each F' € L2(;RY) there exists a unique
weak solution u € H (Q;RY) of Lu = F,

or else

(2.40) there exists a weak solution u # 0 in H}(;RY) of Lu = 0.
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(ii) Furthermore, should case (2.40) hold, the dimension of the subspace N' C H}(€; RY)
of weak solutions of Lu = 0 is finite and equals the dimension of the subspace
N* C HL S, RN) of weak solutions of adjoint problem L*u = 0.
(iii) Finally, the problem Lu = F has a weak solution if and only if
(Fvv)L2(Q;RN):0 VUEN*
The dichotomy (2.39), (2.40) is called the Fredholm alternative.

Proof. Let K = (L+AI)~': L2(;RY) — L2(;RY) be an operator defined as in Corollary
2.13 with a fixed number A >~ > 0. Then K: L2(;RY) — L2(;RY) is a compact linear
operator; moreover, K* = (L* + AI)~': L2(Q;RY) — L2(Q;RY) is also a compact linear
operator.

Given F € L2(Q;RY), a function u € H}(;RY) is a weak solution of Lu = F if and
only if Lu + Au = F + Au, which is equivalent to u = K(F + Au) = KF + AKu; therefore,

(2.41) Lu=F < (I-\Cu=KF
In particular, Lu = 0, i.e., u € N, if and only if u € N(I — AK); thus N = N (I — \K).
Similarly, N* = N(I — AK*). Also, by (2.41), Lu = F has solution u if and only if LF €
R(I — AK).
Since AC: L2(;RY) — L2(Q;RY) is compact, by the Fredholm alternative,
NI = MK) = {0} < R(I —\K)=L*(;RY).
Therefore, if N' = N (I — AK) = {0} then equation (I — AK)u = KF has unique solution for

each F € L?(Q;RY); thus Lu = F has a unique solution for each F' € L?(Q;RY). This is
the case (2.39). Or else, if N' =N (I — AK) # {0}, then

dim N = dim N (I — AK) = dim N (I — AL*) = dim V™" < 0.
This is the case (2.40), which also proves (ii).

Finally, Lu = F has a weak solution if and only if KF € R(I — AK) = (N(I = K*))* =
(N*)*. Note that if v € N* then v = MC*v and so

(F,v) = (F,\K*v) = A(KF,v).

Since A > 0, it follows that KF € (N*)* if and only if F' € (N*)*. Therefore, Lu = F has
a weak solution if and only if F € (N*)L. This proves (iii). O
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2.3. Regularity

We now turn to the question as to whether a weak solution u of the PDE
Lu=f inQ
is smooth or not. This is the regularity problem for weak solutions.

Although the following regularity theory holds for general second-order linear differential
systems in divergence form, we will instead focus only on second-order linear differential
equations for single unknown function of the divergence form

(2.42) Lu=— Y Di(a(x)Dju) + > bi(x)Diu + c(x)u
i=1

1,j=1
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2.3.1. Interior H? Regularity.

Theorem 2.19. (Interior H2-regularity) Let L be uniformly elliptic with a;; € C*(Q), b;
and ¢ € L®(Q). Let f € L*(Q). If u € HY(Q) is a weak solution of Lu = f in 2, then for
any Q' CC Q we have u € H*(Y') and

(2.43) [ull 2y < C (ull2) + 1f12@);

where the constant C' depends only on n,Y,Q and the coefficients of L.

Proof. Set ¢ = f — > | biDju — cu. Since u is a weak solution of Lu = f in €, it follows
that

(2.44) / Z a;jDjuD;pdr = / qedr Y o € HY(Q), suppy CC Q.
Q; Q

1,j=1
In the following, we select different types of test functions ¢.

Step 1: (Interior H!-estimate). Take any " CC Q. Choose a cutoff function ¢ € C§°(€2)
with 0 < ¢ <1 and (|gr = 1. We take ¢ = (?u in (2.44) to obtain

/ Z a;;Dju(¢*Dyu + 2¢uD;()dx = / ¢ udz
2,57 Q

and hence
/ ¢? Z a;jDjuD;udr = / (—2u Z a;j(C(Dju)D;i¢ + qC%u)dz.
1,j=1 i,j=1

Inside g¢%u we also group the term (D;u. Then use the ellipticity condition and the
Cauchy’s inequality with ¢ to obtain

9/ C|Dul*dz < 6/ C2|Du]2d$+05/(f2 + u?)dz.
Q Q Q
Thus, taking 0 < € < 0, we deduce the so-called Caccioppoli inequality:
/ C|Dul?dx < C/(f2 + u?)dz.
Q Q

This proves

(2.45)

|ull gy < CUfllz2e) + llullz2 @),
where the constant C' depends on Q.
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Step 2: (Difference Quotient Method). Take ' CcC Q; CcC Qy CcC Q" cC Q. Let
v € HE(Q) be any function with suppv CC Q4. Let

1
6 = 5 min { dist (supp v, ), dist (21, 9), dist (2, 89“)} > 0.

For 0 < |h| < &, we choose the test function ¢ = D, v in (2.44) and obtain, using integration
by parts for difference quotient,

/[DZ(Z a;jDju))Dyvde = —/ qD,;hvd:E.
Q

ij=1 Q
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Notice that the integrals are in fact over domain ;. Henceforth, we omit the ) sign. Using
the definition of ¢ and the equality
D,’;(aiiju) = (I%DZDJ'U + DjuD,lzaij,
h

where a;;(x) = a;;( + he), we obtain

/ af-LijDZuDivda: = —/ (DZaiijuDiv + qD,;hv) dx
Q Q
< C (Il + 1 lz@n) 1Dl 20y
where we have used the identity D;Dlu = DPD;u. Take n € C§°(€2;) such that n(z) = 1

for x € ' and choose v = > Dlu. Then

/n2a?ijD,'§uD¢D,’3udx < —2/ na?ijD,@u(Dm)DZud:L‘
Q Q
+C (Il o) + 1Fl2@0) (IIDDEul 20 + 21 DfuDlp2(0y))

Using the ellipticity condition and the Cauchy inequality with e, we obtain

0
3 /Q [nDj Dul*dz < C/Q |Dn|?| Djtul*dx + C <HUH?'{1(Q”) + HfH%Q(Q”)) :
Hence
InDEDul 20 < € (Il + 1122 -
Since n = 1 on €, we derive that D, Du € L?()), with
IDEDul ) < C (Il + 113200 ) -

This shows that the weak derivatives Dy Du in L?(€’) with

IR0y < € (lulpsom + 112
for all k =1,...,n. Therefore, u € H*(Q') and
(2.46) lull g2y < C (llull @y + 1fll2@m)) -
where C' depends on €. Combining with (2.45) it follows u satisfies (2.43). O

Remark 2.22. (i) The result holds if the coefficients a;; are only (locally) Lipschitz con-
tinuous in 2, since the proof above only uses the fact that D,}gaij is bounded.

(ii) The proof shows that DyDu € L?(€)) as long as the function ¢ = D,;h(T]QDZu) is a
function in H'(Q) with compact support in © even when €' N 9 # (). This is used in the
boundary regularity theory later.

By using an induction argument, we can also get higher regularity for the solution.

Theorem 2.20. (Higher interior regularity) Let L be uniformly elliptic, with a;; €
CHL(Q), b, c € CK(Q), and f € HF(Q). Ifu € HY(Q) is a weak solution of Lu = f in Q,
then for any Q' CC Q we have u € H*2(QY') and

(2.47) 1wl etz < C (lull 2@ + 1l ar@)

where the constant C' depends only on n,Y,Q and the coefficients of L.
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Proof. We use induction on k. The estimate (2.47) with £ = 0 has been already proved.
Suppose we have proved the theorem for some k € {0,1,-- - }. Now assume a;; € Ck2(Q), b;,c €
CHL(Q), f € HF1(Q) and u € H'(Q) is a weak solution of Lu = f in . Then, by the in-
duction assumption, u € Hl]z,iQ(Q), with the estimate (2.47). We want to show u € Hl’f;g?’(Q)
Fix ' cc Q" cc Q and a multiindex « with |o| =k + 1. Let

i =D c H'(Q").

Given any & € C3°(Q"), let ¢ = (—1)I*/ D% be put into the identity Blu, ] = (f, ®)r2(Q)
and perform some elementary integration by parts, and eventually we discover

Bla, 7] = (f,7) 12,
where

n n
f=D"f- > (O‘> =Y (D*Pa;iDPuy;)e, + > D PbDPuy, + D*PeDu
i=1

BLa,fFa p 1,j=1

That is, & € H'(Q") is a weak solution of L& = f in Q”. (This is equivalent to differentiating
the equation Lu = f with D%operator.) We have f € L?(Q"), with, in light of the induction
assumption on the H*+2(Q")-estimate of v,

122y < CUL N mreamy + Nl grrzm) < CUF N ama) + lullz2)-
Therefore, by Theorem 2.19, % € H?(Q'), with the estimate
il g2y < CUI 2y + lallzz@ry) < CUF ) + llull2y)-
This exactly proves u € H**3(Q') and the corresponding estimate (2.47) with k +1. O

Theorem 2.21. (Infinite interior smoothness) Let L be uniformly elliptic and a;;, b, ¢
and f be all in C°°(Q). Then a weak solution u € HY(Q) of Lu = f in Q belongs to C*°(Q).

Proof. By Theorem 2.20, u € HlkOC(Q) for all kK =1,2,.... By the general Sobolev em-

bedding theorem, it follows that u € C"™(Q2) for each m =1,2,.... O
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2.3.2. Boundary Regularity. We now study the regularity up to the boundary.

We first prove the following result concerning the cut-off functions for balls.

Lemma 2.22. There exists a constant C > 0 such that for all 0 < s <t < oo and a € R"
there ezists a cut-off function ¢ € C§°(B(a,t)) such that

C
0@ <1, don=1 IDCs < ;o
Proof. Let p € C*(R) be such that 0 < p < 1, p =1 on (—00,0] and p = 0 on [, c0).
Then the function
|lr —al —s

¢(@) = p(

satisfies the requirements. O

) Vo eR"”
t—s
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Theorem 2.23. (Boundary H?-regularity for half balls) Let Q = B(0,r) N {z, > 0}
and L be a uniform elliptic operator on 0 with a;; € CY(Q). Suppose f € L*(Q) and
u € HY(Q) is a weak solution to Lu = f in Q such that yo(u) = 0 on QN {z, = 0}. Let
0<s<randQs=B(0,s)N{x, >0}. Then u € H*(Qs) with

ull 20, < Csll fllzz) + llullz2@))-

Proof. 1. Select s’ such that 0 < s < s’ < r and set Q' = B(0,s") N {z, > 0}. Let
¢ € C§°(B(0,7)) be a cut-off function with

0< C < ]-7 <|B(O,s’) =1

So ¢ =1on  and ¢ = 0 near the curved part of 9Q; hence ¢ = (*u € H}(£2). Use this ¢
as a test function, and we obtain, as in Step 1 in the proof of Theorem 2.19, that

(2.48) lull oy < CUfllz2) + llullz2@)-
2. Let ¢ € C§°(B(0,7)) be a cut-off function with
0< C < 17 C|B(O,s) =1

and fix k € {1,2,--- ,n — 1}. For h > 0 sufficiently small, let ¢ = D,;h(CQDZu). Note that
if x € Q and h > 0 is sufficiently small then

21‘—6 u\xr) —ulxr — ne —ZZEUZE € — u\xr
gO(QU)ZZC( heg)[u(z) — u( h;y ¢C@)[ulx + heg) —u(z)]

Since u = 0 along {z,, = 0} and ¢ = 0 near the curved portion of 9, we see p € H} ().
Then we use this ¢ as a test function in (2.44) as we did in the Step 2 in the proof of
Theorem 2.19 and use (2.48) to obtain

DyDue L*(Q,) (k=1,2,---,n—1)

with the estimate

n—1 n

(2.49) S Y IDwulree,) < CUF 2@ + lullzz@)-
k=1 1=1

This proves that Dyu € L?(Qy) for all k.l except k = = n.

