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Chapter 1

Part I – Sobolev Spaces

Lecture 1 – 1/7/19

1.1. Overview

The course will cover Chapters 5, 6, and part of 8 of Evans’s book, but will have plenty of
additional materials and change of order of the material.

These chapters will cover Sobolev spaces, second-order elliptic equations, and some basic
material on the calculus of variations.

1.1.1. Motivation: Poisson’s equation. Consider{
∆u = f in Ω ⊂ Rn,
u = g on ∂Ω.

For nice domain Ω and nice f, g, this can be solved by Green’s formula or Perron’s method.
What about f not even continuous?

Example 1.1. If Ω = (−1, 1), f = 2sgn(x) and g(−1) = −1, g(1) = 1, then any solution u
must have u(x) = x2 for x > 0 and u(x) = −x2 for x < 0, but then u′′(0) does not exist;
hence the problem does not have a classical solution – namely, solutions having all orders
of derivatives appearing in the equation at every point of the domain.

Much of the modern theory of PDE is built upon a treatment of the PDE in some
reasonable (or physical) ways to lower the order of derivatives for the functions appearing
in the equation and define a suitable sense that these functions solve the equation weakly;
the nutshell is that such a definition of weak solutions recovers the classical solutions when
the weak solutions are smooth.

Since for all u ∈ C2(Ω̄) and φ ∈ C∞0 (Ω), we have∫
Ω
φ∆u dx = −

∫
Ω
Du ·Dφdx,

so, a C2(Ω̄) solution to the Poisson equation above must satisfy

(1.1)

∫
Ω

(Du ·Dφ+ fφ) dx = 0 ∀φ ∈ C∞0 (Ω).
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This identity only needs, for example, Du exists and is integrable and also f is integrable.
This is a way to lower the order of required derivatives in the equation. Even then we still
encounter a problem whether given such a f (and nice g) there exists a function u with Du
integrable that satisfies the above identity. The space of u ∈ C1(Ω̄) is in general not enough
for the existence of such u; this requires the study of Sobolev space.

Related to the Poisson equation, let us also consider the following quantity

I(u) =

∫
Ω

(1

2
|Du|2 + fu

)
dx.

This quantity is well-defined if Du, u, f ∈ L2(Ω). If we have such a u that minimizes I(v)
among all such v’s satisfying the given boundary condition, then we would have that the
(quadratic) function

h(ε) = I(u+ εφ) ∀ ε ∈ R, φ ∈ C∞0 (Ω),

takes minimum at ε = 0. This gives h′(0) = 0, which again becomes the identity (1.1) above.

1.1.2. Examples of function spaces. Let Ω be an open subset of Rn, n ≥ 1. The set
C(Ω) of (real-valued) continuous functions defined on Ω is an infinite dimensional vector
space with the usual definitions of addition and scalar multiplication:

(f + g)(x) = f(x) + g(x) for f, g ∈ C(Ω), x ∈ Ω

(αf)(x) = αf(x) for α ∈ R, f ∈ C(Ω), x ∈ Ω.

C(Ω̄) consists of those functions which are uniformly continuous on Ω. Each such function
has a continuous extension to Ω̄. C0(Ω) consists of those functions which are continuous
in Ω and have compact support in Ω. (The support of a function f defined on Ω is the
closure of the set {x ∈ Ω : f(x) 6= 0} and is denoted by supp(f).) The latter two spaces are
clearly subspaces of C(Ω).

For each n-tuple α = (α1, . . . , αn) of nonnegative integers, we denote by Dα the partial
derivative

Dα1
1 · · ·D

αn
n , Di = ∂/∂xi

of order |α| = α1 + · · ·+ αn. If |α| = 0, then D0 = I(identity).

For integers m ≥ 0, let Cm(Ω) be the collection of all f ∈ C(Ω) such that Dαf ∈ C(Ω)
for all α with |α| ≤ m. We write f ∈ C∞(Ω) iff f ∈ Cm(Ω) for all m ≥ 0. For
m ≥ 0, define Cm0 (Ω) = C0(Ω) ∩ Cm(Ω) and let C∞0 (Ω) = C0(Ω) ∩ C∞(Ω). The spaces
Cm(Ω), C∞(Ω), Cm0 (Ω), C∞0 (Ω) are all subspaces of the vector space C(Ω). Similar defini-
tions can be given for Cm(Ω̄) etc.

For m ≥ 0, define X to be the set of all f ∈ Cm(Ω) for which

‖f‖m,∞ ≡
∑
|α|≤m

sup
Ω
|Dαf(x)| <∞.

Then X is a Banach space with norm ‖ · ‖m,∞. To prove, for example, the completeness
when m = 0, we let {fn} be a Cauchy sequence in X, i.e., assume for any ε > 0 there is a
number N(ε) such that for all x ∈ Ω

sup
x∈Ω
|fn(x)− fm(x)| < ε if m,n > N(ε).

But this means that {fn(x)} is a uniformly Cauchy sequence of bounded continuous func-
tions, and thus converges uniformly to a bounded continuous function f(x). Letting m→∞
in the above inequality shows that ‖fn − f‖m,∞ → 0.
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Note that the same proof is valid for the set of bounded continuous scalar-valued func-
tions defined on a nonempty subset of a normed space X.

Example 1.2. Let Ω be a nonempty Lebesgue measurable set in Rn. For p ∈ [1,∞), we
denote by Lp(Ω) the set of equivalence classes of Lebesgue measurable functions on Ω for
which

‖f‖p ≡
(∫

Ω
|f(x)|pdx

) 1
p

<∞.

(Two functions belong to the same equivalence class, i.e., are equivalent, if they differ
only on a set of measure 0.) Let L∞(Ω) denote the set of equivalence classes of Lebesgue
measurable functions on Ω for which

‖f‖∞ ≡ ess-supx∈Ω|f(x)| <∞.

Then Lp(Ω), 1 ≤ p ≤ ∞, are Banach spaces with norms ‖ · ‖p. For p ∈ [1,∞] we write
f ∈ Lploc(Ω) iff f ∈ Lp(K) for each compact set K ⊂ Ω.

For the sake of convenience, we will also consider Lp(Ω) as a set of functions. With this
convention in mind, we can assert that C0(Ω) ⊂ Lp(Ω). In fact, if p ∈ [1,∞), then as we shall
show later, C0(Ω) is dense in Lp(Ω). The space Lp(Ω) is also separable if p ∈ [1,∞). This
follows easily, when Ω is compact, from the last remark and the Weierstrass approximation
theorem.

Recall that if p, q ∈ [1,∞] with p−1 + q−1 = 1, then Hölder’s inequality is that if
f ∈ Lp(Ω) and g ∈ Lq(Ω), then fg ∈ L1(Ω) and

‖fg‖L1(Ω) ≤ ‖f‖Lp(Ω)‖g‖Lq(Ω).

This extends to the general Hölder’s inequality: If pi ∈ [1,∞] and
∑k

i=1
1
pi

= 1 then for

fi ∈ Lpi(Ω)

‖f1f2 · · · fk‖L1(Ω) ≤ ‖f1‖Lp1 (Ω)‖f2‖Lp2 (Ω) · · · ‖fk‖Lpk (Ω).

1.1.3. Banach spaces. A (real) vector space is a set X, whose elements are called
vectors, and in which two operations, addition and scalar multiplication, are defined
as follows:

(a) To every pair of vectors x and y corresponds a vector x+ y in such a way that

x+ y = y + x and x+ (y + z) = (x+ y) + z.

X contains a unique vector 0 (the zero vector or origin of X) such that x+0 = x
for every x ∈ X, and to each x ∈ X corresponds a unique vector −x such that
x+ (−x) = 0.

(b) To every pair (α, x), with α ∈ R and x ∈ X, corresponds a vector αx in such a
way that

1x = x, α(βx) = (αβ)x

and such that the two distributive laws

α(x+ y) = αx+ αy, (α+ β)x = αx+ βx

hold.

A nonempty subset M of a vector space X is called a subspace of X if αx+ βy ∈ M
for all x, y ∈M and all α, β ∈ R.
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A subset M of a vector space X is said to be convex if tx + (1 − t)y ∈ M whenever
t ∈ (0, 1), x, y ∈M . (Clearly, every subspace of X is convex.)

Let x1, . . . , xn be elements of a vector space X. The set of all α1x1 + · · ·+ αnxn, with
αi ∈ R, is called the span of x1, . . . , xn and is denoted by span{x1, . . . , xn}. The elements
x1, . . . , xn are said to be linearly independent if α1x1 + · · · + αnxn = 0 implies that
αi = 0 for each i; otherwise, the elements x1, . . . , xn are said to be linearly dependent.
An arbitrary collection of vectors is said to be linearly independent if every finite subset of
distinct elements is linearly independent.

The dimension of a vector space X, denoted by dimX, is either 0, a positive integer
or ∞. If X = {0} then dimX = 0; if there exist linearly independent {u1, . . . , un} such
that span{x1, . . . , xn} = X, then dimX = n and {u1, . . . , un} is called a basis for X; in all
other cases dimX =∞.

1.1.4. Normed Spaces. A (real) vector space X is said to be a normed space if to
every x ∈ X there is associated a nonnegative real number ‖x‖, called the norm of x, in
such a way that

(a) ‖x+ y‖ ≤ ‖x‖+ ‖y‖ for all x and y in X (Triangle inequality)

(b) ‖αx‖ = |α|‖x‖ for all x ∈ X and all α ∈ R
(c) ‖x‖ > 0 if x 6= 0.

Note that (b) and (c) imply that ‖x‖ = 0 iff x = 0. Moreover, it easily follows from (a) that

|‖x‖ − ‖y‖| ≤ ‖x− y‖ ∀x, y ∈ X.

1.1.5. Completeness and Banach Spaces. A sequence {xn} in a normed space X is
called a Cauchy sequence if, for each ε > 0, there exists an integer N such that ‖xm −
xn‖ < ε for all m,n ≥ N .

We say a sequence {xn} converges to x in X and write xn → x if limn→∞ ‖xn − x‖ = 0
and, in this case, x is called the limit of {xn}.

A normed space X is called complete if every Cauchy sequence in X converges to a
limit in X.

A complete (real) normed space is called a (real) Banach space. A Banach space
is separable if it contains a countable dense set. It can be shown that a subspace of a
separable Banach space is itself separable.

1.1.6. Hilbert Spaces. Let H be a real vector space. H is said to be an inner product
space if to every pair of vectors x and y in H there corresponds a real-valued function
(x, y), called the inner product of x and y, such that

(a) (x, y) = (y, x) for all x, y ∈ H
(b) (x+ y, z) = (x, z) + (y, z) for all x, y, z ∈ H
(c) (λx, y) = λ(x, y) for all x, y ∈ H, λ ∈ R
(d) (x, x) ≥ 0 for all x ∈ H, and (x, x) = 0 if and only if x = 0.

For x ∈ H we set

(1.2) ‖x‖ = (x, x)1/2.

Theorem 1.3. If H is an inner product space, then for all x and y in H, it follows that

(a) |(x, y)| ≤ ‖x‖ ‖y‖ (Cauchy-Schwarz inequality);
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(b) ‖x+ y‖ ≤ ‖x‖+ ‖y‖ (Triangle inequality);

(c) ‖x+ y‖2 + ‖x− y‖2 = 2(‖x‖2 + ‖y‖2) (Parallelogram law).

Proof. (a) is obvious if x = 0, and otherwise it follows by taking δ = −(x, y)/‖x‖2 in

0 ≤ ‖δx+ y‖2 = |δ|2‖x‖2 + 2δ(x, y) + ‖y‖2.

This identity, with δ = 1, and (a) imply (b). (c) follows easily by using (1.2). �

If H is complete under this norm, then H is said to be a Hilbert space.

Example 1.4. The space L2(Ω) is a Hilbert space with inner product

(f, g) =

∫
Ω
f(x)g(x) dx ∀ f, g ∈ L2(Ω).

Lecture 2 – 1/9/19

1.2. Sobolev Spaces

1.2.1. Hölder Spaces. Let f : Ω→ R and 0 < γ ≤ 1. The the α-th Hölder seminorm
of f is defined by

[f ]C0,γ(Ω) = sup
x,y∈Ω
x 6=y

|f(x)− f(y)|
|x− y|γ

.

Definition 1.1. For k ∈ N+, 0 < γ ≤ 1, the Hölder space Ck,γ(Ω̄) is the set of all
functions f ∈ Ck(Ω̄) for which the norm

‖f‖Ck,γ(Ω̄) =
∑
|α|≤k

‖Dαf‖Ck(Ω̄) +
∑
|α|=k

[Dαf ]C0,γ(Ω)

is finite.

Theorem 1.5. The Hölder space Ck,γ(Ω̄) is a Banach space under the given norm.

Proof. Exercise. �

1.2.2. Weak Derivatives. Let Ω be a nonempty open set in Rn. Suppose u ∈ Cm(Ω) and
ϕ ∈ Cm0 (Ω). Then by integration by parts

(1.3)

∫
Ω
uDαϕdx = (−1)|α|

∫
Ω
vϕdx, |α| ≤ m

where v = Dαu. Motivated by (1.3), we now enlarge the class of functions for which the
notion of derivative can introduced.

Definition 1.2. Let u ∈ L1
loc(Ω). A function v ∈ L1

loc(Ω) is called the αth-weak partial
derivative of u, written v = Dαu, provided

(1.4)

∫
Ω
uDαϕdx = (−1)|α|

∫
Ω
vϕdx for all ϕ ∈ C∞0 (Ω).

Lemma 1.6. An αth-weak partial derivative Dαu, if exists, then must be unique in L1
loc(Ω).
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Proof. Suppose v, ṽ are both the αth-weak partial derivative of u. Then∫
Ω
uDαϕdx = (−1)|α|

∫
Ω
vϕdx = (−1)|α|

∫
Ω
ṽϕdx

for all ϕ ∈ C∞0 (Ω). Then ∫
Ω

(v − ṽ)ϕdx = 0 ∀ ϕ ∈ C∞0 (Ω).

This implies v = ṽ in L1
loc(Ω). �

If a function u has an ordinary αth-partial derivative lying in L1
loc(Ω), then it is clearly

the αth-weak partial derivative.

In contrast to the corresponding classical derivative, the weak partial derivative Dαu is
defined at once for the order α without assuming the existence of the corresponding partial
derivatives of lower orders. In fact, the weak partial derivatives of lower orders may not
exist.

Example 1.7. Let Ω = (−1, 1)2 ⊂ R2 and let

u(x) =


1 x ∈ (0, 1)× (0, 1),

−1 x ∈ (−1, 0)× (−1, 0),

0 elsewhere.

Show the weak partial derivatives D(1,0)u = ux1 and D(0,1)u = ux2 do not exist, but

D(1,1)u = ux1x2 = 0 exists.

Proof. Exercise. �

Example 1.8. (a) The function u(x) = |x1| has in the ball Ω = B(0, 1) the weak partial
derivatives ux1 = sgn x1, uxi = 0, i = 2, . . . , n. In fact, for any ϕ ∈ C1

0 (Ω)∫
Ω
|x1|ϕx1dx =

∫
Ω+

x1ϕx1dx−
∫

Ω−
x1ϕx1dx

where Ω+ = Ω ∩ (x1 > 0), Ω− = Ω ∩ (x1 < 0). Since x1ϕ = 0 on ∂Ω and also for x1 = 0,
an application of the divergence theorem yields∫

Ω
|x1|ϕx1dx = −

∫
Ω+

ϕdx+

∫
Ω−

ϕdx = −
∫

Ω
(sgn x1)ϕdx.

Hence |x1|x1 = sgn x1. Similarly, since for i ≥ 2∫
Ω
|x1|ϕxidx =

∫
Ω

(|x1|ϕ)xidx = −
∫

Ω
0ϕdx

|x1|xi = 0 for i = 2, . . . , n. Note that the function |x1| has no classical derivative with
respect to x1 in Ω.

(b) By the above computation, the function u(x) = |x| has the weak derivative u′(x) =
sgn x on the interval Ω = (−1, 1). On the other hand, sgnx does not have a weak derivative
on Ω due to the discontinuity at x = 0.
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1.2.3. Sobolev Spaces. Fix 1 ≤ p ≤ ∞ and let k be a nonnegative integer. We define

W k,p(Ω) = {u : u ∈ Lp(Ω), Dαu ∈ Lp(Ω), 0 < |α| ≤ k},
where Dαu denotes the αth weak derivative. When k = 0, W k,p(Ω) will mean Lp(Ω).

A norm on W k,p(Ω) is defined by

(1.5) ‖u‖k,p = ‖u‖Wk,p(Ω) =

{
(
∫

Ω

∑
|α|≤k |Dαu|pdx)1/p if 1 ≤ p <∞,∑

|α|≤k ‖Dαu‖L∞(Ω) if p =∞.

The space W k,p(Ω) with this norm is called the Sobolev space of order k and power p.

We define the space W k,p
0 (Ω) to be the closure of the space C∞0 (Ω) with respect to the

norm ‖ · ‖k,p.

Remark 1.3. The spaces W k,2(Ω) and W k,2
0 (Ω) are special since they become a Hilbert

space under the inner product

(u, v)k,2 = (u, v)Wk,2(Ω) =

∫
Ω

∑
|α|≤k

DαuDαvdx.

Since we shall be dealing mostly with these spaces in the sequel, we introduce the special
notation:

Hk(Ω) = W k,2(Ω), Hk
0 (Ω) = W k,2

0 (Ω).

Example 1.9. Let Ω = B(0, 1/2) ⊂ R2 and define u(x) = ln(ln(2/r)), x ∈ Ω, where

r = |x| = (x2
1 + x2

2)1/2. Then u ∈ H1(Ω) but u 6∈ L∞(Ω).

Proof. First of all u is unbounded near x = 0; next u ∈ L2(Ω), for∫
Ω
|u|2dx =

∫ 2π

0

∫ 1/2

0
r[ln(ln(2/r))]2drdθ

and a simple application of L’Hopital’s rule shows that the integrand is bounded and thus
the integral is finite. Similarly, it is easy to check that the classical partial derivative

ux1 =
− cos θ

r ln(2/r)
, where x1 = r cos θ

also belongs to L2(Ω). Now we show that the defining equation for the weak derivative is
met. So, ux1 is also the weak x1-derivative of u and ux1 ∈ L2(Ω). Similarly, weak x − 2-
derivative ux2 ∈ L2(Ω); hence by definition u ∈W 1,2(Ω) = H1(Ω).

To show ux1 is the weak x1-derivative of u, let Ωε = {x : ε < r < 1/2} and choose
ϕ ∈ C∞0 (Ω). Then by the divergence theorem and the absolute continuity of integrals∫

Ω
uϕx1dx = lim

ε→0

∫
Ωε

uϕx1dx = lim
ε→0

[
−
∫

Ωε

ux1ϕdx+

∫
r=ε

uϕn1ds

]
where n = (n1, n2) is the unit outward normal to Ωε on r = ε. But (ds = εdθ)

|
∫
r=ε

uϕn1ds| ≤
∫ 2π

0
|u(ε)| |ϕ|εdθ ≤ 2πεc ln(ln(2/ε))→ 0

as ε→ 0. Thus ∫
Ω
uϕx1dx = −

∫
Ω
ux1ϕdx.

�
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From the definition of weak partial derivatives, we can verify certain properties of Sobolev
functions that are usually true for smooth functions.

Theorem 1.10. (Properties of Sobolev functions) Assume u, v ∈W k,p(Ω). Then

(1) Dαu ∈W k−|α|,p(Ω) and Dβ(Dαu) = Dα(Dβu) = Dα+βu for all multi-indices α, β
with |α|+ |β| ≤ k.

(2) For each λ, µ ∈ R, λu + µv ∈ W k,p(Ω) and Dα(λu + µv) = λDαu + µDαv for all
|α| ≤ k.

(3) If U is an open subset of Ω then u ∈W k,p(U), with the same Dαu as the restrictions
on U .

(4) If ϕ ∈ Ck0 (Ω) then ϕu ∈W k,p(Ω) and the Leibniz formula holds: for all |α| ≤ k,

(1.6) Dα(ϕu) =
∑
β≤α

(α
β

)
(Dβϕ)(Dα−βu),

where (αβ ) = α!
β!(α−β)! .

Proof. Direct deduction from the definition of weak partial derivatives. The property (2)
asserts that W k,p(Ω) is a vector space. �

Theorem 1.11. W k,p(Ω) is a Banach space under the norm (1.5).

Proof. We prove that W k,p(Ω) is complete with respect to the norm (1.5). We prove this
for 1 ≤ p < ∞; the case p = ∞ is similar. Let {un} be a Cauchy sequence of elements in
W k,p(Ω), i.e.,

‖un − um‖pk,p =
∑
|α|≤k

∫
Ω
|Dαun −Dαum|pdx→ 0 as m,n→∞.

Then for any α, |α| ≤ k, when m,n→∞∫
Ω
|Dαun −Dαum|pdx→ 0

and, in particular, when |α| = 0 ∫
Ω
|un − um|pdx→ 0.

Since Lp(Ω) is complete, it follows that there are functions uα ∈ Lp(Ω), |α| ≤ k such that
Dαun → uα in Lp(Ω). Note that, for each ϕ ∈ C∞0 (Ω),∫

Ω
uDαϕdx←

∫
Ω
unD

αϕdx = (−1)|α|
∫

Ω
ϕDαundx→ (−1)|α|

∫
Ω
uαϕdx.

Hence uα = Dαu0 ∈ Lp(Ω), and thus u0 ∈ W k,p(Ω). As Dαun → uα = Dαu0 in Lp(Ω) for
all |α| ≤ k, it follows that ‖un − u0‖k,p → 0 as n → ∞. This proves the completeness of

W k,p(Ω); hence it is a Banach space. �
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1.3. Approximations

1.3.1. Mollifiers. Let x ∈ Rn and let B(x, h) denote the open ball with center at x and
radius h. For each h > 0, let ωh(x) ∈ C∞(Rn) satisfy

ωh(x) ≥ 0; suppωh ⊆ B̄(0, h),

∫
Rn
ωh(x)dx =

∫
B(0,h)

ωh(x)dx = 1.

Such functions are called mollifiers. For example, let

ω(x) =

{
k exp [(|x|2 − 1)−1], |x| < 1,

0, |x| ≥ 1,

where k > 0 is chosen so that
∫
Rn ω(x) dx = 1. Then, a family of mollifiers can be taken as

ωh(x) = h−nω(x/h) for h > 0.

Let Ω be a nonempty open set in Rn and let u ∈ L1(Ω). We set u = 0 outside Ω. Define
for each h > 0 the mollified function

uh(x) =

∫
Ω
ωh(x− y)u(y)dy

where ωh is a mollifier.

Remark 1.4. There are two other forms in which uh can be represented, namely

(1.7) uh(x) =

∫
Rn
ωh(x− y)u(y)dy =

∫
B(x,h)

ωh(x− y)u(y)dy

the latter equality being valid since ωh vanishes outside the (open) ball B(x, h). Thus
the values of uh(x) depend only on the values of u on the ball B(x, h). In particular, if
dist(x, supp(u)) ≥ h, then uh(x) = 0.

Theorem 1.12. Let Ω be a nonempty open set in Rn. Then

(a) uh ∈ C∞(Rn).

(b) If supp(u) is a compact subset of Ω, then uh ∈ C∞0 (Ω) for all h sufficiently
small.

Proof. Since u is integrable and ωh ∈ C∞, the Lebesgue theorem on differentiating integrals
implies that for |α| <∞

Dαuh(x) =

∫
Ω
u(y)Dαωh(x− y)dy

i.e., uh ∈ C∞(Rn). Statement (b) follows from the remark preceding the theorem. �

Lecture 5 – 1/16/19

With respect to a bounded set Ω we construct another set Ω(h) as follows: with each point
x ∈ Ω as center, draw a ball of radius h; the union of these balls is then Ω(h). Clearly
Ω(h) ⊃ Ω. Moreover, uh can be nonzero only in Ω(h).

Corollary 1.13. Let Ω be a nonempty bounded open set in Rn and let h > 0 be any number.
Then there exists a function η ∈ C∞(Rn) such that

0 ≤ η(x) ≤ 1; η(x) = 1, x ∈ Ω(h); η(x) = 0, x ∈ (Ω(3h))c.

Such a function is called a cut-off function for Ω.
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Proof. Let χ(x) be the characteristic function of the set Ω(2h) : χ(x) = 1 for x ∈ Ω(2h), χ(x) =

0 for x 6∈ Ω(2h) and set

η(x) ≡ χh(x) =

∫
Rn
ωh(x− y)χ(y)dy.

Then

η(x) =

∫
Ω(2h)

ωh(x− y)dy ∈ C∞(Rn),

0 ≤ η(x) ≤
∫
Rn
ωh(x− y)dy = 1,

and

η(x) =

∫
B(x,h)

ωh(x− y)χ(y)dy =

{∫
B(x,h) ωh(x− y)dy = 1, x ∈ Ω(h),

0, x ∈ (Ω(3h))c.

�

In particular, if Ω′ ⊂⊂ Ω, then there is a function η ∈ C∞0 (Ω) such that

η(x) = 1 for x ∈ Ω′, and 0 ≤ η(x) ≤ 1 in Ω.

Henceforth, the notation Ω′ ⊂⊂ Ω means that Ω′,Ω are open sets, Ω′ is bounded, and that
Ω′ ⊂ Ω.

1.3.2. Approximation Theorems.

Lemma 1.14. Let Ω be a nonempty bounded open set in Rn. Then every u ∈ Lp(Ω) is
p-mean continuous, i.e.,∫

Ω
|u(x+ z)− u(x)|pdx→ 0 as z → 0.

Proof. Choose a > 0 large enough so that Ω is strictly contained in the ball B(0, a). Then
the function

U(x) =

{
u(x) if x ∈ Ω,
0 if x ∈ B(0, 2a) \ Ω

belongs to Lp(B(0, 2a)). For ε > 0, there is a function Ū ∈ C(B̄(0, 2a)) which satisfies the
inequality ‖U − Ū‖Lp(B(0,2a)) < ε/3. By multiplying Ū by an appropriate cut-off function,

it can be assumed that Ū(x) = 0 for x ∈ B(0, 2a) \B(0, a). Therefore for |z| ≤ a,

‖U(x+ z)− Ū(x+ z)‖Lp(B(0,2a)) = ‖U(x)− Ū(x)‖Lp(B(0,a)) ≤ ε/3.

Since function Ū is uniformly continuous in B(0, 2a), there is a 0 < δ < a such that
‖Ū(x + z) − Ū(x)‖Lp(B(0,2a)) ≤ ε/3 whenever |z| < δ. Hence for |z| < δ we easily see that
‖u(x+ z)− u(x)‖Lp = ‖U(x+ z)− U(x)‖Lp(B(0,2a)) ≤ ε. �

Theorem 1.15. Let Ω be a nonempty open set in Rn. If u ∈ Lp(Ω) (1 ≤ p <∞), then

(a) ‖uh‖p ≤ ‖u‖p
(b) ‖uh − u‖p → 0 as h→ 0.

If u ∈ Ck(Ω̄) and Ω̄ is compact, then, for all Ω′ ⊂⊂ Ω,

(c) ‖uh − u‖Ck(Ω̄′) → 0 as h→ 0.
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Proof. 1. If 1 < p < ∞, let q = p/(p − 1). Then ωh = ω
1/p
h ω

1/q
h and Hölder’s inequality

implies

|uh(x)|p ≤
∫

Ω
ωh(x− y)|u(y)|pdy

(∫
Ω
ωh(x− y)dy

)p/q
≤

∫
Ω
ωh(x− y)|u(y)|pdy

which obviously holds also for p = 1. An application of Fubini’s Theorem gives∫
Ω
|uh(x)|pdx ≤

∫
Ω

(∫
Ω
ωh(x− y)dx

)
|u(y)|pdy ≤

∫
Ω
|u(y)|pdy

which implies (a).

2. To prove (b), let ω(x) = hnωh(hx). Then ω(x) ∈ C∞(Rn) and satisfies

ω(x) ≥ 0; ω(x) = 0 for |x| ≥ 1∫
Rn
ω(x)dx =

∫
B(0,1)

ω(x)dx = 1.

Using the change of variable z = (x− y)/h we have

uh(x)− u(x) =

∫
B(x,h)

[u(y)− u(x)]ωh(x− y)dy

=

∫
B(0,1)

[u(x− hz)− u(x)]ω(z)dz.

Hence by Hölder’s inequality

|uh(x)− u(x)|p ≤ d
∫
B(0,1)

|u(x− hz)− u(x)|pdz

and so by Fubini’s Theorem∫
Ω
|uh(x)− u(x)|pdx ≤ d

∫
B(0,1)

(

∫
Ω
|u(x− hz)− u(x)|pdx)dz.

The right-hand side goes to zero as h→ 0 since every u ∈ Lp(Ω) is p-mean continuous.

3. We now prove (c) for k = 0. Let Ω′,Ω′′ be such that Ω′ ⊂⊂ Ω′′ ⊂⊂ Ω. Let h0 be the
shortest distance between ∂Ω′ and ∂Ω′′. Take h < h0. Then

uh(x)− u(x) =

∫
B(x,h)

[u(y)− u(x)]ωh(x− y)dy.

If x ∈ Ω̄′, then in the above integral y ∈ Ω̄′′. Now u is uniformly continuous in Ω̄′′ and
ωh ≥ 0, and therefore for an arbitrary ε > 0 we have

|uh(x)− u(x)| ≤ ε
∫
B(x,h)

ωh(x− y)dy = ε

provided h is sufficiently small. The case k ≥ 1 is handled similarly and is left as an
exercise. �

Remark 1.5. In (c) of the theorem above, we cannot replace Ω′ by Ω. Let u ≡ 1 for x ∈
[0, 1] and consider uh(x) =

∫ 1
0 ωh(x − y)dy, where ωh(y) = ωh(−y). Now

∫ h
−h ωh(y)dy = 1

and so uh(0) = 1/2 for all h < 1. Thus uh(0) → 1/2 6= 1 = u(0). Moreover, for x ∈ (0, 1)

and h sufficiently small, (x− h, x+ h) ⊂ (0, 1) and so uh(x) =
∫ x+h
x−h ωh(x− y)dy = 1 which

implies uh(x)→ 1 for all x ∈ (0, 1).
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Corollary 1.16. Let Ω be a nonempty open set in Rn. Then C∞0 (Ω) is dense in Lp(Ω) for
all 1 ≤ p <∞.

Proof. Suppose first that Ω is bounded and let Ω′ ⊂⊂ Ω. For a given u ∈ Lp(Ω) set

v(x) =

{
u(x), x ∈ Ω′

0, x ∈ Ω\Ω′.

Then ∫
Ω
|u− v|pdx =

∫
Ω\Ω′

|u|pdx.

By the absolute continuity of integrals, we can choose Ω′ so that the integral on the right
is arbitrarily small, i.e., ‖u− v‖p < ε/2. Since supp(v) is a compact subset of Ω, Theorems
1.12(b) and 1.15(b) imply that for h sufficiently small, vh(x) ∈ C∞0 (Ω) with ‖v−vh‖p < ε/2,
and therefore ‖u− vh‖p < ε. If Ω is unbounded, choose a ball B large enough so that∫

Ω\Ω′
|u|pdx < ε/2

where Ω′ = Ω ∩B, and repeat the proof just given. �

1.3.3. Local Interior Approximation. We now consider the following local approxima-
tion theorem.

Theorem 1.17. Let Ω be a nonempty open set in Rn and suppose u, v ∈ L1
loc(Ω). Then

v = Dαu if and only if for each compact set S ⊂ Ω there exists a sequence of functions {uh}
in C∞(Ω) such that ‖uh − u‖L1(S) → 0, ‖Dαuh − v‖L1(S) → 0 as h→ 0.

Proof. 1. (Necessity) Suppose v = Dαu. Let S ⊂ Ω be compact, and choose d > 0 small

enough so that the sets Ω′ ≡ S(d/2),Ω′′ ≡ S(d) satisfy Ω′ ⊂⊂ Ω′′ ⊂⊂ Ω. For x ∈ Rn define

uh(x) =

∫
Ω′′
ωh(x− y)u(y)dy, vh(x) =

∫
Ω′′
ωh(x− y)v(y)dy.

Clearly, uh, vh ∈ C∞(Rn) for h > 0. Moreover, from Theorem 1.15 we have ‖uh−u‖L1(S) ≤
‖uh−u‖L1(Ω′′) → 0. Now we note that if x ∈ Ω′ and 0 < h < d/2, then ωh(x−y) ∈ C∞0 (Ω′′).
Thus by Theorem 1.12 and the definition of weak derivative,

Dαuh(x) =

∫
Ω′′
u(y)Dα

xωh(x− y)dy = (−1)|α|
∫

Ω′′
u(y)Dα

y ωh(x− y)dy

=

∫
Ω′′
ωh(x− y) · v(y)dy = vh(x).

Thus, ‖Dαuh − v‖L1(S) → 0.

2. (Sufficiency) Let ϕ ∈ C∞0 (Ω); we claim∫
Ω
uDαϕdx = (−1)|α|

∫
Ω
vϕdx.