3. We must estimate || Dpnullz2(q,). Since a;; € C*, the interior H%-regularity implies
that the equation Lu = f is satisfied almost everywhere in €2; namely

n n
(2.50) — Z a;; Diju + Z [N),Dzu +cu=f ae
ij=1 i=1
where b; = b; — > =1 Djlazi) € L=(Q). (In this case, we say u € H} (Q) is a strong
solution of Lu = f.) From the ellipticity condition, we have a,,(z) > 6 > 0 and thus we can
actually solve Dy,u from (2.50) in terms of D;;u and D;ju withi+j < 2n, i,j5 =1,2,--- ,n,
which yields the pointwise estimate

| Dyntt| < c( S Dyl + [Dul + Ju| + |fy) a.e. Q.
ij=1,i+j<2n
Therefore, by (2.48) and (2.49), we have || Dpnullr2(0,) < C([|f|lr2(0) + lull2(o)) and thus

lull (0, < Cs(1fll2) + lullr2(9))-
U
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Theorem 2.24. (Global H?-regularity) Assume in addition to the assumptions of The-
orem 2.19 that a;; € C1(Q) and 9Q € C?. Let f € L*(Q). If u € H}(Q) is a weak solution
to Lu = f in Q, then u € H*(Q2), and

(2.51) ull 20y < CllullL20) + 1 Fll2@)
where the constant C' depends only on n, ”aij”cl((z), 10ill oo (@), llcll Lo () and OS2

Proof. 1. We first establish the global H'(2)-estimate. Let ¢ = f— 7 ; b;D;u— cu. Take
© = u as test function in (2.44) to obtain

/ Z ai;DjuDudr = /Qqudx

1,j=1
and hence the ellipticity condition and the Cauchy’s inequality with ¢ give

6?/ |Du|?dz < 5/ \Du!ZdaU—i-Cs/(f2 +u?)dx

Q Q Q

Thus, taking 0 < e < 6, we deduce [, |Du|?*dz < C [,(f?* + u?)dz. This proves
(2.52) lullzr) < CUfllz@ + llullz2@))-

2. Since 99 is C2, at each point 2° € 9Q, we have a small ball B(z°,r) and a C? map
y = ®(x), with ®(2°) = 0, that maps B(z°, r) bijectively onto a domain in the 3 space such
that
®(QNB(2Y,7) C {y €R™ |y, > 0}.
Assume the inverse of this map is 2 = ¥(y). Then both ¥ and & are C2. Choose s > 0
so small that the half-ball V := B(0,s) N {y, > 0} lies in ®(Q N B(2°r)). Set V' =
B(0,s/2) N {y, > 0}. Finally define

o(y) =u(¥(y) (yeV).

Then v € HY (V) and v = 0 on 9V N {y, = 0} (in the sense of trace). Moreover, u(z) =
v(®(x)) and hence

n

Dju(@) = ug, (x) = Y vy, (2(2)) 25 (2) (j=1,2,+ ,n).

k=1
3. We show that v is a weak solution of a linear PDE Mv = ¢ in V. To find this
PDE, let I(y) = det 8\1(;7;1/) be the Jacobi matrix of z = ¥(y); since I(y) # 0 and ¥ € C?,
we have |I], |I|7t € CY(V). Let ¢ € H (V) with supp¢ CcC V and let ¢ = ¢/|I|. Then
o € HY(V) with suppp CC V. Let w(z) = p(®(x)) for x € Q' = U(V). Then w € H ()
and suppw CC Q. We use the weak formulation of Lu = f: Blu,w] = (f,w)2(q) and the
change of variable x = ¥(y) to compute

253)  (fw)pem = / f(@)w(z)de = / F@ @)@ W)y = (9, )2,

where for g(y) = f(¥(y)). We compute

Blu,w] = // (aij (7)ug; (2)we, () + bi()ug, w(T) + c(ac)u(a:)w(a:)) dx
= [ (as e, (@), (£)o (D), (0) + i) (222, () (o) + elo)u(e)u(z) ) d
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= [ (¥ 02 (¥ ) )2, (90)

b (W (), ()85, (D ()0 (y) + (¥ () o(y)o () ) ()l dy.
Since @y, |I| = ¢y, — %C, we have

(2.54)  Blu,w] = /V (&zk(y)vyk(y)éyl () + br(v)vy, ()¢ () +5(y)v(y)C(y)>dy = Blv, (],

where é(y) = c¢(¥(y)),

n

(2.55) a(y) = Y ay(T(y)@k (U(y)) L, (¥(y))
ij=1

for k,1 =1,2,--- ,n, and

bily) = D bi(¥ )2, (Pw) — %(\If(y))@ﬁj(my))@;i(wy))'ﬂTl
=1

ijl=1

for k=1,2,---  n. By (2.53), (2.54), it follows that
Blv,¢] = (9,¢) 2y for all ¢ € H' (V) with supp¢ CC V;
hence, v € H'(V) is a weak solution of Mv = g in V, where

Muv := — Z Dy, (a1 (y) Dy, v) + Z Bk(y)Dykv + ¢(y)v.
k=1 k=1

4. We easily have that ay, € CY(V), by, &€ L>®°(V). We now check that the operator
M is uniformly elliptic in V. Indeed, if y € V and £ € R", then, again with z = ¥(y),

n

D anask =D D ay(@)®L B &&= D ag(@)n;(@)mi(x) > Oln(x)|?,

k=1 ij=1k,l=1 ij=1

where n(z) = (n1(x), -+ ,nn(x)), with
ni(z) = OF ()& (j=1,2,---,n).
k=1

That is, n(z) = ED®(z). Hence & = n(x)D¥(y) with y = ®(x). So |£| < Cln(z)| for some
constant C. This shows that

n

> an(y)eés > On(x)* > 0'[¢)

k=1
for some constant 8 > 0 and all y € V and £ € R™. By the result proved in Step 1, we have
HUHH2(V’) < C(HQHL?(V) + ”UHL2(V))'
Consequently, with O’ = ¥(V'), using (2.52) and the fact ®, ¥ are of C2, we deduce
(2.56) ull 20y < CUfllL2) + llullz2)-

Note that 2° € W(B(0, s/2)) := G’, which is an open set containing open set O’.
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5. Since 0N is compact, there exist finitely many open sets O C G} (i = 1,2,--- k)
such that 992 C Ui-“:lG;. Then there exists a § > 0 such that
k
Fi={z e Q| dist(z,00) < s} c | O}
i=1

Then U = (2\ F') CC . By (2.56), we have

ullz2ry < CUfllz2) + llullz2@)-
By the interior H2-regularity,

lull 2y < CUfllz2) + lullz2)-

Combining these two estimates, we deduce (2.51). O

LECTURE 27 — 3/22/19

Theorem 2.25. (Higher global regularity) Let L be uniformly elliptic, with

(2.57) aij € CFTY(Q), by, c € CF(Q), fe HYQ), 09 € CF2.
Then a weak solution u of Lu = f satisfying u € H}(Q) belongs to H*2(Q), and
(2.58) 1wl grr2i0) < Clllullpz) + 1 f1aE@))s

where the constant C is independent of u and f.

Proof. 1. As above, we first investigate the special case
Q= B(0,r)N{x, >0}

for some r > 0. Set ; = B(0,t) N {x, > 0} for each 0 < t < r. We intend to show
by induction on k that under (2.57) whenever u € H!(Q) is a weak solution of Lu = f
satisfying yo(u) = 0 on 9Q N {x,, = 0}, we have u € H**2(Q;) and

(2.59) [ull grve(a,y < Cllullze) + 11l mr@))-

The case k& = 0 has been proved in Theorem 2.23. Suppose this is proved with some k.
Now assume a;; € C*2(Q), b, c € C*1(Q), f € H*1(Q), and u is a weak solution of
Lu = f in Q satisfying vo(u) = 0 on 9Q N {z,, = 0}. Fix any 0 < ¢t < s < r. By induction
assumption, u € H*2((,), with

(2.60) ull grreo,) < ClllullLe) + 1 f1 aE@))-
Furthermore, according to the interior regularity, v € H lk;c“d(Q)

2. Let o be any multiindex with |a| = k + 1 and a,, = 0. Then @ := D% € H(Q)
and vanishes along {z, = 0}. (For example, this can be shown by induction on |«| using
the difference quotient operator D;‘) Furthermore, as in the proof of the interior higher

regularity theorem, % is a weak solution of Lu = f in {2, where, as above,
~ «a n n
f=D"f— > (5) — > (D* PayDuy))e, + Y D* PbDPuy, + D*PeDPu
B<a,fF#a
By (2.60), this f belongs to L%(£2,) and
1F 2200y < CUF e+ + Nl r2goy)-

ij=1 i=1
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Consequently, @ € H?(£;), with
Il 2, < CUIF Iz + Nll2) < CUF ey + lull2@)-

This proves

(2.61) 1D ull 20,y < O lxsi () + lullz2))
for all g with || =k + 3 and 5, =0,1,2.

3. We need to extend (2.61) to all 8 with |8| = k + 3. Fix k, we prove (2.61) for all 8
by induction on 7 = 0,1,--- ,k 4+ 2 with 3,, < j. We have already shown it for j = 0,1, 2.
Assume we have shown it for j. Now assume § with |5 = k+ 3 and 8, = j + 1. Let us
write § =+, for 6 = (0,---,0,2) and so |y| =k + 1. Since u € Hl’f;?’(Q) and Lu = f in
Q, we have D"Lu = D7 f a.e.in 2. Now

DYLu = ap,D’u + R,

where R is the sum of terms involving at most j derivatives of u with respect to z, and
at most k + 3 derivatives in all. Since a,, > 6, we can solve DPu in terms of R and D7 I
hence,

HDﬂU”m(Qt) < C(”fHHkH(Q) + ||u”L2(Q))'
By induction, we deduce (2.61), which proves

ull grrs o,y < CU lare) + lullL2@))-
This estimate in turn completes the induction process on k, begun in step 2. This proves
(2.59).

4. As above, we cover the domain ) by finitely many small balls and use the method of
flattening the boundary to eventually deduce (2.58). Note that the condition 92 € C**2 is
needed for flattening the boundary to obtain an elliptic equation of divergence form with
leading coefficients az, € C*+1; see (2.55) above. O

Corollary 2.26. Under the assumption of Theorem 2.25, if Lu = 0 has only the trivial
weak solution u =0 in H}(Q), then for each f € H*(Q) there exists a unique weak solution
u € HH Q)N H2(Q) of Lu = f in Q such that

(2.62) [ull grr2) < Clfll @)

where C' is independent of u and f.

Proof. The existence of unique weak solution u € Hg(Q) of Lu = f in Q for each given
f € L) follows from the Fredholm alternative; moreover, by the previous theorem,
u € H**2(Q) if f € H*(Q). To prove (2.62), in view of (2.58), it suffices to show that

[ull 2@y < Cllfllz2(o)

whenever u € H}(Q2) is a weak solution of Lu = f in . Suppose this inequality is false;
then there exist functions u, € H}(Q) and f, = Lu, € L*(Q) for which |juy|2 = 1
and || fn]lr2 — 0. By (2.58) we have |uy| g2z < C. By compact embedding, there exist
u € H?(2) and a subsequence {u,, } converging to u in H!(£); thus we also have u € H} ()
and ||lu||z2 = 1. Moreover, note that

Blup, ,v] = /ankvd:c Yo € HH(Q).

Taking the limit, we see that Blu,v] = 0 for all v € H}(Q) and thus u € HZ(Q) is a weak
solution of Lu = 0; hence u = 0 by assumption, a contradiction to ||u||;2 = 1. O
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Finally, we iterate the higher regularity theorem to obtain

Theorem 2.27. (Infinite global smoothness) Let L be uniformly elliptic, with a;;, b;, ¢, f €
C>®(Q), and 0N € C*®. Then a weak solution u € H}(Q) of Lu = f in Q belongs to C>=(£).

LECTURE 28 — 3/25/19
2.4. Maximum Principles

(Some of the material may have already been covered in MTH 847.)

2.4.1. Elliptic Operators in Non-divergence Form. Consider the second-order linear
differential operator in non-divergence form

n
Lu(z) = — Z a;j(z)Diju(x) + Zb + c(z)u(z),
ij=1
where Diju = ug,;, Diju = Ug,2; and a;j(x), bi(x), c(x) are given functions in an open set 2

in R™ for all 4,5 = 1,2,--- ,n. With loss of generality, we assume a;;(x) = a;;(z) for all 7, j.

Definition 2.23. The operator L is called elliptic in Q if there exists A(z) > 0 (z € Q)
such that

n

D ai(2)&68 > Ma Zgz VzeQ, £ecR™

ij=1 =
As above, if A(z) > 6 > 0 in £, we say that L is uniformly elliptic in Q.

So, if L is elliptic in €2, then for each z € Q the symmetry matrix (a;;(x)) is positive
definite, with all eigenvalues > A(x).

Lemma 2.28. If A = (a;j) is an n x n symmetric nonnegative definite matric then there
exists an n x n matriz B = (b;;) such that A= BT B, i.e.,

n
aij =Y bribey (6,5 =1,2,---,n).

Proof. Use the diagonalization of A. (Exercise.) O

2.4.2. Weak Maximum Principle.

Lemma 2.29. Let L be elliptic in Q and u € C*(Q) satisfy Lu < 0 in Q. If ¢(z) > 0, then
u cannot attain a nonnegative mazimum in Q. If ¢(x) = 0 then u cannot attain a mazximum
in .

Proof. Let Lu < 0 in Q. Suppose u(xp) is maximum for some xg € 2. Then, by the

derivative test, Dju(xo) =0 for each j =1,2,---,n, and
d?u(zo + t€) -
CEB IR =3 Dijulwo)ét <0
ij=1
for all &€ = (&1,&2,--+ ,&,) € R™. By the lemma above, we write

aij(zo) mebm i,j=1,2,--,n),
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where B = (b;;) is an n x n matrix. Hence

> aij(zo) Diju(wo) = > Y Diju(xo)bribr; <0,
43=1 k=11i,j=1

which implies that Lu(xg) > c(xo)u(xo) > 0 either when ¢ > 0 and u(xo) > 0 or when
¢ = 0. This is a contradiction. O

Theorem 2.30 (Weak maximum principle with ¢ =0). Let Q be bounded open in R™
and L be elliptic in Q and

(2.63) |bi(2)|/ANz) <M (xe€Q,i=1,2,---,n)
for some constant M > 0. Let c =0 and u € C*(Q) N C(Q) satisfy Lu < 0 in Q. Then

max ¢ = max u.
Q onN

Proof. Let a > 0 and v(z) = e**'. Then

Lv(x) = (_all(x)@z + by (2)a)e™™ = aayy(z) |:—04 + ;111((32)] T £ ()

if « > M + 1 because flll((%' < |b/\1((;))‘ < M. Then consider the function w(z) = u(z) 4 ev(x)

for € > 0. Then Lw = Lu + eLv < 0 in Q. So by Lemma 2.29, for all z € Q,

u(z) + ev(z) < max(u + ev) < maxu + € maxv.
o0 o0 oN

Letting € — 0 proves the theorem. ([l
Remark 2.24. (a) The weak maximum principle still holds if (a;;(x)) is nonnegative defi-
nite, i.e., A(xz) > 0 in Q, but satisfies % < M for some k =1,2,--- ,n. (In this case use
v = e*k.)

(b) If © is unbounded but bounded in a slab |z1| < N, then the proof is still valid if the
maximum is changed supremum.

Theorem 2.31 (Weak maximum principle with ¢ > 0). Let Q be bounded open in R™
and L be elliptic in ) satisfying (2.63). Let c(x) > 0 and u € C*(Q) N C(Q). Then

maxu < maxu’ if Lu <0 in €,
Q o0

max |u| = max |u| if Lu=0 in Q,
Q o
where u™ (z) = max{u(z), 0}.

Proof. 1. Let Lu < 0 in Q. Let QF = {z € Q| u(z) > 0}. If Q" is empty then the
result is trivial. Assume Q1 # 0; then Lou = Lu — c(z)u(z) < 0 in QF. Note that
() = [N ot U [9QT N 0Q, from which we easily see that maxyqo+)u < maxpou™;
hence, by Theorem 2.30,

maxu = maxu = max u < maxu’.

Q o a(Qt) a0

2. Let Lu = 0. We apply Step 1 to v and —u to complete the proof. U
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Remark 2.25. The weak maximum principle for Lu < 0 can not be replaced by maxgu =
maxgq u. In fact, for any u € C?(Q) satisfying

0 > maxu > maxu,
Q a0

if we choose a constant 6 > —||Lul e (q)/ maxgu > 0, then Lu = Lu+ 6u < 0 in Q. But
the zero-th order coefficient of L is c(z,t) + 6 > 0.

The weak maximum principle easily implies the following uniqueness result for Dirichlet
problems.

Theorem 2.32 (Uniqueness of solutions). Let 2 be bounded open in R™ and the linear
operator L with c¢(x) > 0 be elliptic in Q and satisfy (2.63). Then, given any functions f
and g, the Dirichlet problem

Lu=f 1in{Q,
U=y on 082
has at most one solution u € C%(Q) N C(£).
Remark 2.26. The uniqueness result fails if ¢(z) < 0 in Q. For example, if n = 1, then

function u(xz) = sinz solves the elliptic problem Lu = —u” —u = 0 in Q = (0,7) with
u(0) = u(m) = 0; but u # 0.

2.4.3. Strong Maximum Principle.

Theorem 2.33 (Hopf’s Lemma). Let L be uniformly elliptic with bounded coefficients
in a ball B and let u € C?(B) N CY(B) satisfy Lu < 0 in B. Assume 1° € OB such that
u(x) < u(z®) for all z € B.

(a) If c=0 in B, then %(1‘0) > 0, where v is outer unit normal to 0B.
(b) If c¢(x) > 0 in B, then the same conclusion holds provided u(z®) > 0.
( 0

c) If u(z”) = 0, then the same conclusion holds no matter what sign of c(x) is.

Proof. 1. Without loss of generality, assume B = B(0, R). Consider function
v(x) = ealel® _ gak?,

Let Lu = Lu — ¢(z)u + ¢ (z)u, where ¢t () = max{c(z), 0}. This operator has the zero-th
order term ¢™ > 0 and hence the weak maximum principle applies to L. We compute

Lo(z) = [ -4 )" aij(z)a’ziz; + 20y (ai(z) = bi(z)zs) | e 4 (2)v(a)
i,j=1 i=1

< [~4002 |2 + 2 tr(aij(2)) + 2alb(z)||z] + ¢t (2))] e < 0

on 5 < |z| < Rif a > 0 is fixed and sufficiently large.

NNV

. For any ¢ > 0, consider function w.(z) = u(z) — u(z°) + ev(z). Then
Lw.(z) = eLv(x) + Lu(z) + (¢7(z) — c¢(z))u(z) — ¢ (z)u(a®) <0
< |z| < R in all cases of (a), (b) and (c).

3. By assumption, u(z) < u(z°) on |z| = &; hence there exists ¢ > 0 such that w.(z) < 0

Sl

on

on |z| = % In addition, since v|gp = 0, we have w.(z) = u(z) —u(2’) < 0 on |z| = R. Hence
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the weak maximum principle implies that w.(z) < 0 for all £ < |z| < R. But w.(z°) = 0;
this implies

ow: , o, Ou ov ou, o —aR?
< _ a
0< 5 (2”) = 81/( N te 8u( 0) = 5 (2”) — 2eRae
Therefore 5
w0 —aR?

- >

oy (z") > 2¢Rae > 0,
as desired. m

Theorem 2.34 (Strong maximum principle). Let Q2 be bounded, open and connected
in R™ and L be uniformly elliptic with bounded coefficients in Q and let u € C*(Q) satisfy
Lu <0 in Q.

(a) If c(x) > 0, then u cannot attain a nonnegative maximum in  unless u is constant.

(b) If c =0, then u cannot attain a maximum in 0 unless u is constant.

Proof. Assume c¢(z) > 0 in ©Q and u attains the maximum M at some point in Q; also
assume M > 0 if ¢(x) > 0. Suppose that u is not constant in Q. Then, both of the following
sets,
T={xeQlulzr) < M}; Qy={xe€Q|ulx)=M},

are nonempty, with 0~ open and Qg # Q relatively closed in €2. Since € is connected, g
can not be open. Assume z° € Qg is not an interior point of €y; so, there exists a sequence
{2*} not in Qy but converging to 2°. Hence, for a ball B(z",r) CC Q and an integer N € N,
we have that =¥ € B(2°,r/2) for all k > N. Fix k = N and let

S={p>0|B@=N,p c}

Then S C R is nonempty and bounded above by 7/2. Let p = sup S; then 0 < p < r/2
and hence B(z",p) € B(z°,r) cc Q. So B(z™,p) € 27, and also Qp N dB(zV, p) # 0. So
let y € Qo NOB(xN,p) and then u(z) < u(y) for all z € B(z", p). Then Hopf’s Lemma
above, applied to the ball B(z", p) at point y € dB(x", p), implies that %(y) > 0, where
v is the outer normal of dB(z", p) at y. This contradicts the fact that Du(y) = 0, as u has
a maximum at y € Qg C Q. O

2.4.4. Maximum Principle for Weak Solutions. We study a maximum principle
for weak solutions of second-order linear differential equations in divergence form. Let

n
(2.64) Luz—ZDi(a” )Dju) —i—Zb )Diu + c(z)u,
ij=1
with the associated bilinear B|u,v] defined as above.
Definition 2.27. (i) Given f € L*(Q2), we say that u € H({) is a weak sub-solution of
Lu = f and write Lu < f in  provided
Blu,v] < (f,v)r2() Vo€ HY (), v(z) >0 ae. Q.
Similarly, we define a weak super-solution of Lu = f and write Lu > f in Q.

(ii) Given functions u,v € H'(f2), we say that u < v on 9 if (u—v)* € H}(Q); we say
u > v on 9 if —u < —v on 98 that is, if (v —u)T € H}(Q). We define

supu = inf{p € R|u < p on 9N} =inf{p € R| (u—p)" € HJ(Q)},
o0
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and

infu = —sup(—u) =sup{p € R| u > p on 00}.
o0N a0

(iii) Recall that for u € L} (E), where E C R" is measurable,

loc

esssupu = inf{p ER|u < p a.e. E} =inf{p € R| (u—p)T =0 a.e. E}.
E

Note that

supu < esssupu YV u € HY(Q).

o0 Q
Remark 2.28. (i) Note that u € H(Q) is a weak solution of Lu = f in € if and only if u
is both a weak sub-solution and a weak super-solution of Lu = f in .

(ii) If w < v and v < w on 9N then u < w on IN. (See the Exercise below.)

Exercise 2.29. Suppose v € H{(Q) and v(x) > 0 a.e.in Q. Assume v € H'(Q) and
lu(z)| < v(z) a.e.in Q. Show that u € H}(Q).

Hint: Show u™ € H}(Q). Let v, € C(Q) and v, — v in HY(Q). Then f, =
min{u®, vt} € H}(Q) and f,, — u™ in H(Q).