To see this, choose a compact subset S of Ω such that S ⊃ supp(ϕ). Let {uh} be the
sequence as given. Then as h→∞∫

Ω
uDαϕdx←

∫
Ω
uhD

αϕdx = (−1)|α|
∫

Ω
ϕDαuhdx→ (−1)|α|

∫
Ω
vϕdx,

which is the claim. �

Theorem 1.18. Let Ω be a domain in Rn. If u ∈ L1
loc(Ω) has a weak derivative Dαu = 0

in Ω whenever |α| = 1, then u =const. a.e. in Ω.
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Proof. Given a subdomain Ω′ ⊂⊂ Ω, choose Ω′ ⊂⊂ Ω′′ ⊂⊂ Ω and define

uh(x) =

∫
Ω′′
ωh(x− y)u(y)dy (x ∈ Rn).

Let x ∈ Ω′ and 0 < h < dist(Ω′, ∂Ω′′). Then the function ϕ(y) = ωh(x − y) is in C∞0 (Ω′′).
Since Du = 0 in Ω weakly, it follows that

Duh(x) =

∫
Ω′′
Dωh(x− y)u(y) dy = −

∫
Ω
u(y)Dϕ(y) dy =

∫
Ω
Du(y)ϕ(y) dy = 0

for all x ∈ Ω′ and 0 < h < dist(Ω′, ∂Ω′′). Thus uh(x) = c(h), a constant, in Ω′ for each
0 < h < dist(Ω′, ∂Ω′′). Since ‖uh−u‖L1(Ω′) = ‖c(h)−u‖L1(Ω′) → 0 as h→ 0, it follows that

‖c(h1)− c(h2)‖L1(Ω′) = |c(h1)− c(h2)|mes(Ω′)→ 0 as h1, h2 → 0.

Consequently, c(h)→ c in R as h→ 0. Hence u(x) = c a.e. in Ω′; therefore, we have proved
that u is constant on any subdomain Ω′ ⊂⊂ Ω. However, since Ω is connected, u must be
constant on Ω. �

We now note some properties of W k,p(Ω) which follow easily from the results of this
and the previous section.

(a) If Ω′ ⊂ Ω and if u ∈W k,p(Ω), then u ∈W k,p(Ω′).

(b) If u ∈ W k,p(Ω) and |a(x)|k,∞ < ∞, then au ∈ W k,p(Ω). In this case any weak
derivativeDα(au) is computed according to the usual Leibniz’ rule of differentiating
the product of functions.

(c) If u ∈ W k,p(Ω) and uh is its mollified function, then for any compact set S ⊂
Ω, ‖uh−u‖Wk,p(S) → 0 as h→ 0. If in addition, u has compact support in Ω, then

‖uh − u‖k,p → 0 as h→ 0.

1.3.4. Chain Rules.

Theorem 1.19. Let Ω be an open set in Rn. Let f ∈ C1(R), |f ′(s)| ≤M for all s ∈ R and
suppose u has a weak partial derivative Dαu for some |α| = 1. Then the composite function
f ◦ u has the α-weak partial derivative Dα(f ◦ u) = f ′(u)Dαu. Moreover, if f(0) = 0 and if
u ∈W 1,p(Ω), then f ◦ u ∈W 1,p(Ω).

Proof. 1. Let S ⊂ Ω be any compact set. According to Theorem 1.17, there exists a
sequence {uh} ⊂ C∞(Ω) such that ‖uh − u‖L1(S) → 0, ‖Dαuh −Dαu‖L1(S) → 0 as h→ 0.
Thus ∫

S
|f(uh)− f(u)|dx ≤ sup |f ′|

∫
Ω′
|uh − u|dx→ 0 as h→ 0,

and ∫
S
|f ′(uh)Dαuh − f ′(u)Dαu|dx ≤ sup |f ′|

∫
S
|Dαuh −Dαu|dx

+

∫
S
|f ′(uh)− f ′(u)||Dαu|dx.

Since ‖uh−u‖L1(S) → 0, there exists a subsequence of {uh}, which we call {uh} again, which

converges a.e. in S to u. Moreover, since f ′ is continuous, one has f ′(uh(x)) → f ′(u(x))
a.e. in S. Hence the last integral tends to zero by the dominated convergence theorem.
Consequently, the sequences {f(uh)}, {f ′(uh)Dαuh} converge to f(u), f ′(u)Dαu in L1(S)
respectively, and the first conclusion follows by an application of Theorem 1.17 again.
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2. If f(0) = 0, the mean value theorem implies |f(s)| ≤ M |s| for all s ∈ R. Thus,
|f(u(x))| ≤ M |u(x)| for all x ∈ Ω and so f ◦ u ∈ Lp(Ω) if u ∈ Lp(Ω). Similarly,
f ′(u(x))Dαu ∈ Lp(Ω) if u ∈W 1,p(Ω), which shows that f ◦ u ∈W 1,p(Ω). �

Corollary 1.20. Let Ω be a bounded open set in Rn. If u has an αth weak derivative Dαu
for some |α| = 1, then so does |u| and

Dα|u| =


Dαu if u > 0

0 if u = 0
−Dαu if u < 0

i.e., Dα|u| = (sgnu)Dαu with the properly defined sgn function. In particular, if u ∈
W 1,p(Ω), then |u| ∈W 1,p(Ω).

Proof. The positive and negative parts of u are defined by

u+ = max{u, 0}, u− = min{u, 0}.

We show that if Dαu exists then Dαu+ exists and that

(1.8) Dαu+ =

{
Dαu if u > 0,

0 if u ≤ 0.

Then the result for |u| follows easily from the relations |u| = u+ − u− and u− = −(−u)+.
To prove (1.8), for h > 0 define

fh(s) =

{
(s2 + h2)

1
2 − h if s > 0

0 if s ≤ 0.

Clearly fh ∈ C1(R) and f ′h is bounded on R. By Theorem 1.19, fh(u) has a weak derivative,
and for any ϕ ∈ C∞0 (Ω)∫

Ω
fh(u)Dαϕdx = −

∫
Ω
Dα(fh(u))ϕdx = −

∫
u>0

ϕ
uDαu

(u2 + h2)
1
2

dx.

Upon letting h → 0, it follows that fh(u) → u+, and so by the dominating convergence
theorem ∫

Ω
u+Dαϕdx = −

∫
u>0

ϕDαudx = −
∫

Ω
vϕdx,

where

v =

{
Dαu if u > 0,

0 if u ≤ 0,

which establishes the desired result for u+. �

Theorem 1.21. If um → u in W 1,p(Ω) then u+
m → u+ in W 1,p(Ω). Moreover, if u ∈

W 1,p
0 (Ω), then u+, u−, |u| ∈W 1,p

0 (Ω).

Proof. Without loss of generality, we assume um(x) → u(x) as m → ∞ for all x ∈ Ω′,
where Ω′ ⊂ Ω is measurable and |Ω \ Ω′| = 0. Clearly, from |a+ − b+| ≤ |a − b| for all
a, b ∈ R, we have

‖u+
m − u+‖Lp(Ω) ≤ ‖um − u‖Lp(Ω) → 0.

We only prove the case when 1 ≤ p <∞; the case p =∞ can be proved by taking p→∞.
By (1.8), we have

‖Du+
m −Du+‖pLp(Ω) = ‖Dum −Du‖pLp(Am) + ‖Du‖pLp(Bm) + ‖Dum‖pLp(Cm)
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≤ ‖Dum −Du‖pLp(Ω) + ‖Du‖pLp(Bm) + (‖Dum −Du‖Lp(Cm) + ‖Du‖Lp(Cm))
p

≤ (1 + 2p)‖Dum −Du‖pLp(Ω) + ‖Du‖pLp(Bm) + 2p‖Du‖pLp(Cm),

where Am = {x ∈ Ω′ | um(x) > 0, u(x) ≥ 0} and

Bm = {x ∈ Ω′ | um(x) ≤ 0, u(x) > 0}, Cm = {x ∈ Ω′ | um(x) > 0, u(x) < 0}.

As um(x)→ u(x) on Ω′, it follows that (Real Analysis Exercise!)

lim
m→∞

|Bm| = lim
m→∞

|Cm| = 0.

Hence ‖Du‖Lp(Bm) + ‖Du‖Lp(Cm) → 0 and thus

lim
m→∞

‖Du+
m −Du+‖Lp(Ω) = 0.

This proves u+
m → u+ in W 1,p(Ω).

Finally, let u ∈ W 1,p
0 (Ω) and um ∈ C∞0 (Ω) be such that um → u in W 1,p(Ω). Clearly

u+
m ∈W

1,p
0 (Ω) and u+

m → u+ in W 1,p(Ω); this proves u+ ∈W 1,p
0 (Ω). The conclusion for u−

and |u| follows easily from the identities u− = −(−u)+ and |u| = u+ − u−. �

1.3.5. Partition of Unity. To establish a global interior approximation for a Sobolev
function in W k,p(Ω), we need the following well-known result of partition of unity.

Theorem 1.22. (Partition of Unity) Let Ω = ∪λ∈ΛΩλ, where {Ωλ} is a collection of
open sets. Then there exist C∞ functions ψi(x) (i = 1, 2, . . . ) such that for each i

(a) 0 ≤ ψi(x) ≤ 1,

(b) suppψi ⊂⊂ Ωλi for some λi ∈ Λ,

(c)
∑∞

i=1 ψi(x) = 1 for every x ∈ Ω,

(d) ∀x ∈ Ω ∃B(x, r) such that ∃ k, ψi|B(x,r) ≡ 0 ∀ i ≥ k.

Such a sequence {ψi} is called a C∞ partition of unity for Ω subordinate to {Ωλ}.

Proof. Let Um = B(0,m) ∩ Ω for m = 1, 2, . . . and U0 = U−1 = ∅. Then, for each x ∈ Ω,
there exist m = m(x) ≥ 0 and λ = λ(x) ∈ Λ such that

x ∈ Ūm+1 \ Um ⊂ Um+2 \ Ūm−1, x ∈ Qλ(x).

So we choose rx > 0 such that B̄(x, rx) ⊂ Ωλ(x) ∩ (Um+2 \ Ūm−1). Let φx ∈ C∞(B(x, rx))
be such that 0 ≤ φx ≤ 1 and φx|B(x,rx/2) = 1.

For each m ≥ 0, since Ūm+1 \ Um is compact, we choose a finite covering of this set by
balls {B(x, rx/2)}. Let {B(xi, rxi/2)} be the collection of all such finite coverings over all
m = 0, 1, 2, . . . , and let φi be the corresponding cut-off functions on B(xi, rxi). Clearly, a
small ball B(x, r) will only intersect a finite number of the balls {B(xi, rxi)}, so for some
k, φi|B(x,r) ≡ 0 for all i ≥ k. This implies that the sum ψ(x) =

∑∞
i=1 φi(x) is locally a finite

sum and thus is smooth in Ω, and also ψ(x) > 0 for each x ∈ Ω. Thus the functions ψi = φi
ψ

provide the partition of unity. �
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1.3.6. Global Interior Approximation. The following global interior approximation
theorem is known as the Meyers-Serrin Theorem: H = W .

Theorem 1.23. (Meyers-Serrin Theorem) Let Ω be open in Rn, u ∈ W k,p(Ω) and
1 ≤ p <∞. Then there exist functions um ∈ C∞(Ω) ∩W k,p(Ω) such that

um → u in W k,p(Ω).

In other words, C∞(Ω) ∩W k,p(Ω) is dense in W k,p(Ω).

Proof. 1. We have Ω = ∪∞i=1Ωi, where Ωi = {x ∈ Ω : |x| < i, dist(x, ∂Ω) > 1/i}. Set
Vi = Ωi+3 \ Ω̄i+1. Choose an open set V0 ⊂⊂ Ω so that Ω = ∪∞i=0Vi.

2. Let {ζi}∞i=0 be a smooth partition of unity subordinate to the open sets {Vi}∞i=0; that
is,

ζi ∈ C∞0 (Vi), 0 ≤ ζi ≤ 1,

∞∑
i=0

ζi = 1 on Ω.

Let u ∈W k,p(Ω). Then ζiu ∈W k,p(Ω) and supp(ζiu) ⊂ Vi.
3. Fix δ > 0. Choose εi > 0 so small that ui = ωεi ∗ (ζiu) satisfies

‖ui − ζiu‖Wk,p(Ω) <
δ

2i+1
, suppui ⊂Wi := Ωi+4 \ Ω̄i.

Note that Vi ⊂ Wi. Let v =
∑∞

i=0 u
i. For each U ⊂⊂ Ω, Wi ∩ U = ∅ for all sufficiently

large i; so v|U is a finite sum and thus v ∈ C∞(U), which implies v ∈ C∞(Ω). Also, as
u =

∑∞
i=0 ζiu in Ω, we have

‖v − u‖Wk,p(U) ≤
∞∑
i=0

‖ui − ζiu‖Wk,p(Ω) ≤ δ
∞∑
i=0

1

2i+1
= δ.

This is independent of U ⊂⊂ Ω; hence ‖v − u‖Wk,p(Ω) ≤ δ. �

Remark 1.6. The result holds when Ω = Rn. From this one can show that W 1,p(Rn) =

W 1,p
0 (Rn) for 1 ≤ p < ∞. However for bounded domains Ω it follows that W 1,p(Ω) 6=

W 1,p
0 (Ω) (see the trace operator later).
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Example 1.24. Is the approximation true when p =∞?

No. Let Ω = (−1, 1) and u(x) = |x|. Show there is no function v ∈ C∞(Ω) such that
‖u′ − v′‖L∞ < 1/4.

1.3.7. Approximation up to the Boundary.

Theorem 1.25. Let Ω be open, bounded and ∂Ω ∈ C1. Let u ∈ W k,p(Ω), 1 ≤ p < ∞.
Then there exist functions um ∈ C∞(Ω̄) such that

um → u in W k,p(Ω).

In other words, C∞(Ω̄) is dense in W k,p(Ω).

Proof. See Evans’s textbook. �

Exercise 1.7. Prove the product rule for weak derivatives:

Di(uv) = (Diu)v + u(Div)

where u,Diu are locally Lp(Ω), v,Div are locally Lq(Ω) (p > 1, 1/p+ 1/q = 1).
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Exercise 1.8. (a) If u ∈W k,p
0 (Ω) and v ∈ Ck(Ω̄), prove that uv ∈W k,p

0 (Ω).

(b) If u ∈W k,p(Ω) and v ∈ Ck0 (Ω), prove that uv ∈W k,p
0 (Ω).
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1.4. Extensions

If Ω ⊂ Ω′, then any function u(x) ∈ Ck0 (Ω) has an obvious extension U(x) ∈ Ck0 (Ω′) by

zero outside Ω. From the definition of W k,p
0 (Ω) it follows that the function u(x) ∈W k,p

0 (Ω)

and extended as being equal to zero in Ω′\Ω belongs to W k,p
0 (Ω′). In general, a function

u ∈W k,p(Ω) and extended by zero to Ω′ will not belong to W k,p(Ω′). (Consider the function
u(x) ≡ 1 in Ω.)

We now consider a more general extension result.

Theorem 1.26. Let Ω, Ω′ be bounded open sets in Rn, Ω ⊂⊂ Ω′, k ≥ 1, 1 ≤ p ≤ ∞, and
let ∂Ω be Ck.

(a) There exists a linear operator E1 : Ck(Ω̄) → Ck0 (Ω′) such that for each u ∈
Ck(Ω̄),

(i) E1u = u in Ω,
(ii) ‖E1u‖Ck(Ω̄′) ≤ C‖u‖Ck(Ω̄) and ‖Eu‖Wk,p(Ω′) ≤ C‖u‖Wk,p(Ω) for a constant

C depending only on k, p, Ω and Ω′.

(b) There exists a linear operator E : W k,p(Ω) → W k,p
0 (Ω′) such that for each u ∈

W k,p(Ω),
(i) Eu = u almost everywhere (a.e.) in Ω,
(ii) ‖Eu‖Wk,p(Ω′) ≤ C‖u‖Wk,p(Ω) for a constant C depending only on k, p, Ω

and Ω′.

(c) There exists a linear operator E2 : Ck(∂Ω) → Ck(Ω̄) such that for each u ∈
Ck(∂Ω),

(i) E2u = u on ∂Ω,
(ii) ‖E2u‖Ck(Ω̄) ≤ C‖u‖Ck(∂Ω) for a constant C depending only on k, Ω and

Ω′.

Proof. 1. Suppose first that u ∈ Ck(Ω̄). Let y = ψ(x) define a Ck diffeomorphism that
straightens the boundary near x0 = (x0

1, . . . , x
0
n) ∈ ∂Ω. In particular, we assume there is a

ball B = B(x0, r) such that ψ(B ∩ Ω) ⊂ Rn+ (i.e., yn > 0), ψ(B ∩ ∂Ω) ⊂ ∂Rn+. (e.g., we
could choose yi = xi − x0

i for i = 1, . . . , n− 1 and yn = xn − ϕ(x1, . . . , xn−1), where ϕ is of
class Ck. Moreover, without loss of generality, we can assume yn > 0 if x ∈ B ∩ Ω.)

2. Let G and G+ = G ∩ Rn+ be respectively, a ball and half-ball in the image of ψ such
that ψ(x0) ∈ G. Setting ū(y) = u ◦ ψ−1(y) and y = (y1, . . . , yn−1, yn) = (y′, yn), we define
an extension Ū(y) of ū(y) into yn < 0 by

Ū(y′, yn) =

k+1∑
i=1

ciū(y′,−yn/i), yn < 0

where the ci are constants determined by the system of equations

(1.9)

k+1∑
i=1

ci(−1/i)m = 1, m = 0, 1, . . . , k.
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Note that the determinant of the system (1.9) is nonzero since it is a Vandemonde determi-
nant. One verifies readily that the extended function Ū is continuous with all derivatives
up to order k in G. For example,

lim
y→(y′,0)

Ū(y) =
k+1∑
i=1

ciū(y′, 0) = ū(y′, 0)

by virtue of (1.9) with m = 0. A similar computation shows that

lim
y→(y′,0)

Ūyi(y) = ūyi(y
′, 0), i = 1, . . . , n− 1.

Finally

lim
y→(y′,0)

Ūyn(y) =
k+1∑
i=1

ci(−1/i)ūyn(y′, 0) = ūyn(y′, 0)

by virtue of (1.9) with m = 1. Similarly we can handle the higher derivatives. Thus
w = Ū ◦ ψ ∈ Ck(B′) for some ball B′ = B′(x0) and w = u in B′ ∩ Ω, (If x ∈ B′ ∩ Ω, then
ψ(x) ∈ G+ and w(x) = Ū(ψ(x)) = ū(ψ(x)) = u(ψ−1ψ(x)) = u(x)) so that w provides a Ck

extension of u into Ω ∪B′. Moreover,

sup
G+

|ū(y)| = sup
G+

|u(ψ−1(y))| ≤ sup
Ω
|u(x)|

and since x ∈ B′ implies ψ(x) ∈ G

sup
B′
|Ū(ψ(x))| ≤ c sup

G+

|ū(y)| ≤ c sup
Ω
|u(x)|.

Since a similar computation for the derivatives holds, it follows that there is a constant
c > 0, independent of u, such that

‖w‖Ck(Ω̄∪B′) ≤ c‖u‖Ck(Ω̄), ‖w‖Wk,p(Ω̄∪B′) ≤ C‖u‖Wk,p(Ω).

3. Now consider a finite covering of ∂Ω by balls Bi, i = 1, . . . , N , such as B in the
preceding, and let {wi} be the corresponding Ck extensions. We may assume the balls Bi
are so small that their union with Ω is contained in Ω′. Let Ω0 ⊂⊂ Ω be such that Ω0 and
the balls Bi provide a finite open covering of Ω. Let {ηi}, i = 1, . . . , N , be a partition of
unity subordinate to this covering and set

w = uη0 +
∑

wiηi

with the understanding that wiηi = 0 if ηi = 0. Then w = E1u is an extension of u into Ω′

and has the required properties. Thus (a) is established.

4. We now prove (b). We only give the proof for the case 1 ≤ p < ∞; the case p = ∞
is left as an exercise. (Hint: track all the constants involved for each p <∞ and show they
do not blow up as p → ∞.). So let 1 ≤ p < ∞ and u ∈ W k,p(Ω). Then by Theorem 1.25,
there exist functions um ∈ C∞(Ω̄) such that um → u in W k,p(Ω). Let Ω ⊂ Ω′′ ⊂ Ω′, and
let Um be the extension of um to Ω′′ as given in (a). Then

‖Um − Ul‖Wk,p(Ω′′) ≤ c‖um − ul‖Wk,p(Ω)

which implies that {Um} is a Cauchy sequence and so converges to a U ∈ W k,p
0 (Ω′′), since

Um ∈ Ck0 (Ω′′). Now extend Um, U by 0 to Ω′. It is easy to see that U = Eu is the desired
extension.

5. We now prove (c). At any point x0 ∈ ∂Ω let the mapping ψ and the ball G be defined
as in (a). By definition, u ∈ Ck(∂Ω) implies that ū = u ◦ ψ−1 ∈ Ck(G ∩ ∂Rn+). We define
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Φ̄(y′, yn) = ū(y′) in G and set Φ(x) = Φ̄ ◦ ψ(x) for x ∈ ψ−1(G). Clearly, Φ ∈ Ck(B̄) for
some ball B = B(x0) and Φ = u on B ∩ ∂Ω. Now let {Bi} be a finite covering of ∂Ω by
balls such as B and let Φi be the corresponding Ck functions defined on Bi. For each i, we
define the function Ui(x) as follows: in the ball Bi take it equal to Φi, outside Bi take it
equal to zero if x 6∈ ∂Ω and equal to u(x) if x ∈ ∂Ω. The proof can now be completed as in
(a) by use of an appropriate partition of unity. �

1.5. Trace Theorem

Unless otherwise stated, Ω will denote a bounded open connected set in Rn, i.e., a bounded
domain. Let Γ be a surface which lies in Ω̄ and has the representation

xn = ϕ(x′), x′ = (x1, . . . , xn−1)

where ϕ(x′) is Lipschitz continuous in Ū . Here U is the projection of Γ onto the coordinate
plane xn = 0. Let p ≥ 1. A function u defined on Γ is said to belong to Lp(Γ) if

‖u‖Lp(Γ) ≡
(∫

Γ
|u(x)|pdS

) 1
p

<∞,

where ∫
Γ
|u(x)|pdS =

∫
U
|u(x′, ϕ(x′))|p

(
1 +

n−1∑
i=1

(
∂ϕ

∂xi
(x′))2

) 1
2
dx′.

Thus Lp(Γ) reduces to a space of the type Lp(U) where U is a domain in Rn−1.

1.5.1. The Trace Operator. For every function u ∈ C(Ω̄), its values γ0u ≡ u|Γ on Γ are
uniquely given. The function γ0u will be called the trace of the function u on Γ. Note that
u ∈ Lp(Γ) since γ0u ∈ C(Γ).

On the other hand, if we consider a function u defined a.e. in Ω (i.e., functions are
considered equal if they coincide a.e.), then the values of u on Γ are not uniquely determined
since meas(Γ) = 0. In particular, since ∂Ω has measure 0, there exist infinitely many
extensions of u to Ω̄ that are equal a.e. We shall therefore introduce the concept of trace for
functions in W 1,p(Ω) so that if in addition, u ∈ C(Ω̄), the new definition of trace reduces
to the definition given above.
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In the rest of this section, we assume 1 ≤ p <∞.

Lemma 1.27. Let Ω be bounded with ∂Ω ∈ C1. Then for u ∈ C1(Ω̄),

(1.10) ‖γ0u‖Lp(∂Ω) ≤ c‖u‖1,p
where the constant c > 0 does not depend on u.

Proof. 1. Let x0 ∈ ∂Ω. Assume ∂Ω is flat near x0, lying in the plane {xn = 0}. Choose a

ball B centered x0 such that B+ = B ∩ {xn > 0} ⊂ Ω and let B̂ be the concentric ball of
half radius with B. Select a cut-off function ζ ∈ C∞0 (B) with 0 ≤ ζ ≤ 1 and ζ|B̂ = 1. Let

Γ = ∂Ω ∩ B̂ and write x′ = (x1, . . . , xn−1). Then∫
Γ
|u|p dx′ ≤

∫
{xn=0}

ζ|u|p dx′ = −
∫
B+

(ζ|u|p)xn dx
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= −
∫
B+

(|u|pζxn + p|u|p−1(sgnu)uxnζ) dx

≤ C
∫
B+

(|u|p + |Du|p) dx ≤ C
∫

Ω
(|u|p + |Du|p) dx,

where we used Young’s inequality.

2. Let x0 ∈ ∂Ω. If ∂Ω is not flat near x0, then we flatten the boundary near x0 by a
function xn = φ(x′) as usual and use dS = (1 + |Dφ|2)1/2dx′ to still obtain∫

Γ
|u|p dS ≤ C

∫
Ω

(|u|p + |Du|p) dx,

where Γ is some open set of ∂Ω containing x0.

3. Since ∂Ω is compact, there exist finitely many (N) points x0
i ∈ ∂Ω and open sets Γi

of ∂Ω such that ∂Ω = ∪Ni=1Γi and∫
Γi

|u|p dS ≤ C
∫

Ω
(|u|p + |Du|p) dx (i = 1, . . . , N).

Consequently, if we write γ0(u) = u|∂Ω, then

‖γ0(u)‖Lp(∂Ω) ≤ C‖u‖W 1,p(Ω).

�

Remark 1.9. If 1 < p <∞, by examining the Steps 1 and 2 of the proof above and using
Young’s inequality with ε, we also have

(1.11) ‖γ0(u)‖pLp(∂Ω) ≤
c1

β
1
p−1

‖u‖pLp(Ω) + c2β‖Du‖pLp(Ω) ∀ 0 < β < 1,

where constants c1, c2 depend only on p and Ω, but not on β and u.

Since 1 ≤ p < ∞ and thus C∞(Ω̄) = W 1,p(Ω), the bounded linear operator γ0 :
C∞(Ω̄) ⊂ W 1,p(Ω) → Lp(∂Ω) can be uniquely extended to a bounded linear operator
γ0 : W 1,p(Ω)→ Lp(∂Ω) such that (1.10) and (1.11) remain true for all u ∈W 1,p(Ω).

More precisely, we obtain γ0u in the following way: Let u ∈ W 1,p(Ω). We choose a
sequence {un} ⊂ C∞(Ω̄) with ‖un − u‖1,p → 0. Then

‖γ0(um)− γ0(un)‖Lp(∂Ω) ≤ c‖um − un‖1,p,Ω → 0.

Hence {γ0(un)} is a Cauchy sequence in Lp(∂Ω); so there exists a function in Lp(∂Ω),
defined to be γ0(u), such that ‖γ0un − γ0u‖Lp(∂Ω) → 0. Furthermore, this function γ0(u)

is independent of the sequence {un} in the sense that if vj ∈ C∞(Ω̄) and ‖vj − u‖1,p → 0,
then limj→∞ γ0(vj) = γ0(u); this is thanks to

‖γ0(vj)− γ0(uj)‖Lp(∂Ω) ≤ c‖vj − uj‖1,p,Ω → 0.

The function γ0u (as an element of Lp(∂Ω)) will be called the trace of the function u ∈
W 1,p(Ω) on the boundary ∂Ω. (‖γ0u‖Lp(∂Ω) will be denoted by ‖u‖Lp(∂Ω).) Thus the trace

of a function is defined for any element u ∈W 1,p(Ω).

The above discussion partly proves the following:

Theorem 1.28. (Trace operator) Suppose ∂Ω ∈ C1. Then there is a unique bounded
linear operator γ0 : W 1,p(Ω) → Lp(∂Ω) such that γ0u = u|∂Ω for u ∈ C(Ω̄) ∩ W 1,p(Ω),

and γ0(au) = γ0a · γ0u for a(x) ∈ C1(Ω̄), u ∈ W 1,p(Ω). Moreover, N (γ0) = W 1,p
0 (Ω) and

R(γ0) = Lp(∂Ω).
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Proof. 1. Suppose u ∈ C(Ω̄) ∩W 1,p(Ω). Then the function um ∈ C∞(Ω̄) constructed in
the proof of the global approximation Theorem 1.25 also converges uniformly to u on Ω̄.
Hence um|∂Ω → u|∂Ω uniformly on ∂Ω; on the other hand, um|∂Ω = γ0(um) → γ0(u) in
Lp(∂Ω), and hence u|∂Ω = γ0u in Lp(∂Ω).

2. Now au ∈ W 1,p(Ω) if a ∈ C1(Ω̄) and u ∈ W 1,p(Ω), and consequently, γ0(au) is
defined. Let {un} ⊂ C1(Ω̄) with ‖un − u‖1,p → 0. Then

γ0(aun) = γ0a · γ0un

and the desired product formula follows by virtue of the continuity of γ0.

3. If u ∈ W 1,p
0 (Ω), then there is a sequence {un} ⊂ C1

0 (Ω) with ‖un − u‖1,p → 0.
But un|∂Ω = 0 and as n → ∞, un|∂Ω → γ0u in Lp(∂Ω) which implies γ0u = 0. Hence

W 1,p
0 (Ω) ⊂ N (γ0). The opposite inclusion N (γ0) ⊂W 1,p

0 (Ω) is more difficult to prove.

4. Suppose u ∈ N (γ0). If u ∈ W 1,p(Ω) has compact support in Ω, then by an earlier

remark, u ∈W 1,p
0 (Ω). If u does not have compact support in Ω, then it can be shown that

there exists a sequence of cut-off functions ηk such that ηku ∈W 1,p(Ω) has compact support
in Ω, and moreover, ‖ηku − u‖1,p → 0. By using the corresponding mollified functions, it

follows that u ∈W 1,p
0 (Ω) and N (γ0) ⊂W 1,p

0 (Ω). Details can be found in Evans’s book.

5. Finally, to prove R(γ0) = Lp(∂Ω), let f ∈ Lp(∂Ω) and let ε > 0 be given. Then there
is a u ∈ C1(∂Ω) such that ‖u−f‖Lp(∂Ω) < ε. If we let U ∈ C1(Ω̄) be the extension of u into

Ω̄, then clearly ‖γ0U − f‖Lp(∂Ω) < ε, which is the desired result since U ∈W 1,p(Ω). �

Remark 1.10. We note that the function u ≡ 1 belongs to W 1,p(Ω) ∩ C(Ω̄) and its trace

on ∂Ω is 1. Hence this function does not belong to W 1,p
0 (Ω), which establishes the earlier

assertion that W 1,p
0 (Ω) 6= W 1,p(Ω). In fact, for all bounded open sets Ω, 1 /∈W 1,p

0 (Ω), which
follows from the embedding theorems proved later.

1.5.2. Higher-Order Trace Operators. Let u ∈ W k,p(Ω), k > 1. Since any weak
derivative Dαu of order |α| < k belongs to W 1,p(Ω), this derivative has a trace γ0D

αu
belonging to Lp(∂Ω). Moreover

‖Dαu‖Lp(∂Ω) ≤ c‖Dαu‖1,p ≤ c‖u‖k,p

for constant c > 0 independent of u.

Assuming the boundary ∂Ω ∈ C1, the unit outward normal vector n to ∂Ω exists and is
bounded. Thus, the concept of traces makes it possible to introduce ∂u/∂n for u ∈W 2,p(Ω).
More precisely, if u ∈W 2,p(Ω), then there exist traces of the functions u, Diu so that, if ni
are the direction cosines of the normal, we may define

γ1u =
n∑
i=1

(γ0(Diu))ni.

The trace operator γ1 : W 2,p(Ω) → Lp(∂Ω) is continuous and γ1u = (∂u/∂n)|∂Ω for u ∈
C1(Ω̄) ∩W 2,p(Ω).

For a function u ∈ Ck(Ω̄) we define the various traces of normal derivatives given by

γju =
∂ju

∂nj
|∂Ω, 0 ≤ j ≤ k − 1.

Each γj can be extended by continuity to all of W k,p(Ω) and we obtain the following:
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Theorem 1.29. (Higher-order traces) Suppose ∂Ω ∈ Ck. Then there is a unique con-

tinuous linear operator γ = (γ0, γ1, . . . , γk−1) : W k,p(Ω) →
∏k−1
j=0 W

k−1−j,p(∂Ω) such that

for u ∈ Ck(Ω̄)

γ0u = u|∂Ω, γju =
∂ju

∂nj
|∂Ω, j = 1, . . . , k − 1.

Moreover, N (γ) = W k,p
0 (Ω) and R(γ) =

∏k−1
j=0 W

k−1−j,p(∂Ω).

The Sobolev space W k−1−j,p(∂Ω) can be defined locally. However, this space is not the
range of γj ; the range of γj is actually a fractional Sobolev space on the boundary ∂Ω. For

example, γ0(H1(Ω)) = H1/2(∂Ω). We will not study such Sobolev spaces.
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1.5.3. Green’s Identities. In this section we assume that p = 2 and we continue to
assume Ω is a bounded domain.

Theorem 1.30. (Integration by Parts) Let u, v ∈ H1(Ω) and let ∂Ω ∈ C1. Then for
any i = 1, . . . , n

(1.12)

∫
Ω
vDiudx =

∫
∂Ω

(γ0u · γ0v)nidS −
∫

Ω
uDivdx.

(Diu,Div are weak derivatives.)

Proof. Let {un} and {vn} be sequences of functions in C1(Ω̄) with ‖un − u‖H1(Ω) →
0, ‖vn − v‖H1(Ω) → 0 as n→∞. Formula (1.12) holds for un, vn∫

Ω
vnDiundx =

∫
∂Ω
unvnnidS −

∫
Ω
unDivndx

and upon letting n→∞ relation (1.12) follows. �

Corollary 1.31. Let ∂Ω ∈ C1.