Lemma 2.35. Let Q be a bounded domain with 9Q € C* and u,v € H' (). Then, u < v
on 02 if and only if vo(u) < yo(v) a.e. on 0. Furthermore,

(2.65) sup u = esssup yo(u).
oN o0

Proof. Let u € HY(Q) and let u,, € C*(Q) be such that u,, — uin H'(Q). Then u, — u™
in HY(Q). Thus um|ao — Yo(u), whlea — v0(u™) and u)l]aq — (y0(u))™, all strongly in
L?(99Q). This proves yo(u™) = (70(u))* a.e.on 9. Therefore, given u, v € H (), it follows
that u < v on 9N <= (u—v)T € H}(Q) = v((u—v)") = (1) —Y@)T =0 <
Yo(u) < 0(v)-

The identity (2.65) follows easily as u < p on 0Q <= vp(u) < p a.e.on . O
Theorem 2.36. (Maximum Principle for weak sub-solutions) Let Q2 C R" be bounded

open and L be uniformly elliptic in Q with c(z) > 0 a.e.in Q. Suppose u € H () is a weak
subsolution of Lu =0 in Q. Then

esssupu < sup ut.
Q o0

Proof. Suppose, for the contrary, that supyg u™ < esssupg u. Let k be any number such
that supgn ut < k < esssupg u, and define v* = (u — k)*. Then k > 0, v* € H'(Q), v* >0
and uwv® > 0, both a.e.in Q, and

Dok — Du  on {u > k},
0 on{u<k}

Since k > supyqut, we have ut < k on 99, ie., (vt — k)t € HL(Q) and thus v* =
(u—Fk)t = (ut — k)t € HYQ). As u € HY(Q) is a weak subsolution of Lu = 0 in 2, we
have Blu, vk] < 0, which, combined with the ellipticity condition and c(a:)uvk >0 a.e.in €,

gives
9/ | Dv*|? S/a,;ijquk§—/ijiju—/cuvk
Q Q Q Q

<= [ berDusC [ A0 < Clt i lD )
k
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where Q, = {z € Q|u(x) > k, Du(z) # 0} and C' > 0 is independent of k. Hence, with
Ci=C/0 >0,

(2.66) |1 DV¥(| 20y < Cullv¥ |20y

* _ 2n

Now let p = 2 5 if n > 2 and let p be any number larger than 2 if n = 1,2.
)

Then, by (2.66) and the Gagliardo-Nirenberg-Morrey-Poincaré-Sobolev and Hoélder
inequalities,

1_1
HkaLP(Q) < CPHkaHL2(Q) < Cpcl”kaLQ(Qk) < CpCr| |2 p””kHLI’(Q)y

where C,, > 0 is a constant independent of k. Since k < esssupg u, we have |v*|| e >0
and hence the previous inequality gives

Q| > p >0,
where p > 0 is independent of k. Let | = esssupgu and N be an integer such that

| — % > supgg u'. Define

Then S is measurable. Since {2} is decreasing as k increases, it follows that
|S| = lim |Q| > > 0.
k—1—

Note that one has Du # 0 and «w > [ on S; hence Du # 0 and v = [ a.e.on S, which is
impossible since Du = 0 a.e. on any level set {u = constant} of u, the constant including
possibly co. (Exercise!) This completes the proof. O

Remark 2.30. The maximum principle for weak subsolutions is independent of the first-
order coefficients b;, as in the case of the maximum principle for classical C?(Q) N C()-
subsolutions of non-divergence elliptic operators.

Applying Theorem 2.36 to both u and —u, it follows that the elliptic equation Lu = 0
has the unique trivial solution u = 0 in H}(Q2) if ¢ > 0 in Q. Hence, by the Fredholm
alternative, for such an operator L, the equation Lu = f has a unique weak solution
u € H}(Q) for each f € L3(Q).

LECTURE 29 — 3/27/19

2.5. Eigenvalues and Eigenfunctions

We come back to the general linear system of divergence form Lu defined by (2.10), whose
bilinear form Blu, v] is defined by (2.12) above on H = H{(Q;RY), where N > 1.

Definition 2.31. A real number A € R is called a (Dirichlet) eigenvalue of operator L if
the BVP problem

(2.67)

Lu—Au=0 1in £,
u=20 on 0f2

has nontrivial weak solutions in H}(€; RY); these nontrivial solutions are called the eigen-
functions corresponding to eigenvalue .

The eigenvalues and eigenfunctions of elliptic equations can be studied by the spectral
theory of compact operators.
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2.5.1. Some Functional Analysis — Spectral Theory of Compact Operators.

Definition 2.32. Let T: H — H be a bounded linear operator on a Hilbert space H.
(1) We define the resolvent set of T' to be
p(T)={ e R|(T'—\): H— H is one-to-one and onto}
and define the spetrum of T to be the set o(T) = R\ p(7).

(2) EN(T — \I) # {0}, then X is called an eigenvalue of T'; in this case, any nonzero
element in N (T — ) is called an eigenvector of T' corresponding to .

Remark 2.33. By the Closed Graph Theorem, \ € p(T) if and only if (T —\I)~! exists
and is bounded.

Theorem 2.37. (Spectrum of Compact Operator) Let H be an infinite dimensional
Hilbert space and T: H — H be linear and compact. Then

(i) 0 € o(T).
(ii) A is an eigenvalue of T if A € o(T) \ {0}.

(iii) o(T) \ {0} is either finite or a sequence converging to 0.

Proof. 1. Suppose 0 € p(T). Then T~! exists and is bounded on H; thus I = ToT~!: H —
H is compact, which implies each bounded sequence in H has a convergent subsequence.
This is clearly false if dim H = oco.

2. Assume A\ € o(T),\ # 0. Suppose N (A — T) = {0}. Then, by the Fredholm
alternative, R(A] — T) = H and hence X € p(T), a contradiction. Consequently N (A —
T) # {0} and thus X is an eigenvalue of T

3. Assume S = o(T) \ {0} is infinite. We show that the only limit point of S is 0.
Once this is proved it follows that S consists of a sequence converging to 0. Assume n € R,
e €S, m; # i (§ # k), and {n;} — n; we are to prove n = 0. For each k let w, € H be
such that wy # 0 and Twy, = nrwy. Let Hy = span{w, wa,...,wy}. Use induction, we see
that {wi,...,w} is linearly independent. Hence Hj is a proper subspace of Hyi. Note
that (T — niI)(Hy) C Hj_1 C Hyg. Thus choose uy € Hj, such that up € (Hy_1)* and
|lug|| = 1. Then if & > j

‘Tuk TU,j . H Tuk — NkUg TUj — Nju;
Mk U Mk Mj

since T'uy, — nrug, Tuj —nj,u; € Hyp_1. If g — n # 0, then we obtain a contradiction to the
compactness of T'. O

> 1

)

+ up — uj

2.5.2. Eigenvalues of Elliptic Operators.

Theorem 2.38. (Third Existence Theorem for weak solutions) Assume the condi-
tions of Theorem 2.11 hold.

(i) There exists an at most countable set ¥ C R such that the problem Lu — Au = F
has a unique weak solution in HZ(LRYN) for each F € L2(Q;RY) if and only if
AgX.

(i) If ¥ is infinite, then ¥ = { A}, with A\j < Ag < -+ < A\ < -+, and A\ — 0.

Proof. By the Fredholm alternative, the problem Lu — Au = F' has a unique weak
solution in HZ(;RY) for each F € L*(Q;RY) if and only if Lu — Au = 0 has only trivial
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weak solution u = 0 in H(2;RY). Let v > 0 be the number in the Garding’s estimate
(2.29). If A < —~, then Lu — Au = 0 has only the trivial weak solution u = 0 since the
bilinear form B)[u,v] for Lu — Au satisfies

Bilu,u] = Blu,u] = Mul72 > Bllullzn — A+ lullz2 > Bllullzs.

Assume A\ > —v. Then equation Lu — Au = 0 is equivalent to (L + vI)u = (v + A)u; that
is, (I — (v + AM)K)u = 0, where K = (L +~I)~%: L2(Q;RY) — L2(Q;RY) is the compact
operator defined before. Hence, in this case, equation Lu — Au = 0 has only trivial weak
solution u = 0 if and only if N'(I — (v + A\)K) = {0}; since A 4+ v > 0, this last condition is
equivalent to vﬁ ¢ o(K). Let

1
E=da> =y | =5 eo)p.
{ LR ( )}
Therefore, we have proved that the problem Lu — Au = F' has a unique weak solution in
HZ(Q;RYN) for each F € L2(Q;RY) if and only if A ¢ 3. Since o(K) is at most an infinite
sequence converging to 0, it follows that X is at most an infinite sequence converging to
~+o00. [l

Remark 2.34. The set ¥ in the theorem is exactly the set of (real) eigenvalues of L.

LECTURE 30 — 3/29/19

2.5.3. More Functional Analysis — Spectral Theory of Symmetric Compact Op-

erators. Let H be a real Hilbert space, with inner product (, ) and norm || - ||, and let
S: H — H be linear, bounded and symmetric. Define
m= inf (Su,u), M= sup (Su,u).
u€H, |lul|=1 ueH, ||lul|=1

Lemma 2.39. We have m, M € o(S) C [m, M].
Proof. 1. Clearly —||S|| < m < M < ||S||. Let n > M and consider the bilinear form
Blu,v] = (nu — Su, v). Then B is bounded on H and

Blu,u] = (nu — Su,u) = nllull® = (Su,u) > (n — M)l|ul]*.

Hence, by the Lax-Milgram Theorem, for each w € H, there exists a unique u € H

such that Blu,v] = (w,v) for all v € H; that is, nu — Su = w. Moreover, |u| < ﬁ”w“

So (nI — S)™': H — H exists and ||(n] — S)"lw|| < ﬁ”w\h thus n € p(S) and hence
o(S) C (—oo, M]. Similarly, o(S) C [m,00). This proves o(S) C [m, M].
2. Let Blu,v] = (Mu — Su,v). Then B[u,v| is symmetric and

0 < Blu,u] < (M —m)||ul|*> Yuc H.
This implies h(t) = Blu + tv,u + tv] > 0 for all ¢; hence

Blu,v])? < Blu,u] Blv,v] Yu,v € H.
Setting v = Mu — Su yields

|Mu — Sul|* = Blu,v]> < Blu,u] Blv,v] < (M — m)Blu,u]||v||?,

which gives
|Mu — Su||*> < (M —m)(Mu — Su,u) Yuc H.



LECTURE 30 — 3/29/19 73

3. We prove M € o(S). Let uy, € H be such that |lug|| = 1 and (Sug,ur) — M. Then
(Muyg, — Sug,u) — 0 and hence by the inequality above,

[(MTI — S)ug||* = | Mug, — Sug||* < (M —m)(Muy — Sug, uz,) — 0.

So (MI —S)uy, — 0. If M € p(S), then uy, = (MI —S)~Y(Muy, — Sug) — 0, a contradiction
to |Jug|| = 1. Therefore M € ¢(S). Similarly, m € o(95). O

Theorem 2.40. (Spectral Property for Compact Symmetric Operators) Let H be
a separable Hilbert space and S: H — H be compact and symmetric. Then there exists a
countable orthonormal basis of H consisting of eigenvectors of S.

Proof. 1. Let o(S5) \ {0} = {m}2, and ny = 0. Write Hy = N(S — 1) for k =0,1,....
According to the Fredholm alternative, 0 < dim H; < oo for k= 1,2,.... If kK # [ and
u € Hy,v € Hy, then ng(u,v) = (Suk, v) = (ug, Sv) = ni(u,v), which implies (u,v) = 0 and
thus Hy L Hyif k #£1.

2. Let H be the smallest subspace of H containing all Hy'’s for k = 0,1, ...; namely,
m
= {Zakuk |me{0,1,...}, ax € R, up € Hy Vk:(],l,...,m}.
k=0

Then S(H) C H. Furthermore, if u € H- and v € H, then (Su,v) = (u, Sv) = 0; hence
S(HY) c H*.

3. Consider the operator S = § | L : H- — HL. Then S is compact and symmetric;
moreover, any nonzero eigenvalue of S would be a nonzero eigenvalue of S and all eigen-

vectors of S are in H not in H'. Hence S has no nonzero eigenvalues; thus ¢(S) = {0}. By
Lemma 2.39, this implies (Su, u) =0 for all u € H~L. Hence, for all u,v € H+,

0= (S(u+v),u+v)=(Su,u) + (Sv,v) + 2(Su,v) = 2(Su,v);
that is, (Su,v) = 0 for all u,v € H'; this shows that S = 0. Thus H+ = N(S) c N(S) =
Hy C H, which implies that H- = {O} hence H is dense in H.

4. Choose an orthonormal basis for each Hy (k = 0,1,2,...), noting that since H is
separable, if dim Hy > 0 (in this case H is the eigenspace of S for eigenvalue 0), then Hy has
an at most countable orthonormal basis. Each of other Hy’s (k # 0) is finite dimensional.
We thus obtain a countable orthonormal basis of H consisting of eigenvectors of S. 0

2.5.4. Eigenvalue Problems for Symmetric Elliptic Operators. In what follows, we
assume that the bilinear form Blu,v] of L is symmetric on H}(Q;RY), that is,

(2.68) Blu,v] = Blv,u] Y u,v € H}(Q;RY).

In this case, Lu is symmetric or self-adjoint: L*u = Lu. We also assume the Garding’s
inequality:

(2.69) Blu,u] > Bllullfp —llulZz, ¥ ue Hy(RY),

where § > 0 and v € R are constants; see Theorem 2.11 for sufficient conditions.
For each F € L*(Q;RY), define u = KF to be the unique weak solution in Hg(Q;RY)
of the BVP
Lu+~u=F inQ, ulgpg=0.
By Theorem 2.12 and Corollary 2.13, K = (L + vI)~! is a compact linear operator on
L2(;RN). We easily verify the following result.
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Lemma 2.41. K: L>(Q;RY) — L2(Q;RY) is symmetric and positive; that is,
(KF,G)p2 = (KG,F)p2, (KF,F);2 >0, YF GeL*QRY).
Theorem 2.42. (Eigenvalue Theorem) Assume (2.68) and (2.69).
(i) The eigenvalues of L consist of a countable set ¥ = {\;}?2 |, where
—Y<A <A< A3< -

are listed repeatedly the same times as the multiplicity, and A — oo.
Furthermore, let wy be an eigenfunction to i satisfying Hwk”LQ(Q;RN) = 1. Then
{wy}2°, forms an orthonormal basis of L?(;RY).

(ii) The first (smallest) eigenvalue A1 is called the (Dirichlet) principal eigenvalue
of L and is characterized by the Rayleigh’s formula

B
(2.70) At= min = Blu,u] = L %
ueH (RN) ueHg (QRN) Hu”L2(Q~RN)
lull 2 gy =1 w0 7

Moreover, if u € H&(Q;RN), u Z 0, then u is an eigenfunction corresponding to

M if and only if Blu,u] = M |ul}2qzn)-

Proof. 1. Let K = (L +~I)~! be the symmetric positive compact operator defined above.
We see that A is an eigenvalue of L if and only if equation (I — (A+v)K)u = 0 has nontrivial
solutions u € L?(2;RY); this exactly asserts that

(2.71) A is an eigenvalue of L if and only if ﬁ is an eigenvalue of operator K.

Moreover, u is an eigenfunction of L corresponding to eigenvalue A if and only if u is an
eigenvector of IC corresponding to eigenvalue ﬁ Therefore, (i) follows from Theorem 2.40.

2. We now prove the second statement. If u is an eigenfunction corresponding to A;
with ||lul[z2(qrvy = 1, then easily Bluu] = A (u,u)r2 = Allul|2; = A1. We now assume

u € H&(Q,RN), ||u||L2(Q;RN) =1.

Let {wy,} be the orthonormal basis of L?(Q2; RY) consisting of eigenfunctions as given in (i).
Then Blwy,w;] = Mg(wg, wy) 2 = Apdpr. Set @y = (A + )~ ?wy, and consider the inner
product on H = H}(;RY) defined by

((u,v)) :== By[u,v] = Blu,v] + vy(u,v)2  (u,v € H).

Then ((u,u))"/? defines an equivalent norm on H and ((@y, ;) = p1. Let dy = (u, wy,) 2.
We have

(2.72) Sdi=ulf=1 u=> duwp=>_ dpiy
k=1 k=1 k=1

with di, = dg/ Mg + , where the series for u are in the norm-convergence in L?(Q; RY).

3. We claim that the series for u converges also in the equivalent norm ((u,u))"/? on
H. Indeed, for m =1,2,---, define

m m
Uy, = dewk = deﬁ)k € H.
k=1 k=1



LECTURE 30 — 3/29/19 75

From ((w, u)) = By, u] + (W, w) 2 = (A +7) (g, u) 12 = dj, we have

((um,u)) = Zd? = ((um,um)) (m=1,2,---).
k=1

This implies ((wm,um)) < ((u,u)) for all m = 1,2,--- . Hence, {u,,} is bounded in H
and so, by a subsequence, u,, — @ in H as m — oo (here we use the notion of weak
convergence). Since u,, — u in L%, we must have % = u and so

(u,u)) < lini)inf((um,um)),
which, combined with ((u — tm, u — ) = ((u,w)) + ((Um, um)) — 2((w, um)) = ((u,uw)) —
((tm, up)), implies that u,, — w in H, and the claim is proved.
4. Now, by (2.72), we have

Blu,u] = Y " dpBlwg,ul = Y dide = > did = A1
k=1 k=1 k=1

Hence (2.70) is proved. Moreover, if in addition Bu,u] = A1, then we have

[e.9]

D> (k= A)di = 0; so dp =0if A, > Ay

k=1
Assume \; has multiplicity m, with Lwy = Mwy, (k= 1,2,--- ,m). Then v = Y-, dywy,
and so Lu = A\ju; that is, u is an eigenfunction corresponding to A;. O

2.5.5. The Scalar Case N = 1. We consider a special scalar symmetric elliptic operator
Lu given by

n
Lu=— Z Dj(a;j(x)Diu) + c(x)u,
i,j=1
where the uniform ellipticity condition is satisfied, 02 is smooth, and a;;,c are smooth
functions on (2 satisfying

aij(z) = aji(z), c(z) >0 (zeQ).

Theorem 2.43. The principal eigenvalue of L is positive; that is Ay > 0. Let w1 be an
eigenfunction corresponding to the principal eigenvalue Ny of L. Then, either wi(xz) > 0
for all x € Q or wi(xz) < 0 for all x € Q. Moreover, the eigenspace corresponding to A1 is
one-dimensional; that is, the principal eigenvalue \; is simple.

V

Proof. 1. Since in this case the bilinear form B is positive: Blu,u] > QHUHiﬂ(Q)
0
aHuH%Q(Q), we have A > 0. Let w; be an eigenfunction corresponding to A\; with [Jw1][z2(q) =
L. Then wi € HY(Q), wy = wi +wy, [y [Zagy + 07 |22 = 0122 = 1, and
Dwf = X{w1>0}Dw13 Dw; = X{w1<0}Dw1'

Hence Blw; ,w;| =0, and thus

M = Blwy, wi] = Blwf, ] + Bl wi] 2 Mlwi [2sq) + Mlwr |22 = A
So the inequality must be equality, which yields that

Blut, w] = Mllwi [2aqy,  Blr,wi] = Alwr 2.

Therefore, u = wli is a H}(€2)-solution to the equation Lu = Aju in 2. Since the coefficients
of L and Q are smooth on Q, u = wli is smooth on Q. (See Theorem 2.27.) Since Lw] =
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Arw; < 0in €, by the Strong Maximum Principle, either w; = 0 or else w; < 0 in ;
similarly, either wf = 0 or else wf > (0 in €. This proves that either w; < 0 in 2 or else
wy > 0 in Q.

2. To prove the eigenspace of A1 is one-dimensional, let w be another eigenfunction. Let
t € R be such that [, (w — tw;)dx = 0. Since u = w — tw; is also a solution to Lu = Aju, it
follows that either u =0, u > 0, or u < 0, in ; however, in the last two cases, fQ udx # 0.
Hence u = 0; namely, w(x) = twq(x) for all z € Q. O



Chapter 8

Part III — The
Calculus of Variations

LECTURE 31 —4/1/19
3.1. Variational Problems

3.1.1. Basic Ideas. This chapter will discuss certain methods for solving the boundary
value problem for some partial differential equations; these problems, in an abstract form,
can be written as

(3.1) Afu] = 0.

There is, of course, no general theory for solving such problems. The Calculus of Varia-
tions identifies an important class of problems which can be solved using relatively simple
techniques motivated from the elementary Calculus. This is the class of variational prob-
lems, where the operator A[u] can be formulated as the first variation (“derivative”) of
an appropriate “energy” functional I(u) on a Banach space X; that is, Afu] = I’(u). In this
way, A: X — X* and equation Afu] = 0 can be formulated as

(I'(u),v) =0, VovelX.

The advantage of this new formulation is that solving problem (3.1) (at least weakly) is
equivalent to finding the critical points of I on X. The minimization method for a
variational problem is to solve the problem by finding the minimizers of the related energy
functional.

We should also mention that many physical laws in applications arise directly as vari-
ational principles. However, although powerful, not all PDE problems can be formulated
as a variational problem; there are other important (non-variational) methods for studying
PDEs, and we shall not study them in this chapter.

3.1.2. Multiple Integral Functionals, First Variation and the Euler-Lagrange
Equation. Let Q C R™ be a bounded, open set with smooth boundary 9€). For a function
u: Q — RN (we say u is scalar if N = 1 and v is vector if N > 2), let u = (u',u?,--- ,uV)

and use
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to denote the Jacobi matrix of u; for each z € Q, Du(z) € MV*™.

Given a function L: Q x RN x MN¥*” 4 R, consider the multiple integral functional

(3.2) I(u) = /Q L(z, u(x), Du(z)) dz.

The function L(z,s,§) is usually called the Lagrangian of the functional I. (Here we are
using different notation from the textbook and doing the general cases including both the
scalar and the system cases.)

Suppose L(z, s,§) is continuous in (z, s, &) and smooth in (s, §). Assume u is a nice (say,
u € C1(;RY)) minimizer of I(u) with its own boundary data; that is,
I(u) < I(u+ty)

for all t € R and ¢ € C§°(€;RY). Then by taking derivative of I(u+t¢) at t = 0 we see
that u satisfies

(3.3) / (Lfgc (z,u, Du) Diﬁpk + L (z,u, Du) Sok) dr =0
Q T

for all ¢ € C5°(;RY). (Summation notation is used here.)

The left-hand side of (3.3) is called the first variation of I at u (in the direction of ),
and is denoted by (I'(u), ). Since (3.3) holds for all test functions ¢, we conclude after
integration by parts that u solves the system of nonlinear PDEs:

(3.4) — " Di(Af(x,u, Du)) + b*(z,u, Du) =0 (k=1,2,---,N),
=1

where functions A¥(z, s, &) and b¥(z, 5, &) are defined by
(3.5) Af(2,5,6) = Lep(2,5,6), V' (2,5,6) = Lar(x,5,6).