(a) If v ∈ H1(Ω) and u ∈ H2(Ω) then∫
Ω
v∆udx =

∫
∂Ω
γ0v · γ1udS −

∫
Ω

(∇u · ∇v)dx (Green’s 1st identity).

(b) If u, v ∈ H2(Ω) then∫
Ω

(v∆u− u∆v)dx =

∫
∂Ω

(γ0v · γ1u− γ0u · γ1v)dS (Green’s 2nd identity).

Proof. If in (1.12) we replace u by Diu and sum from 1 to n, then Green’s 1st identity
is obtained. Interchanging the roles of u, v in Green’s 1st identity and subtracting the two
identities yields Green’s 2nd identity. �

Exercise 1.11. Establish the following one-dimensional version of the trace theorem: If
u ∈W 1,p(Ω), where Ω = (a, b), then

‖u‖Lp(∂Ω) ≡ (|u(a)|p + |u(b)|p)1/p ≤ const ‖u‖W 1,p(Ω)

where the constant is independent of u.
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1.6. Embedding Theorems

In what follows, let (X, ‖ · ‖X) and (Y, ‖ · ‖Y ) be two normed spaces, with X ⊂ Y as sets.
We say that X is continuously embedded into Y and also write X ⊂ Y if there exists a
constant C > 0 such that

‖u‖Y ≤ C‖u‖X ∀u ∈ X.

We consider the following question: Is W k,p(Ω) continuously embedded into certain other
spaces? Certainly, by definition, W k,p(Ω) ⊂W j,p(Ω) for all 0 ≤ j < k, but such embeddings
are not interesting. Are there other spaces not directly from defintion? The answer will be
yes, but which other spaces depend upon whether 1 ≤ kp < n, kp = n, n < kp <∞.

A series of special results will be needed. We start with k = 1.

1.6.1. Gagliardo-Nirenberg-Sobolev Inequality. Suppose 1 ≤ p < n. Do there exist
constants C > 0 and 1 ≤ q <∞ such that

(1.13) ‖u‖Lq(Rn) ≤ C‖Du‖Lp(Rn)

for all u ∈ C∞0 (Rn)? The point is that the constants C and q should not depend on u.

We shall show that if such an inequality holds, then q must have a specific form. For
this, choose any u ∈ C∞0 (Rn), u 6≡ 0, and define for λ > 0

uλ(x) ≡ u(λx) (x ∈ Rn).

Now ∫
Rn
|uλ|qdx =

∫
Rn
|u(λx)|qdx =

1

λn

∫
Rn
|u(y)|qdy

and ∫
Rn
|Duλ|pdx = λp

∫
Rn
|Du(λx)|pdx =

λp

λn

∫
Rn
|Du(y)|pdy.

Inserting these inequalities into (1.13) we find

1

λn/q
‖u‖Lq(Rn) ≤ C

λ

λn/p
‖Du‖Lp(Rn)

and so

(1.14) ‖u‖Lq(Rn) ≤ Cλ1−n/p+n/q‖Du‖Lp(Rn).

If 1− n/p + n/q > 0 (or < 0), then we can upon sending λ to 0 (or ∞) in (1.14) obtain a
contradiction (u = 0). Thus we must have 1− n/p+ n/q = 0; that is, q = p*, where

(1.15) p* =
np

n− p
is called the Sobolev conjugate of p. Note that then

(1.16)
1

p∗
=

1

p
− 1

n
, p∗ > p.

Next we prove that the inequality (1.13) indeed holds for q = p∗.

Lemma 1.32. (Gagliardo-Nirenberg-Sobolev Inequality) Assume 1 ≤ p < n. Then
there is a constant C, depending only on p and n, such that

(1.17) ‖u‖Lp∗ (Rn) ≤ C‖Du‖Lp(Rn)

for all u ∈ C1
0 (Rn).
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Proof. First assume p = 1. Since u has compact support, for each i = 1, . . . , n we have

u(x) =

∫ xi

−∞
uxi(x1, . . . , xi−1, yi, xi+1, . . . , xn)dyi

and so

|u(x)| ≤
∫ ∞
−∞
|Du(x1, . . . , yi, . . . , xn)|dyi (i = 1, . . . , n).

Consequently

(1.18) |u(x)|
n
n−1 ≤

n∏
i=1

(∫ ∞
−∞
|Du(x1, . . . , yi, . . . , xn)|dyi

) 1
n−1

.

Integrate this inequality with respect to x1:∫ ∞
−∞
|u(x)|

n
n−1dx1 ≤

∫ ∞
−∞

n∏
i=1

(∫ ∞
−∞
|Du|dyi

) 1
n−1

dx1

=

(∫ ∞
−∞
|Du|dy1

) 1
n−1

∫ ∞
−∞

n∏
i=2

(∫ ∞
−∞
|Du|dyi

) 1
n−1

dx1

≤
(∫ ∞
−∞
|Du|dy1

) 1
n−1

(
n∏
i=2

∫ ∞
−∞

∫ ∞
−∞
|Du|dx1dyi

) 1
n−1

the last inequality resulting from the extended Hölder inequality.

We continue by integrating with respect to x2, . . . , xn and applying the extended Hölder
inequality to eventually find (pull out an integral at each step)∫

Rn
|u(x)|

n
n−1dx ≤

n∏
i=1

(∫ ∞
−∞
· · ·
∫ ∞
−∞
|Du|dx1 . . . dyi . . . dxn

) 1
n−1

=

(∫
Rn
|Du|dx

) n
n−1

which is estimate (1.17) for p = 1. Mr. Minh Le showed me an elegant proof of this case
by using induction to show∫

Rn
|u|

n
n−1 dx ≤

(
n∏
i=1

‖uxi‖L1(Rn)

) 1
n−1

∀u ∈ C1
0 (Rn).

Lecture 10 – 2/1/19

Now consider the case that 1 < p < n. Let v = |u|γ , where γ > 1 is to be selected. Note
that Div = γ|u|γ−1Diu; thus v ∈ C1

0 (Rn). So, using the above case of p = 1 for u = v, we
have (∫

Rn
|u(x)|

γn
n−1dx

)n−1
n

≤
∫
Rn
|D|u|γ |dx

= γ

∫
Rn
|u|γ−1|Du|dx

≤ γ

(∫
Rn
|u|

p(γ−1)
p−1 dx

) p−1
p
(∫

Rn
|Du|pdx

) 1
p

.
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We choose γ so that the powers of |u| on both sides are equal; namely, γn
n−1 = p(γ−1)

p−1 . This

gives γ = p(n−1)
n−p > 1, in which case

γn

n− 1
=
p(γ − 1)

p− 1
=

np

n− p
= p∗.

Thus, the above estimate becomes(∫
Rn
|u|p∗dx

) 1
p∗

≤ p(n− 1)

n− p

(∫
Rn
|Du|pdx

) 1
p

.

�

Theorem 1.33. (Gagliardo-Nirenberg-Sobolev-Poincaré’s Inequality) Let Ω ⊂ Rn
be any open set and 1 ≤ p < n. If u ∈W 1,p

0 (Ω), then u ∈ Lp∗(Ω) and

(1.19) ‖u‖Lp∗ (Ω) ≤ C‖Du‖Lp(Ω),

where the constant C depends only on p and n.

Proof. Let u ∈ W 1,p
0 (Ω) and let um ∈ C∞0 (Ω) be such that um → u in W 1,p(Ω). Extend

um by zero outside Ω so that um ∈ C∞0 (Rn). By Lemma 1.32, we have

‖um − ul‖Lp∗ (Rn) ≤ C‖Dum −Dul‖Lp(Rn) ∀ l,m;

hence {um} is a Cauchy sequence in Lp∗(Rn) and thus um → ũ in Lp
∗
(Rn). One must have

ũ = u a.e. in Ω and thus u = ũ ∈ Lp∗(Ω). Again Lemma 1.32 gives

‖um‖Lp∗ (Ω) = ‖um‖Lp∗ (Rn) ≤ C‖Dum‖Lp(Rn) = C‖Dum‖Lp(Ω),

and taking m→∞ proves (1.19). �

Theorem 1.34. (Poincaré’s Inequality) Let Ω ⊂ Rn be bounded and open. Assume

1 ≤ p < n and q ∈ [1, p∗]. If u ∈W 1,p
0 (Ω), then u ∈ Lq(Ω) and

‖u‖Lq(Ω) ≤ C‖Du‖Lp(Ω),

where the constant C depends only on p, q, n and Ω.

Proof. The result follows from Theorem 1.33 since, from |Ω| <∞ and Hölder’s inequal-
ity,

‖u‖Lq(Ω) ≤ |Ω|
1
q
− 1
p∗ ‖u‖Lp∗ (Ω)

for every q ∈ [1, p∗]. �

Remark 1.12. A Poincaré type of inequality is an estimate of the Lq norm of certain
quantities involving u by the Lp norm of Du. We will have the other type of Poincaré’s
inequalities later.

Theorem 1.35. Let Ω ⊂ Rn be bounded and open with ∂Ω ∈ C1. Assume 1 ≤ p < n, and
u ∈W 1,p(Ω). Then u ∈ Lp∗(Ω) and

(1.20) ‖u‖Lp∗ (Ω) ≤ C‖u‖W 1,p(Ω)

where the constant C depends only on p,n and Ω.
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Proof. Since ∂Ω ∈ C1, there exists an extension U ∈ W 1,p(Rn) such that U = u in Ω, U
has compact support and

(1.21) ‖U‖W 1,p(Rn) ≤ C‖u‖W 1,p(Ω).

Moreover, since U has compact support, there exist mollified functions um ∈ C∞0 (Rn) such
that um → U in W 1,p(Rn). Now according to Lemma 1.32,

‖um − ul‖Lp∗ (Rn) ≤ C‖Dum −Dul‖Lp(Rn)

for all l,m ≥ 1; whence um → U in Lp
∗
(Rn) as well. Since Lemma 1.32 also implies

‖um‖Lp∗ (Rn) ≤ C‖Dum‖Lp(Rn),

we get in the limit that

‖U‖Lp∗ (Rn) ≤ C‖DU‖Lp(Rn).

This inequality and (1.21) complete the proof. �

The case p = n. Since W 1,n(Ω) ⊂ W 1,p(Ω) for all p < n, we have the continuous em-
bedding W 1,n(Ω) ⊂ Lr(Ω) for all 1 ≤ r < ∞. However, we do not have the embedding
W 1,n(Ω) ⊂ L∞(Ω); for example, function u = ln ln(1 + 1

|x|) ∈ W 1,n(B(0, 1)) but not to

L∞(B(0, 1)) if n ≥ 2.

In fact, the space W 1,n(Ω) is embedded into the space of functions of bounded mean
oscillation in Ω, namely, BMO(Ω); however, we shall not study this embedding in this
course.

Lecture 11 – 2/4/19

1.6.2. Morrey’s Inequality. We now turn to the case n < p ≤ ∞.

The next result shows that if u ∈ W 1,p(Ω), then u is in fact Hölder continuous, after
possibly being redefined on a set of measure zero.

Theorem 1.36. (Morrey’s Inequality) Assume n < p ≤ ∞. Then there exists a constant
C, depending only on p and n, such that

(1.22) ‖u‖
C

0,1−np (Rn)
≤ C‖u‖W 1,p(Rn), ∀ u ∈ C1(Rn).

Proof. We first prove the following inequality: for all x ∈ Rn, r > 0 and all u ∈ C1(Rn),

(1.23)

∫
B(x,r)

|u(y)− u(x)| dy ≤ rn

n

∫
B(x,r)

|Du(y)|
|x− y|n−1

dy.

To prove this, note that, for any w with |w| = 1 and 0 < s < r,

|u(x+ sw)− u(x)| =

∣∣∣∣∫ s

0

d

dt
u(x+ tw)dt

∣∣∣∣
=

∣∣∣∣∫ s

0
Du(x+ tw) · wdt

∣∣∣∣
≤

∫ s

0
|Du(x+ sw)| dt.
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Now we integrate w over ∂B(0, 1) to obtain∫
∂B(0,1)

|u(x+ sw)− u(x)| dS ≤
∫ s

0

∫
∂B(0,1)

|Du(x+ sw)| dSdt

=

∫
B(x,s)

|Du(y)|
|x− y|n−1

dy

≤
∫
B(x,r)

|Du(y)|
|x− y|n−1

dy.

Multiply both sides by sn−1 and integrate over s ∈ (0, r) and we obtain (1.23).
To establish the bound on ‖u‖C0(Rn), we observe that, by (1.23), for x ∈ Rn,

|u(x)| ≤ 1

|B(x, 1)|

∫
B(x,1)

|u(y)− u(x)| dy +
1

|B(x, 1)|

∫
B(x,1)

|u(y)| dy

≤ C

(∫
Rn
|Du(y)|p dy

)1/p
(∫

B(x,1)
|y − x|

(1−n)p
p−1 dy

) p−1
p

+ C‖u‖Lp(Rn)

≤ C‖u‖W 1,p(Rn)

for n < p ≤ ∞, where C is a constant depending on p, n; here we have used the fact∫
B(x,1)

|y − x|
(1−n)p
p−1 dy = ωn

p− 1

p− n
<∞ ∀n < p ≤ ∞.

To establish the bound on the semi-norm [u]γ , γ = 1− n
p , take any two points x, y ∈ Rn.

Let r = |x− y| and W = B(x, r) ∩B(y, r). Then

(1.24) |u(x)− u(y)| ≤ 1

|W |

∫
W
|u(x)− u(z)| dz +

1

|W |

∫
W
|u(y)− u(z)| dz.

Note that |W | = βrn, r = |x − y| and
∫
W ≤ min{

∫
B(x,r),

∫
B(y,r)}. Hence, using (1.23), by

Hölder’s inequality, we obtain∫
W
|u(x)− u(z)| dz ≤

∫
B(x,r)

|u(x)− u(z)| dz ≤ rn

n

∫
B(x,r)

|Du(z)||x− z|1−n dz

≤ rn

n

(∫
B(x,r)

|Du(z)|p dz

)1/p (∫
B(x,r)

|z − x|
(1−n)p
p−1 dz

) p−1
p

≤ C rn ‖Du‖Lp(B(x,r))

(∫ r

0
s

(1−n)p
p−1 sn−1 ds

) p−1
p

≤ C rn+γ‖Du‖Lp(B(x,r))

for n < p ≤ ∞, where γ = 1− n
p and C = Cn( p−1

p−n)
p−1
p ; similarly,∫

W
|u(y)− u(z)| dz ≤ C rn+γ‖Du‖Lp(B(y,r)).

Hence, by (1.24) and noting that B(x, r) ∪B(y, r) ⊂ B(x, 2r), we have

(1.25) |u(x)− u(y)| ≤ C |x− y|γ‖Du‖Lp(B(x,2r)) ∀ y ∈ B(x, r).

This inequality, also of independent importance itself, and the bound on ‖u‖C0 above com-
plete the proof. �
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Theorem 1.37. (Estimates for W 1,p(Ω), n < p ≤ ∞) Let Ω ⊂ Rn be bounded and open,
with ∂Ω ∈ C1. Assume n < p ≤ ∞, and u ∈ W 1,p(Ω). Then, after possibly redefining u on

a null set, u ∈ C0,1−n
p (Ω̄) and

‖u‖
C

0,1−np (Ω̄)
≤ C‖u‖W 1,p(Ω)

where the constant C depends only on p, n and Ω.

Proof. Since ∂Ω ∈ C1, there exists an extension U ∈ W 1,p(Rn) such that U = u in Ω, U
has compact support K and

(1.26) ‖U‖W 1,p(Rn) ≤ C1(n, p,Ω,K)‖u‖W 1,p(Ω).

1. First assume n < p < ∞. Since U has compact support, the mollified functions
um ∈ C∞0 (Rn) of U satisfy that um → U in W 1,p(Rn). According to Morrey’s inequality,

‖um − ul‖C0,1−n/p(Rn) ≤ C2(n, p)‖um − ul‖W 1,p(Rn)

for all l,m ≥ 1; whence there is a function u∗ ∈ C0,1−n/p(Rn) such that um → u∗ in

C0,1−n/p(Rn). Thus u∗ = u a.e. in Ω. Since we also have

‖um‖C0,1−n/p(Rn) ≤ C2(n, p)‖um‖W 1,p(Rn)

we get in the limit that

(1.27) ‖u∗‖C0,1−n/p(Rn) ≤ C2(n, p)‖U‖W 1,p(Rn).

This inequality and (1.26) complete the proof if n < p <∞.
2. Assume p = ∞. Note that the constants C1 and C2 in (1.26) and (1.27) remain

bounded as p→∞. Thus u∗ determined above is also in C0,1(Rn) with the C0,1-norm less
than or equal to C‖u‖W 1,∞(Ω). �
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1.6.3. General Embedding Theorems. We can now combine the above estimates to
obtain more general embedding theorems.

We summarize these results in the following theorem.

Theorem 1.38. (General Sobolev Inequalities) Let Ω ⊂ Rn be bounded and open with
∂Ω ∈ C1. Assume 1 ≤ p ≤ ∞ and k is a positive integer.

(a) Let 0 ≤ j < k, 1 ≤ p, q <∞ and 1
q = 1

p −
k−j
n . Then

W k,p(Ω) ⊂W j,q(Ω).

In particular, if kp < n and q = np/(n− kp), then

W k,p(Ω) ⊂ Lq(Ω);

that is,

(1.28) ‖u‖Lq(Ω) ≤ C‖u‖Wk,p(Ω),

where the constant C depends only on k, p, n and Ω.
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(b) If kp = n and 1 ≤ r <∞, then

W k,p(Ω) ⊂ Lr(Ω);

that is,

(1.29) ‖u‖Lr(Ω) ≤ C‖u‖Wk,p(Ω),

where the constant C depends only on k, p, r, n and Ω.

(c) If kp > n and m = k − [np ]− 1, then

W k,p(Ω) ⊂ Cm,γ(Ω̄);

that is,

(1.30) ‖u‖Cm,γ(Ω̄) ≤ C‖u‖Wk,p(Ω),

where

γ =

{
[np ] + 1− n

p if n
p is not an integer,

any positive number < 1 if n
p is an integer,

and the constant C depends only on k, p, n, γ and Ω.

All above results are valid for W k,p
0 (Ω) spaces on arbitrary bounded domains Ω.

Proof. (a) Assume 0 ≤ j < k, 1 ≤ p, q < ∞ with 1
q = 1

p −
k−j
n . Let u ∈ W k,p(Ω). Since

Dαu ∈ Lp(Ω) for all |α| ≤ k, the Gagliardo-Nirenberg-Sobolev inequality implies

‖Dβu‖Lp∗ (Ω) ≤ C‖u‖Wk,p(Ω)

if |β| ≤ k − 1, and so u ∈ W k−1,p∗(Ω). Moreover, ‖u‖k−1,p∗ ≤ c‖u‖k,p. Similarly, we find

u ∈W k−2,p∗∗(Ω), where
1

p∗∗
=

1

p∗
− 1

n
=

1

p
− 2

n
.

Moreover, ‖u‖k−2,p∗∗ ≤ c‖u‖k−1,p∗ . Continuing, this proves W k,p(Ω) ⊂W j,q(Ω).

In particular, with j = 0, we have that W k,p(Ω) ⊂W 0,q(Ω) = Lq(Ω) with 1
q = 1

p −
k
n .

The stated estimate (1.28) follows from combining the relevant estimates at each stage of
the above argument.

(b) Assume kp = n and 1 ≤ r < ∞. Then there exists a p′ ∈ (1, p) such that kp′ < n

and q′ = np′

n−kp′ > r. Thus

W k,p(Ω) ⊂W k,p′(Ω) ⊂ Lq′(Ω) ⊂ Lr(Ω).

(c) Assume kp > n and m = k − [np ]− 1. As proved above, W k,p(Ω) ⊂W j,q(Ω) if

(1.31) 0 <
1

q
=

1

p
− k − j

n
≤ 1.

(i) Assume n
p is not an integer. Let j = k− [np ] = m+1. Thus q > n and hence, by Mor-

rey’s inequality and induction, W j,q(Ω) ⊂ C
j−1,1−n

q (Ω̄); hence W k,p(Ω) ⊂ C
j−1,1−n

q (Ω̄).
But j − 1 = m and 1− n

q = γ in this case.

(ii) Assume n
p is an integer. In this case, let j = k + 1 − n

p = m + 2 in (1.31); then

q = n. So W k,p(Ω) ⊂Wm+2,n(Ω) ⊂Wm+1,r(Ω) ⊂ Cm,1−
n
r (Ω̄) for all n < r <∞. The result

follows in this case if γ = 1− n
r .
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In a similar manner the embeddings for W k,p
0 (Ω) can be established without the smooth-

ness of ∂Ω.

�

1.7. Compactness

We now consider the compactness of the embeddings. Note that if X and Y are Banach
spaces with X ⊂ Y then we say that X is compactly embedded in Y , written X ⊂⊂ Y ,
provided

(i) ‖u‖Y ≤ C‖u‖X (u ∈ X) for some constant C; that is, the embedding is continuous;

(ii) each bounded sequence in X has a convergent subsequence in Y .

We summarize the compactness results in the following theorem. Parts (a) and (b) are
also called the Rellich-Kondrachov Compactness Theorem.

Theorem 1.39. (Compactness Theorem) Let Ω ⊂ Rn be bounded and open.
If 1 ≤ p < n, then

(a) the embedding W 1,p
0 (Ω) ⊂ Lq(Ω) is compact for each 1 ≤ q < np/(n− p);

(b) assuming ∂Ω ∈ C1, the embedding W 1,p(Ω) ⊂ Lq(Ω) is compact for each 1 ≤
q < np/(n− p).

If p = n, then

(c) assuming ∂Ω ∈ C1, the embedding W 1,p(Ω) ⊂ Lq(Ω) is compact for each 1 ≤
q <∞.

If p > n, then

(d) assuming ∂Ω ∈ C1, the embedding W 1,p(Ω) ⊂ C0,α(Ω̄) is compact for each
0 ≤ α < 1− (n/p).

If 1 < p <∞, then

(e) assuming ∂Ω ∈ C1, γ0 : W 1,p(Ω)→ Lp(∂Ω) is compact.
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Proof. (a)&(b) We prove (b) as the proof of (a) is similar. Let 1 ≤ p < n and 1 ≤ q < p∗.
Assume {um} is a bounded sequence in W 1,p(Ω). By extension, we assume each um has
compact support in a bounded open set V in Rn and {um} is a bounded sequence in
W 1,p(V ). Let

uεm = ωε ∗ um
be the mollifying sequence of um. We also assume each uεm has compact support in V as
well.

(i) We first claim that

(1.32) lim
ε→0
‖uεm − um‖Lq(Ω) = 0 uniformly in m.

To prove this, note that if um is smooth then

uεm(x)− um(x) =
1

εn

∫
B(x,ε)

ω(
x− z
ε

)(um(z)− um(x)) dz
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= −ε
∫
B(0,1)

ω(y)

∫ 1

0
Dum(x− εty) · y dtdy.

Thus∫
V
|uεm(x)− um(x)| dx ≤ ε

∫
B(0,1)

ω(y)

∫ 1

0

∫
V
|Dum(x− εty)| dxdtdy ≤ ε

∫
V
|Dum(z)| dz.

By approximation, this estimate holds if um ∈W 1,p(V ). Hence

‖uεm − um‖L1(V ) ≤ ε‖Dum‖L1(V ) ≤ εC‖Dum‖Lp(V ).

(In fact, the similar estimate also shows that ‖uεm − um‖Lp(V ) ≤ ε‖Dum‖Lp(V ), which is
enough for (1.32) if 1 ≤ q ≤ p.) In general, to estimate the Lq-norm, we use the interpo-
lation inequality for Lp norms to have

‖uεm − um‖Lq(V ) ≤ ‖uεm − um‖θL1(V )‖u
ε
m − um‖1−θLp

∗ (V )
,

where θ ∈ (0, 1] is such that 1
q = θ + (1 − θ) 1

p∗ ; namely θ = p∗−q
q(p∗−1) . Therefore, since {um}

and {uem} are bounded in W 1,p(V ), we have

‖uεm − um‖Lq(V ) ≤ Cεθ

for a constant C independent of m, which proves (1.32).

(ii) Next we claim that for each ε > 0 the sequence {uεm}∞m=1 is uniformly bounded and
equicontinuous in C(V̄ ). This is easy from

‖uεm‖L∞(V ) = ‖ωε ∗ um‖L∞(V ) ≤ ‖ωε‖L∞‖um‖L1(V ) ≤
C

εn

and

‖Duεm‖L∞(V ) = ‖Dωε ∗ um‖L∞(V ) ≤ ‖Dωε‖L∞‖um‖L1(V ) ≤
C

εn+1
.

(iii) Given each δ > 0, we claim that there exists a subsequence {umj} such that

lim sup
j,k→∞

‖umj − umk‖Lq(V ) ≤ δ.

To see this, first select ε > 0 such that ‖uεm − um‖Lq(V ) < δ/2 for all m. Then, since {uεm}
is uniformly bounded and equicontinuous in C(V̄ ), by the Arzela-Ascoli theorem, we
obtain a subsequence {uεmj} of {uεm} which converges uniformly on V̄ . In partcular,

lim sup
j,k→∞

‖uεmj − u
ε
mk
‖Lq(V ) = 0.

Hence, by the triangle inequality,

lim sup
j,k→∞

‖umj − umk‖Lq(V ) ≤ δ.

(iv) To obtain a subsequence of {um} which converges in Lq(V ), we use δ = 1, 1
2 ,

1
3 , . . .

and a standard diagonalization process. This completes the proof of (a)&(b).

(c) Let {um} be a bounded sequence in W 1,n(Ω) and 1 ≤ q < ∞. Take a number
p ∈ (1, n) such that q < p∗ = np

n−p . Then {um} is also bounded in W 1,p(Ω). By (b), {um}
has a subsequence which converges in Lq(Ω); this proves (c).

(d) By Morrey’s inequality, the embedding is continuous if β = 1− (n/p). Now use the
fact that C0,β is compact in C0,α if α < β. Hint: Use the interpolation inequality for
Hölder nomrs

[u]C0,α ≤ [u]
α/β

C0,β‖u‖
1−α/β
L∞ .
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(Exercise!)

(e) Let 1 < p < ∞ and {um} be a bounded sequence in W 1,p(Ω). By the inequality
(1.11),

(1.33) ‖γ0um‖pLp(∂Ω) ≤
c1

β
1
p−1

‖um‖pLp(Ω) + C2β ∀ 0 < β < 1,

where the constants c1, C2 do not depend on um or β. By (b)-(d), {um} has a subsequence
{umj} which is Cauchy in Lp(Ω): given 0 < ε < 1, an N can be found such that

‖umj − umk‖Lp(Ω) < ε
1
p−1 ∀ j, k ≥ N.

Now choose β = ε and apply the inequality (1.33) to umj − umk to obtain

‖γ0umj − γ0umk‖
p
Lp(∂Ω) ≤ (c1 + C2)ε ∀ j, k ≥ N ;

this shows that the sequence {γ0umj} is Cauchy and thus converges in Lp(∂Ω). �

Noncompact Embeddings. We point out the following noncompact emdedding results.

(i) Unbounded domains. The boundedness of Ω is essential in the above theorem. For
example, let I = (0, 1) and Ij = (j, j + 1). Let f ∈ C1

0 (I) and define fj to be the same
function defined on Ij by translation. We can normalize f so that ‖f‖W 1,p(I) = 1. The same

is then true for each fj and thus {fj} is a bounded sequence in W 1,p(R). Clearly f ∈ Lq(R)
for every 1 ≤ q ≤ ∞. Further, if

‖f‖Lq(R) = ‖f‖Lq(I) = a > 0

then for any j 6= k we have

‖fj − fk‖qLq(R) =

∫ j+1

j
|fj |q +

∫ k+1

k
|fk|q = 2aq

and so fi cannot have a convergent subsequence in Lq(R). Thus none of the embeddings
W 1,p(R) ⊂ Lq(R) can be compact. This example generalizes to n dimensional space and to
open sets like a half-space.

(ii) Critical powers. The embedding W 1,p
0 (Ω) ⊂ Lp∗(Ω) is not compact if Ω is bounded open

and 1 ≤ p < n. For example, let {B(ai, ri)} be a family of disjoint open balls compactly
supported in Ω. Take a nontrivial function φ ∈ C∞0 (B(0, 1)). Let

φi(x) =

{
r

1−n
p

i φ(x−airi
) if x ∈ B(ai, ri),

0 if x ∈ Ω \B(ai, ri).

Then φi ∈W 1,p
0 (Ω) and Dφi(x) = r

−n
p

i Dφ(x−airi
)χB(ai,ri)(x); thus

‖φi‖Lp(Ω) = ri‖φ‖Lp(B(0,1)), ‖Dφi‖Lp(Ω) = ‖Dφ‖Lp(B(0,1)).

Since {ri} is bounded, it follows that {φi} is a bounded sequence in W 1,p
0 (Ω). But, for all

i 6= j, since B(ai, ri) ∩B(aj , rj) = ∅,

‖φi − φj‖p
∗

Lp∗ (Ω)
= ‖φi‖p

∗

Lp∗ (Ω)
+ ‖φj‖p

∗

Lp∗ (Ω)
= 2‖φ‖p

∗

Lp∗ (B(0,1))
.

Hence {φi} cannot have a subsequence which is Cauchy in Lp
∗
(Ω).
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1.8. Additional Topics

1.8.1. Equivalent Norms of W 1,p(Ω).

Definition 1.13. Two norms ‖ · ‖ and | · | on a vector space X are equivalent if there
exist constants c1, c2 ∈ (0,∞) such that

c1‖x‖ ≤ |x| ≤ c2‖x‖ for all x ∈ X.

Note that the property of a set to be open, closed, compact, or complete in a normed space
is not affected if the norm is replaced by an equivalent norm.

Recall that a seminorm q on a vector space has all the properties of a norm except
that q(u) = 0 need not imply u = 0.

Theorem 1.40. Let Ω be bounded domain (open, connected) in Rn with ∂Ω ∈ C1 and
1 ≤ p <∞. Set

‖u‖ =

(∫
Ω

n∑
i=1

|Diu|pdx+ (q(u))p

)1/p

where q : W 1,p(Ω)→ R is a seminorm with the following two properties:

(i) There is a constant d > 0 such that

q(u) ≤ d‖u‖1,p ∀u ∈W 1,p(Ω).

(ii) If u = constant, then q(u) = 0 implies u = 0.

Then ‖ · ‖ is an equivalent norm on W 1,p(Ω).

Proof. It is easy to check that ‖ · ‖ satisfies the triangle inequality and ‖ku‖ = |k|‖u‖ for
all k ∈ R, u ∈ W 1,p(Ω). Furthermore, if ‖u‖ = 0 then Du = 0 and q(u) = 0. Since Ω is
connected, this implies u = C is constant (Exercise!) and q(C) = 0; thus by (ii), C = 0.
This proves ‖u‖ defines a norm on W 1,p(Ω).

To show ‖u‖ is equivalent to ‖u‖1,p, by (i), it suffices to prove that there is a constant
c > 0 such that

(1.34) ‖u‖1,p ≤ c‖u‖ ∀u ∈W 1,p(Ω).

We use a compactness proof. Suppose (1.34) is false. Then there exists a sequence vn ∈
W 1,p(Ω) such that ‖vn‖1,p > n‖vn‖. Set un = vn/‖vn‖1,p. So

(1.35) ‖un‖1,p = 1 and 1 > n‖un‖.

According to Theorem 1.39, there is a subsequence, call it again {un}, which converges to u
in Lp(Ω). From (1.35) we have ‖un‖ → 0 and therefore Dun → 0 in Lp(Ω) and q(un)→ 0.
From un → u, Dun → 0 both in Lp(Ω), we have u ∈ W 1,p(Ω) and Du = 0 a.e. in Ω;
hence u = C, a constant, a.e. in Ω, which implies un → C in W 1,p(Ω). Since ‖un‖1,p = 1,
it follows that ‖C‖1,p = 1 and thus C 6= 0. However, since q is semi-norm, by (i), we have
|q(un) − q(C)| ≤ q(un − C) ≤ d‖un − C‖1,p → 0, and thus q(C) = 0, which implies C = 0
by (ii). We thus derive a contradiction. �
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Example 1.41. Let Ω be a bounded domain in Rn with ∂Ω ∈ C1. Assume a(x) ∈
C(Ω), σ(x) ∈ C(∂Ω) with a ≥ 0 (6≡ 0), σ ≥ 0 (6≡ 0). Then the following norms are
equivalent to ‖ · ‖1,p on W 1,p(Ω):

(1.36) ‖u‖ =

(∫
Ω

n∑
i=1

|Diu|pdx+

∣∣∣∣∫
Ω
udx

∣∣∣∣p
)1/p

with q(u) =
∣∣∫

Ω udx
∣∣ .

(1.37) ‖u‖ =

(∫
Ω

n∑
i=1

|Diu|pdx+

∣∣∣∣∫
∂Ω
γ0udS

∣∣∣∣p
)1/p

with q(u) =
∣∣∫
∂Ω γ0udS

∣∣ .

(1.38) ‖u‖ =

(∫
Ω

n∑
i=1

|Diu|pdx+

∫
∂Ω
σ|γ0u|pdS

)1/p

with q(u) =
(∫
∂Ω σ|γ0u|pdS

)1/p
.