Definition 3.1. The coupled system (3.4) of quasilinear PDE in divergence form is called
the Euler-Lagrange equation associated with the integral functional I(u). We often write
the Euler-Lagrange PDE system (3.4) as

—div A(z,u, Du) 4+ b(z,u, Du) =0 in £,
with matrix function A = (A¥) and vector function b = (b*) given by (3.5).

In summary, any smooth minimizer of I(u) is a solution of the Euler-Lagrange equation
associated with I(u), and thus we may try to solve the PDEs of the type (3.4) by searching
for minimizers or general critical points of functional I(w). This is the method of calculus
of variations or variational method for PDE. The fundamental issues of this method are
whether minimizers exist and are smooth enough to be a solution of the PDE. These issues
lead to the existence and regularity theories that we will discuss separately.

EXAMPLE 3.1. (Generalized Dirichlet’s principle). Take

n

I(u) = /Q (% Z i (T) U, Uy — uf) dzx,

ij=1
where a;; = aj;i (i,j = 1,2,---,n) and f: @ — R are given functions. Then the Euler-
Lagrange equation is the divergence form PDE

=Y (aij(@)ug,)e; = f in Q.

1,j=1
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EXAMPLE 3.2. (Nonlinear Poisson equations). Assume : R — R is a smooth function
and F(z) = [ f(s) ds. Consider

I(u) :/Q <;|Du|2 —F(u)) da.

Then the Euler-Lagrange equation is the nonlinear Poisson equation
—Au = f(u) in Q.

ExXAMPLE 3.3. (Minimal surfaces). Let
I(u) :/(1+\Du|2)1/2d:c
Q

be the area of the graph of u: {2 — R. The associated Euler-Lagrange equation is

Du
div—————- =0 1in {,
(1 + |Dul?)1/2
which is called the minimal surface equation. The left side of the equation represents
n-times the mean curvature of the graph of u. Thus a minimal surface has zero mean

curvature.

3.1.3. Second Variation and Legendre-Hadamard Conditions. If L, u are suffi-
ciently smooth (e.g. of class C?) then, at the minimizer u, for all ¢ € C§°(;RY), we

have
2

I (W), 0) =

Iu+te)| >0,

which gives

3.0 (I'" (w)p, p) = /Q<L§f ¢l (2,u, Du) D;ip* Dl + 2Lk g (z,u, Du) @' D;p*
3.6

+ Ly g (x,u, Du) gpkgpl> dx >0 Vo e CP(;RY).

The quantity (I”(u)p, ¢) is called the second variation of I at u (in direction ¢).

We can extract useful information from (3.6). Note that a routine approximation ar-
gument shows that (3.6) is also valid for all Lipschitz functions ¢ vanishing on 0). Let
p: R — R be the periodic zig-zag function of period 1 with p(t) =¢tif 0 < ¢t < % and
p(t)zl—tif%ﬁtg 1. Given p € R, ¢ € RY, ¢ > 0 and ¢ € C§°(Q), define

p(@) = ep(=F)C(a)g. Yz eQ

Note that D;p*(z) = p/(£2)pig*¢ 4+ O(e) as € — 0. Substitute this ¢ into (3.6) and let
e — 07 to obtain

/(i: ZN: Lek gt (2, u, Du) pipjq q)( dz > 0.

1k,
Since this holds for all ( € C§°(2), we deduce

n

(3.7) g E Ler (z,u, Du)piqukql >0, YVze, peR”?, geRV.
i S5
ij=1k,l=1

This necessary condition is called the (weak) Legendre-Hadamard condition for L at
the minimum point wu.
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LECTURE 32 — 4/3/19
3.2. Existence of Minimizers

3.2.1. Some Definitions in Nonlinear Functional Analysis.

Definition 3.2. Let X be a Banach space and X* be its dual space.

(1) A sequence u, in X is said to weakly converge to an element u € X if

(fruy) = (fyu) VfeX.
(2) A set C C X is said to be (sequentially) weakly closed provided u € C whenever
{w,} CC, v, — u.
(3) A function I: X — R = R U {oo} is said to be (sequentially) weakly lower
semicontinuous (w.l.s.c.) on X provided

I(u) <liminf I(u,) whenever u, — u in X.
vV—00

(4) A function I: X — R is said to be coercive on an unbounded set C C X provided
I(u) — o0 as [|ul]| = oo in C.

(5) A function I: X — R is said to be Gateaux-differentiable at v € X if for all
v € X the function h(t) = I(u + tv) is differentiable at ¢ = 0. In this case, we
define (I'(u),v) = h’(0) to be the Gateaux or directional derivative of I at u
in direction v.

(6) A function /: X — R is said to be Fréchet-differentiable or simply differen-
tiable at v € X if there exists an element f € X* such that

1 —I(u) —
L Iwto) I~ (f0)
vEX, [lo] =0 V]l
In this case, we define I'(u) = f to be the Fréchet derivative of I at u. We

say I is C! on X provided that I’(u) is defined for all u € X and I’: X — X* is
continuous.

=0.

3.2.2. The Direct Method of the Calculus of Variations. We study a general method
for proving the existence of minimizers of a function defined on a Banach space. This method
is called the direct method of the calculus of variations.

Theorem 3.4. (Direct Method of the Calculus of Variations) Let X be a reflexive
Banach space, C € X be a nonempty weakly closed set, and I: X — R be w.l.s.c. and
coercive on C if C is unbounded. Assume inf,cc I(u) < co. Then there is at least one ug € C
such that I(up) = inf,ec I(u); such a function ug € C is called a minimizer of I on C.

Proof. First of all, take a sequence {u,}, called a minimizing sequence, such that

lim I(u,) = inf I .
im I(uy) inf (u) < o0

V—00

Then the coercivity condition implies that {u, } must be bounded in X. Since X is reflexive,
there exists a subsequence of {u, }, denoted by {u,, }, and ug € X such that u,, — ug weakly
in X. The weak closedness of C implies ug € C. Now the w.l.s.c. of I implies

I(up) < liminf I(u,;) = inf I(u).
j—o0 ueC

This proves that wug is a minimizer of I on C. The procedure presented in this proof is called
a direct method proof. O
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3.2.3. The Coecivity and Lower Semicontinuity. We now study the multiple integral
functionals of the type

I(u):/QL(x,u,Du) dx

on Sobolev space WP((Q; RN ), where €2 is bounded open in R™. We discuss some conditions
on the Lagrangian L in order to use the direct method on functional I.

Dirichlet classes. Let 1 < p < co and ¢ € WP(Q;RY). We define the Dirichlet class
D, = {u e W(QRY) |u— ¢ € Wy (;RY)}.

Note that if 9 € C! then using the trace operator 7y it is easy to show that D, is weakly
closed in W1P(Q; RY). For general open sets €2, the proof of weak closedness of D, needs
the Mazur’s lemma which asserts that any weakly convergent sequence in a Banach space
has a sequence of convex combinations of its members that converges strongly to the same
limit; we will not discuss this result but will freely use the weak closedness of D, for all {2’s
in the following. Also, by the Poincaré’s inequality, we have

(3-8) [1Dullr() < llullwir@) < C([Dullr) + lellwir@) Vu € Dy.

Coercivity. Assume L(z,s,£) is continuous on (s, ) and measurable on z, and
(3.9) L(z,s,6) > al¢|P — B(z) YzeQ, seRY, ¢ e MV,

where a > 0 is a constant and 8 € L'(Q) is a function. Then I: WLP(Q;RY) — R is
well-defined and

1w) 2 al| Dwl? g ~ Bl Y e WP(QRY).
Hence, by (3.8), we have for some constants 6 > 0 and v € R,

(3.10) I(w) > 0||wl| —v YwéeD,.

p
wlr(Q)

This implies the coercivity of I on the Dirichlet class D,. Note that condition (3.10) can
hold under some conditions weaker than (3.9); we will not discuss such conditions.

Weak lower semicontinuity. The necessary and sufficient condition for weak lower semi-
continuity of I(u) on a Sobolev space (especially for general systems) is a difficult problem
involving Morrey’s quasiconvexity, which we will not study in this course. Instead, we
prove a semicontinuity result for certain Lagrangians L(z, s, §) that are convex in . Another
lower semicontinuity theorem for polyconvex functionals will be proved later.

Recall that a function L(z, s, £) is said to be convex in & € MV*™ if
L(.’E, S7t€ + (1 - t)n) < tL(l',S,f) + (1 - t)L(JZ‘,S,?’])
forall x, s, &, nand 0 <t <1.

Lemma 3.5. Let L be C' in &. Then the convezity of L in £ is equivalent to the following
condition:

(3‘11) L(ﬂfas’ﬁ) ZL(I737§)+L§§(5‘77575) (ﬁf‘@k)
forallz € Q, s € RN and &,n € MVN*",

Proof. Exercise! OJ
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Theorem 3.6. (Tonelli’s Theorem) Let L(x,s,£) > 0 be smooth and convex in §.
Assume L, L¢ are both continuous in (x,s,§). Then the functional I(u) defined above is
weakly (weakly™ if p = co) lower semicontinuous on WHP(;RN) for all 1 < p < cc.

Proof. We only prove I(u) is w.l.s.c. on WH1(Q; RY); the proof for other p follows easily.
To this end, assume {u, } is a sequence weakly convergent to u in W11(Q; RY). We need to
show

I(u) < liminf I'(uy).

v—00

By the Sobolev embedding theorem it follows that (via a subsequence) u,, — u in L' (Q; RY).
We also assume u,(x) — u(x) for almost every x € . Now, given § > 0, we choose a
compact set K C €2 such that

(i) up — w uniformly on K and |2\ K| < ¢ (by Egorov’s theorem);
(ii) u, Du are continuous on K (by Lusin’s theorem).

Since L(x,s,§) is smooth and convex in &, it follows that
L(z,s,m) > L(z,5,) + Ler (z,5,) (f — &) V¢, n e MV

Therefore, since L > 0,

I(uy) 2/ L(z,u,, Du,) dx
K

>/ {L(a:, uy, Du) + Lk (2, wy, Du) (D — Du®)
K K2

:/ L(z,u,, Du) —{—/ Lgr (2, u, Du) (Dsuf — Du®)
K K
+ [ (g (o D) — Loy (o, D)) (Do — Din).
K 3 7

Since L(z, s, &) is uniformly continuous on bounded sets and u, (z) — u(z) uniformly on K
we have

lim L(z,uy, Du) d:):—/ L(z,u, Du) dz,
V—00 K K

lim HLgf(x,uy,Du) — ngz_c (z,u, Du)|| oo () = 0.

V—r00

Now since Lgr (2, u, Du) is bounded on K and D;uk converges to D;u* weakly in L'(Q) as
v — 00, we thus have

lim | Lk (z,u, Du) (Djuf — Diu®) dx = 0.
K 1

vV—00

From these estimates, we have

(3.12) liminf[(u,,)Z/ L(z,u, Du).
K

v—00
If L(x,u, Du) € LY(Q), i.e., I(u) < oo, then for any given € > 0, we use the Lebesgue

absolute continuity theorem to determine § > 0 so that

/L(w,u,Du)Z/L(x,u,Du)—e, VECQ, |Q\E| <.
E Q
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On the other hand, if I(u) = oo then for any number M > 0 we choose § > 0 so that
/ L(z,u,Du)dx > M, YECQ, |Q\E|<0.
E

In either of these two cases, using (3.12) and letting e — 0 or M — oo, we obtain
liminf I'(u,) > I(u).
v—00
The theorem is proved. O

3.2.4. Existence in the Convex Case. Using the theorem, we obtain the following
existence result.

Theorem 3.7. In addition to the hypotheses of the previous theorem, assume there exists
1 < p < oo such that

L({L‘,S,f) > c|£’p - C(‘T)a
where ¢ > 0, C € LY(Q) are given. If for some ¢ € WIP(Q;RN), I(p) < oo, then mini-
mization problem infyep, I(u) has a minimizer in the Dirichlet class D,.