(1.39) ‖u‖ =

(∫
Ω

n∑
i=1

|Diu|pdx+

∫
Ω
a|u|pdx

)1/p

with q(u) =
(∫

Ω a|u|
pdx
)1/p

.

Clearly property (ii) of Theorem 1.40 is satisfied for each of these semi-norms q(u). In order
to verify condition (i), one uses the trace theorem in (1.37) and (1.38).

Theorem 1.42. (Poincaré’s inequalities) Let Ω be a bounded domain in Rn with ∂Ω ∈
C1 and 1 ≤ p < ∞. Then there exist constants C1, C2 depending only on p, n and Ω such
that

(1.40)

∫
Ω
|u(x)|pdx ≤ C1

∫
Ω

n∑
i=1

|Diu|pdx ∀u ∈W 1,p
0 (Ω),

and

(1.41)

∫
Ω
|u(x)− (u)Ω|pdx ≤ C2

∫
Ω

n∑
i=1

|Diu|pdx ∀u ∈W 1,p(Ω).

Proof. For (1.40), use the equivalent norm (1.37), while for (1.41), use the equivalent norm
(1.36) for function u− (u)Ω. Note that by the Sobolev embedding, (1.40) also holds for all
bounded open sets Ω. �

1.8.2. Difference Quotients. For later use in elliptic regularity theory, we study the
difference quotient approximations to weak derivatives.

Assume u ∈ L1
loc(Ω). Let {e1, · · · , en} be the standard basis of Rn. Define the i-th

difference quotient of size h of u by

Dh
i u(x) =

u(x+ hei)− u(x)

h
, h 6= 0.

Then Dh
i u is defined on Ωh,i = {x ∈ Ω |x+ hei ∈ Ω}. Note that

Ωh = {x ∈ Ω | dist(x; ∂Ω) > |h|} ⊂ Ωh,i.

We have the following properties of Dh
i u. (Exercise!)
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Lemma 1.43. (a) If u ∈W 1,p(Ω) then Dh
i u ∈W 1,p(Ωh,i) and

D(Dh
i u) = Dh

i (Du) on Ωh,i.

(b) (integration-by-parts) If either u or v has compact support Ω′ ⊂⊂ Ω then∫
Ω
uDh

i v dx = −
∫

Ω
v D−hi u dx ∀ 0 < |h| < dist(Ω′; ∂Ω).

(c) (product rule) Dh
i (φu)(x) = φ(x)Dh

i u(x) + u(x+ hei)D
h
i φ(x).

Theorem 1.44. (Difference quotient and weak derivatives)

(a) Let u ∈ W 1,p(Ω). Then Dh
i u ∈ Lp(Ω′) for any Ω′ ⊂⊂ Ω and 0 < |h| < dist(Ω′; ∂Ω).

Moreover,

‖Dh
i u‖Lp(Ω′) ≤ ‖Diu‖Lp(Ω).

(b) Let u ∈ Lp(Ω), 1 < p <∞, and Ω′ ⊂⊂ Ω. If there exists a constant K > 0 such that

lim inf
h→0

‖Dh
i u‖Lp(Ω′) ≤ K,

then the weak derivative Diu exists in Ω′ and satisfies ‖Diu‖Lp(Ω′) ≤ K.

Assertion (b) is false if p = 1. (Exercise!)

Lecture 15 – 2/13/19

Proof. (a) First assume u ∈ C1(Ω) ∩W 1,p(Ω) and 0 < h < dist(Ω′, ∂Ω). Then

Dh
i u(x) =

1

h

∫ h

0
Diu(x+ tei) dt;

thus, by Hölder’s inequality,

|Dh
i u(x)|p ≤ 1

h

∫ h

0
|Diu(x+ tei)|p dt,

and hence, ∫
Ω′
|Dh

i u(x)|p dx ≤ 1

h

∫ h

0

∫
Bt(Ω′)

|Diu(y)|p dy dt ≤
∫

Ω
|Diu|p dx,

where Bt(Ω
′) = {x ∈ Ω | dist(x; Ω′) < t} ⊂ Bh(Ω′) ⊂ Ω for all 0 < t < h. The extension of

this inequality to arbitrary functions inW 1,p(Ω) follows by a straight-forward approximation
argument. The same inequality also holds when 0 < −h < dist(Ω′, ∂Ω).

(b) Since 1 < p < ∞, there exists a sequence {hm} tending to zero and a function

v ∈ Lp(Ω′) with ‖v‖p,Ω′ ≤ K such that Dhm
i u ⇀ v in Lp(Ω′) as m→∞. This implies that

for all φ ∈ C∞0 (Ω′)

lim
m→∞

∫
Ω′
φDhm

i u dx =

∫
Ω′
φv dx.

Now for |hm| < dist(suppφ; ∂Ω′), we have∫
Ω′
φDhm

i u dx = −
∫

Ω′
uD−hmi φdx.

Since Dhm
i u ⇀ v in Lp(Ω′) and D−hmi φ→ Diφ uniformly on Ω′ as hm → 0, we have∫

Ω′
φv dx = −

∫
Ω′
uDiφdx,
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which shows v = Diu ∈ Lp(Ω′) in the weak sense and ‖Diu‖Lp(Ω′) ≤ K. �

Remark 1.14. Variants of Theorem 1.44 can be valid even for domains Ω′ ⊂ Ω with
∂Ω′∩∂Ω 6= ∅. For example if Ω is the open half-ballB(0, 1)∩{xn > 0}, Ω′ = B(0, 1/2)∩{xn >
0}, and if u ∈ W 1,p(Ω), then we have the bounds on all the tangential difference quotients
(but not the normal difference quotient) on the part of xn = 0:

‖Dh
i u‖Lp(Ω′) ≤ ‖Diu‖Lp(Ω) ∀ 1 ≤ i ≤ n− 1, 0 < |h| < 1/2.

Also, if u ∈ Lp(Ω) and for some i = 1, 2, . . . , n− 1,

lim inf
h→0

‖Dh
i u‖Lp(Ω′) ≤ K,

then Diu exists in Lp(Ω′) and ‖Diu‖Lp(Ω′) ≤ K.
We will need this remark for studying elliptic boundary regularity later.

1.8.3. Lipschitz Functions and W 1,∞(Ω).

Theorem 1.45. Let Ω be open bounded and ∂Ω ∈ C1. Then u is Lipschitz continuous in
Ω if and only if u ∈W 1,∞(Ω).

Proof. By Theorem 1.37, we only need to show that if u is Lipschitz continuous in Ω then
u ∈W 1,∞(Ω). Assume u is Lipschitz in Ω̄. Define ũ : Rn → R by

ũ(x) = min
y∈Ω̄
{u(y) + [Du]C0,1(Ω)|y − x|} ∀x ∈ Rn.

Then ũ(x) = u(x) for all x ∈ Ω̄ and ũ is Lipschitz continuous on Rn with [Dũ]C0,1 =
[Du]C0,1(Ω). (Exercise!) For the difference quotient of ũ, we have

‖D−hi ũ‖L∞(Rn) ≤ [Du]C0,1(Ω)

for all h 6= 0. Hence {D−hi ũ} is bounded in L2
loc(Rn) and thus there exists a function

vi ∈ L2
loc(Rn) such that

D−hki ũ ⇀ vi weakly in L2
loc(Rn),

for a subsequence {D−hki ũ} with hk → 0. Clearly ‖vi‖L∞(Rn) ≤ [Du]C0,1(Ω). We now show
vi|Ω = Diu weakly in Ω. Given φ ∈ C∞0 (Ω) ⊂ C∞0 (Rn),∫

Ω
uφxi dx = lim

hk→0

∫
Rn
ũDhk

i φdx = − lim
hk→0

∫
Rn

(D−hki ũ)φdx

= −
∫
Rn
viφdx = −

∫
Ω
viφdx.

This proves vi|Ω = Diu weakly in Ω. Hence u ∈W 1,∞(Ω). �

Theorem 1.46. Let u ∈ W 1,p
loc (Ω) for some n < p ≤ ∞. Then u differentiable a.e. in Ω

and its gradient equals its weak gradient a.e.

Proof. Assume n < p <∞; the case p =∞ follows easily. By Morrey’s theorem, we assume
u is Hölder continuous on Ω̄. Let Du be the weak gradient of u. Then Du ∈ Lploc(Ω). Hence,
for a.e. x ∈ Ω,

lim
r→0

∫
−
B(x,r)

|Du(x)−Du(z)|p dz = 0.

Fix any such point x and consider function

v(y) = u(y)− u(x)−Du(x) · (y − x).
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Then v ∈W 1,p
loc (Ω) and thus, by (1.25), for all y ∈ Ω with |y − x| < 1

2 dist(x, ∂Ω),

|v(y)− v(x)| ≤ Cr1−n
p

(∫
B(x,2r)

|Dv(z)|p dz

)1/p

,

where r = |x− y|. This inequality gives

|u(y)− u(x)−Du(x) · (y − x)| ≤ Cr

(∫
−
B(x,2r)

|Du(x)−Du(z)|p dz

)1/p

= o(|x− y|)

as y → x. Hence, u is differentiable at x with Jacobian gradient Du = Du(x). �

Theorem 1.47. (Rademacher’s Theorem) Every locally Lipschitz continuous function
is differentiable almost everywhere.

1.8.4. Fourier Transform Methods. For a function u ∈ L1(Rn), we define the Fourier
transform of u by

û(y) =
1

(2π)n/2

∫
Rn
e−ix·yu(x) dx ∀ y ∈ Rn,

and the inverse Fourier transform by

ǔ(y) =
1

(2π)n/2

∫
Rn
eix·yu(x) dx ∀ y ∈ Rn.

Theorem 1.48. (Plancherel’s Theorem) Assume u ∈ L1(Rn) ∩ L2(Rn). Then û, ǔ ∈
L2(Rn) and

‖û‖L2(Rn) = ‖ǔ‖L2(Rn) = ‖u‖L2(Rn).

Since L1(Rn) ∩ L2(Rn) is dense in L2(Rn), we can use this result to extend the Fourier
transforms onto L2(Rn). We still use the same notations for them.

Theorem 1.49. (Properties of Fourier Tranforms) Assume u, v ∈ L2(Rn). Then

(i)
∫
Rn uv̄ dx =

∫
Rn û

¯̂v dy,

(ii) D̂αu(y) = (iy)αû(y) for each multiindex α such that Dαu ∈ L2(Rn),

(iii) u = ˇ̂u.

Next we use the Fourier transform to characterize the spaces Hk(Rn).

Theorem 1.50. Let k be a nonnegative integer. Then, a function u ∈ L2(Rn) belongs to
Hk(Rn) if and only if

(1 + |y|k)û(y) ∈ L2(Rn).

In addition, there exists a constant C such that

C−1 ‖u‖Hk(Rn) ≤ ‖(1 + |y|k) û‖L2(Rn) ≤ C ‖u‖Hk(Rn)

for all u ∈ Hk(Rn).

Proof. 1. Assume u ∈ Hk(Rn). Then Dαu ∈ L2(Rn) for all multiindices α with |α| ≤
k. Hence D̂αu = (iy)αû ∈ L2(Rn) with ‖Dαu‖L2 = ‖D̂αu‖L2 = ‖yαû‖L2 . With α =
(k, 0, . . . , 0), . . . , α = (0, . . . , 0, k), we have∫

Rn
|y|2k|û|2dy ≤ C

∫
Rn
|Dku|2dx
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and hence ∫
Rn

(1 + |y|k)2|û|2dy ≤ C‖u‖2Hk(Rn) <∞.

2. Suppose (1 + |y|k)û ∈ L2(Rn). Let |α| ≤ k. Then

‖(iy)αû‖2L2(Rn) ≤
∫
Rn
|y|2|α||û|2dy ≤ C‖(1 + |y|k)û‖L2(Rn) <∞.

Let uα = ((iy)αû)∨ ∈ L2(Rn). Then, for all φ ∈ C∞0 (Rn),∫
Rn

(Dαφ)ūdx =

∫
Rn
D̂αφ¯̂udy =

∫
Rn

(iy)αφ̂¯̂udy = (−1)|α|
∫
Rn
φuαdx.

This proves uα = Dαu (which must be real) in the weak sense. Hence u ∈ Hk(Rn). Clearly,
one also has

‖Dαu‖L2(Rn) = ‖uα‖L2(Rn) = ‖(iy)αû‖2L2(Rn)

≤
∫
Rn
|y|2|α||û|2dy ≤ C‖(1 + |y|k)û‖L2(Rn).

�

Definition 1.15. For any s ≥ 0, define the fractional Sobolev space Hs(Rn) by

Hs(Rn) = {u ∈ L2(Rn) | (1 + |y|s) û ∈ L2(Rn)},
equipped with the norm given by by

‖u‖Hs(Rn) = ‖(1 + |y|s) û‖L2(Rn).

Theorem 1.51. If s > n
2 , then Hs(Rn) ⊂ L∞(Rn).

Proof. Let s > n/2 and u ∈ Hs(Rn). Then

‖û‖L1(Rn) = ‖(1 + |y|s)û (1 + |y|s)−1‖L1(Rn)

≤ ‖(1 + |y|s)û‖L2(Rn)‖(1 + |y|s)−1‖L2(Rn)

≤ C ‖u‖Hs(Rn),

where C = ‖(1 + |y|s)−1‖L2(Rn) <∞ since s > n
2 . Therefore,

‖u‖L∞(Rn) = ‖ˇ̂u‖L∞(Rn) ≤
1

(2π)n/2
‖û‖L1(Rn) ≤

C

(2π)n/2
‖u‖Hs(Rn).

�
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Part II – Second-Order
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Equations
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2.1. Differential Equations in Divergence Form

2.1.1. Linear Elliptic Equations. We study the Dirichlet boundary value problem (BVP)

(2.1)

{
Lu = f in Ω,

u = 0 on ∂Ω.

Here Ω ⊂ Rn denotes a bounded domain, f is a given function in L2(Ω) (or more generally,
an element in the dual space of H1

0 (Ω)) and L is a second-order linear differential
operator having either the divergence form

(2.2) Lu ≡ −
n∑

i,j=1

Di

(
aij(x)Dju

)
+

n∑
i=1

bi(x)Diu+ c(x)u

or else the nondivergence form

Lu ≡ −
n∑

i,j=1

aij(x)Diju+

n∑
i=1

bi(x)Diu+ c(x)u

with given real coefficients aij(x), bi(x) and c(x). We also assume

aij(x) = aji(x) (i, j = 1, . . . , n).

Remark 2.1. If the coefficients aij are C1 functions, then an operator in divergence form
can be rewritten into nondivergence form, and vice versa. However, there are definite
advantages to considering the two different representations of L separately. The divergence
form is most natural for energy methods, based on integration by parts, and nondivergence
form is most appropriate for maximum principle techniques. We focus on the operators in
divergence form.

39
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Definition 2.2. The differential operator L (in either form) is said to be uniformly el-
liptic in Ω if there exists a number θ > 0 such that for almost every x ∈ Ω and every real
vector ξ = (ξ1, . . . , ξn) ∈ Rn

(2.3)
n∑

i,j=1

aij(x)ξiξj ≥ θ
n∑
i=1

|ξi|2.

Or, equivalently, the symmetric matrix A(x) = (aij(x)) is positive definite with smallest
eigenvalue ≥ θ for a.e. x ∈ Ω.

2.1.2. Weak Solutions. We assume Lu is in the divergence form (2.2) and assume aij , bi, c ∈
L∞(Ω) and f ∈ L2(Ω).

How should we define a weak or generalized solution of the equation Lu = f in Ω?
Assume the derivatives appearing in Lu are all classical derivatives; then for a test function
v ∈ C∞0 (Ω) we have by integration by parts∫

Ω

( n∑
i,j=1

aijDjuDiv +
n∑
i=1

bi(Diu)v + cuv
)
dx =

∫
Ω
fv dx.

By approximation we find the same identity holds for all v ∈ H1
0 (Ω). The left-hand side

of this identity also makes sense if only u ∈ H1(Ω). This motivates the definition of weak
solutions.

Definition 2.3. A function u ∈ H1(Ω) is called a weak solution of equation Lu = f in
Ω provided the following variational formulation holds:

(2.4)

∫
Ω

( n∑
i,j=1

aijDjuDiv + (
n∑
i=1

biDiu+ cu)v
)
dx =

∫
Ω
fvdx ∀ v ∈ H1

0 (Ω).

By a weak solution to the Dirichlet BVP (2.1) with L given by (2.2) we mean a weak
solution u of Lu = f in Ω that belongs to H1

0 (Ω).

Exercise 2.4. Consider the following weak formulation: Given f ∈ L2(Ω). Find u ∈ H1(Ω)
satisfying ∫

Ω
Du ·Dvdx =

∫
Ω
fvdx ∀ v ∈ H1(Ω).

Find the boundary value problem solved by u. What is the necessary condition for the
existence of such a u?

To study the existence of weak solutions and the equations Lu = f with more general
right-hand side f , we need some functional analysis.

2.1.3. Some Functional Analysis.

Definition 2.5. Let X be a normed vector space with norm ‖ · ‖. The dual space of X,
denoted by X∗, is the space of all linear bounded functionals f : X → R with the norm

‖f‖X∗ = sup{〈f, u〉 | u ∈ X, ‖u‖ ≤ 1},

where 〈 , 〉 is the pairing between X and X∗; namely, 〈f, u〉 = f(u) for all f ∈ X∗ and
u ∈ X.

Theorem 2.1. X∗ with the given norm is always a Banach space.
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Theorem 2.2. (Riesz Representation Theorem) Let H be a (real) Hilbert space with
inner product (·, ·) and norm ‖ · ‖. Then, for each f ∈ H∗, there exists a unique u ∈ H such
that

(2.5) 〈f, v〉 = (u, v) ∀ v ∈ H.
Moreover, the map J : H∗ → H defined by Jf = u is a linear isometry from H∗ onto H;
that is, J is one-to-one and onto and ‖f‖H∗ = ‖Jf‖ for all f ∈ H∗.

Proof. Let f ∈ H∗. Clearly, the element u satisfying (2.5) is unique; we prove the existence
of such a u ∈ H. If f ≡ 0 then let u = Jf = 0. Assume f 6= 0. Then 〈f, x〉 6= 0 for some
x ∈ H. Let

V = {y ∈ H : 〈f, y〉 = 0}.
Then V is a closed subspace of H and V 6= H since x /∈ V. Let

µ = inf
y∈V
‖x− y‖.

The following is a direct method of Calculus of Variations. There exists a sequence
yn ∈ V such that ‖yn − x‖ → µ. Note that, for n,m = 1, 2, . . . ,

‖ym − yn‖2 = 2(‖ym − x‖2 + ‖yn − x‖2)− 4‖ym + yn
2

− x‖2.

Since ym+yn
2 ∈ V and thus ‖ym+yn

2 − x‖ ≥ µ, it follows that

‖ym − yn‖2 ≤ 2(‖ym − x‖2 + ‖yn − x‖2)− 4µ2.

Thus
lim

m,n→∞
‖ym − yn‖2 ≤ 2(µ2 + µ2)− 4µ2 = 0,

which proves that {yn} is Cauchy in H; hence yn → y as n → ∞ for some y0 ∈ H. This
implies ‖y0 − x‖ = µ. Also, as V is closed, one has y0 ∈ V. Therefore,

‖x− y0‖ ≤ ‖x− y‖ ∀ y ∈ V.
This implies that, for each z ∈ V , the quadratic function h(t) = ‖x−y0 +tz‖2 has minimum
at t = 0; hence h′(0) = 0, which gives

(x− y0, z) = 0 ∀ z ∈ V.
Since x /∈ V and y0 ∈ V , one has x− y0 6= 0; hence, let

u =
〈f, x〉
‖x− y0‖2

(x− y0) ∈ H,

so that 〈f, u〉 = ‖u‖2 > 0. For each v ∈ H, let z = v − 〈f,v〉〈f,u〉u. Then

〈f, z〉 = 〈f, v〉 − 〈f, v〉
〈f, u〉

〈f, u〉 = 0

and hence z ∈ V. Consequently (u, z) = 0, and thus

(u, v) =
〈f, v〉
〈f, u〉

(u, u) = 〈f, v〉 ∀ v ∈ H,

proving (2.5). Therefore, Jf = u defines a map J : H∗ → H. Clearly J is linear and one-to-
one. To show J is onto, let u ∈ H and define fu : H → R by 〈fu, v〉 = (u, v) for all v ∈ H.
Then fu ∈ H∗ and J(fu) = u, proving the surjectivity of J onto H. Finally, to show J is
an isometry, let f ∈ H∗ and u = Jf ∈ H. Since

〈f, v〉 = (u, v) ≤ ‖u‖‖v‖ ≤ ‖u‖ ∀ v ∈ H, ‖v‖ ≤ 1,
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it follows that

‖f‖H∗ = sup{〈f, v〉 | v ∈ H, ‖v‖ ≤ 1} ≤ ‖u‖ = ‖Jf‖.

If f = 0 then ‖Jf‖ = ‖u‖ = 0. Assume f 6= 0. Then u = Jf 6= 0 and thus

‖f‖H∗ ≥ 〈f,
u

‖u‖
〉 = (u,

u

‖u‖
) = ‖u‖ = ‖Jf‖.

Therefore ‖Jf‖ = ‖f‖H∗ for all f ∈ H∗. �

For general boundary conditions, we need to study the Dirichlet problem (2.1) with
more general right-hand sides f . For this purpose, we study the dual space of H1

0 (Ω).

Theorem 2.3. (Characterization of H−1(Ω)) Let H−1(Ω) = (H1
0 (Ω))∗. Then, for each

f ∈ H−1(Ω), there exist functions f0, f1, . . . , fn in L2(Ω) such that

(2.6) 〈f, v〉 =

∫
Ω

(
f0v +

n∑
i=1

f iDiv
)
dx ∀ v ∈ H1

0 (Ω).

In this case, we write f = f0 −
∑n

i=1Dif
i. One also has

(2.7) ‖f‖H−1(Ω) = inf

{(∫
Ω

n∑
i=0

|f i|2dx
)1/2 ∣∣∣ f0, f1, . . . , fn ∈ L2(Ω) satisfy (2.6)

}
.

Proof. Note that the inner product in H1
0 (Ω) is defined by

(u, v) =

∫
Ω

(uv +Du ·Dv)dx.

By the Riesz Representation Theorem, there exists a unique u ∈ H1
0 (Ω) such that

〈f, v〉 = (u, v) ∀ v ∈ H1
0 (Ω),

and ‖f‖H−1(Ω) = ‖u‖H1
0 (Ω). This establishes (2.6) with the functions f0 = u, f i = Diu.

To prove (2.7), let g0, . . . , gn be any functions in L2(Ω) such that

〈f, v〉 =

∫
Ω

(
g0v +

n∑
i=1

giDiv
)
dx ∀ v ∈ H1

0 (Ω).

With v = u ∈ H1
0 (Ω) determined above, we have∫

Ω

( n∑
i=0

|f i|2
)
dx =

∫
Ω

(|Du|2 + u2)dx = 〈f, u〉 =

∫
Ω

(
g0f0 +

n∑
i=1

gif i
)
dx.

This implies (why?) ∫
Ω

( n∑
i=0

|f i|2
)
dx ≤

∫
Ω

( n∑
i=0

|gi|2
)
dx.

Hence

‖f‖2H−1(Ω) = ‖u‖2H1
0 (Ω) =

∫
Ω

( n∑
i=0

|f i|2
)
dx ≤

∫
Ω

( n∑
i=0

|gi|2
)
dx,

which proves (2.7). The proof also shows that the infimum in (2.7) is in fact a minimum. �
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Definition 2.6. Let X denote a real vector space. A map B : X × X → R is called a
bilinear form if

B[αu+ βv,w] = αB[u,w] + βB[v, w],

B[w,αu+ βv] = αB[w, u] + βB[w, v]

for all u, v, w ∈ X and all α, β ∈ R.

2.1.4. Weak Solutions for General Right-hand Side f .

Definition 2.7. (i) The bilinear formB[u, v] associated with the divergence form operator
L given by (2.2) is defined by

(2.8) B[u, v] ≡
∫

Ω

( n∑
i,j=1

aijDjuDiv + (
n∑
i=1

biDiu+ cu)v
)
dx

for all u, v ∈ H1(Ω).

(ii) Let f = f0 −
∑n

i=1Dif
i ∈ H−1(Ω), where f0, f1, . . . , fn ∈ L2(Ω). We say that

u ∈ H1(Ω) is a weak solution of Lu = f in Ω provided B[u, v] = 〈f, v〉 for all v ∈ H1
0 (Ω);

that is,∫
Ω

( n∑
i,j=1

aijDjuDiv + (

n∑
i=1

biDiu+ cu)v
)
dx =

∫
Ω

(
f0v +

n∑
i=1

f iDiv
)
dx ∀ v ∈ H1

0 (Ω).

(iii) A weak solution u to the Dirichlet problem

(2.9)

{
Lu = f0 −

∑n
i=1Dif

i in Ω,

u = 0 on ∂Ω

with L given by (2.2) is a weak solution u of Lu = f in Ω that belongs to H1
0 (Ω).

Remark 2.8. For general boundary condition u = g on ∂Ω, we assume g = γ0(w) for some
w ∈ H1(Ω). In this case, let ũ = u− w; then the Dirichlet problem{

Lu = f in Ω,

u = g on ∂Ω

is equivalent to the Dirichlet problem with zero boundary condition{
Lũ = f̃ in Ω,

ũ = 0 on ∂Ω,

where f̃ = f−Lw ∈ H−1(Ω). Therefore, for general boundary value problems it is necessary
to study (2.9) with right-hand side in H−1(Ω).

2.1.5. General Linear PDE Systems in Divergence Form. For N unknown func-
tions, u1, · · · , uN , we write u = (u1, · · · , uN ) and define that u ∈ X(Ω;RN ) if each
uk ∈ X(Ω), where X is a symbol of any function spaces we have learned; for instance,
X = W 1,p, C∞0 , Ck,γ , etc. If u ∈W 1,p(Ω;RN ) then we use Du to denote the N × n Jacobi
matrix

Du = (Diu
k = ∂uk/∂xi)1≤k≤N,1≤i≤n.
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A general second-order linear operator Lu of PDE system in divergence form is given
by

(2.10) Lu = −divA(x, u,Du) + b(x, u,Du),

where A(x, s,Du) = (Aki (x, u,Du)), 1 ≤ i ≤ n, 1 ≤ k ≤ N, and b(x, s,Du) = (bk(x, u,Du)),
1 ≤ k ≤ N, are linear operators of u and Du given by

Aki (x, u,Du) =
∑

1≤l≤N, 1≤j≤n
aklij (x)Dju

l +
∑

1≤l≤N
dkli (x)ul,

bk(x, u,Du) =
∑

1≤j≤n, 1≤l≤N
bklj (x)Dju

l +
∑

1≤l≤N
ckl(x)ul,

(2.11)

with given coefficient functions aklij (x), bkli (x), ckl(x) and dkli (x).

Remark 2.9. Even when N = 1 the form (2.10) with (2.11) is more general than (2.2)
because of the term d(x)u inside A(x, u,Du), which cannot be included into the term
b(x) ·Du if d is not smooth.

Definition 2.10. (i) The bilinear form associated with Lu given by (2.10) and (2.11) is
defined by

(2.12) B[u, v] ≡
∫

Ω

(
aklijDju

lDiv
k + dkli u

lDiv
k + bklj v

kDju
l + cklulvk

)
dx

for all u, v ∈ H1(Ω;RN ); here the conventional summation notation is used (i.e.,
repeated indices are summed up).

(ii) Let F = (f1, . . . , fN ) with fk ∈ H−1(Ω) for each k = 1, 2, . . . , N. A function
u ∈ H1(Ω;RN ) is called a weak solution of Lu = F in Ω provided

B[u, v] = 〈F, v〉 ∀ v ∈ H1
0 (Ω;RN ),

where 〈F, v〉 is the pairing between H1
0 (Ω;RN ) and its dual H−1(Ω;Rn) given by

〈F, v〉 =

N∑
k=1

〈fk, vk〉 for all v = (vk) ∈ H1
0 (Ω;RN ).

(iii) A weak solution u to the Dirichlet BVP

(2.13)

{
Lu = F in Ω,

u = 0 on ∂Ω

is a weak solution u of Lu = F in Ω that belongs to H1
0 (Ω;RN ).

Ellipticity Conditions for Systems.

Definition 2.11. Let Lu be defined by (2.10) and (2.11).

(i) L is said to satisfy the (uniform, strong) Legendre ellipticity condition if there
exists a θ > 0 such that, for almost every x ∈ Ω, it holds

(2.14)
n∑

i,j=1

N∑
k,l=1

aklij (x) ηki η
l
j ≥ θ |η|2 for all N × n matrix η = (ηki ).
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(ii) L is said to satisfy the (uniform, strong) Legendre-Hadamard condition if for
almost every x ∈ Ω, it holds

(2.15)

n∑
i,j=1

N∑
k,l=1

aklij (x) qkqlpipj ≥ θ |p|2|q|2 ∀ p ∈ Rn, q ∈ RN .

Remark 2.12. The Legendre condition (2.14) implies the Legendre-Hadamard condition
(2.15), and they are equivalent if N = 1 or n = 1.

However, if N > 1 and n > 1, then the Legendre-Hadamard condition does not imply
the Legendre ellipticity condition. For example, let n = N = 2 and ε > 0. Define constants
aklij (not uniquely) by

2∑
i,j,k,l=1

aklij ξ
k
i ξ

l
j ≡ det ξ + ε|ξ|2.

Use such aklij ’s to define an operator Lu as above. Show that Lu satisfies the Legendre-
Hadamard condition holds for all ε > 0, but satisfies the Legendre condition if and only if
ε > 1/2.
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2.2. Existence of Weak Solutions

2.2.1. Contraction Mapping Theorem.

Definition 2.13. Let X be a normed vector space. A map T : X → X (not necessarily
linear) is called a contraction if there exists a number θ ∈ [0, 1) such that

(2.16) ‖T (u)− T (v)‖ ≤ θ‖u− v‖ ∀u, v ∈ X.

Theorem 2.4. (Contraction Mapping Theorem) Let X be a Banach space and T : X →
X be a contraction. Then T has a unique fixed point in X; that is, there exists a unique
x ∈ X such that T (x) = x.

Proof. Assume T satisfies (2.16). The fixed point of T must be unique, for if T (x) = x
and T (y) = y then ‖x− y‖ = ‖T (x)−T (y)‖ ≤ θ‖x− y‖ and thus ‖x− y‖ = 0 as 0 ≤ θ < 1.
We now prove the existence of a fixed point. Fix any x0 ∈ X. Let

x1 = T (x0), x2 = T (x1), · · · , xn = T (xn−1), · · ·

Then {xn} is a sequence in X satisfying

‖xn − xn−1‖ = ‖T (xn−1)− T (xn−2)‖ ≤ θ‖xn−1 − xn−2‖ ≤ · · · ≤ θn−1‖x1 − x0‖.

Hence, for all m > n ≥ 0,

‖xm − xn‖ ≤
m−1∑
i=n

‖xi+1 − xi‖ ≤ ‖x1 − x0‖
m−1∑
i=n

θi ≤ ‖x1 − x0‖
∞∑
i=n

θi = ‖x1 − x0‖
θn

1− θ
.

This shows that {xn} is Cauchy in X; thus, xn → x for some x ∈ X. Hence

‖x− T (x)‖ ≤ ‖x− xn‖+ ‖T (xn−1)− T (x)‖ ≤ ‖xn − x‖+ θ‖xn−1 − x‖ → 0,

which shows that x is a fixed point of T . �
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2.2.2. Lax-Milgram Theorem. Let H denote a real Hilbert space with inner product
(·, ·) and norm ‖ · ‖. We denote by 〈, 〉 the pairing between H and its dual H∗.

The following theorem generalizes the Riesz Representation Theorem.

Theorem 2.5. (Lax-Milgram Theorem) Let B : H → H be a bilinear form. Assume

(i) B is bounded; i.e., |B[u, v]| ≤ α‖u‖‖v‖, and

(ii) B is strongly positive; i.e., B[u, u] ≥ β‖u‖2,
where α, β are positive constants. (Strong positivity is also called the coercivity for B.)
Let f ∈ H∗. Then there exists a unique element u ∈ H such that

(2.17) B[u, v] = 〈f, v〉, ∀ v ∈ H.
Moreover, the solution u satisfies ‖u‖ ≤ 1

β ‖f‖.

Proof. For each fixed u ∈ H, the functional v 7→ B[u, v] is in H∗, and hence by the Riesz
Representation Theorem, there exists a unique element w = Au ∈ H such that

B[u, v] = (w, v) ∀ v ∈ H.
It can be easily shown that A : H → H is linear. From (i), ‖Au‖2 = B[u,Au] ≤ α‖u‖‖Au‖,
and hence ‖Au‖ ≤ α‖u‖ for all u ∈ H; that is, A is bounded. Furthermore, by (ii),
β‖u‖2 ≤ B[u, u] = (Au, u) ≤ ‖Au‖‖u‖ and hence ‖Au‖ ≥ β‖u‖ for all u ∈ H. By the Riesz
Representation Theorem again, we have a unique w0 ∈ H such that 〈f, v〉 = (w0, v) for all
v ∈ H and ‖f‖ = ‖w0‖.

We show that the equation Au = w0 has a (unique) solution. There are many different
proofs for this, and here we use the Contraction Mapping Theorem. Note that the
solution u to equation Au = w0 is equivalent to the fixed-point of the map T : H → H
defined by T (v) = v − tAv + tw0 (v ∈ H) for any fixed t > 0. For all v, w ∈ H we have
‖T (v)− T (w)‖ = ‖(I − tA)(v − w)‖. We compute that, for all u ∈ H,

‖(I − tA)u‖2 = ‖u‖2 + t2‖Au‖2 − 2t(Au, u) ≤ ‖u‖2(1 + t2α2 − 2βt).

Now let 0 < t < min{ 1
2β ,

2β
α2 }, so that θ = 1+t2α2−2βt ∈ (0, 1). Hence the map T : H → H

is a contraction on H and thus has a unique fixed point u; this fixed point u solves Au = w0.
Therefore

B[u, v] = (Au, v) = (w0, v) = 〈f, v〉 ∀ v ∈ H;

hence u is a solution of (2.17); clearly such a solution must be unique, by (ii). Moreover,
we have ‖f‖ = ‖w0‖ = ‖Au‖ ≥ β‖u‖ and hence ‖u‖ ≤ 1

β ‖f‖. The proof is complete. �

Remark 2.14. If B is also symmetric; that is, B[u, v] = B[v, u] for all u, v ∈ H, then
((u, v)) ≡ B[u, v] is an inner product which makes H an equivalent Hilbert space. In this
case, the Lax-Milgram Theorem is just the Riesz Representation Theorem. In general, the
Lax-Milgram Theorem is primarily significant in that it does not require the symmetry of
B[u, v].

2.2.3. Energy Estimates. Let B[u, v] be the bilinear form defined by (2.8) or (2.12)
above. From the Hölder inequality,∣∣∣∣∫

Ω
fg dx

∣∣∣∣ ≤ ‖f‖L2(Ω)‖g‖L2(Ω),

it is easy to see that B[u, v] satisfies the boundedness:

|B[u, v]| ≤ α‖u‖‖v‖
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for all u, v in the respective Hilbert spaces H = H1
0 (Ω) or H = H1

0 (Ω;RN ).

However, the strong positivity (or coercivity) for B is not always guaranteed, but involves
estimating the quadratic form B[u, u]; such estimates are usually called energy estimates
or G̊arding’s estimates.
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G̊arding’s Estimates for (2.8).

Theorem 2.6. Assume the ellipticity condition (2.3) holds. Then, there are constants
β > 0 and γ ≥ 0 such that

(2.18) B[u, u] ≥ β‖u‖2 − γ‖u‖2L2(Ω) ∀ u ∈ H1
0 (Ω).

Proof. Note that, by the ellipticity,

B[u, u] ≥ θ
∫

Ω

n∑
i=1

|Diu|2dx+

∫
Ω

(
n∑
i=1

biDiu+ cu)u dx.

Let m = max{‖bi‖L∞(Ω) | 1 ≤ i ≤ n} and k0 = ‖c‖L∞(Ω). Then

|(biDiu, u)2| ≤ m‖Diu‖2‖u‖2
≤ (m/2)(ε‖Diu‖22 + (1/ε)‖u‖22)

where we have used the Cauchy inequality with ε: |αβ| ≤ (ε/2)α2 + (1/2ε)β2. Combining
the estimates we find

B[u, u] ≥ (θ −mε/2)‖Du‖2L2(Ω) − (k0 +mn/2ε)‖u‖2L2(Ω).

By choosing ε > 0 sufficiently small so that θ−mε/2 > 0 we arrive at the desired inequality,
using the Poincare inequality: ‖u‖H1(Ω) ≤ C‖Du‖L2(Ω) for all u ∈ H1

0 (Ω). �

Theorem 2.7. (First Existence Theorem for weak solutions) Let β > 0, γ ≥ 0 be
the constants in (2.18). Then, for each λ ≥ γ and for each f ∈ H−1(Ω), the Dirichlet
boundary value problem

(2.19)

{
Lu+ λu = f in Ω,

u = 0 on ∂Ω

has a unique weak solution u ∈ H1
0 (Ω), which also satisfies

‖u‖H1
0 (Ω) ≤

1

β
‖f‖H−1(Ω).

Proof. Let λ ≥ γ and define

Bλ[u, v] ≡ B[u, v] + λ(u, v)2 ∀u, v ∈ H.

Then Bλ[u, v] is the bilinear form associated with differential operator Lu+ λu. Moreover,
Bλ[u, v] satisfies the boundedness and coercivity, with Bλ[u, u] ≥ β‖u‖2. Thus the result
follows from the Lax-Milgram Theorem. �

Remark 2.15. For elliptic operators Lu with bi(x) = 0 and c(x) ≥ 0, we have γ = 0
in (2.18) and hence Theorem 2.7 holds with γ = 0. This includes the special case of the
Laplace operator Lu = −∆u.
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Example 2.8. Consider the Neumann boundary value problem

(2.20)

{
−∆u = f in Ω,
∂u
∂ν = 0 on ∂Ω.

A function u ∈ H1(Ω) is said to be a weak solution to (2.20) if

(2.21)

∫
Ω
Du ·Dv dx =

∫
Ω
fv dx ∀ v ∈ H1(Ω).

Obviously, taking v ≡ 1 ∈ H1(Ω), a necessary condition to have a weak solution is∫
Ω f(x) dx = 0. We show that this is also sufficient for the existence of a weak solution.

Note that, if u is a weak solution, then u + c, for all constants c, is also a weak solution.
Therefore, to fix the constants, we consider the vector space

H =

{
u ∈ H1(Ω)

∣∣ ∫
Ω
u(x) dx = 0

}
equipped with inner product

(u, v)H =

∫
Ω
Du ·Dv dx.

By the equivalent norm theorem or Poincaré’s inequality, it follows that H with this
inner product, is indeed a Hilbert space, and (f, u)L2(Ω) is a bounded linear functional on
H:

|(f, u)L2(Ω)| ≤ ‖f‖L2(Ω)‖v‖L2(Ω) ≤ ‖f‖L2(Ω)‖v‖H .
Hence the Riesz Representation Theorem implies that there exists a unique u ∈ H such
that

(2.22) (u,w)H = (f, w)L2(Ω), ∀ w ∈ H.

It follows that u is a weak solution to the Neumann problem since for any v ∈ H1(Ω) we
take w = v − c ∈ H, where c = 1

|Ω|
∫

Ω vdx, in (2.22) and obtain (2.21) using
∫

Ω fdx = 0.

Example 2.9. Let us consider the nonhomogeneous Dirichlet boundary value problem

(2.23)

{
−∆u = f in Ω,

u = ϕ on ∂Ω,

where f ∈ L2(Ω) and ϕ is the trace of a function w ∈ H1(Ω).

Note that it is not sufficient to just require that ϕ ∈ L2(∂Ω) since the trace operator is
not onto. If, for example, ϕ ∈ C1(∂Ω), then ϕ has a C1 extension to Ω̄, which is the desired
w.

Definition 2.16. A function u ∈ H1(Ω) is called a weak solution of (2.23) if u − w ∈
H1

0 (Ω) and if ∫
Ω
Du ·Dvdx =

∫
Ω
fvdx ∀ v ∈ H1

0 (Ω).

Let u be a weak solution of (2.23) and set ũ = u− w. Then ũ ∈ H1
0 (Ω) satisfies

(2.24)

∫
Ω
Dũ ·Dvdx =

∫
Ω

(fv −Dw ·Dv)dx ∀ v ∈ H1
0 (Ω).
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Therefore, ũ = u− w ∈ H1
0 (Ω) is a weak solution of the problem

(2.25)

{
−∆ũ = f̃ in Ω,

ũ = 0 on ∂Ω,

where f̃ = f+div(Dw) = f+∆w ∈ H−1(Ω). The Lax-Milgram theorem yields the existence
of a unique ũ ∈ H1

0 (Ω) of (2.25). Thus, (2.23) has a unique weak solution u ∈ H1(Ω).
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G̊arding’s Estimates for (2.12). Assume Ω ⊂ Rn is a bounded open set. Let H =
H1

0 (Ω;RN ) be equipped with the equivalent inner product

(u, v)H =
n∑

i,j=1

N∑
k,l=1

∫
Ω
Dju

lDiv
k dx ∀u, v ∈ H.

and let ‖u‖H be the associated equivalent norm. Define the bilinear form associated with
the leading term of L by

A[u, v] =
n∑

i,j=1

N∑
k,l=1

∫
Ω
aklij (x)Dju

lDiv
k dx.

Theorem 2.10. Assume that either coefficients aklij satisfy the Legendre condition or aklij
are all constants and satisfy the Legendre-Hadamard condition. Then

(2.26) A[u, u] ≥ θ ‖u‖2H ∀ u ∈ H.

Proof. The conclusion in the first case follows easily from the pointwise inequality by
Legendre condition. We prove the second case when aklij are constants and satisfy the
Legendre-Hadamard condition

n∑
i,j=1

N∑
k,l=1

aklij q
kqlpipj ≥ θ |p|2|q|2 ∀p ∈ Rn, q ∈ RN .

We prove

A[u, u] =
n∑

i,j=1

N∑
k,l=1

∫
Ω
aklij Dju

lDiu
k dx ≥ θ

∫
Ω
|Du|2 dx ∀u ∈ C∞0 (Ω;RN );

then the estimate (2.26) follows by approximation. Let u ∈ C∞0 (Ω;RN ). We extend u onto
Rn by zero outside Ω and thus consider u as functions in C∞0 (Rn;RN ). Consider the Fourier
transforms of u,

û(y) = (2π)−n/2
∫
Rn
e−i y·x u(x) dx (y ∈ Rn).

Then, for any u, v ∈ C∞0 (Rn;RN ),∫
Rn
u(x) · v(x) dx =

∫
Rn
û(y) · v̂(y) dy, D̂juk(y) = i yj ûk(y);

the last identity can also be written as D̂u(y) = i û(y) ⊗y. Now, using these identities, with
an abuse of the index i and the imaginary number i, we have∫

Rn
aklij Diu

k(x)Dju
l(x) dx =

∫
Rn
aklij D̂iuk(y) D̂jul(y) dy
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=

∫
Rn
aklij yi yj û

k(y) ûl(y) dy = Re

(∫
Rn
aklij yi yj û

k(y) ûl(y) dy

)
.

Write û(y) = η + iξ with η, ξ ∈ RN . Then

Re

(
ûk(y) ûl(y)

)
= ηkηl + ξkξl.

Therefore, by the Legendre-Hadamard condition,

Re

n∑
i,j=1

N∑
k,l=1

(
aklij yi yj û

k(y) ûl(y)

)
≥ θ |y|2 (|η|2 + |ξ|2) = θ |y|2 |û(y)|2.

Hence,

A[u, u] =
n∑

i,j=1

N∑
k,l=1

∫
Rn
aklij Diu

k(x)Dju
l(x) dx

= Re

n∑
i,j=1

N∑
k,l=1

(∫
Rn
aklij yi yj û

k(y) ûl(y) dy

)

≥ θ
∫
Rn
|y|2 |û(y)|2 dy = θ

∫
Rn
|iû(y)⊗ y|2 dy

= θ

∫
Rn
|D̂u(y)|2 dy = θ

∫
Rn
|Du(x)|2 dx.

The proof is complete. �

Theorem 2.11. (G̊arding’s Estimate for Systems) Let B[u, v] be defined by (2.12).
Assume that either

(2.27)

{
aklij ∈ L∞(Ω) satisfy the Legendre condition,

bkli , c
kl, dkli ∈ L∞(Ω),

or

(2.28)

{
aklij ∈ C(Ω̄) satisfy the Legendre-Hadamard condition,

bkli , c
kl, dkli ∈ L∞(Ω).

Then there exist constants β > 0 and γ ≥ 0 such that

(2.29) B[u, u] ≥ β‖u‖2H − γ‖u‖2L2 ∀u ∈ H = H1
0 (Ω;RN ).

Proof. We only prove the case (2.28); the proof for case (2.27) is similar and much easier.

1. By uniform continuity of aklij on Ω̄, there exists ε > 0 such that

|aklij (x)− aklij (y)| ≤ θ

2
∀x, y ∈ Ω̄, |x− y| ≤ ε.

We claim

(2.30)

∫
Ω
aklij (x)Diu

kDju
l dx ≥ θ

2

∫
Ω
|Du(x)|2 dx =

θ

2

∑
1≤i≤n
1≤k≤N

∫
Ω
|Diu

k(x)|2 dx

for all test functions u ∈ C∞0 (Ω;RN ) with diam(suppu) ≤ ε. To prove this, we use a
freezing coefficient method. Fix any point x0 ∈ suppu. Then, by Theorem 2.10,∫

Ω
aklij (x)Diu

kDju
l dx =

∫
Ω
aklij (x0)Diu

kDju
l dx+

∫
suppu

(
aklij (x)− aklij (x0)

)
Diu

kDju
l dx
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≥ θ
∫

Ω
|Du(x)|2 dx− θ

2

∫
Ω
|Du(x)|2 dx,

which proves (2.30).

2. Now assume u ∈ C∞0 (Ω;RN ), with arbitrary compact support. We cover Ω̄ by
finitely many open balls {Bε/4(xm)} with xm ∈ Ω and m = 1, 2, ...,M. For each m, let

ζm ∈ C∞0 (Bε/2(xm)) with ζm(x) = 1 for x ∈ Bε/4(xm). Since every x ∈ Ω̄ belongs to a ball

Bε/4(xm) and thus ζm(x) = 1, it follows that
∑M

j=1 ζ
2
j (x) ≥ 1 for all x ∈ Ω̄. Define

ϕm(x) =
ζm(x)(∑M

j=1 ζ
2
j (x)

)1/2 , m = 1, 2, ...,M.

Then ϕm ∈ C∞0 (Bε/2(xm)) and
∑M

m=1 ϕ
2
m(x) = 1 for all x ∈ Ω̄. (This is a special case of

the partition of unity.) We thus have

aklij (x)Diu
kDju

l =

M∑
m=1

(
aklij (x)ϕ2

mDiu
kDju

l
)

=
M∑
m=1

aklij (x)Di(ϕm u
k)Dj(ϕm u

l)

−
M∑
m=1

aklij (x)
(
ϕm u

lDiϕmDiu
k + ϕm u

kDiϕmDju
l + uk ulDiϕmDjϕm

)
.

(2.31)

Since ϕmu ∈ C∞0 (Ω ∩Bε/2(xm);RN ) and diam(Ω ∩Bε/2(xm)) ≤ ε, we have by (2.30)∫
Ω
aklij (x)Di(ϕm u

k)Dj(ϕm u
l) dx ≥ θ

2

∑
1≤i≤n
1≤k≤N

∫
Ω
|Di(ϕm u

k)|2 dx

=
θ

2

∑
1≤i≤n
1≤k≤N

∫
Ω

(
ϕ2
m |Diu

k|2 + |Diϕm|2 |uk|2 + 2ϕm u
kDiϕmDiu

k
)
dx

≥ θ

2

∑
1≤i≤n
1≤k≤N

∫
Ω

(
ϕ2
m |Diu

k|2 dx+ 2ϕm u
kDiϕmDiu

k
)
dx

≥ θ

4

∑
1≤i≤n
1≤k≤N

∫
Ω
ϕ2
m |Diu

k|2 dx− C‖u‖2L2(Ω) =
θ

4

∫
Ω
ϕ2
m |Du|2 dx− C‖u‖2L2(Ω),

where we have used the Cauchy inequality with ε. Then by (2.31) and the fact that∑M
m=1 ϕ

2
m = 1 on Ω,∫

Ω
aklij (x)Diu

kDju
l dx ≥ θ

4

∫
Ω
|Du|2 dx− CM ‖u‖2L2(Ω) − C1 ‖u‖L2(Ω) ‖Du‖L2(Ω).

The terms in B[u, u] involving b, c and d can all be estimated by

C2(‖u‖L2(Ω) ‖Du‖L2(Ω) + ‖u‖2L2(Ω)).

Finally, using the Cauchy inequality with ε again, we have

B[u, u] ≥ θ

8
‖u‖2H1

0 (Ω) − C3‖u‖2L2(Ω) ∀ u ∈ C∞0 (Ω;RN )

and, by density, the estimate holds for all u ∈ H1
0 (Ω;RN ). This completes the proof. �
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Theorem 2.12. (First Existence Theorem for weak solutions of systems) Under
the hypotheses of Theorem 2.11, let β > 0, γ ≥ 0 be the constants in (2.29). Then, for each
λ ≥ γ and each F ∈ H−1(Ω;RN ), the Dirichlet problem

(2.32)

{
Lu+ λu = F in Ω,

u = 0 on ∂Ω

has a unique weak solution u in H1
0 (Ω;RN ). Moreover, the solution u satisfies

‖u‖H1 ≤
1

β
‖F‖H−1 .

Proof. Note that the bilinear form Bλ[u, v] = B[u, v] + λ (u, v)L2 satisfies the condition of
the Lax-Milgram theorem on H = H1

0 (Ω;RN ) for all λ ≥ γ; thus, the result follows from
the Lax-Milgram theorem. �

Fix λ ≥ γ. Let F ∈ L2(Ω;RN ). Define F̃ ∈ H−1(Ω;RN ) by 〈F̃ , v〉 = (F, v)L2 for all

v ∈ H1
0 (Ω;RN ). Then ‖F̃‖H−1 ≤ ‖F‖L2 . Let u = KF ∈ H1

0 (Ω;RN ) be the unique weak

solution to Lu + λu = F̃ in Ω; that is, formally, u = KF = (L + λI)−1F. In this way, we
defined an operator K : L2(Ω;RN )→ L2(Ω;RN ). Note that K is linear and maps L2(Ω;RN )
into H1

0 (Ω;RN ) with

(2.33) ‖KF‖H1 ≤
1

β
‖F̃‖H−1 ≤

1

β
‖F‖L2 .

Recall the following definition.

Definition 2.17. Let X,Y be two Banach spaces. A linear operator T : X → Y is called a
compact operator if ‖Tu‖Y ≤ C‖u‖X for all u ∈ X and for each bounded sequence {ui}
in X there exists a subsequence {uik} such that {Tuik} converges in Y .

Corollary 2.13. Given λ ≥ γ as in Theorem 2.12, the operator K = (L+λI)−1 : L2(Ω;RN )→
L2(Ω;RN ) defined above is a compact linear operator.

Proof. By (2.33), K is a bounded linear operator from L2(Ω;RN ) into H1
0 (Ω;RN ). By the

Rellich-Kondrachov Theorem, H1
0 (Ω;RN ) is compactly embedded in L2(Ω;RN ) and

hence, as a linear operator from L2(Ω;RN ) to L2(Ω;RN ), K is compact. �

2.2.4. More Functional Analysis. Let H be a (real) Hilbert space with inner product
(· , ·) and norm ‖ · ‖.

Definition 2.18. Let T : H → H be a bounded linear operator on H.

(1) We define the nullspace or kernel of T to be N (T ) = {x ∈ H | Tx = 0}, and
define the range of T to be R(T ) = {Tx | x ∈ H}.

(2) We define the Hilbert adjoint operator of T to be the operator T ∗ : H → H by

(Tx, y) = (x, T ∗y) ∀x, y ∈ H.

T is called symmetric if T ∗ = T.

Theorem 2.14. Let T : H → H be a bounded linear operator on H. Then T ∗ : H → H is
linear and bounded with ‖T ∗‖ = ‖T‖. Moreover, if T is compact, then T ∗ is also compact.
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Proof. 1. By definition, T ∗ is linear. Note also that

‖T ∗y‖2 = (T ∗y, T ∗y) = (TT ∗y, y) ≤ ‖TT ∗y‖‖y‖ ≤ ‖T‖‖T ∗y‖‖y‖ ∀ y ∈ H,

which gives ‖T ∗y‖ ≤ ‖T‖‖y‖ and hence ‖T ∗‖ ≤ ‖T‖. The other direction follows similarly
or by the identity (T ∗)∗ = T.

2. Assume T is compact. Let {xn} be any bounded sequence in H. Then {T ∗xn} is
also bounded in H; thus, by the compactness of T , there exists a subsequence {T ∗xnk} such
that {TT ∗xnk} is a Cauchy sequence in H. Note that

‖T ∗xnk − T
∗xnj‖2 = (T ∗(xnk − xnj ), T

∗(xnk − xnj )) = (TT ∗(xnk − xnj ), xnk − xnj )

≤ ‖TT ∗xnk − TT
∗xnj‖‖xnk − xnj‖ ≤ C‖TT

∗xnk − TT
∗xnj‖;

thus {T ∗xnk} is a Cauchy sequence in H. This proves the compactness of T ∗. �

For a subspace V of H we denote by V ⊥ the orthogonal space of V defined by
V ⊥ = {x ∈ H | (x, y) = 0 ∀ y ∈ V }.

Lemma 2.15. Let V be a subspace of H. Then for each u ∈ H there exist unique elements
v ∈ V̄ and w ∈ V ⊥ such that u = v + w. The operators PV̄ : H → V̄ and PV ⊥ : H → V ⊥

defined by PV̄ u = v and PV ⊥u = w are called the orthogonal projections onto V̄ and
V ⊥, respectively.

Proof. Let µ = dist(u, V ). Assume vk ∈ V and ‖vk − u‖ → µ. As in the proof of the Riesz
Representation Theorem, for n,m = 1, 2, . . . ,

‖vm−vn‖2 = 2(‖vm−u‖2 +‖vn−u‖2)−4‖vm + vn
2

−u‖2 ≤ 2(‖vm−u‖2 +‖vn−u‖2)−4µ2.

This proves that {vk} is a Cauchy sequence in H. So assume vk → v; then v ∈ V̄ .
Also, for all z ∈ V , h(t) = ‖u − v + tz‖2 assumes the minimum at t = 0; this implies
h′(0) = 2(u− v, z) = 0, which holds for all z ∈ V , and hence w = u− v ∈ V ⊥. This proves
the existence of v ∈ V̄ and w ∈ V ⊥. If v′ and w′ are other elements satisfying this property
then v − v′ = w′ − w ∈ V̄ ∩ (V ⊥) = {0}. This proves the uniqueness of v, w. �

Lemma 2.16. Let A : H → H be a linear bounded operator. Then R(A) = (N (A∗))⊥.

Proof. Given any y ∈ R(A) and z ∈ N (A∗), let y = Ax for some x ∈ H. Then

(y, z) = (Ax, z) = (x,A∗z) = 0.

Thus R(A) ⊆ (N (A∗)⊥. Since (N (A∗)⊥ is closed, we have R(A) ⊆ (N (A∗))⊥. To show the

opposite inclusion, let u ∈ (N (A∗))⊥. By the lemma above, u = v + w for some v ∈ R(A)
and w ∈ (R(A))⊥. Since w ∈ (R(A))⊥, we have (x,A∗w) = (Ax,w) = 0 for all x ∈ H, and
thus A∗w = 0; that is, w ∈ N (A∗) and thus (u,w) = 0, which gives (w,w) = 0, w = 0 and

thus u = v ∈ R(A). �

Lecture 22 – 3/11/19

Theorem 2.17. (Fredholm Alternative) Let T : H → H be a compact linear operator
on H. Then

(i) dimN (I − T ) = dimN (I − T ∗) <∞.
(ii) R(I − T ) = (N (I − T ∗))⊥.
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Remark 2.19. (i) Note that (i) and (ii) of the theorem imply that

(2.34) N (I − T ) = {0} ⇐⇒ R(I − T ) = H;

that is, I−T is onto if and only if it is one-to-one. Therefore, either equation (I−T )u = f
has a unique solution u ∈ H for each f ] ∈ H, or else, (I − T )u = 0 has a nontrivial
solution u ∈ H (in this case dimN (I − T ) is also finite); this dichotomy is the Fredholm
alternative.

(ii) Moreover, by (i) and (ii) of the theorem, given f ∈ H, the equation (I − T )u = f is
solvable for u if and only if there exist functions g1, . . . , gd in H such that

(2.35) (f, gi) = 0 ∀ i = 1, 2, . . . , d,

where d = dimN (I − T ∗) <∞ and g1, . . . , gd are linearly independent in N (I − T ∗).

Proof of Theorem 2.17. 1. Suppose dimN (I − T ) is not finite; then there exists a se-
quence {uk} in N (I − T ) such that (uk, uj) = δkj for all k, j. Since Tuk = uk, it follows
that for all k 6= j,

‖Tuk − Tuj‖2 = ‖uk − uj‖2 = ‖uk‖2 + ‖uj‖2 − 2(uk, uj) = 2,

and hence {Tuk} cannot have a subsequence that is Cauchy in H; this contradicts the
compactness of T . So dimN (I − T ) <∞.

2. We claim there exists a constant δ > 0 such that

(2.36) ‖u− Tu‖ ≥ δ‖u‖ ∀u ∈ (N (I − T ))⊥.

Suppose this is not true; then there exists a sequence {uk}in (N (I − T ))⊥ with ‖uk‖ = 1
but ‖uk − Tuk‖ < 1/k for all k. Since T is compact, there exists a subsequence {Tuki}
converging to y ∈ H as ki → ∞. Then ‖uki − y‖ ≤ ‖uki − Tuki‖ + ‖Tuki − y‖ → 0; that
is, uki → y. Hence ‖y‖ = 1 and Tuki → Ty, which implies Ty = y and thus y ∈ N (I − T ).
Since uk ∈ (N (I − T ))⊥, one has (y, uki) = 0, which implies (y, y) = 0, a contradiction to
‖y‖ = 1.

3. Let A = I − T. Since A∗ = I − T ∗, (ii) will follow from Lemma 2.16 if we show that
R(A) is closed. So let vk ∈ R(A) and vk → v ∈ H. Let vk = Auk, and uk = xk + yk, where
xk ∈ N (A) and yk ∈ (N (A))⊥. Then vk = Ayk. By (2.36),

‖yk − yj‖ ≤
1

δ
‖Ayk −Ayj‖ =

1

δ
‖vk − vj‖,

and thus {yk} is Cauchy in (N (A))⊥. Hence yk → y for some y ∈ (N (A))⊥. This implies
vk = Ayk → Ay and thus v = Ay ∈ R(A). This proves the closedness of R(A) and hence
completes the proof of (ii).

4. Next we assert

dimN (I − T ) ≥ dim(R(I − T ))⊥.

Again write A = I − T. Suppose instead dimN (A) < dim(R(A))⊥. Then there exists a
bounded linear operator P : N (A) → (R(A))⊥ that is one-to-one but not onto. Define
Q = PΠ: H → H, where Π: H → N (A) is the orthogonal projection onto N (A). Then
Q is compact since dimR(Q) < ∞. We claim N (I − T − Q) = {0}. Indeed if Tu + Qu =
u then Au = Qu ∈ (R(A))⊥ and hence Qu = Au = 0, which implies u ∈ N (A) and
Qu = Pu = 0; thus u = 0 as P is one-to-one. Now claim H1 = (I − T − Q)(H) = H. If
not, suppose H1 6= H. Since I − T − Q is one-to-one, H2 = (I − T − Q)(H1) 6= H1, · · · ,
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Hk = (I − T − Q)(Hk−1) 6= Hk−1 for all k = 2, 3, · · · . Choose uk ∈ Hk, ‖uk‖ = 1 and
uk ∈ H⊥k+1. Let K = T +Q. Then K is compact (why?) and, for l > k, from

Kuk −Kul = −(uk −Kuk) + (ul −Kul) + (uk − ul),
it follows that ‖Kuk −Kul‖2 ≥ 1; this contradicts the compactness of K. Thus I − T −Q
is also onto. However, take an element v ∈ (R(A))⊥ but v /∈ R(P ). Then equation

v = (I − T −Q)u = Au−Qu
has no solution u ∈ H as, otherwise, one would have Au = v + Qu ∈ (R(A))⊥ and thus
Au = 0 and v = −Qu ∈ R(Q) = R(P ), a contradiction.

5. Finally, we prove dimN (I − T ) = dim (I − T ∗). Note that, by (ii), (R(I − T ))⊥ =
N (I − T ∗) and thus, by Step 4,

dimN (I − T ) ≥ dim(R(I − T ))⊥ = dimN (I − T ∗).
The opposite inequality follows by using the identity (T ∗)∗ = T . �

2.2.5. Adjoint Bilinear Form and Adjoint Operator. We study the general linear
system Lu whose bilinear form B[u, v] is defined by (2.12) above on H = H1

0 (Ω;RN ), where
N ≥ 1.

Definition 2.20. The adjoint bilinear form B∗ of B is defined by

B∗[u, v] = B[v, u] ∀ u, v ∈ H = H1
0 (Ω;RN ).

This bilinear form B∗[u, v] is associated to the formal adjoint of Lu of the form

(2.37) L∗u = −divA∗(x, u,Du) + b∗(x, u,Du),

with A∗(x, u,Du) = (Ãki ) and b∗(x, u,Du) = (b̃k) given by

Ãki (x, u,Du) =
∑

1≤l≤N, 1≤j≤n
ãklij (x)Dju

l +
N∑
l=1

d̃kli (x)ul,

b̃k(x, u,Du) =
∑

1≤j≤n, 1≤l≤N
b̃klj (x)Dju

l +
N∑
l=1

c̃kl(x)ul,

(2.38)

where

ãklij = alkji , d̃kli = blki , b̃klj = dlki , c̃kl = clk (1 ≤ i, j ≤ n, 1 ≤ k, l ≤ N).

Note that the Legendre or Legendre-Hadamard condition for L∗u is the same as that of Lu,
and also that B∗[u, u] = B[u, u].

Remark 2.21. Suppose B[u, v] satisfies the G̊arding’s estimate in Theorem 2.11. Let λ ≥ γ
and K = (L+ λI)−1 : L2(Ω;RN )→ L2(Ω;RN ). Then K∗ = (L∗ + λI)−1.

Theorem 2.18. (Second Existence Theorem for weak solutions) Assume the con-
ditions of Theorem 2.11 hold.

(i) Precisely one of the following statements holds:
either

(2.39)

{
for each F ∈ L2(Ω;RN ) there exists a unique

weak solution u ∈ H1
0 (Ω;RN ) of Lu = F,

or else

(2.40) there exists a weak solution u 6= 0 in H1
0 (Ω;RN ) of Lu = 0.
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(ii) Furthermore, should case (2.40) hold, the dimension of the subspace N ⊂ H1
0 (Ω;RN )

of weak solutions of Lu = 0 is finite and equals the dimension of the subspace
N ∗ ⊂ H1

0 (Ω;RN ) of weak solutions of adjoint problem L∗u = 0.

(iii) Finally, the problem Lu = F has a weak solution if and only if

(F, v)L2(Ω;RN ) = 0 ∀ v ∈ N ∗.

The dichotomy (2.39), (2.40) is called the Fredholm alternative.

Proof. Let K = (L+λI)−1 : L2(Ω;RN )→ L2(Ω;RN ) be an operator defined as in Corollary
2.13 with a fixed number λ > γ ≥ 0. Then K : L2(Ω;RN )→ L2(Ω;RN ) is a compact linear
operator; moreover, K∗ = (L∗ + λI)−1 : L2(Ω;RN ) → L2(Ω;RN ) is also a compact linear
operator.

Given F ∈ L2(Ω;RN ), a function u ∈ H1
0 (Ω;RN ) is a weak solution of Lu = F if and

only if Lu+ λu = F + λu, which is equivalent to u = K(F + λu) = KF + λKu; therefore,

(2.41) Lu = F ⇐⇒ (I − λK)u = KF.

In particular, Lu = 0, i.e., u ∈ N , if and only if u ∈ N (I − λK); thus N = N (I − λK).
Similarly, N ∗ = N (I − λK∗). Also, by (2.41), Lu = F has solution u if and only if KF ∈
R(I − λK).

Since λK : L2(Ω;RN )→ L2(Ω;RN ) is compact, by the Fredholm alternative,

N (I − λK) = {0} ⇐⇒ R(I − λK) = L2(Ω;RN ).

Therefore, if N = N (I −λK) = {0} then equation (I −λK)u = KF has unique solution for
each F ∈ L2(Ω;RN ); thus Lu = F has a unique solution for each F ∈ L2(Ω;RN ). This is
the case (2.39). Or else, if N = N (I − λK) 6= {0}, then

dimN = dimN (I − λK) = dimN (I − λK∗) = dimN ∗ <∞.

This is the case (2.40), which also proves (ii).

Finally, Lu = F has a weak solution if and only if KF ∈ R(I − λK) = (N (I−λK∗))⊥ =
(N ∗)⊥. Note that if v ∈ N ∗ then v = λK∗v and so

(F, v) = (F, λK∗v) = λ(KF, v).

Since λ > 0, it follows that KF ∈ (N ∗)⊥ if and only if F ∈ (N ∗)⊥. Therefore, Lu = F has
a weak solution if and only if F ∈ (N ∗)⊥. This proves (iii). �
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2.3. Regularity

We now turn to the question as to whether a weak solution u of the PDE

Lu = f in Ω

is smooth or not. This is the regularity problem for weak solutions.

Although the following regularity theory holds for general second-order linear differential
systems in divergence form, we will instead focus only on second-order linear differential
equations for single unknown function of the divergence form

(2.42) Lu ≡ −
n∑

i,j=1

Di (aij(x)Dju) +

n∑
i=1

bi(x)Diu+ c(x)u
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2.3.1. Interior H2 Regularity.