Proof. This follows from the abstract existence Theorem 3.4 above. O

3.2.5. Weak Solutions of the Euler-Lagrange Equation. Distributional or weak so-
lutions to the Euler-Lagrange equation (3.4) can be defined as long as A(x,u, Du) and

b(x,u, Du) are in L, (Q;RY). We give some structural conditions on the Lagrangian

L(z,s,€) so that the weak solutions to the BVP

{—div A(z,u, Du) + b(x,u, Du) =0 in €,

(3.13)
U= on 012,

can be defined and studied in W1?(Q; RY) for some 1 < p < oo,

Standard Structural Conditions. We assume L(z,s,¢) is C! in (s,€) and

(3.14) [L(z,5,8)| < ci([€]P + |s|P) + ca(2), c2 € LY(Q);
(3.15) |DyL(w,5,€)| < es([fP~t + [sP) + ealw), ex € LFT(9);
(3.16) |DeL(x,5,€) < cs(|€lP~1+ [sP~Y) + co(w), e € LT (9),

where ¢y, c3, c5 are constants.

Theorem 3.8. Under the standard structural conditions above, any minimizer u of I on
D, is a weak solution of the BVP (3.13) in the sense that u € D, and

(3.17) /Q (Lgf (z,u, Du) Dyv* + L. (z,u, Du) vk) dr=0 Vwve WOLP(Q;RN),
(as usual, summation notation is used here).

Proof. Let X = W'P(Q;RN), u,v € X, and h(t) = I(u+tv). By (3.14), h is finite valued,
and we show h is differentiable at ¢ = 0 and

(3.18) R'(0) = (I'(u),v) = /Q (Lflx_@(x,u,Du) Div*(x) + Ly (x,u, Du) v*(x)) da.

We have h(t);h(o) = Jo L'(x) dx, where for almost every x € ,

1 1 [td
L' (z) = ;[L(x, u+ tv, Du+ tDv) — L(x,u, Du)] = n /0 gL(l’, u+ sv, Du+ sDv) ds
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1 t
e t/ |:L£k ($5 u + SU, Du + SDU) D@'Uk; —|— Lsk (ZB, u _|_ SU7 Du + SDU) ,Uk: dS.
0 %

Hence

%ir% Li(z) = Ler (2, u, Du) D* + L (z,u, Du)v® a.e.x € Q.
% 3

Using conditions (3.15), (3.16), and Young’s inequality, we obtain that, for all 0 < [¢| < 1,
L ()] < Cr(|Duf? + |Dof? + [ul? + [o[P) + Ca(x), Ca € LH(S).

Thus, by the Lebesgue dominated convergence theorem,

/ 1 t _ .k k
h'(0) = %1_1)% ; L (z)dx = /Q (Léf(x,u,Du) Div" + L (z,u, Du) v )da:,

which proves (3.18). If v is a minimizer of I on D, then for each v € Wol’p(Q;RN) the
function h(t) = I(u+ tv) attains the minimum at ¢ = 0; hence h'(0) = (I'(u),v) = 0, which
proves (3.17). O

3.2.6. Nemytskii Operators and Fréchet Differentiability of /. In fact, we can prove
a much stronger result.

Theorem 3.9. Let 1 < p < oo. Then, under the same standard structural conditions as
above, the functional I is C* on X = WHP(Q; RN).

Proof. Given u € X, the formula (3.18) defines an element I'(u) € X* and hence I': X —
X* is well-defined. To show that I'(u) is the Fréchet derivative of I at u, let v € X and
f(t) =I(u+tv) —I(u) — (I'(u),v)t. Then

1 1
I(u+v) —I(u) = (I'(u),v) = /0 f'(s)ds = /0 (I (u+ 5v), 0) — (T'(w), 0)) ds
1 k
— /Q/o (Lgf (z,u+ sv, Du+ sDv) — ngz_g (z,u, Du))Div dsdax

1
+/ / (Lgr (@, u+ sv, Du+ sDv) — Ly (,u, Du))vk dsdzx.
o Jo

Let
Ala,5,€) = max, |Le(w,u(@) + 75, Dula) + 7€) — Le(,u(x), Du(@)),
B(z,5,) = max, L e, u(x) + 75, Du(a) + 7€) - Lu(a, u(x), Du(z)].

Then A and B are Carathéodory with respect to = and (s,£) and satisfy (3.20) with
q = ;77 (see below). Note that

T+ ) — I(w) — (T'@w), )] < C (| A@, v, Do)|za + | B(@v, Do)l ga) ol
Thus, the Fréchet differentiability of I at v will follow from

(3.19) 1i_r)r(1)(HA(x,v,Dv)HLq + || B(z,v, Dv)||5s) = 0,
v

which is the continuity of general Nemytskii operators proved in Lemma 3.10 below.
Finally, from (3.19) it also follows that I': X — X* is continuous and I is C' on X. [
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Nemytskii operators. Let f: Q x R? = R be Carathéodory; that is,

(i) for every £ € R?, f(x,£) is a measurable function of z on €;

(ii) for a.e.z € Q, f(z,€) is a continuous function of £ on R?.

Then, for each measurable function u: Q@ — R the Nemytskii function Nu(z) =
f(x,u(x)) is also measurable on .

Lemma 3.10. Assume f(z,£) is Carathéodory and
(3.20) 1f(z,6)] < a(z)+bEP/T Vae zeQ, VEeR?,
where 1 < p,q < 00, b > 0 are constants, a(x) € LI() is nonnegative.
Then, the Nemytskii operator N: LP(Q;R%) — LI(Q) is continuous.
Proof. Let u € LP(€;R%). By (3.20), we have

[Nu(@)|* = [f(z, u(z))|* < const (Ja(z)|? + [u(x)[").

Hence Nu € L9(Q) and thus N: LP(;R?) — L9(Q) is well-defined. To show that N is
continuous at u, let u,, — u in L?(; R%). Then there is a subsequence {u,} and a function
v € LP(Q) such that u, (z) — u(x) a.e. and |u, (x)] < v(z) a.e. for all n’. Hence

1Nt = Nullqy = [ 1w (a) = o uta) o
< const [ (1wt (@) + | u(a)) o
< const/ﬂ(]a(m)]q + Jv(2)|P + |u(x)|P)dx.

By (i), f(z,uw(z)) — f(z,u(z)) — 0 as n — oo for almost all z € Q. The dominating
convergence theorem implies that ||[Nu, — Nul| ra@) — 0. By repeating this procedure
for every subsequence of uy, it follows that || Nu, — Nu| ra(q) — 0 which proves that N is
continuous at u. t
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Example: The p-Laplace Equations. We consider the BVP for p-Laplace equations
with p > 1:

n
— 5" Di(|DulP2Diju) + f(x,u) =0 in Q,
1 3 Di(IDulP 2D + f 1)
u =0 on 0f,
where f: ) x R — R is a Carathéodory function satisfying the structural condition:
(3.22) 1f(x,8)] <azx) +bsPt VzeQ, scR,

where a € Lﬁ(ﬂ) and b > 0 are given. Let

S
F(z,s) :/ f(z,t)dt.
0
We further assume a structural condition: for some 1 < r < p
(3.23) F(z,s) > —c1]s|" —c2(z) Vo e, seR,
where ¢; > 0 and ca(x) € LY(Q) are given. Note that (3.23) does not follow from (3.22).
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Theorem 3.11. Under the assumptions (3.22) and (3.23), the functional
1
I(u) = / (f]Du\p + F(m,u))d:{:
QP
has a minimizer on X = Wol’p(Q) and hence (3.21) has a weak solution.

Proof. Note that (3.22) implies
(3.24) |F(z,s)] <c(x)+ds|P, YVaxeQ, seR,

for some ¢ € L'(2) and d > 0. Hence I: X — R is well-defined. We verify that I is w.l.s.c
and weakly coercive on X. Write

T(u) = I (u) + To(u) :;/Q]Du|pdﬂc+/QF(:L‘,u) da.

Note that, by Tonelli’s Theorem, [;(u) is w.l.s.c. on X. And since the embedding
X C LP(Q) is always compact, by (3.24), I is in fact continuous under the weak convergence.
Hence I is w.ls.c. on X. By (3.23), we have for all u € X = W, ()

1 T
I(u) > EIIDUIIZ)(Q) —allullpr @) =€

1 T
>~ 1Dul ) = clulla) = O 2 dlullynng) ~

for some constants 6 > 0 and v > 0, where the last inequality follows from Poincaré’s
inequality and Young’s inequality with . Hence I(u) is coercive on X = T/VO1 P(Q).
Thus the result follows from Theorem 3.4. O

Exercise 3.3. Let n > 3 and 2 < p < n. Show the theorem is valid if (3.22) above is
replaced by
[f(z,8)] < a(x) +bls|f,

il
where b > 0 is a constant, a € L (Q) and 1 <g<p*—1.
3.2.7. Minimality and Uniqueness of Weak Solutions. We study the weak solutions

of Euler-Lagrange equation for convex functionals.

Theorem 3.12. (Minimality of weak solutions) Assume L satisfies the standard struc-
tural conditions above and is convex in (s,€). Let u € WIP(Q;RYN) be a weak solution of
the Euler-Lagrange equation of I. Then u is a minimizer of I in the Dirichlet class D,,.

Proof. By the convexity, it follows that
(3.25) L(z,t,n) = L(z,s,§) + DsL(x, 5,8) - (t = s) + DeL(z,5,£) - (n = §).
Assume v € D,,. Let t = v(z),n = Dv(z), s = u(x),{ = Du(x) and integrate over € to find

I(v) > I(u) + /Q[DSL(x,u, Du) - (v —u) + D¢L(z,u, Du) - (Dv — Du)|dz.

Since u is a weak solution of the Euler-Lagrange equation of I and v — u € VVO1 P(Q; RY),
by (3.17), it follows that

/Q[DSL(:E,U, Du) - (v —u) + D¢L(x,u, Du) - (Dv — Du)]dx = 0.

Hence I(v) > I(u) for all v € D,,. This shows that u is a minimizer of I in the Dirichlet
class D,,. 0
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Under a stronger convexity condition, we can show that the weak solution in a Dirichlet
class is unique.

Theorem 3.13 (Uniqueness of weak solutions). Assume, in addition to the standard struc-
tural conditions above, L satisfies, for some constant 0 > 0,

0
(3.26)  L(w,t,n) > L(w,5,€) + DsL(w,5,€) - (t = 5) + DeL(w,5,8) - (n = &) + 5 |n — &,
Then a weak solution to Problem (3.13) is unique.

Proof. Let u,v € D, be weak solutions to (3.13). Then I(u) = I(v) = mingep, I (w).
However, as in the proof of previous theorem,

0
I(v) > I(u) + 2/ |Dv — Dul? d.
Q
From I(v) = I(u), we easily obtain Du = Dv in Q and hence v = wu since u — v €

I/VO1 P(Q;RY). The proof is now completed. O

Lemma 3.14. If L = L(x,¢) is independent of s and is C? in &, then condition (3.26) is
equivalent to the strict convexity or Legendre condition:

(3.27) Leng (2, ) nf 0} > 0> V& neMV
i S
Proof. In this case, Condition (3.26) becomes

0
Let ¢ =n— ¢ and f(t) = L(z,& + t(). Then, by Taylor’s formula,

1
)= 7O +70)+ [ a=0 0 a
Note that
F(t) = L (2,6 + 1) ¢, f"(8) = Lergr (2,6 +1€) G-
From this and the Taylor formula, (3.28) is equivalent to (3.27). O
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3.3. Constrained Minimization Problems

3.3.1. Lagrange Multipliers.

Theorem 3.15. (Lagrange Theorem) Let X be a Banach space. Let f,g: X — R be C*
and g(ug) = c. Assume ug is a local extremum of f with respect to the constraint g(u) = c.
Then, either g'(ug) = 0 or there exists A € R such that f'(ug) = Ag'(uo); that is, uy is a
critical point of f — Ag.