Theorem 2.19. (Interior H2-regularity) Let L be uniformly elliptic with aij ∈ C1(Ω), bi
and c ∈ L∞(Ω). Let f ∈ L2(Ω). If u ∈ H1(Ω) is a weak solution of Lu = f in Ω, then for
any Ω′ ⊂⊂ Ω we have u ∈ H2(Ω′) and

(2.43) ‖u‖H2(Ω′) ≤ C (‖u‖L2(Ω) + ‖f‖L2(Ω)),

where the constant C depends only on n,Ω′,Ω and the coefficients of L.

Proof. Set q = f −
∑n

i=1 biDiu− cu. Since u is a weak solution of Lu = f in Ω, it follows
that

(2.44)

∫
Ω

n∑
i,j=1

aijDjuDiϕdx =

∫
Ω
qϕdx ∀ ϕ ∈ H1

0 (Ω), suppϕ ⊂⊂ Ω.

In the following, we select different types of test functions ϕ.

Step 1: (Interior H1-estimate). Take any Ω′′ ⊂⊂ Ω. Choose a cutoff function ζ ∈ C∞0 (Ω)
with 0 ≤ ζ ≤ 1 and ζ|Ω′′ = 1. We take ϕ = ζ2u in (2.44) to obtain∫

Ω

n∑
i,j=1

aijDju(ζ2Diu+ 2ζuDiζ)dx =

∫
Ω
qζ2udx

and hence ∫
Ω
ζ2

n∑
i,j=1

aijDjuDiudx =

∫
Ω

(−2u
n∑

i,j=1

aij(ζDju)Diζ + qζ2u)dx.

Inside qζ2u we also group the term ζDiu. Then use the ellipticity condition and the
Cauchy’s inequality with ε to obtain

θ

∫
Ω
ζ2|Du|2dx ≤ ε

∫
Ω
ζ2|Du|2dx+ Cε

∫
Ω

(f2 + u2)dx.

Thus, taking 0 < ε < θ, we deduce the so-called Caccioppoli inequality:∫
Ω
ζ2|Du|2dx ≤ C

∫
Ω

(f2 + u2)dx.

This proves

(2.45) ‖u‖H1(Ω′′) ≤ C(‖f‖L2(Ω) + ‖u‖L2(Ω)),

where the constant C depends on Ω′′.
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Step 2: (Difference Quotient Method). Take Ω′ ⊂⊂ Ω1 ⊂⊂ Ω2 ⊂⊂ Ω′′ ⊂⊂ Ω. Let
v ∈ H1

0 (Ω) be any function with supp v ⊂⊂ Ω1. Let

δ =
1

2
min

{
dist (supp v, ∂Ω1),dist (Ω1, ∂Ω2),dist (Ω2, ∂Ω′′)

}
> 0.

For 0 < |h| < δ, we choose the test function ϕ = D−hk v in (2.44) and obtain, using integration
by parts for difference quotient,∫

Ω
[Dh

k(

n∑
i,j=1

aijDju)]Divdx = −
∫

Ω
qD−hk vdx.
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Notice that the integrals are in fact over domain Ω1. Henceforth, we omit the
∑

sign. Using
the definition of q and the equality

Dh
k(aijDju) = ahijD

h
kDju+DjuD

h
kaij ,

where ahij(x) = aij(x+ hek), we obtain∫
Ω
ahijDjD

h
kuDivdx = −

∫
Ω

(
Dh
kaijDjuDiv + qD−hk v

)
dx

≤ C
(
‖u‖H1(Ω1) + ‖f‖L2(Ω1)

)
‖Dv‖L2(Ω2),

where we have used the identity DjD
h
ku = Dh

kDju. Take η ∈ C∞0 (Ω1) such that η(x) = 1

for x ∈ Ω′ and choose v = η2Dh
ku. Then∫

Ω
η2ahijDjD

h
kuDiD

h
kudx ≤ −2

∫
Ω
ηahijDjD

h
ku(Diη)Dh

kudx

+C
(
‖u‖H1(Ω1) + ‖f‖L2(Ω1)

) (
‖ηDDh

ku‖L2(Ω2) + 2‖Dh
kuDη‖L2(Ω2)

)
.

Using the ellipticity condition and the Cauchy inequality with ε, we obtain

θ

2

∫
Ω
|ηDh

kDu|2dx ≤ C
∫

Ω
|Dη|2|Dh

ku|2dx+ C
(
‖u‖2H1(Ω′′) + ‖f‖2L2(Ω′′)

)
.

Hence

‖ηDh
kDu‖2L2(Ω) ≤ C

(
‖u‖2H1(Ω′′) + ‖f‖2L2(Ω′′)

)
.

Since η = 1 on Ω′, we derive that DkDu ∈ L2(Ω′), with

‖Dh
kDu‖2L2(Ω′) ≤ C

(
‖u‖2H1(Ω′′) + ‖f‖2L2(Ω′′)

)
.

This shows that the weak derivatives DkDu in L2(Ω′) with

‖DkDu‖2L2(Ω′) ≤ C
(
‖u‖2H1(Ω′′) + ‖f‖2L2(Ω′′)

)
for all k = 1, . . . , n. Therefore, u ∈ H2(Ω′) and

(2.46) ‖u‖H2(Ω′) ≤ C
(
‖u‖H1(Ω′′) + ‖f‖L2(Ω′′)

)
,

where C depends on Ω′. Combining with (2.45) it follows u satisfies (2.43). �

Remark 2.22. (i) The result holds if the coefficients aij are only (locally) Lipschitz con-

tinuous in Ω, since the proof above only uses the fact that Dh
kaij is bounded.

(ii) The proof shows that DkDu ∈ L2(Ω′) as long as the function ϕ = D−hk (η2Dh
ku) is a

function in H1(Ω) with compact support in Ω even when Ω′ ∩ ∂Ω 6= ∅. This is used in the
boundary regularity theory later.

By using an induction argument, we can also get higher regularity for the solution.

Theorem 2.20. (Higher interior regularity) Let L be uniformly elliptic, with aij ∈
Ck+1(Ω), bi, c ∈ Ck(Ω), and f ∈ Hk(Ω). If u ∈ H1(Ω) is a weak solution of Lu = f in Ω,
then for any Ω′ ⊂⊂ Ω we have u ∈ Hk+2(Ω′) and

(2.47) ‖u‖Hk+2(Ω′) ≤ C (‖u‖L2(Ω) + ‖f‖Hk(Ω))

where the constant C depends only on n,Ω′,Ω and the coefficients of L.
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Proof. We use induction on k. The estimate (2.47) with k = 0 has been already proved.
Suppose we have proved the theorem for some k ∈ {0, 1, · · · }. Now assume aij ∈ Ck+2(Ω), bi, c ∈
Ck+1(Ω), f ∈ Hk+1(Ω) and u ∈ H1(Ω) is a weak solution of Lu = f in Ω. Then, by the in-

duction assumption, u ∈ Hk+2
loc (Ω), with the estimate (2.47). We want to show u ∈ Hk+3

loc (Ω).
Fix Ω′ ⊂⊂ Ω′′ ⊂⊂ Ω and a multiindex α with |α| = k + 1. Let

ũ = Dαu ∈ H1(Ω′′).

Given any ṽ ∈ C∞0 (Ω′′), let ϕ = (−1)|α|Dαṽ be put into the identity B[u, ϕ] = (f, ϕ)L2(Ω)

and perform some elementary integration by parts, and eventually we discover

B[ũ, ṽ] = (f̃ , ṽ)L2(Ω),

where

f̃ := Dαf −
∑

β≤α,β 6=α

(
α

β

)− n∑
i,j=1

(Dα−βaijD
βuxj )xi +

n∑
i=1

Dα−βbiD
βuxi +Dα−βcDβu

 .
That is, ũ ∈ H1(Ω′′) is a weak solution of Lũ = f̃ in Ω′′. (This is equivalent to differentiating

the equation Lu = f with Dα-operator.) We have f̃ ∈ L2(Ω′′), with, in light of the induction
assumption on the Hk+2(Ω′′)-estimate of u,

‖f̃‖L2(Ω′′) ≤ C(‖f‖Hk+1(Ω′′) + ‖u‖Hk+2(Ω′′)) ≤ C(‖f‖Hk+1(Ω) + ‖u‖L2(Ω)).

Therefore, by Theorem 2.19, ũ ∈ H2(Ω′), with the estimate

‖ũ‖H2(Ω′) ≤ C(‖f̃‖L2(Ω′′) + ‖ũ‖L2(Ω′′)) ≤ C(‖f‖Hk+1(Ω) + ‖u‖L2(Ω)).

This exactly proves u ∈ Hk+3(Ω′) and the corresponding estimate (2.47) with k + 1. �

Theorem 2.21. (Infinite interior smoothness) Let L be uniformly elliptic and aij , bi, c
and f be all in C∞(Ω). Then a weak solution u ∈ H1(Ω) of Lu = f in Ω belongs to C∞(Ω).

Proof. By Theorem 2.20, u ∈ Hk
loc(Ω) for all k = 1, 2, . . . . By the general Sobolev em-

bedding theorem, it follows that u ∈ Cm(Ω) for each m = 1, 2, . . . . �
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2.3.2. Boundary Regularity. We now study the regularity up to the boundary.

We first prove the following result concerning the cut-off functions for balls.

Lemma 2.22. There exists a constant C > 0 such that for all 0 < s < t <∞ and a ∈ Rn
there exists a cut-off function ζ ∈ C∞0 (B(a, t)) such that

0 ≤ ζ(x) ≤ 1, ζ|B(a,s) ≡ 1, ‖Dζ‖L∞ ≤
C

t− s
.

Proof. Let ρ ∈ C∞(R) be such that 0 ≤ ρ ≤ 1, ρ = 1 on (−∞, 0] and ρ = 0 on [1
2 ,∞).

Then the function

ζ(x) = ρ
( |x− a| − s

t− s

)
∀x ∈ Rn

satisfies the requirements. �
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Theorem 2.23. (Boundary H2-regularity for half balls) Let Ω = B(0, r) ∩ {xn > 0}
and L be a uniform elliptic operator on Ω with aij ∈ C1(Ω̄). Suppose f ∈ L2(Ω) and
u ∈ H1(Ω) is a weak solution to Lu = f in Ω such that γ0(u) = 0 on ∂Ω ∩ {xn = 0}. Let
0 < s < r and Ωs = B(0, s) ∩ {xn > 0}. Then u ∈ H2(Ωs) with

‖u‖H2(Ωs) ≤ Cs(‖f‖L2(Ω) + ‖u‖L2(Ω)).

Proof. 1. Select s′ such that 0 < s < s′ < r and set Ω′ = B(0, s′) ∩ {xn > 0}. Let
ζ ∈ C∞0 (B(0, r)) be a cut-off function with

0 ≤ ζ ≤ 1, ζ|B(0,s′) ≡ 1.

So ζ ≡ 1 on Ω′ and ζ = 0 near the curved part of ∂Ω; hence ϕ = ζ2u ∈ H1
0 (Ω). Use this ϕ

as a test function, and we obtain, as in Step 1 in the proof of Theorem 2.19, that

(2.48) ‖u‖H1(Ω′) ≤ C(‖f‖L2(Ω) + ‖u‖L2(Ω)).

2. Let ζ ∈ C∞0 (B(0, r)) be a cut-off function with

0 ≤ ζ ≤ 1, ζ|B(0,s) ≡ 1

and fix k ∈ {1, 2, · · · , n − 1}. For h > 0 sufficiently small, let ϕ = D−hk (ζ2Dh
ku). Note that

if x ∈ Ω and h > 0 is sufficiently small then

ϕ(x) =
ζ2(x− hek)[u(x)− u(x− hek)]− ζ2(x)[u(x+ hek)− u(x)]

h2
.

Since u = 0 along {xn = 0} and ζ = 0 near the curved portion of ∂Ω, we see ϕ ∈ H1
0 (Ω).

Then we use this ϕ as a test function in (2.44) as we did in the Step 2 in the proof of
Theorem 2.19 and use (2.48) to obtain

DkDu ∈ L2(Ωs) (k = 1, 2, · · · , n− 1)

with the estimate

(2.49)
n−1∑
k=1

n∑
l=1

‖Dklu‖L2(Ωs) ≤ C(‖f‖L2(Ω) + ‖u‖L2(Ω)).

This proves that Dklu ∈ L2(Ωs) for all k, l except k = l = n.

3. We must estimate ‖Dnnu‖L2(Ωs). Since aij ∈ C1, the interior H2-regularity implies
that the equation Lu = f is satisfied almost everywhere in Ω; namely

(2.50) −
n∑

i,j=1

aijDiju+

n∑
i=1

b̃iDiu+ cu = f a.e. Ω,

where b̃i = bi −
∑n

j=1Dj(aji) ∈ L∞(Ω). (In this case, we say u ∈ H2
loc(Ω) is a strong

solution of Lu = f.) From the ellipticity condition, we have ann(x) ≥ θ > 0 and thus we can
actually solve Dnnu from (2.50) in terms of Diju and Diu with i+j < 2n, i, j = 1, 2, · · · , n,
which yields the pointwise estimate

|Dnnu| ≤ C
( n∑
i,j=1,i+j<2n

|Diju|+ |Du|+ |u|+ |f |
)

a.e. Ω.

Therefore, by (2.48) and (2.49), we have ‖Dnnu‖L2(Ωs) ≤ C(‖f‖L2(Ω) + ‖u‖L2(Ω)) and thus

‖u‖H2(Ωs) ≤ Cs(‖f‖L2(Ω) + ‖u‖L2(Ω)).

�
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Theorem 2.24. (Global H2-regularity) Assume in addition to the assumptions of The-
orem 2.19 that aij ∈ C1(Ω̄) and ∂Ω ∈ C2. Let f ∈ L2(Ω). If u ∈ H1

0 (Ω) is a weak solution
to Lu = f in Ω, then u ∈ H2(Ω), and

(2.51) ‖u‖H2(Ω) ≤ C(‖u‖L2(Ω) + ‖f‖L2(Ω))

where the constant C depends only on n, ‖aij‖C1(Ω̄), ‖bi‖L∞(Ω), ‖c‖L∞(Ω) and ∂Ω.

Proof. 1. We first establish the global H1(Ω)-estimate. Let q = f−
∑n

i=1 biDiu−cu. Take
ϕ = u as test function in (2.44) to obtain∫

Ω

n∑
i,j=1

aijDjuDiudx =

∫
Ω
qudx

and hence the ellipticity condition and the Cauchy’s inequality with ε give

θ

∫
Ω
|Du|2dx ≤ ε

∫
Ω
|Du|2dx+ Cε

∫
Ω

(f2 + u2)dx.

Thus, taking 0 < ε < θ, we deduce
∫

Ω |Du|
2dx ≤ C

∫
Ω(f2 + u2)dx. This proves

(2.52) ‖u‖H1(Ω) ≤ C(‖f‖L2(Ω) + ‖u‖L2(Ω)).

2. Since ∂Ω is C2, at each point x0 ∈ ∂Ω, we have a small ball B(x0, r) and a C2 map
y = Φ(x), with Φ(x0) = 0, that maps B(x0, r) bijectively onto a domain in the y space such
that

Φ(Ω ∩B(x0, r)) ⊂ {y ∈ Rn | yn > 0}.
Assume the inverse of this map is x = Ψ(y). Then both Ψ and Φ are C2. Choose s > 0
so small that the half-ball V := B(0, s) ∩ {yn > 0} lies in Φ(Ω ∩ B(x0, r)). Set V ′ =
B(0, s/2) ∩ {yn > 0}. Finally define

v(y) = u(Ψ(y)) (y ∈ V ).

Then v ∈ H1(V ) and v = 0 on ∂V ∩ {yn = 0} (in the sense of trace). Moreover, u(x) =
v(Φ(x)) and hence

Dju(x) = uxj (x) =
n∑
k=1

vyk(Φ(x))Φk
xj (x) (j = 1, 2, · · · , n).

3. We show that v is a weak solution of a linear PDE Mv = g in V. To find this

PDE, let I(y) = det ∂Ψ(y)
∂y be the Jacobi matrix of x = Ψ(y); since I(y) 6= 0 and Ψ ∈ C2,

we have |I|, |I|−1 ∈ C1(V̄ ). Let ζ ∈ H1(V ) with supp ζ ⊂⊂ V and let ϕ = ζ/|I|. Then
ϕ ∈ H1(V ) with suppϕ ⊂⊂ V. Let w(x) = ϕ(Φ(x)) for x ∈ Ω′ = Ψ(V ). Then w ∈ H1(Ω′)
and suppw ⊂⊂ Ω′. We use the weak formulation of Lu = f : B[u,w] = (f, w)L2(Ω) and the
change of variable x = Ψ(y) to compute

(2.53) (f, w)L2(Ω) =

∫
Ω′
f(x)w(x)dx =

∫
V
f(Ψ(y))ϕ(y)|I(y)|dy := (g, ζ)L2(V ),

where for g(y) = f(Ψ(y)). We compute

B[u,w] =

∫
Ω′

(
aij(x)uxj (x)wxi(x) + bi(x)uxiw(x) + c(x)u(x)w(x)

)
dx

=

∫
Ω′

(
aij(x)vyk(Φ(x))Φk

xj (x)ϕyl(Φ(x))Φl
xi(x) + bi(x)vyk(Φ(x))Φk

xi(x)w(x) + c(x)u(x)w(x)
)
dx



62 2. Part II – Second-Order Linear Elliptic Equations

=

∫
V

(
aij(Ψ(y))vyk(y)Φk

xj (Ψ(y))ϕyl(y)Φl
xi(Ψ(y))

+ bi(Ψ(y))vyk(y)Φk
xi(Ψ(y))ϕ(y) + c(Ψ(y))v(y)ϕ(y)

)
|I(y)|dy.

Since ϕyl |I| = ζyl −
|I|yl
|I| ζ, we have

(2.54) B[u,w] =

∫
V

(
ãlk(y)vyk(y)ζyl(y) + b̃k(y)vyk(y)ζ(y) + c̃(y)v(y)ζ(y)

)
dy := B̃[v, ζ],

where c̃(y) = c(Ψ(y)),

(2.55) ãlk(y) =

n∑
i,j=1

aij(Ψ(y))Φk
xj (Ψ(y))Φl

xi(Ψ(y))

for k, l = 1, 2, · · · , n, and

b̃k(y) =
n∑
i=1

bi(Ψ(y))Φk
xi(Ψ(y))−

n∑
i,j,l=1

aij(Ψ(y))Φk
xj (Ψ(y))Φl

xi(Ψ(y))
|I|yl
|I|

for k = 1, 2, · · · , n. By (2.53), (2.54), it follows that

B̃[v, ζ] = (g, ζ)L2(V ) for all ζ ∈ H1(V ) with supp ζ ⊂⊂ V ;

hence, v ∈ H1(V ) is a weak solution of Mv = g in V , where

Mv := −
n∑

k,l=1

Dyl(ãlk(y)Dykv) +
n∑
k=1

b̃k(y)Dykv + c̃(y)v.

4. We easily have that ãlk ∈ C1(V̄ ), b̃k, c̃ ∈ L∞(V ). We now check that the operator
M is uniformly elliptic in V . Indeed, if y ∈ V and ξ ∈ Rn, then, again with x = Ψ(y),

n∑
k,l=1

ãlk(y)ξlξk =
n∑

i,j=1

n∑
k,l=1

aij(x)Φk
xjΦ

l
xiξlξk =

n∑
i,j=1

aij(x)ηj(x)ηi(x) ≥ θ|η(x)|2,

where η(x) = (η1(x), · · · , ηn(x)), with

ηj(x) =

n∑
k=1

Φk
xj (x)ξk (j = 1, 2, · · · , n).

That is, η(x) = ξDΦ(x). Hence ξ = η(x)DΨ(y) with y = Φ(x). So |ξ| ≤ C|η(x)| for some
constant C. This shows that

n∑
k,l=1

ãkl(y)ξkξl ≥ θ|η(x)|2 ≥ θ′|ξ|2

for some constant θ′ > 0 and all y ∈ V and ξ ∈ Rn. By the result proved in Step 1, we have

‖v‖H2(V ′) ≤ C(‖g‖L2(V ) + ‖v‖L2(V )).

Consequently, with O′ = Ψ(V ′), using (2.52) and the fact Φ, Ψ are of C2, we deduce

(2.56) ‖u‖H2(O′) ≤ C(‖f‖L2(Ω) + ‖u‖L2(Ω)).

Note that x0 ∈ Ψ(B(0, s/2)) := G′, which is an open set containing open set O′.
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5. Since ∂Ω is compact, there exist finitely many open sets O′i ⊂ G′i (i = 1, 2, · · · , k)
such that ∂Ω ⊂ ∪ki=1G

′
i. Then there exists a δ > 0 such that

F := {x ∈ Ω | dist(x, ∂Ω) ≤ δ} ⊂
k⋃
i=1

O′i.

Then U = (Ω \ F ) ⊂⊂ Ω. By (2.56), we have

‖u‖H2(F ) ≤ C(‖f‖L2(Ω) + ‖u‖L2(Ω)).

By the interior H2-regularity,

‖u‖H2(U) ≤ C(‖f‖L2(Ω) + ‖u‖L2(Ω)).

Combining these two estimates, we deduce (2.51). �
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Theorem 2.25. (Higher global regularity) Let L be uniformly elliptic, with

(2.57) aij ∈ Ck+1(Ω̄), bi, c ∈ Ck(Ω̄), f ∈ Hk(Ω), ∂Ω ∈ Ck+2.

Then a weak solution u of Lu = f satisfying u ∈ H1
0 (Ω) belongs to Hk+2(Ω), and

(2.58) ‖u‖Hk+2(Ω) ≤ C(‖u‖L2(Ω) + ‖f‖Hk(Ω)),

where the constant C is independent of u and f .

Proof. 1. As above, we first investigate the special case

Ω = B(0, r) ∩ {xn > 0}

for some r > 0. Set Ωt = B(0, t) ∩ {xn > 0} for each 0 < t < r. We intend to show
by induction on k that under (2.57) whenever u ∈ H1(Ω) is a weak solution of Lu = f
satisfying γ0(u) = 0 on ∂Ω ∩ {xn = 0}, we have u ∈ Hk+2(Ωt) and

(2.59) ‖u‖Hk+2(Ωt) ≤ C(‖u‖L2(Ω) + ‖f‖Hk(Ω)).

The case k = 0 has been proved in Theorem 2.23. Suppose this is proved with some k.
Now assume aij ∈ Ck+2(Ω̄), bi, c ∈ Ck+1(Ω̄), f ∈ Hk+1(Ω), and u is a weak solution of
Lu = f in Ω satisfying γ0(u) = 0 on ∂Ω ∩ {xn = 0}. Fix any 0 < t < s < r. By induction
assumption, u ∈ Hk+2(Ωs), with

(2.60) ‖u‖Hk+2(Ωs) ≤ C(‖u‖L2(Ω) + ‖f‖Hk(Ω)).

Furthermore, according to the interior regularity, u ∈ Hk+3
loc (Ω).

2. Let α be any multiindex with |α| = k + 1 and αn = 0. Then ũ := Dαu ∈ H1(Ω)
and vanishes along {xn = 0}. (For example, this can be shown by induction on |α| using
the difference quotient operator Dh

j .) Furthermore, as in the proof of the interior higher

regularity theorem, ũ is a weak solution of Lũ = f̃ in Ω, where, as above,

f̃ := Dαf −
∑

β≤α,β 6=α

(
α

β

)− n∑
i,j=1

(Dα−βaijD
βuxj )xi +

n∑
i=1

Dα−βbiD
βuxi +Dα−βcDβu

 .
By (2.60), this f̃ belongs to L2(Ωs) and

‖f̃‖L2(Ωs) ≤ C(‖f‖Hk+1(Ω) + ‖u‖L2(Ω)).
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Consequently, ũ ∈ H2(Ωt), with

‖ũ‖H2(Ωt) ≤ C(‖f̃‖L2(Ωs) + ‖ũ‖L2(Ωs)) ≤ C(‖f‖Hk+1(Ω) + ‖u‖L2(Ω)).

This proves

(2.61) ‖Dβu‖L2(Ωt) ≤ C(‖f‖Hk+1(Ω) + ‖u‖L2(Ω))

for all β with |β| = k + 3 and βn = 0, 1, 2.

3. We need to extend (2.61) to all β with |β| = k + 3. Fix k, we prove (2.61) for all β
by induction on j = 0, 1, · · · , k + 2 with βn ≤ j. We have already shown it for j = 0, 1, 2.
Assume we have shown it for j. Now assume β with |β| = k + 3 and βn = j + 1. Let us

write β = γ + δ, for δ = (0, · · · , 0, 2) and so |γ| = k + 1. Since u ∈ Hk+3
loc (Ω) and Lu = f in

Ω, we have DγLu = Dγf a.e. in Ω. Now

DγLu = annD
βu+R,

where R is the sum of terms involving at most j derivatives of u with respect to xn and
at most k + 3 derivatives in all. Since ann ≥ θ, we can solve Dβu in terms of R and Dγf ;
hence,

‖Dβu‖L2(Ωt) ≤ C(‖f‖Hk+1(Ω) + ‖u‖L2(Ω)).

By induction, we deduce (2.61), which proves

‖u‖Hk+3(Ωt) ≤ C(‖f‖Hk+1(Ω) + ‖u‖L2(Ω)).

This estimate in turn completes the induction process on k, begun in step 2. This proves
(2.59).

4. As above, we cover the domain Ω̄ by finitely many small balls and use the method of
flattening the boundary to eventually deduce (2.58). Note that the condition ∂Ω ∈ Ck+2 is
needed for flattening the boundary to obtain an elliptic equation of divergence form with
leading coefficients ãlk ∈ Ck+1; see (2.55) above. �

Corollary 2.26. Under the assumption of Theorem 2.25, if Lu = 0 has only the trivial
weak solution u ≡ 0 in H1

0 (Ω), then for each f ∈ Hk(Ω) there exists a unique weak solution
u ∈ H1

0 (Ω) ∩Hk+2(Ω) of Lu = f in Ω such that

(2.62) ‖u‖Hk+2(Ω) ≤ C‖f‖Hk(Ω),

where C is independent of u and f .

Proof. The existence of unique weak solution u ∈ H1
0 (Ω) of Lu = f in Ω for each given

f ∈ L2(Ω) follows from the Fredholm alternative; moreover, by the previous theorem,
u ∈ Hk+2(Ω) if f ∈ Hk(Ω). To prove (2.62), in view of (2.58), it suffices to show that

‖u‖L2(Ω) ≤ C‖f‖L2(Ω)

whenever u ∈ H1
0 (Ω) is a weak solution of Lu = f in Ω. Suppose this inequality is false;

then there exist functions un ∈ H1
0 (Ω) and fn = Lun ∈ L2(Ω) for which ‖un‖L2 = 1

and ‖fn‖L2 → 0. By (2.58) we have ‖un‖H2 ≤ C. By compact embedding, there exist
u ∈ H2(Ω) and a subsequence {unk} converging to u in H1(Ω); thus we also have u ∈ H1

0 (Ω)
and ‖u‖L2 = 1. Moreover, note that

B[unk , v] =

∫
Ω
fnkvdx ∀ v ∈ H1

0 (Ω).

Taking the limit, we see that B[u, v] = 0 for all v ∈ H1
0 (Ω) and thus u ∈ H1

0 (Ω) is a weak
solution of Lu = 0; hence u ≡ 0 by assumption, a contradiction to ‖u‖L2 = 1. �
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Finally, we iterate the higher regularity theorem to obtain

Theorem 2.27. (Infinite global smoothness) Let L be uniformly elliptic, with aij , bi, c, f ∈
C∞(Ω̄), and ∂Ω ∈ C∞. Then a weak solution u ∈ H1

0 (Ω) of Lu = f in Ω belongs to C∞(Ω̄).

Lecture 28 – 3/25/19

2.4. Maximum Principles

(Some of the material may have already been covered in MTH 847.)

2.4.1. Elliptic Operators in Non-divergence Form. Consider the second-order linear
differential operator in non-divergence form

Lu(x) = −
n∑

i,j=1

aij(x)Diju(x) +
n∑
i=1

bi(x)Diu(x) + c(x)u(x),

where Diu = uxi , Diju = uxixj and aij(x), bi(x), c(x) are given functions in an open set Ω
in Rn for all i, j = 1, 2, · · · , n. With loss of generality, we assume aij(x) = aji(x) for all i, j.

Definition 2.23. The operator L is called elliptic in Ω if there exists λ(x) > 0 (x ∈ Ω)
such that

n∑
i,j=1

aij(x)ξiξj ≥ λ(x)
n∑
i=1

ξ2
i ∀x ∈ Ω, ξ ∈ Rn.

As above, if λ(x) ≥ θ > 0 in Ω, we say that L is uniformly elliptic in Ω.

So, if L is elliptic in Ω, then for each x ∈ Ω the symmetry matrix (aij(x)) is positive
definite, with all eigenvalues ≥ λ(x).

Lemma 2.28. If A = (aij) is an n × n symmetric nonnegative definite matrix then there
exists an n× n matrix B = (bij) such that A = BTB, i.e.,

aij =

n∑
k=1

bkibkj (i, j = 1, 2, · · · , n).

Proof. Use the diagonalization of A. (Exercise.) �

2.4.2. Weak Maximum Principle.

Lemma 2.29. Let L be elliptic in Ω and u ∈ C2(Ω) satisfy Lu < 0 in Ω. If c(x) ≥ 0, then
u cannot attain a nonnegative maximum in Ω. If c(x) ≡ 0 then u cannot attain a maximum
in Ω.

Proof. Let Lu < 0 in Ω. Suppose u(x0) is maximum for some x0 ∈ Ω. Then, by the
derivative test, Dju(x0) = 0 for each j = 1, 2, · · · , n, and

d2u(x0 + tξ)

dt2

∣∣∣
t=0

=

n∑
i,j=1

Diju(x0)ξiξj ≤ 0

for all ξ = (ξ1, ξ2, · · · , ξn) ∈ Rn. By the lemma above, we write

aij(x0) =

n∑
k=1

bkibkj (i, j = 1, 2, · · · , n),



66 2. Part II – Second-Order Linear Elliptic Equations

where B = (bij) is an n× n matrix. Hence

n∑
i,j=1

aij(x0)Diju(x0) =
n∑
k=1

n∑
i,j=1

Diju(x0)bkibkj ≤ 0,

which implies that Lu(x0) ≥ c(x0)u(x0) ≥ 0 either when c ≥ 0 and u(x0) ≥ 0 or when
c ≡ 0. This is a contradiction. �

Theorem 2.30 (Weak maximum principle with c = 0). Let Ω be bounded open in Rn
and L be elliptic in Ω and

(2.63) |bi(x)|/λ(x) ≤M (x ∈ Ω, i = 1, 2, · · · , n)

for some constant M > 0. Let c ≡ 0 and u ∈ C2(Ω) ∩ C(Ω̄) satisfy Lu ≤ 0 in Ω. Then

max
Ω̄

u = max
∂Ω

u.

Proof. Let α > 0 and v(x) = eαx1 . Then

Lv(x) = (−a11(x)α2 + b1(x)α)eαx1 = αa11(x)

[
−α+

b1(x)

a11(x)

]
eαx1 < 0

if α > M + 1 because |b1(x)|
a11(x) ≤

|b1(x)|
λ(x) ≤M. Then consider the function w(x) = u(x) + εv(x)

for ε > 0. Then Lw = Lu+ εLv < 0 in Ω. So by Lemma 2.29, for all x ∈ Ω̄,

u(x) + εv(x) ≤ max
∂Ω

(u+ εv) ≤ max
∂Ω

u+ εmax
∂Ω

v.

Letting ε→ 0+ proves the theorem. �

Remark 2.24. (a) The weak maximum principle still holds if (aij(x)) is nonnegative defi-

nite, i.e., λ(x) ≥ 0 in Ω, but satisfies |bk(x)|
akk(x) ≤M for some k = 1, 2, · · · , n. (In this case use

v = eαxk .)

(b) If Ω is unbounded but bounded in a slab |x1| < N, then the proof is still valid if the
maximum is changed supremum.

Theorem 2.31 (Weak maximum principle with c ≥ 0). Let Ω be bounded open in Rn
and L be elliptic in Ω satisfying (2.63). Let c(x) ≥ 0 and u ∈ C2(Ω) ∩ C(Ω̄). Then

max
Ω̄

u ≤ max
∂Ω

u+ if Lu ≤ 0 in Ω,

max
Ω̄
|u| = max

∂Ω
|u| if Lu = 0 in Ω,

where u+(x) = max{u(x), 0}.

Proof. 1. Let Lu ≤ 0 in Ω. Let Ω+ = {x ∈ Ω | u(x) > 0}. If Ω+ is empty then the
result is trivial. Assume Ω+ 6= ∅; then L0u ≡ Lu − c(x)u(x) ≤ 0 in Ω+. Note that
∂(Ω+) = [Ω ∩ ∂Ω+] ∪ [∂Ω+ ∩ ∂Ω], from which we easily see that max∂(Ω+) u ≤ max∂Ω u

+;
hence, by Theorem 2.30,

max
Ω̄

u = max
Ω+

u = max
∂(Ω+)

u ≤ max
∂Ω

u+.

2. Let Lu = 0. We apply Step 1 to u and −u to complete the proof. �
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Remark 2.25. The weak maximum principle for Lu ≤ 0 can not be replaced by maxΩ̄ u =
max∂Ω u. In fact, for any u ∈ C2(Ω̄) satisfying

0 > max
Ω̄

u > max
∂Ω

u,

if we choose a constant θ > −‖Lu‖L∞(Ω)/maxΩ̄ u > 0, then L̃u = Lu + θu ≤ 0 in Ω. But

the zero-th order coefficient of L̃ is c(x, t) + θ > 0.

The weak maximum principle easily implies the following uniqueness result for Dirichlet
problems.

Theorem 2.32 (Uniqueness of solutions). Let Ω be bounded open in Rn and the linear
operator L with c(x) ≥ 0 be elliptic in Ω and satisfy (2.63). Then, given any functions f
and g, the Dirichlet problem {

Lu = f in Ω,

u = g on ∂Ω

has at most one solution u ∈ C2(Ω) ∩ C(Ω̄).

Remark 2.26. The uniqueness result fails if c(x) < 0 in Ω. For example, if n = 1, then
function u(x) = sinx solves the elliptic problem Lu ≡ −u′′ − u = 0 in Ω = (0, π) with
u(0) = u(π) = 0; but u 6≡ 0.

2.4.3. Strong Maximum Principle.

Theorem 2.33 (Hopf’s Lemma). Let L be uniformly elliptic with bounded coefficients
in a ball B and let u ∈ C2(B) ∩ C1(B̄) satisfy Lu ≤ 0 in B. Assume x0 ∈ ∂B such that
u(x) < u(x0) for all x ∈ B.

(a) If c ≡ 0 in B, then ∂u
∂ν (x0) > 0, where ν is outer unit normal to ∂B.

(b) If c(x) ≥ 0 in B, then the same conclusion holds provided u(x0) ≥ 0.

(c) If u(x0) = 0, then the same conclusion holds no matter what sign of c(x) is.

Proof. 1. Without loss of generality, assume B = B(0, R). Consider function

v(x) = e−α|x|
2 − e−αR2

.

Let L̃u ≡ Lu− c(x)u+ c+(x)u, where c+(x) = max{c(x), 0}. This operator has the zero-th

order term c+ ≥ 0 and hence the weak maximum principle applies to L̃. We compute

L̃v(x) =

−4

n∑
i,j=1

aij(x)α2xixj + 2α

n∑
i=1

(aii(x)− bi(x)xi)

 e−α|x|2 + c+(x)v(x)

≤
[
−4θα2|x|2 + 2α tr(aij(x)) + 2α|b(x)||x|+ c+(x))

]
e−α|x|

2
< 0

on R
2 ≤ |x| ≤ R if α > 0 is fixed and sufficiently large.

2. For any ε > 0, consider function wε(x) = u(x)− u(x0) + εv(x). Then

L̃wε(x) = εL̃v(x) + Lu(x) + (c+(x)− c(x))u(x)− c+(x)u(x0) ≤ 0

on R
2 ≤ |x| ≤ R in all cases of (a), (b) and (c).

3. By assumption, u(x) < u(x0) on |x| = R
2 ; hence there exists ε > 0 such that wε(x) < 0

on |x| = R
2 . In addition, since v|∂B = 0, we have wε(x) = u(x)−u(x0) ≤ 0 on |x| = R. Hence
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the weak maximum principle implies that wε(x) ≤ 0 for all R
2 ≤ |x| ≤ R. But wε(x

0) = 0;
this implies

0 ≤ ∂wε
∂ν

(x0) =
∂u

∂ν
(x0) + ε

∂v

∂ν
(x0) =

∂u

∂ν
(x0)− 2εRαe−αR

2
.

Therefore
∂u

∂ν
(x0) ≥ 2εRαe−αR

2
> 0,

as desired. �

Theorem 2.34 (Strong maximum principle). Let Ω be bounded, open and connected
in Rn and L be uniformly elliptic with bounded coefficients in Ω and let u ∈ C2(Ω) satisfy
Lu ≤ 0 in Ω.

(a) If c(x) ≥ 0, then u cannot attain a nonnegative maximum in Ω unless u is constant.

(b) If c ≡ 0, then u cannot attain a maximum in Ω unless u is constant.

Proof. Assume c(x) ≥ 0 in Ω and u attains the maximum M at some point in Ω; also
assume M ≥ 0 if c(x) ≥ 0. Suppose that u is not constant in Ω. Then, both of the following
sets,

Ω− = {x ∈ Ω | u(x) < M}; Ω0 = {x ∈ Ω | u(x) = M},
are nonempty, with Ω− open and Ω0 6= Ω relatively closed in Ω. Since Ω is connected, Ω0

can not be open. Assume x0 ∈ Ω0 is not an interior point of Ω0; so, there exists a sequence
{xk} not in Ω0 but converging to x0. Hence, for a ball B(x0, r) ⊂⊂ Ω and an integer N ∈ N,
we have that xk ∈ B(x0, r/2) for all k ≥ N. Fix k = N and let

S = {ρ > 0 | B(xN , ρ) ⊂ Ω−}.

Then S ⊂ R is nonempty and bounded above by r/2. Let ρ̄ = supS; then 0 < ρ̄ ≤ r/2
and hence B(xN , ρ̄) ⊂ B(x0, r) ⊂⊂ Ω. So B(xN , ρ̄) ⊂ Ω−, and also Ω0 ∩ ∂B(xN , ρ̄) 6= ∅. So
let y ∈ Ω0 ∩ ∂B(xN , ρ̄) and then u(x) < u(y) for all x ∈ B(xN , ρ̄). Then Hopf’s Lemma
above, applied to the ball B(xN , ρ̄) at point y ∈ ∂B(xN , ρ̄), implies that ∂u

∂ν (y) > 0, where

ν is the outer normal of ∂B(xN , ρ̄) at y. This contradicts the fact that Du(y) = 0, as u has
a maximum at y ∈ Ω0 ⊂ Ω. �

2.4.4. Maximum Principle for Weak Solutions. We study a maximum principle
for weak solutions of second-order linear differential equations in divergence form. Let

(2.64) Lu ≡ −
n∑

i,j=1

Di (aij(x)Dju) +
n∑
i=1

bi(x)Diu+ c(x)u,

with the associated bilinear B[u, v] defined as above.

Definition 2.27. (i) Given f ∈ L2(Ω), we say that u ∈ H1(Ω) is a weak sub-solution of
Lu = f and write Lu ≤ f in Ω provided

B[u, v] ≤ (f, v)L2(Ω) ∀ v ∈ H1
0 (Ω), v(x) ≥ 0 a.e. Ω.

Similarly, we define a weak super-solution of Lu = f and write Lu ≥ f in Ω.

(ii) Given functions u, v ∈ H1(Ω), we say that u ≤ v on ∂Ω if (u− v)+ ∈ H1
0 (Ω); we say

u ≥ v on ∂Ω if −u ≤ −v on ∂Ω; that is, if (v − u)+ ∈ H1
0 (Ω). We define

sup
∂Ω

u = inf{ρ ∈ R | u ≤ ρ on ∂Ω} = inf{ρ ∈ R | (u− ρ)+ ∈ H1
0 (Ω)},
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and
inf
∂Ω
u = − sup

∂Ω
(−u) = sup{ρ ∈ R | u ≥ ρ on ∂Ω}.

(iii) Recall that for u ∈ L1
loc(E), where E ⊂ Rn is measurable,

ess sup
E
u = inf{ρ ∈ R | u ≤ ρ a.e. E} = inf{ρ ∈ R | (u− ρ)+ = 0 a.e. E}.

Note that
sup
∂Ω

u ≤ ess sup
Ω
u ∀ u ∈ H1(Ω).

Remark 2.28. (i) Note that u ∈ H1(Ω) is a weak solution of Lu = f in Ω if and only if u
is both a weak sub-solution and a weak super-solution of Lu = f in Ω.

(ii) If u ≤ v and v ≤ w on ∂Ω then u ≤ w on ∂Ω. (See the Exercise below.)

Exercise 2.29. Suppose v ∈ H1
0 (Ω) and v(x) ≥ 0 a.e. in Ω. Assume u ∈ H1(Ω) and

|u(x)| ≤ v(x) a.e. in Ω. Show that u ∈ H1
0 (Ω).

Hint: Show u+ ∈ H1
0 (Ω). Let vm ∈ C∞0 (Ω) and vm → v in H1(Ω). Then fm =

min{u+, v+
m} ∈ H1

0 (Ω) and fm → u+ in H1(Ω).

Lemma 2.35. Let Ω be a bounded domain with ∂Ω ∈ C1 and u, v ∈ H1(Ω). Then, u ≤ v
on ∂Ω if and only if γ0(u) ≤ γ0(v) a.e. on ∂Ω. Furthermore,

(2.65) sup
∂Ω

u = ess sup
∂Ω

γ0(u).

Proof. Let u ∈ H1(Ω) and let um ∈ C∞(Ω̄) be such that um → u in H1(Ω). Then u+
m → u+

in H1(Ω). Thus um|∂Ω → γ0(u), u+
m|∂Ω → γ0(u+) and u+

m|∂Ω → (γ0(u))+, all strongly in
L2(∂Ω). This proves γ0(u+) = (γ0(u))+ a.e. on ∂Ω. Therefore, given u, v ∈ H1(Ω), it follows
that u ≤ v on ∂Ω ⇐⇒ (u− v)+ ∈ H1

0 (Ω) ⇐⇒ γ0((u− v)+) = (γ0(u)− γ0(v))+ = 0 ⇐⇒
γ0(u) ≤ γ0(v).

The identity (2.65) follows easily as u ≤ ρ on ∂Ω ⇐⇒ γ0(u) ≤ ρ a.e. on ∂Ω. �

Theorem 2.36. (Maximum Principle for weak sub-solutions) Let Ω ⊂ Rn be bounded
open and L be uniformly elliptic in Ω with c(x) ≥ 0 a.e. in Ω. Suppose u ∈ H1(Ω) is a weak
subsolution of Lu = 0 in Ω. Then

ess sup
Ω
u ≤ sup

∂Ω
u+.

Proof. Suppose, for the contrary, that sup∂Ω u
+ < ess supΩ u. Let k be any number such

that sup∂Ω u
+ < k < ess supΩ u, and define vk = (u− k)+. Then k > 0, vk ∈ H1(Ω), vk ≥ 0

and uvk ≥ 0, both a.e. in Ω, and

Dvk =

{
Du on {u > k},
0 on {u ≤ k}.

Since k > sup∂Ω u
+, we have u+ ≤ k on ∂Ω, i.e., (u+ − k)+ ∈ H1

0 (Ω) and thus vk =
(u − k)+ = (u+ − k)+ ∈ H1

0 (Ω). As u ∈ H1(Ω) is a weak subsolution of Lu = 0 in Ω, we
have B[u, vk] ≤ 0, which, combined with the ellipticity condition and c(x)uvk ≥ 0 a.e. in Ω,
gives

θ

∫
Ω
|Dvk|2 ≤

∫
Ω
aijDjuDiv

k ≤ −
∫

Ω
bjv

kDju−
∫

Ω
cuvk

≤ −
∫

Ω
bjv

kDju ≤ C
∫

Ωk

|vk||Dvk| ≤ C‖vk‖L2(Ωk)‖Dvk‖L2(Ω),
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where Ωk = {x ∈ Ω |u(x) > k, Du(x) 6= 0} and C > 0 is independent of k. Hence, with
C1 = C/θ > 0,

(2.66) ‖Dvk‖L2(Ω) ≤ C1‖vk‖L2(Ωk).

Now let p = 2∗ = 2n
n−2 if n > 2 and let p be any number larger than 2 if n = 1, 2.

Then, by (2.66) and the Gagliardo-Nirenberg-Morrey-Poincaré-Sobolev and Hölder
inequalities,

‖vk‖Lp(Ω) ≤ Cp‖Dvk‖L2(Ω) ≤ CpC1‖vk‖L2(Ωk) ≤ CpC1|Ωk|
1
2
− 1
p ‖vk‖Lp(Ω),

where Cp > 0 is a constant independent of k. Since k < ess supΩ u, we have ‖vk‖Lp(Ω) > 0
and hence the previous inequality gives

|Ωk| ≥ µ > 0,

where µ > 0 is independent of k. Let l = ess supΩ u and N be an integer such that
l − 1

N > sup∂Ω u
+. Define

S = ∩∞j=NΩl− 1
j
.

Then S is measurable. Since {Ωk} is decreasing as k increases, it follows that

|S| = lim
k→l−

|Ωk| ≥ µ > 0.

Note that one has Du 6= 0 and u ≥ l on S; hence Du 6= 0 and u = l a.e. on S, which is
impossible since Du = 0 a.e. on any level set {u = constant} of u, the constant including
possibly ∞. (Exercise!) This completes the proof. �

Remark 2.30. The maximum principle for weak subsolutions is independent of the first-
order coefficients bi, as in the case of the maximum principle for classical C2(Ω) ∩ C(Ω̄)-
subsolutions of non-divergence elliptic operators.

Applying Theorem 2.36 to both u and −u, it follows that the elliptic equation Lu = 0
has the unique trivial solution u = 0 in H1

0 (Ω) if c ≥ 0 in Ω. Hence, by the Fredholm
alternative, for such an operator L, the equation Lu = f has a unique weak solution
u ∈ H1

0 (Ω) for each f ∈ L2(Ω).

Lecture 29 – 3/27/19

2.5. Eigenvalues and Eigenfunctions

We come back to the general linear system of divergence form Lu defined by (2.10), whose
bilinear form B[u, v] is defined by (2.12) above on H = H1

0 (Ω;RN ), where N ≥ 1.

Definition 2.31. A real number λ ∈ R is called a (Dirichlet) eigenvalue of operator L if
the BVP problem

(2.67)

{
Lu− λu = 0 in Ω,

u = 0 on ∂Ω

has nontrivial weak solutions in H1
0 (Ω;RN ); these nontrivial solutions are called the eigen-

functions corresponding to eigenvalue λ.

The eigenvalues and eigenfunctions of elliptic equations can be studied by the spectral
theory of compact operators.
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2.5.1. Some Functional Analysis – Spectral Theory of Compact Operators.

Definition 2.32. Let T : H → H be a bounded linear operator on a Hilbert space H.

(1) We define the resolvent set of T to be

ρ(T ) = {λ ∈ R | (T − λI) : H → H is one-to-one and onto}

and define the spetrum of T to be the set σ(T ) = R \ ρ(T ).

(2) If N (T −λI) 6= {0}, then λ is called an eigenvalue of T ; in this case, any nonzero
element in N (T − λI) is called an eigenvector of T corresponding to λ.

Remark 2.33. By the Closed Graph Theorem, λ ∈ ρ(T ) if and only if (T −λI)−1 exists
and is bounded.

Theorem 2.37. (Spectrum of Compact Operator) Let H be an infinite dimensional
Hilbert space and T : H → H be linear and compact. Then

(i) 0 ∈ σ(T ).

(ii) λ is an eigenvalue of T if λ ∈ σ(T ) \ {0}.
(iii) σ(T ) \ {0} is either finite or a sequence converging to 0.

Proof. 1. Suppose 0 ∈ ρ(T ). Then T−1 exists and is bounded on H; thus I = T ◦T−1 : H →
H is compact, which implies each bounded sequence in H has a convergent subsequence.
This is clearly false if dimH =∞.

2. Assume λ ∈ σ(T ), λ 6= 0. Suppose N (λI − T ) = {0}. Then, by the Fredholm
alternative, R(λI − T ) = H and hence λ ∈ ρ(T ), a contradiction. Consequently N (λI −
T ) 6= {0} and thus λ is an eigenvalue of T .

3. Assume S = σ(T ) \ {0} is infinite. We show that the only limit point of S is 0.
Once this is proved it follows that S consists of a sequence converging to 0. Assume η ∈ R,
ηk ∈ S, ηj 6= ηk (j 6= k), and {ηk} → η; we are to prove η = 0. For each k let wk ∈ H be
such that wk 6= 0 and Twk = ηkwk. Let Hk = span{w1, w2, . . . , wk}. Use induction, we see
that {w1, . . . , wk} is linearly independent. Hence Hk is a proper subspace of Hk+1. Note
that (T − ηkI)(Hk) ⊂ Hk−1 ⊂ Hk. Thus choose uk ∈ Hk such that uk ∈ (Hk−1)⊥ and
‖uk‖ = 1. Then if k > j∥∥∥∥Tukηk − Tuj

ηj

∥∥∥∥ =

∥∥∥∥Tuk − ηkukηk
− Tuj − ηjuj

ηj
+ uk − uj

∥∥∥∥ ≥ 1,

since Tuk− ηkuk, Tuj − ηj , uj ∈ Hk−1. If ηk → η 6= 0, then we obtain a contradiction to the
compactness of T . �

2.5.2. Eigenvalues of Elliptic Operators.

Theorem 2.38. (Third Existence Theorem for weak solutions) Assume the condi-
tions of Theorem 2.11 hold.

(i) There exists an at most countable set Σ ⊂ R such that the problem Lu − λu = F
has a unique weak solution in H2

0 (Ω;RN ) for each F ∈ L2(Ω;RN ) if and only if
λ /∈ Σ.

(ii) If Σ is infinite, then Σ = {λk}, with λ1 < λ2 < · · · < λk < · · · , and λk →∞.

Proof. By the Fredholm alternative, the problem Lu − λu = F has a unique weak
solution in H2

0 (Ω;RN ) for each F ∈ L2(Ω;RN ) if and only if Lu − λu = 0 has only trivial
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weak solution u = 0 in H1
0 (Ω;RN ). Let γ ≥ 0 be the number in the G̊arding’s estimate

(2.29). If λ ≤ −γ, then Lu − λu = 0 has only the trivial weak solution u = 0 since the
bilinear form Bλ[u, v] for Lu− λu satisfies

Bλ[u, u] = B[u, u]− λ‖u‖2L2 ≥ β‖u‖2H1 − (λ+ γ)‖u‖2L2 ≥ β‖u‖2H1 .

Assume λ > −γ. Then equation Lu − λu = 0 is equivalent to (L + γI)u = (γ + λ)u; that
is, (I − (γ + λ)K)u = 0, where K = (L + γI)−1 : L2(Ω;RN ) → L2(Ω;RN ) is the compact
operator defined before. Hence, in this case, equation Lu − λu = 0 has only trivial weak
solution u = 0 if and only if N (I − (γ + λ)K) = {0}; since λ+ γ > 0, this last condition is
equivalent to 1

γ+λ /∈ σ(K). Let

Σ =

{
λ > −γ

∣∣∣ 1

γ + λ
∈ σ(K)

}
.

Therefore, we have proved that the problem Lu − λu = F has a unique weak solution in
H2

0 (Ω;RN ) for each F ∈ L2(Ω;RN ) if and only if λ /∈ Σ. Since σ(K) is at most an infinite
sequence converging to 0, it follows that Σ is at most an infinite sequence converging to
+∞. �

Remark 2.34. The set Σ in the theorem is exactly the set of (real) eigenvalues of L.

Lecture 30 – 3/29/19

2.5.3. More Functional Analysis – Spectral Theory of Symmetric Compact Op-
erators. Let H be a real Hilbert space, with inner product ( , ) and norm ‖ · ‖, and let
S : H → H be linear, bounded and symmetric. Define

m = inf
u∈H, ‖u‖=1

(Su, u), M = sup
u∈H, ‖u‖=1

(Su, u).

Lemma 2.39. We have m,M ∈ σ(S) ⊂ [m,M ].

Proof. 1. Clearly −‖S‖ ≤ m ≤ M ≤ ‖S‖. Let η > M and consider the bilinear form
B[u, v] = (ηu− Su, v). Then B is bounded on H and

B[u, u] = (ηu− Su, u) = η‖u‖2 − (Su, u) ≥ (η −M)‖u‖2.

Hence, by the Lax-Milgram Theorem, for each w ∈ H, there exists a unique u ∈ H
such that B[u, v] = (w, v) for all v ∈ H; that is, ηu− Su = w. Moreover, ‖u‖ ≤ 1

η−M ‖w‖.
So (ηI − S)−1 : H → H exists and ‖(ηI − S)−1w‖ ≤ 1

η−M ‖w‖; thus η ∈ ρ(S) and hence

σ(S) ⊂ (−∞,M ]. Similarly, σ(S) ⊂ [m,∞). This proves σ(S) ⊂ [m,M ].

2. Let B[u, v] = (Mu− Su, v). Then B[u, v] is symmetric and

0 ≤ B[u, u] ≤ (M −m)‖u‖2 ∀u ∈ H.

This implies h(t) = B[u+ tv, u+ tv] ≥ 0 for all t; hence

B[u, v]2 ≤ B[u, u]B[v, v] ∀u, v ∈ H.

Setting v = Mu− Su yields

‖Mu− Su‖4 = B[u, v]2 ≤ B[u, u]B[v, v] ≤ (M −m)B[u, u]‖v‖2,

which gives

‖Mu− Su‖2 ≤ (M −m)(Mu− Su, u) ∀u ∈ H.
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3. We prove M ∈ σ(S). Let uk ∈ H be such that ‖uk‖ = 1 and (Suk, uk) → M. Then
(Muk − Suk, uk)→ 0 and hence by the inequality above,

‖(MI − S)uk‖2 = ‖Muk − Suk‖2 ≤ (M −m)(Muk − Suk, uk)→ 0.

So (MI−S)uk → 0. If M ∈ ρ(S), then uk = (MI−S)−1(Muk−Suk)→ 0, a contradiction
to ‖uk‖ = 1. Therefore M ∈ σ(S). Similarly, m ∈ σ(S). �

Theorem 2.40. (Spectral Property for Compact Symmetric Operators) Let H be
a separable Hilbert space and S : H → H be compact and symmetric. Then there exists a
countable orthonormal basis of H consisting of eigenvectors of S.

Proof. 1. Let σ(S) \ {0} = {ηk}∞k=1 and η0 = 0. Write Hk = N (S − ηkI) for k = 0, 1, . . . .
According to the Fredholm alternative, 0 < dimHk < ∞ for k = 1, 2, . . . . If k 6= l and
u ∈ Hk, v ∈ Hl, then ηk(u, v) = (Suk, v) = (uk, Sv) = ηl(u, v), which implies (u, v) = 0 and
thus Hk ⊥ Hl if k 6= l.

2. Let H̃ be the smallest subspace of H containing all Hk’s for k = 0, 1, . . . ; namely,

H̃ =
{ m∑
k=0

akuk | m ∈ {0, 1, . . . }, ak ∈ R, uk ∈ Hk ∀ k = 0, 1, . . . ,m
}
.

Then S(H̃) ⊂ H̃. Furthermore, if u ∈ H̃⊥ and v ∈ H̃, then (Su, v) = (u, Sv) = 0; hence

S(H̃⊥) ⊂ H̃⊥.
3. Consider the operator S̃ = S|H̃⊥ : H̃⊥ → H̃⊥. Then S̃ is compact and symmetric;

moreover, any nonzero eigenvalue of S̃ would be a nonzero eigenvalue of S and all eigen-
vectors of S are in H̃ not in H̃⊥. Hence S̃ has no nonzero eigenvalues; thus σ(S̃) = {0}. By

Lemma 2.39, this implies (S̃u, u) = 0 for all u ∈ H̃⊥. Hence, for all u, v ∈ H̃⊥,

0 = (S̃(u+ v), u+ v) = (S̃u, u) + (S̃v, v) + 2(S̃u, v) = 2(S̃u, v);

that is, (S̃u, v) = 0 for all u, v ∈ H̃⊥; this shows that S̃ ≡ 0. Thus H̃⊥ = N (S̃) ⊂ N (S) =

H0 ⊂ H̃, which implies that H̃⊥ = {0}; hence H̃ is dense in H.

4. Choose an orthonormal basis for each Hk (k = 0, 1, 2, . . . ), noting that since H is
separable, if dimH0 > 0 (in this case H0 is the eigenspace of S for eigenvalue 0), then H0 has
an at most countable orthonormal basis. Each of other Hk’s (k 6= 0) is finite dimensional.
We thus obtain a countable orthonormal basis of H consisting of eigenvectors of S. �

2.5.4. Eigenvalue Problems for Symmetric Elliptic Operators. In what follows, we
assume that the bilinear form B[u, v] of L is symmetric on H1

0 (Ω;RN ), that is,

(2.68) B[u, v] = B[v, u] ∀ u, v ∈ H1
0 (Ω;RN ).

In this case, Lu is symmetric or self-adjoint: L∗u = Lu. We also assume the G̊arding’s
inequality:

(2.69) B[u, u] ≥ β‖u‖2H1
0
− γ‖u‖2L2 , ∀ u ∈ H1

0 (Ω;RN ),

where β > 0 and γ ∈ R are constants; see Theorem 2.11 for sufficient conditions.

For each F ∈ L2(Ω;RN ), define u = KF to be the unique weak solution in H1
0 (Ω;RN )

of the BVP

Lu+ γu = F in Ω, u|∂Ω = 0.

By Theorem 2.12 and Corollary 2.13, K = (L + γI)−1 is a compact linear operator on
L2(Ω;RN ). We easily verify the following result.
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Lemma 2.41. K : L2(Ω;RN )→ L2(Ω;RN ) is symmetric and positive; that is,

(KF,G)L2 = (KG,F )L2 , (KF, F )L2 ≥ 0, ∀ F, G ∈ L2(Ω;RN ).

Theorem 2.42. (Eigenvalue Theorem) Assume (2.68) and (2.69).

(i) The eigenvalues of L consist of a countable set Σ = {λk}∞k=1, where

−γ < λ1 ≤ λ2 ≤ λ3 ≤ · · ·

are listed repeatedly the same times as the multiplicity, and λk →∞.
Furthermore, let wk be an eigenfunction to λk satisfying ‖wk‖L2(Ω;RN ) = 1. Then

{wk}∞k=1 forms an orthonormal basis of L2(Ω;RN ).

(ii) The first (smallest) eigenvalue λ1 is called the (Dirichlet) principal eigenvalue
of L and is characterized by the Rayleigh’s formula

(2.70) λ1 = min
u∈H1

0(Ω;RN )

‖u‖
L2(Ω;RN )

=1

B[u, u] = min
u∈H1

0(Ω;RN )

u 6=0

B[u, u]

‖u‖2
L2(Ω;RN )

.

Moreover, if u ∈ H1
0 (Ω;RN ), u 6≡ 0, then u is an eigenfunction corresponding to

λ1 if and only if B[u, u] = λ1‖u‖2L2(Ω;RN )
.

Proof. 1. Let K = (L+ γI)−1 be the symmetric positive compact operator defined above.
We see that λ is an eigenvalue of L if and only if equation (I−(λ+γ)K)u = 0 has nontrivial
solutions u ∈ L2(Ω;RN ); this exactly asserts that

(2.71) λ is an eigenvalue of L if and only if 1
λ+γ is an eigenvalue of operator K.

Moreover, u is an eigenfunction of L corresponding to eigenvalue λ if and only if u is an
eigenvector of K corresponding to eigenvalue 1

λ+γ . Therefore, (i) follows from Theorem 2.40.

2. We now prove the second statement. If u is an eigenfunction corresponding to λ1

with ‖u‖L2(Ω;RN ) = 1, then easily B[u,u] = λ1(u, u)L2 = λ1‖u‖2L2 = λ1. We now assume

u ∈ H1
0 (Ω;RN ), ‖u‖L2(Ω;RN ) = 1.

Let {wk} be the orthonormal basis of L2(Ω;RN ) consisting of eigenfunctions as given in (i).

Then B[wk, wl] = λk(wk, wl)L2 = λkδkl. Set w̃k = (λk + γ)−1/2wk, and consider the inner
product on H = H1

0 (Ω;RN ) defined by

((u, v)) := Bγ [u, v] ≡ B[u, v] + γ(u, v)L2 (u, v ∈ H).

Then ((u, u))1/2 defines an equivalent norm on H and ((w̃k, w̃l)) = δkl. Let dk = (u,wk)L2 .
We have

(2.72)

∞∑
k=1

d2
k = ‖u‖2L2 = 1, u =

∞∑
k=1

dkwk =

∞∑
k=1

d̃kw̃k

with d̃k = dk
√
λk + γ, where the series for u are in the norm-convergence in L2(Ω;RN ).

3. We claim that the series for u converges also in the equivalent norm ((u, u))1/2 on
H. Indeed, for m = 1, 2, · · · , define

um =
m∑
k=1

dkwk =
m∑
k=1

d̃kw̃k ∈ H.
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From ((w̃k, u)) = B[w̃k, u] + γ(w̃k, u)L2 = (λk + γ)(w̃k, u)L2 = d̃k, we have

((um, u)) =
m∑
k=1

d̃2
k = ((um, um)) (m = 1, 2, · · · ).

This implies ((um, um)) ≤ ((u, u)) for all m = 1, 2, · · · . Hence, {um} is bounded in H
and so, by a subsequence, um ⇀ ũ in H as m → ∞ (here we use the notion of weak
convergence). Since um → u in L2, we must have ũ = u and so

((u, u)) ≤ lim inf
m→∞

((um, um)),

which, combined with ((u− um, u− um)) = ((u, u)) + ((um, um))− 2((u, um)) = ((u, u))−
((um, um)), implies that um → u in H, and the claim is proved.

4. Now, by (2.72), we have

B[u, u] =
∞∑
k=1

dkB[wk, u] =

∞∑
k=1

d2
kλk ≥

∞∑
k=1

d2
kλ1 = λ1.

Hence (2.70) is proved. Moreover, if in addition B[u, u] = λ1, then we have
∞∑
k=1

(λk − λ1)d2
k = 0; so dk = 0 if λk > λ1.

Assume λ1 has multiplicity m, with Lwk = λ1wk (k = 1, 2, · · · ,m). Then u =
∑m

k=1 dkwk,
and so Lu = λ1u; that is, u is an eigenfunction corresponding to λ1. �

2.5.5. The Scalar Case N = 1. We consider a special scalar symmetric elliptic operator
Lu given by

Lu = −
n∑

i,j=1

Dj(aij(x)Diu) + c(x)u,

where the uniform ellipticity condition is satisfied, ∂Ω is smooth, and aij , c are smooth
functions on Ω̄ satisfying

aij(x) = aji(x), c(x) ≥ 0 (x ∈ Ω̄).

Theorem 2.43. The principal eigenvalue of L is positive; that is λ1 > 0. Let w1 be an
eigenfunction corresponding to the principal eigenvalue λ1 of L. Then, either w1(x) > 0
for all x ∈ Ω or w1(x) < 0 for all x ∈ Ω. Moreover, the eigenspace corresponding to λ1 is
one-dimensional; that is, the principal eigenvalue λ1 is simple.

Proof. 1. Since in this case the bilinear form B is positive: B[u, u] ≥ θ‖u‖2
H1

0 (Ω)
≥

σ‖u‖2L2(Ω), we have λ1 > 0. Let w1 be an eigenfunction corresponding to λ1 with ‖w1‖L2(Ω) =

1. Then w±1 ∈ H1
0 (Ω), w1 = w+

1 + w−1 , ‖w+
1 ‖2L2(Ω) + ‖w−1 ‖2L2(Ω) = ‖w1‖2L2(Ω) = 1, and

Dw+
1 = χ{w1>0}Dw1, Dw−1 = χ{w1<0}Dw1.

Hence B[w+
1 , w

−
1 ] = 0, and thus

λ1 = B[w1, w1] = B[w+
1 , w

+
1 ] +B[w−1 , w

−
1 ] ≥ λ1‖w+

1 ‖
2
L2(Ω) + λ1‖w−1 ‖

2
L2(Ω) = λ1.

So the inequality must be equality, which yields that

B[w+
1 , w

+
1 ] = λ1‖w+

1 ‖
2
L2(Ω), B[w−1 , w

−
1 ] = λ1‖w−1 ‖

2
L2(Ω).

Therefore, u = w±1 is a H1
0 (Ω)-solution to the equation Lu = λ1u in Ω. Since the coefficients

of L and Ω are smooth on Ω̄, u = w±1 is smooth on Ω̄. (See Theorem 2.27.) Since Lw−1 =
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λ1w
−
1 ≤ 0 in Ω, by the Strong Maximum Principle, either w−1 ≡ 0 or else w−1 < 0 in Ω;

similarly, either w+
1 ≡ 0 or else w+

1 > 0 in Ω. This proves that either w1 < 0 in Ω or else
w1 > 0 in Ω.

2. To prove the eigenspace of λ1 is one-dimensional, let w be another eigenfunction. Let
t ∈ R be such that

∫
Ω(w− tw1)dx = 0. Since u = w− tw1 is also a solution to Lu = λ1u, it

follows that either u ≡ 0, u > 0, or u < 0, in Ω; however, in the last two cases,
∫

Ω udx 6= 0.
Hence u ≡ 0; namely, w(x) = tw1(x) for all x ∈ Ω. �



Chapter 3

Part III – The
Calculus of Variations

Lecture 31 – 4/1/19

3.1. Variational Problems

3.1.1. Basic Ideas. This chapter will discuss certain methods for solving the boundary
value problem for some partial differential equations; these problems, in an abstract form,
can be written as

(3.1) A[u] = 0.

There is, of course, no general theory for solving such problems. The Calculus of Varia-
tions identifies an important class of problems which can be solved using relatively simple
techniques motivated from the elementary Calculus. This is the class of variational prob-
lems, where the operator A[u] can be formulated as the first variation (“derivative”) of
an appropriate “energy” functional I(u) on a Banach space X; that is, A[u] = I ′(u). In this
way, A : X → X∗ and equation A[u] = 0 can be formulated as

〈I ′(u), v〉 = 0, ∀ v ∈ X.

The advantage of this new formulation is that solving problem (3.1) (at least weakly) is
equivalent to finding the critical points of I on X. The minimization method for a
variational problem is to solve the problem by finding the minimizers of the related energy
functional.