Proof. Assume ¢'(ug) # 0; then ¢'(up)w # 0 for some w € X. Now given any v € X,
consider the real-valued functions
F(s,t) = f(ug + sv+tw), G(s,t) = glug+sv+tw)—c V(s,t) € R
Then F,G € C' on R? and
F4(0,0) = f'(up)v, Fp(0,0) = f'(uo)w, Gs(0,0) = g (ug)v, G(0,0) = ¢ (ug)w.
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Since G(0,0) = 0 and G¢(0,0) = ¢'(up)w # 0, the Implicit function theorem implies the
existence of a C'! function ¢ = ¢(s) on an open inerval J containing 0 such that

»(0) =0, G(s,¢(s)) =0 VselJ,

moreover, ¢'(0) = —g:ég’gg = —g,/((gg))s). Set z(s) = F(s, ¢(s)) = f(up+sv+¢(s)w) for s € J.
Note that g(up + sv + ¢(s)w) = ¢ for all s € J. Since f has a local extremum at ug, z(s)

has a local extremum at s = 0 and thus

o

Hence f(ugp)v = 51538359’(u0)v for all v € X, and thus the theorem is proved with A\ =

[ (uo)w/g' (uo)w. O

3.3.2. Nonlinear Eigenvalue Problems.

0 =2'(0) = F5(0,0) + F;(0,0)¢'(0) = f'(uo)v —

Theorem 3.16. Let 1 < 7 < ™2 and k(z),l(z) € C(Q) with I(z) > ly > 0 on Q. Then,
for each R € (0,00), there exists a number A\ = Ag such that the problem

(3.29) Au+ k(@)u+ N(@)|ultu=0 inQ,
u=_0 on 09,
has a weak solution u = ugr € H}(Q) satisfying %H o l@)|u(z)|[ " de = R.
Proof. 1. Define the functionals
1 1
f(u) = — / (|Du|2 _ k’(-T)uQ) diL‘, g(u) — / l(a:)\u|7+1 de.
2 Ja T7+1 Jgo

Then both f, g are C! on H}(Q) with
f(u)v = /(Du - Dv — k(x)uwv)dz, ¢ (u)v= / () |u|™ v da
Q Q

for all u,v € H}(Q2). And, a weak solution to problem (3.29) is exactly a function u € Hg ()
satisfying

P =g (wpy (v € HY(Q)).
By the Lagrange Theorem above, we minimize f(u) with constraint g(u) = R for any
given R > 0. Let

Cr={ue Hy(Q): g(u) = R}.
Then Cp is nonempty because, given any w # 0 in Hg (), we have tw € Cg for some ¢ > 0.

2. We show that there exists a ug € Cr such that f(ug) = min,ec,, f(u). We prove this
by the direct method. Take a minimizing sequence u; € Cg, so that

Tim f(u;) = inf f(u) < ox.

By Holder’s inequality we have

2

2 1\ 7o 5 2

ul*de < [ fu["dz ) [Q7F < Clg(u) T
0 0

Thus f(u) > HDuH%Q(Q) —C’(g(u))f%l. From this, by Poincaré’s inequality and g(u;) = R,

we have

1
2

2
il oy < € (f(ug) + B7).
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Hence {u;} is bounded in H{(Q). By reflexivity and compact embedding, we assume via a
subsequence (denoted by u; again) u; — ug in H}(2) and u; — up in L*(2) and in L™1(Q)
(since 7+ 1 < -2 = 2* by the condition T < 2£2), where ug € H} () is a function. From
the strong convergence we have g(up) = R and hence ug € Cr. Moreover, since

lim k(w)]u]—]2dw:/k(x)]u0|2dx.
Q

Jj—o Jo
and so, by the weak lower semicontinuity of norm,

fluo) < lim f(uj) = inf f(u).

ueCpr
This proves up := ug € Cg is a minimizer of f. Since ¢'(up)ug = (7 + 1)g(ug) # 0, we
have ug # 0, ¢'(ug) # 0. Hence by Theorem 3.15, there exists a number A = Ag such
that f/(ug) = Ag'(uo). Thus ug = ug € H}(Q) is a weak solution to (3.29) with A = Ap.

28R (Exercise!) O

Moreover, if Sr = f(ug) = mingecp, f(u), then A\ = (T+1)R"

Remark 3.4. The problem (3.29) is called a nonlinear eigenvalue problem; any nonzero
weak solution u of (3.29) is called an eigenfunction corresponding to the eigenvalue .

Corollary 3.17. For each 1 <7 < (n+ 2)/(n —2), there exists a nontrivial weak solution

of
(3.30) Au+ul"lu=0 in Q, ulgq =0.

Proof. By Theorem 3.16, with k(x) = 0, I(z) = 1 and R = 1, there exist a function u; # 0
in H}(Q2) and a number \; € R such that

Auqg + /\1]u1\7_1u1 =0 in Q, wuy|pn =0, / |u1\7+1d:): =(r+1).
Q
Thus, testing with uy € H} () gives

/ | Duy PPz = )\1/ [z = A (7 + 1),
0 0

and hence A\; > 0. Set u; = ku with k& > 0 to be determined. Then kAu + A\ k7 |u|™tu = 0,
and so if we choose k to satisfy A\1k7~! = 1, then u = u1 /k is a nontrivial weak solution of
(3.30). O
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Remark 3.5. (i) Let n > 3 and Q) be star-shaped. Then problem (3.30) has no nontrivial

smooth solutions if 7 > Z—J_rg and has no positive smooth solutions in € if 7 = ﬁ—fz

(ii) However, for certain non star-shaped domains, such as an annulus, (3.30) always has
nontrivial solutions for all 7 > 1. For example, let b > a >0, Q = {x € R" | a < |z] < b}
and 7 > 1. Then a nontrivial weak solution u of (3.30) in the radial form u(z) = v(|z|) can
be obtained by minimizing

b
f0) = [ @ tar

on the set C' = {v € Hi(a, b)‘ f: lo[TH = 1dr = 1}. (Exercise.)
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3.3.3. Obstacle Problems. We study minimization with certain pointwise, unilateral
constraints. Many important applied problems can be formulated as such a problem. To
discuss the main ideas, we only consider a simple example. Let

I(u) = /Q <%|Du!2 ~ fap) da

and
A={uc o+ H Q) |ulx) > h(z) ae zcQ},
where f € L3(Q), ¢ € H(Q), and h: Q — R is a given function called the obstacle.

Theorem 3.18. (Existence of minimizers with obstacle) Assume the admissible class
A is nonempty. Then there exists a unique function u € A satisfying

I(u) = gleiﬁl(w).

Proof. 1. The existence of minimizer follows easily from the direct method, considering
the fact that I is coercive and A is weakly closed in H'().

2. The uniqueness of minimizer follows essentially from the strict convexity of I and
the convexity of the set A. For instance, notice that

1(f51) = T é/QIDu_ Dvf*de (v € H'(Q)).

Hence any two minimizers u, v in A will satisfy, since “T‘H’ €A,

| s IW+Im)  utw
_ _ — — < 0:
8/Q|Du Do|? da . I( . )_o,

sou=vin ¢+ H}(Q). O

Theorem 3.19. (Variational inequality for minimizers) u € A is a minimizer of 1
over A if and only if the variational inequality holds:

(3.31) /QDu-D(U—u)d:EZ/Q(v—u)fd:L‘ VoveA

Proof. Given u,v € Aand 0 <7 <1, let
h(r)=I((1—71)u+7v) =I(u+7(v—u)).

Then h: [0,1] — R is convex. Since (1 — 7)u + 7v € A, it follows that u is a minimizer of
I over A if and only if h(0) < h(7) for all 7 € [0, 1]; that is, 2(0) is the minimum of A on
[0,1]. Since h is convex on [0, 1], it follows that h(0) is the minimum of A on [0, 1] if and
only if 2/(07) > 0; however,

K (0%) = lim M

T—07F T

- /(Du-D(v—u) — (v —w)f)dz.
Q

This proves the result. U
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The Free Boundary Problem. We now assume f, ¢, h and 0f) are all smooth. Then a
regularity result (not proved here) asserts that the minimizer u € W2°°(Q).

Theorem 3.20. Let U = {x € Q|u(x) > h(z)}. Then the unique minimizer u determined
above is in W3>(Q) and satisfies u € C*°(U) and solves the following free boundary
problem:

u=nh, —Au>f aeonQ\U,
(3.32) —Au=f in U,
U= on O0f).
The set F'=Q N oU is called the free boundary of the free boundary problem.
Proof. We first claim that in fact u € C°°(U) and solves Poisson’s equation —Au = f in U.

To see this, fix any test function w € C§°(U). Then if |7 is sufficiently small, w = u+7w > h
in  and hence v € A. Then by (3.31) we have

T/(Du-Dw—wf)da: > 0.
Q
This is valid for both sufficiently small positive and negative 7, and so we have
/(Du'Dw—wf)dx =0 (weCU)).
U

This proves that u is a weak solution to equation —Awu = f in U; thus, by regularity,
ue C™®().

If we assume w € C3°(Q2) satisfies w > 0 and if 7 € (0,1], then with v = u+ 7w € A

as test function in (3.31) we have [,(Du-Dw — wf)dz > 0. But since u € W2>(Q), we
deduce that

/(—Au — flwdx >0
Q

for all w € C§°(U) and w > 0. This implies —Au > f a.e. in Q. Therefore, u solves the
free boundary problem (3.32).

Note that as part of the problem the free boundary F = Q2N OU is unknown. g

3.3.4. Harmonic Maps. We now consider the Dirichlet energy
1
I(u) = / |Dul? dx
2 Ja

for vector u € H'(€; RY) with point-wise constraint |u(x)| = 1 for almost every x € Q.

Let C = {u e D, ||u(z)| =1 a.e. in Q}, where D, is a Dirichlet class, and assume C is
non-empty. Then C is weakly closed in H'(Q;RY).

We have the following result.

Theorem 3.21. There exists u € C satisfying I(u) = minyec I(v). Moreover, u is a weak
solution to the harmonic map equation

—Au = [Duf’u inQ

in the sense that [u(x)| =1 a.e. in Q and

(3.33) / Du: Dvdx = / |Dul?u - v dzx
Q Q
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for each v € H} (S RN) N L®°(Q;RY). Any weak solution of the harmonic map equation is
called a harmonic map from Q into SV 1.

Remark 3.6. In this case, the Lagrange multiplier corresponding to the constraint |u(x)| =
1 appears as a function A = |Dul?.

Proof. 1. The existence of minimizers follows by the direct method as above. Given any
v € Hi(Q;RY) N L>(€;RY), let € be such that [e][|v]| 1o () < %. Define
u(z) +ev(x)
(2) = —<———=, hle) =I(we).
we(z) (@) + ev(z)] (€) = I(we)
Note that w,. € C and h(0) = I(u) = min¢ I < h(e) for sufficiently small €; hence, h'(0) = 0.
2. Note that

h'(0) = /QDu : Daa“ég]eo dz.
Computing directly we have
owe v [(u+ev)-v](u+ev)
de  |utev] [u+ ev[? ’

hence 85"26 le=o = v — (u - v)u. Inserting this into A'(0) = 0, we find

(3.34) / <Du :Dv—Du:D((u- v)u)) dxr = 0.
Q
However, using |u|? = 1 we have (Du)Tu = 0; namely, D;u*u* = 0 for all i. Hence, using
indices, we have the identity
Du:D((u-v)u) =|Duf*(u-v) ae.in Q.
This identity combined with (3.34) proves (3.33). O