We should also mention that many physical laws in applications arise directly as vari-
ational principles. However, although powerful, not all PDE problems can be formulated
as a variational problem; there are other important (non-variational) methods for studying
PDEs, and we shall not study them in this chapter.

3.1.2. Multiple Integral Functionals, First Variation and the Euler-Lagrange
Equation. Let Ω ⊂ Rn be a bounded, open set with smooth boundary ∂Ω. For a function
u : Ω→ RN (we say u is scalar if N = 1 and u is vector if N ≥ 2), let u = (u1, u2, · · · , uN )
and use

Du = (Diu
k) = (∂xiu

k) (k = 1, 2, · · · , N ; i = 1, 2, · · · , n)

77
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to denote the Jacobi matrix of u; for each x ∈ Ω, Du(x) ∈MN×n.

Given a function L : Ω× RN ×MN×n → R, consider the multiple integral functional

(3.2) I(u) =

∫
Ω
L(x, u(x), Du(x)) dx.

The function L(x, s, ξ) is usually called the Lagrangian of the functional I. (Here we are
using different notation from the textbook and doing the general cases including both the
scalar and the system cases.)

Suppose L(x, s, ξ) is continuous in (x, s, ξ) and smooth in (s, ξ). Assume u is a nice (say,
u ∈ C1(Ω̄;RN )) minimizer of I(u) with its own boundary data; that is,

I(u) ≤ I(u+ tϕ)

for all t ∈ R and ϕ ∈ C∞0 (Ω;RN ). Then by taking derivative of I(u + t ϕ) at t = 0 we see
that u satisfies

(3.3)

∫
Ω

(
Lξki

(x, u,Du)Diϕ
k + Lsk(x, u,Du)ϕk

)
dx = 0

for all ϕ ∈ C∞0 (Ω;RN ). (Summation notation is used here.)

The left-hand side of (3.3) is called the first variation of I at u (in the direction of ϕ),
and is denoted by 〈I ′(u), ϕ〉. Since (3.3) holds for all test functions ϕ, we conclude after
integration by parts that u solves the system of nonlinear PDEs:

(3.4) −
n∑
i=1

Di(A
k
i (x, u,Du)) + bk(x, u,Du) = 0 (k = 1, 2, · · · , N),

where functions Aki (x, s, ξ) and bk(x, s, ξ) are defined by

(3.5) Aki (x, s, ξ) = Lξki
(x, s, ξ), bk(x, s, ξ) = Lsk(x, s, ξ).

Definition 3.1. The coupled system (3.4) of quasilinear PDE in divergence form is called
the Euler-Lagrange equation associated with the integral functional I(u). We often write
the Euler-Lagrange PDE system (3.4) as

−divA(x, u,Du) + b(x, u,Du) = 0 in Ω,

with matrix function A = (Aki ) and vector function b = (bk) given by (3.5).

In summary, any smooth minimizer of I(u) is a solution of the Euler-Lagrange equation
associated with I(u), and thus we may try to solve the PDEs of the type (3.4) by searching
for minimizers or general critical points of functional I(u). This is the method of calculus
of variations or variational method for PDE. The fundamental issues of this method are
whether minimizers exist and are smooth enough to be a solution of the PDE. These issues
lead to the existence and regularity theories that we will discuss separately.

Example 3.1. (Generalized Dirichlet’s principle). Take

I(u) =

∫
Ω

(1

2

n∑
i,j=1

aij(x)uxiuxj − uf
)
dx,

where aij = aji (i, j = 1, 2, · · · , n) and f : Ω → R are given functions. Then the Euler-
Lagrange equation is the divergence form PDE

−
n∑

i,j=1

(aij(x)uxi)xj = f in Ω.
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Example 3.2. (Nonlinear Poisson equations). Assume : R→ R is a smooth function
and F (z) =

∫ z
0 f(s) ds. Consider

I(u) =

∫
Ω

(
1

2
|Du|2 − F (u)

)
dx.

Then the Euler-Lagrange equation is the nonlinear Poisson equation

−∆u = f(u) in Ω.

Example 3.3. (Minimal surfaces). Let

I(u) =

∫
Ω

(1 + |Du|2)1/2dx

be the area of the graph of u : Ω→ R. The associated Euler-Lagrange equation is

div
Du

(1 + |Du|2)1/2
= 0 in Ω,

which is called the minimal surface equation. The left side of the equation represents
n-times the mean curvature of the graph of u. Thus a minimal surface has zero mean
curvature.

3.1.3. Second Variation and Legendre-Hadamard Conditions. If L, u are suffi-
ciently smooth (e.g. of class C2) then, at the minimizer u, for all ϕ ∈ C∞0 (Ω;RN ), we
have

〈I ′′(u)ϕ,ϕ〉 :=
d2

dt2
I(u+ tϕ)

∣∣∣
t=0
≥ 0,

which gives

〈I ′′(u)ϕ,ϕ〉 =

∫
Ω

(
Lξki ξlj

(x, u,Du)Diϕ
kDjϕ

l + 2Lξki sl
(x, u,Du)ϕlDiϕ

k

+ Lsksl(x, u,Du)ϕkϕl
)
dx ≥ 0 ∀ ϕ ∈ C∞0 (Ω;RN ).

(3.6)

The quantity 〈I ′′(u)ϕ,ϕ〉 is called the second variation of I at u (in direction ϕ).

We can extract useful information from (3.6). Note that a routine approximation ar-
gument shows that (3.6) is also valid for all Lipschitz functions ϕ vanishing on ∂Ω. Let
ρ : R → R be the periodic zig-zag function of period 1 with ρ(t) = t if 0 ≤ t ≤ 1

2 and

ρ(t) = 1− t if 1
2 ≤ t ≤ 1. Given p ∈ Rn, q ∈ RN , ε > 0 and ζ ∈ C∞0 (Ω), define

ϕ(x) = ε ρ(
x · p
ε

)ζ(x)q, ∀ x ∈ Ω.

Note that Diϕ
k(x) = ρ′(x·pε )piq

kζ + O(ε) as ε → 0+. Substitute this ϕ into (3.6) and let
ε→ 0+ to obtain ∫

Ω

( n∑
i,j=1

N∑
k,l=1

Lξki ξlj
(x, u,Du) pipjq

kql
)
ζ2 dx ≥ 0.

Since this holds for all ζ ∈ C∞0 (Ω), we deduce

(3.7)
n∑

i,j=1

N∑
k,l=1

Lξki ξlj
(x, u,Du) pipjq

kql ≥ 0, ∀ x ∈ Ω, p ∈ Rn, q ∈ RN .

This necessary condition is called the (weak) Legendre-Hadamard condition for L at
the minimum point u.
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Lecture 32 – 4/3/19

3.2. Existence of Minimizers

3.2.1. Some Definitions in Nonlinear Functional Analysis.

Definition 3.2. Let X be a Banach space and X∗ be its dual space.

(1) A sequence uν in X is said to weakly converge to an element u ∈ X if

〈f, uν〉 → 〈f, u〉 ∀ f ∈ X∗.
(2) A set C ⊂ X is said to be (sequentially) weakly closed provided u ∈ C whenever
{uν} ⊂ C, uν ⇀ u.

(3) A function I : X → R̄ = R ∪ {∞} is said to be (sequentially) weakly lower
semicontinuous (w.l.s.c.) on X provided

I(u) ≤ lim inf
ν→∞

I(uν) whenever uν ⇀ u in X.

(4) A function I : X → R̄ is said to be coercive on an unbounded set C ⊆ X provided
I(u)→∞ as ‖u‖ → ∞ in C.

(5) A function I : X → R is said to be Gateaux-differentiable at u ∈ X if for all
v ∈ X the function h(t) = I(u + tv) is differentiable at t = 0. In this case, we
define 〈I ′(u), v〉 = h′(0) to be the Gateaux or directional derivative of I at u
in direction v.

(6) A function I : X → R is said to be Fréchet-differentiable or simply differen-
tiable at u ∈ X if there exists an element f ∈ X∗ such that

lim
v∈X, ‖v‖→0

I(u+ v)− I(u)− 〈f, v〉
‖v‖

= 0.

In this case, we define I ′(u) = f to be the Fréchet derivative of I at u. We
say I is C1 on X provided that I ′(u) is defined for all u ∈ X and I ′ : X → X∗ is
continuous.

3.2.2. The Direct Method of the Calculus of Variations. We study a general method
for proving the existence of minimizers of a function defined on a Banach space. This method
is called the direct method of the calculus of variations.

Theorem 3.4. (Direct Method of the Calculus of Variations) Let X be a reflexive
Banach space, C ⊆ X be a nonempty weakly closed set, and I : X → R̄ be w.l.s.c. and
coercive on C if C is unbounded. Assume infu∈C I(u) <∞. Then there is at least one u0 ∈ C
such that I(u0) = infu∈C I(u); such a function u0 ∈ C is called a minimizer of I on C.

Proof. First of all, take a sequence {uν}, called a minimizing sequence, such that

lim
ν→∞

I(uν) = inf
u∈C

I(u) <∞.

Then the coercivity condition implies that {uν} must be bounded in X. Since X is reflexive,
there exists a subsequence of {uν}, denoted by {uνj}, and u0 ∈ X such that uνj ⇀ u0 weakly
in X. The weak closedness of C implies u0 ∈ C. Now the w.l.s.c. of I implies

I(u0) ≤ lim inf
j→∞

I(uνj ) = inf
u∈C

I(u).

This proves that u0 is a minimizer of I on C. The procedure presented in this proof is called
a direct method proof. �
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3.2.3. The Coecivity and Lower Semicontinuity. We now study the multiple integral
functionals of the type

I(u) =

∫
Ω
L(x, u,Du) dx

on Sobolev space W 1,p(Ω;RN ), where Ω is bounded open in Rn. We discuss some conditions
on the Lagrangian L in order to use the direct method on functional I.

Dirichlet classes. Let 1 ≤ p <∞ and ϕ ∈W 1,p(Ω;RN ). We define the Dirichlet class

Dϕ = {u ∈W 1,p(Ω;RN ) |u− ϕ ∈W 1,p
0 (Ω;RN )}.

Note that if ∂Ω ∈ C1 then using the trace operator γ0 it is easy to show that Dϕ is weakly
closed in W 1,p(Ω;RN ). For general open sets Ω, the proof of weak closedness of Dϕ needs
the Mazur’s lemma which asserts that any weakly convergent sequence in a Banach space
has a sequence of convex combinations of its members that converges strongly to the same
limit; we will not discuss this result but will freely use the weak closedness of Dϕ for all Ω’s
in the following. Also, by the Poincaré’s inequality, we have

(3.8) ‖Du‖Lp(Ω) ≤ ‖u‖W 1,p(Ω) ≤ C(‖Du‖Lp(Ω) + ‖ϕ‖W 1,p(Ω)) ∀u ∈ Dϕ.

Coercivity. Assume L(x, s, ξ) is continuous on (s, ξ) and measurable on x, and

(3.9) L(x, s, ξ) ≥ α|ξ|p − β(x) ∀x ∈ Ω, s ∈ RN , ξ ∈MN×n,

where α > 0 is a constant and β ∈ L1(Ω) is a function. Then I : W 1,p(Ω;RN ) → R is
well-defined and

I(w) ≥ α‖Dw‖pLp(Ω) − ‖β‖L1(Ω) ∀w ∈W 1,p(Ω;RN ).

Hence, by (3.8), we have for some constants δ > 0 and γ ∈ R,

(3.10) I(w) ≥ δ‖w‖p
W 1,p(Ω)

− γ ∀w ∈ Dϕ.

This implies the coercivity of I on the Dirichlet class Dϕ. Note that condition (3.10) can
hold under some conditions weaker than (3.9); we will not discuss such conditions.

Weak lower semicontinuity. The necessary and sufficient condition for weak lower semi-
continuity of I(u) on a Sobolev space (especially for general systems) is a difficult problem
involving Morrey’s quasiconvexity, which we will not study in this course. Instead, we
prove a semicontinuity result for certain Lagrangians L(x, s, ξ) that are convex in ξ. Another
lower semicontinuity theorem for polyconvex functionals will be proved later.

Recall that a function L(x, s, ξ) is said to be convex in ξ ∈MN×n if

L(x, s, tξ + (1− t)η) ≤ tL(x, s, ξ) + (1− t)L(x, s, η)

for all x, s, ξ, η and 0 ≤ t ≤ 1.

Lemma 3.5. Let L be C1 in ξ. Then the convexity of L in ξ is equivalent to the following
condition:

(3.11) L(x, s, η) ≥ L(x, s, ξ) + Lξki
(x, s, ξ) (ηki − ξki )

for all x ∈ Ω, s ∈ RN and ξ, η ∈MN×n.

Proof. Exercise! �
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Lecture 33 – 4/5/19

Theorem 3.6. (Tonelli’s Theorem) Let L(x, s, ξ) ≥ 0 be smooth and convex in ξ.
Assume L, Lξ are both continuous in (x, s, ξ). Then the functional I(u) defined above is

weakly (weakly* if p =∞) lower semicontinuous on W 1,p(Ω;RN ) for all 1 ≤ p ≤ ∞.

Proof. We only prove I(u) is w.l.s.c. on W 1,1(Ω;RN ); the proof for other p follows easily.
To this end, assume {uν} is a sequence weakly convergent to u in W 1,1(Ω;RN ). We need to
show

I(u) ≤ lim inf
ν→∞

I(uν).

By the Sobolev embedding theorem it follows that (via a subsequence) uν → u in L1(Ω;RN ).
We also assume uν(x) → u(x) for almost every x ∈ Ω. Now, given δ > 0, we choose a
compact set K ⊂ Ω such that

(i) uν → u uniformly on K and |Ω \K| < δ (by Egorov’s theorem);

(ii) u, Du are continuous on K (by Lusin’s theorem).

Since L(x, s, ξ) is smooth and convex in ξ, it follows that

L(x, s, η) ≥ L(x, s, ξ) + Lξki
(x, s, ξ) (ηki − ξki ) ∀ξ, η ∈MN×n.

Therefore, since L ≥ 0,

I(uν) ≥
∫
K
L(x, uν , Duν) dx

≥
∫
K

[
L(x, uν , Du) + Lξki

(x, uν , Du) (Diu
k
ν −Diu

k)
]

=

∫
K
L(x, uν , Du) +

∫
K
Lξki

(x, u,Du) (Diu
k
ν −Diu

k)

+

∫
K

[Lξki
(x, uν , Du)− Lξki (x, u,Du)] (Diu

k
ν −Diu

k).

Since L(x, s, ξ) is uniformly continuous on bounded sets and uν(x)→ u(x) uniformly on K
we have

lim
ν→∞

∫
K
L(x, uν , Du) dx =

∫
K
L(x, u,Du) dx,

lim
ν→∞

‖Lξki (x, uν , Du)− Lξki (x, u,Du)‖L∞(K) = 0.

Now since Lξki
(x, u,Du) is bounded on K and Diu

k
ν converges to Diu

k weakly in L1(Ω) as

ν →∞, we thus have

lim
ν→∞

∫
K
Lξki

(x, u,Du) (Diu
k
ν −Diu

k) dx = 0.

From these estimates, we have

(3.12) lim inf
ν→∞

I(uν) ≥
∫
K
L(x, u,Du).

If L(x, u,Du) ∈ L1(Ω), i.e., I(u) < ∞, then for any given ε > 0, we use the Lebesgue
absolute continuity theorem to determine δ > 0 so that∫

E
L(x, u,Du) ≥

∫
Ω
L(x, u,Du)− ε, ∀E ⊂ Ω, |Ω \ E| < δ.
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On the other hand, if I(u) =∞ then for any number M > 0 we choose δ > 0 so that∫
E
L(x, u,Du) dx > M, ∀E ⊂ Ω, |Ω \ E| < δ.

In either of these two cases, using (3.12) and letting ε→ 0 or M →∞, we obtain

lim inf
ν→∞

I(uν) ≥ I(u).

The theorem is proved. �

3.2.4. Existence in the Convex Case. Using the theorem, we obtain the following
existence result.

Theorem 3.7. In addition to the hypotheses of the previous theorem, assume there exists
1 < p <∞ such that

L(x, s, ξ) ≥ c |ξ|p − C(x),

where c > 0, C ∈ L1(Ω) are given. If for some ϕ ∈ W 1,p(Ω;RN ), I(ϕ) < ∞, then mini-
mization problem infu∈Dϕ I(u) has a minimizer in the Dirichlet class Dϕ.

Proof. This follows from the abstract existence Theorem 3.4 above. �

3.2.5. Weak Solutions of the Euler-Lagrange Equation. Distributional or weak so-
lutions to the Euler-Lagrange equation (3.4) can be defined as long as A(x, u,Du) and
b(x, u,Du) are in L1

loc(Ω;RN ). We give some structural conditions on the Lagrangian
L(x, s, ξ) so that the weak solutions to the BVP

(3.13)

{
−divA(x, u,Du) + b(x, u,Du) = 0 in Ω,

u = ϕ on ∂Ω,

can be defined and studied in W 1,p(Ω;RN ) for some 1 ≤ p <∞.

Standard Structural Conditions. We assume L(x, s, ξ) is C1 in (s, ξ) and

|L(x, s, ξ)| ≤ c1(|ξ|p + |s|p) + c2(x), c2 ∈ L1(Ω);(3.14)

|DsL(x, s, ξ)| ≤ c3(|ξ|p−1 + |s|p−1) + c4(x), c4 ∈ L
p
p−1 (Ω);(3.15)

|DξL(x, s, ξ)| ≤ c5(|ξ|p−1 + |s|p−1) + c6(x), c6 ∈ L
p
p−1 (Ω),(3.16)

where c1, c3, c5 are constants.

Theorem 3.8. Under the standard structural conditions above, any minimizer u of I on
Dϕ is a weak solution of the BVP (3.13) in the sense that u ∈ Dϕ and

(3.17)

∫
Ω

(
Lξki

(x, u,Du)Div
k + Lsk(x, u,Du) vk

)
dx = 0 ∀ v ∈W 1,p

0 (Ω;RN ),

(as usual, summation notation is used here).

Proof. Let X = W 1,p(Ω;RN ), u, v ∈ X, and h(t) = I(u+ tv). By (3.14), h is finite valued,
and we show h is differentiable at t = 0 and

(3.18) h′(0) = 〈I ′(u), v〉 =

∫
Ω

(
Lξki

(x, u,Du)Div
k(x) + Lsk(x, u,Du) vk(x)

)
dx.

We have h(t)−h(0)
t =

∫
Ω L

t(x) dx, where for almost every x ∈ Ω,

Lt(x) =
1

t
[L(x, u+ tv,Du+ tDv)− L(x, u,Du)] =

1

t

∫ t

0

d

ds
L(x, u+ sv,Du+ sDv) ds
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=
1

t

∫ t

0

[
Lξki

(x, u+ sv,Du+ sDv)Div
k + Lsk(x, u+ sv,Du+ sDv) vk

]
ds.

Hence

lim
t→0

Lt(x) = Lξki
(x, u,Du)Div

k + Lsk(x, u,Du) vk a.e. x ∈ Ω.

Using conditions (3.15), (3.16), and Young’s inequality, we obtain that, for all 0 < |t| ≤ 1,

|Lt(x)| ≤ C1(|Du|p + |Dv|p + |u|p + |v|p) + C2(x), C2 ∈ L1(Ω).

Thus, by the Lebesgue dominated convergence theorem,

h′(0) = lim
t→0

∫
Ω
Lt(x) dx =

∫
Ω

(
Lξki

(x, u,Du)Div
k + Lsk(x, u,Du) vk

)
dx,

which proves (3.18). If u is a minimizer of I on Dϕ, then for each v ∈ W 1,p
0 (Ω;RN ) the

function h(t) = I(u+ tv) attains the minimum at t = 0; hence h′(0) = 〈I ′(u), v〉 = 0, which
proves (3.17). �

3.2.6. Nemytskii Operators and Fréchet Differentiability of I. In fact, we can prove
a much stronger result.

Theorem 3.9. Let 1 < p < ∞. Then, under the same standard structural conditions as
above, the functional I is C1 on X = W 1,p(Ω;RN ).

Proof. Given u ∈ X, the formula (3.18) defines an element I ′(u) ∈ X∗ and hence I ′ : X →
X∗ is well-defined. To show that I ′(u) is the Fréchet derivative of I at u, let v ∈ X and
f(t) = I(u+ tv)− I(u)− 〈I ′(u), v〉t. Then

I(u+ v)− I(u)− 〈I ′(u), v〉 =

∫ 1

0
f ′(s)ds =

∫ 1

0
(〈I ′(u+ sv), v〉 − 〈I ′(u), v〉) ds

=

∫
Ω

∫ 1

0

(
Lξki

(x, u+ sv,Du+ sDv)− Lξki (x, u,Du)
)
Div

k dsdx

+

∫
Ω

∫ 1

0

(
Lsk(x, u+ sv,Du+ sDv)− Lsk(x, u,Du)

)
vk dsdx.

Let

A(x, s, ξ) = max
0≤τ≤1

|Lξ(x, u(x) + τs,Du(x) + τξ)− Lξ(x, u(x), Du(x))|,

B(x, s, ξ) = max
0≤τ≤1

|Ls(x, u(x) + τs,Du(x) + τξ)− Ls(x, u(x), Du(x))|.

Then A and B are Carathéodory with respect to x and (s, ξ) and satisfy (3.20) with
q = p

p−1 (see below). Note that

|I(u+ v)− I(u)− 〈I ′(u), v〉| ≤ C (‖A(x, v,Dv)‖Lq + ‖B(x, v,Dv)‖Lq)‖v‖W 1,p .

Thus, the Fréchet differentiability of I at u will follow from

(3.19) lim
v→0

(‖A(x, v,Dv)‖Lq + ‖B(x, v,Dv)‖Lq) = 0,

which is the continuity of general Nemytskii operators proved in Lemma 3.10 below.

Finally, from (3.19) it also follows that I ′ : X → X∗ is continuous and I is C1 on X. �
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Nemytskii operators. Let f : Ω× Rd → R be Carathéodory; that is,

(i) for every ξ ∈ Rd, f(x, ξ) is a measurable function of x on Ω;

(ii) for a.e.x ∈ Ω, f(x, ξ) is a continuous function of ξ on Rd.

Then, for each measurable function u : Ω → Rd, the Nemytskii function Nu(x) =
f(x, u(x)) is also measurable on Ω.

Lemma 3.10. Assume f(x, ξ) is Carathéodory and

(3.20) |f(x, ξ)| ≤ a(x) + b|ξ|p/q ∀ a.e. x ∈ Ω, ∀ ξ ∈ Rd,

where 1 ≤ p, q <∞, b ≥ 0 are constants, a(x) ∈ Lq(Ω) is nonnegative.
Then, the Nemytskii operator N : Lp(Ω;Rd)→ Lq(Ω) is continuous.

Proof. Let u ∈ Lp(Ω;Rd). By (3.20), we have

|Nu(x)|q = |f(x, u(x))|q ≤ const (|a(x)|q + |u(x)|p).

Hence Nu ∈ Lq(Ω) and thus N : Lp(Ω;Rd) → Lq(Ω) is well-defined. To show that N is
continuous at u, let un → u in Lp(Ω;Rd). Then there is a subsequence {un′} and a function
v ∈ Lp(Ω) such that un′(x)→ u(x) a.e. and |un′(x)| ≤ v(x) a.e. for all n′. Hence

‖Nun′ −Nu‖qLq(Ω) =

∫
Ω
|f(x, un′(x))− f(x, u(x))|qdx

≤ const

∫
Ω

(|f(x, un′(x))|q + |f(x, u(x))|q)dx

≤ const

∫
Ω

(|a(x)|q + |v(x)|p + |u(x)|p)dx.

By (ii), f(x, un′(x)) − f(x, u(x)) → 0 as n → ∞ for almost all x ∈ Ω. The dominating
convergence theorem implies that ‖Nun′ − Nu‖Lq(Ω) → 0. By repeating this procedure
for every subsequence of un, it follows that ‖Nun −Nu‖Lq(Ω) → 0 which proves that N is
continuous at u. �

Lecture 34 – 4/8/19

Example: The p-Laplace Equations. We consider the BVP for p-Laplace equations
with p > 1:

(3.21)

−
n∑
i=1

Di(|Du|p−2Diu) + f(x, u) = 0 in Ω,

u = 0 on ∂Ω,

where f : Ω× R→ R is a Carathéodory function satisfying the structural condition:

(3.22) |f(x, s)| ≤ a(x) + b|s|p−1 ∀x ∈ Ω, s ∈ R,

where a ∈ L
p
p−1 (Ω) and b ≥ 0 are given. Let

F (x, s) =

∫ s

0
f(x, t) dt.

We further assume a structural condition: for some 1 ≤ r < p

(3.23) F (x, s) ≥ −c1|s|r − c2(x) ∀x ∈ Ω, s ∈ R,

where c1 ≥ 0 and c2(x) ∈ L1(Ω) are given. Note that (3.23) does not follow from (3.22).
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Theorem 3.11. Under the assumptions (3.22) and (3.23), the functional

I(u) =

∫
Ω

(1

p
|Du|p + F (x, u)

)
dx

has a minimizer on X = W 1,p
0 (Ω) and hence (3.21) has a weak solution.

Proof. Note that (3.22) implies

(3.24) |F (x, s)| ≤ c(x) + d|s|p, ∀x ∈ Ω, s ∈ R,

for some c ∈ L1(Ω) and d ≥ 0. Hence I : X → R is well-defined. We verify that I is w.l.s.c
and weakly coercive on X. Write

I(u) = I1(u) + I2(u) =
1

p

∫
Ω
|Du|p dx+

∫
Ω
F (x, u) dx.

Note that, by Tonelli’s Theorem, I1(u) is w.l.s.c. on X. And since the embedding
X ⊂ Lp(Ω) is always compact, by (3.24), I2 is in fact continuous under the weak convergence.

Hence I is w.l.s.c. on X. By (3.23), we have for all u ∈ X = W 1,p
0 (Ω)

I(u) ≥ 1

p
‖Du‖pLp(Ω) − c1‖u‖rLr(Ω) − C

≥ 1

p
‖Du‖pLp(Ω) − c‖u‖

r
Lp(Ω) − C ≥ δ‖u‖

p
W 1,p(Ω)

− γ

for some constants δ > 0 and γ ≥ 0, where the last inequality follows from Poincaré’s
inequality and Young’s inequality with ε. Hence I(u) is coercive on X = W 1,p

0 (Ω).
Thus the result follows from Theorem 3.4. �

Exercise 3.3. Let n ≥ 3 and 2 ≤ p < n. Show the theorem is valid if (3.22) above is
replaced by

|f(x, s)| ≤ a(x) + b |s|q,

where b ≥ 0 is a constant, a ∈ L
q+1
q (Ω) and 1 ≤ q < p∗ − 1.

3.2.7. Minimality and Uniqueness of Weak Solutions. We study the weak solutions
of Euler-Lagrange equation for convex functionals.

Theorem 3.12. (Minimality of weak solutions) Assume L satisfies the standard struc-
tural conditions above and is convex in (s, ξ). Let u ∈ W 1,p(Ω;RN ) be a weak solution of
the Euler-Lagrange equation of I. Then u is a minimizer of I in the Dirichlet class Du.

Proof. By the convexity, it follows that

(3.25) L(x, t, η) ≥ L(x, s, ξ) +DsL(x, s, ξ) · (t− s) +DξL(x, s, ξ) · (η − ξ).
Assume v ∈ Du. Let t = v(x), η = Dv(x), s = u(x), ξ = Du(x) and integrate over Ω to find

I(v) ≥ I(u) +

∫
Ω

[DsL(x, u,Du) · (v − u) +DξL(x, u,Du) · (Dv −Du)]dx.

Since u is a weak solution of the Euler-Lagrange equation of I and v − u ∈ W 1,p
0 (Ω;RN ),

by (3.17), it follows that∫
Ω

[DsL(x, u,Du) · (v − u) +DξL(x, u,Du) · (Dv −Du)]dx = 0.

Hence I(v) ≥ I(u) for all v ∈ Du. This shows that u is a minimizer of I in the Dirichlet
class Du. �
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Under a stronger convexity condition, we can show that the weak solution in a Dirichlet
class is unique.

Theorem 3.13 (Uniqueness of weak solutions). Assume, in addition to the standard struc-
tural conditions above, L satisfies, for some constant θ > 0,

(3.26) L(x, t, η) ≥ L(x, s, ξ) +DsL(x, s, ξ) · (t− s) +DξL(x, s, ξ) · (η − ξ) +
θ

2
|η − ξ|2.

Then a weak solution to Problem (3.13) is unique.

Proof. Let u, v ∈ Dϕ be weak solutions to (3.13). Then I(u) = I(v) = minw∈Dϕ I(w).
However, as in the proof of previous theorem,

I(v) ≥ I(u) +
θ

2

∫
Ω
|Dv −Du|2 dx.

From I(v) = I(u), we easily obtain Du = Dv in Ω and hence v ≡ u since u − v ∈
W 1,p

0 (Ω;RN ). The proof is now completed. �

Lemma 3.14. If L = L(x, ξ) is independent of s and is C2 in ξ, then condition (3.26) is
equivalent to the strict convexity or Legendre condition:

(3.27) Lξki ξlj
(x, ξ) ηki η

l
j ≥ θ |η|2 ∀ ξ, η ∈MN×n.

Proof. In this case, Condition (3.26) becomes

(3.28) L(x, η) ≥ L(x, ξ) + Lξki
(x, ξ) (ηki − ξki ) +

θ

2
|η − ξ|2.

Let ζ = η − ξ and f(t) = L(x, ξ + tζ). Then, by Taylor’s formula,

f(1) = f(0) + f ′(0) +

∫ 1

0
(1− t) f ′′(t) dt.

Note that

f ′(t) = Lξki
(x, ξ + tζ) ζki , f ′′(t) = Lξki ξlj

(x, ξ + tζ) ζki ζ
l
j .

From this and the Taylor formula, (3.28) is equivalent to (3.27). �

Lecture 35 – 4/10/19

3.3. Constrained Minimization Problems

3.3.1. Lagrange Multipliers.

Theorem 3.15. (Lagrange Theorem) Let X be a Banach space. Let f, g : X → R be C1

and g(u0) = c. Assume u0 is a local extremum of f with respect to the constraint g(u) = c.
Then, either g′(u0) = 0 or there exists λ ∈ R such that f ′(u0) = λg′(u0); that is, u0 is a
critical point of f − λg.

Proof. Assume g′(u0) 6= 0; then g′(u0)w 6= 0 for some w ∈ X. Now given any v ∈ X,
consider the real-valued functions

F (s, t) = f(u0 + sv + tw), G(s, t) = g(u0 + sv + tw)− c ∀ (s, t) ∈ R2.

Then F,G ∈ C1 on R2 and

Fs(0, 0) = f ′(u0)v, Ft(0, 0) = f ′(u0)w, Gs(0, 0) = g′(u0)v, Gt(0, 0) = g′(u0)w.



88 3. Part III – The Calculus of Variations

Since G(0, 0) = 0 and Gt(0, 0) = g′(u0)w 6= 0, the Implicit function theorem implies the
existence of a C1 function t = φ(s) on an open inerval J containing 0 such that

φ(0) = 0, G(s, φ(s)) = 0 ∀ s ∈ J ;

moreover, φ′(0) = −Gs(0,0)
Gt(0,0) = − g′(u0)v

g′(u0)w . Set z(s) = F (s, φ(s)) = f(u0 +sv+φ(s)w) for s ∈ J.
Note that g(u0 + sv + φ(s)w) = c for all s ∈ J. Since f has a local extremum at u0, z(s)
has a local extremum at s = 0 and thus

0 = z′(0) = Fs(0, 0) + Ft(0, 0)φ′(0) = f ′(u0)v − f ′(u0)w

g′(u0)w
g′(u0)v.

Hence f ′(u0)v = f ′(u0)w
g′(u0)w g

′(u0)v for all v ∈ X, and thus the theorem is proved with λ =

f ′(u0)w/g′(u0)w. �

3.3.2. Nonlinear Eigenvalue Problems.

Theorem 3.16. Let 1 ≤ τ < n+2
n−2 and k(x), l(x) ∈ C(Ω̄) with l(x) ≥ l0 > 0 on Ω̄. Then,

for each R ∈ (0,∞), there exists a number λ = λR such that the problem

(3.29)

{
∆u+ k(x)u+ λl(x)|u|τ−1u = 0 in Ω,

u = 0 on ∂Ω,

has a weak solution u = uR ∈ H1
0 (Ω) satisfying 1

τ+1

∫
Ω l(x)|u(x)|τ+1dx = R.

Proof. 1. Define the functionals

f(u) =
1

2

∫
Ω

(|Du|2 − k(x)u2) dx, g(u) =
1

τ + 1

∫
Ω
l(x)|u|τ+1 dx.

Then both f, g are C1 on H1
0 (Ω) with

f ′(u)v =

∫
Ω

(Du ·Dv − k(x)uv)dx, g′(u)v =

∫
Ω
l(x)|u|τ−1uv dx

for all u, v ∈ H1
0 (Ω). And, a weak solution to problem (3.29) is exactly a function u ∈ H1

0 (Ω)
satisfying

f ′(u)v = λg′(u)v (v ∈ H1
0 (Ω)).

By the Lagrange Theorem above, we minimize f(u) with constraint g(u) = R for any
given R > 0. Let

CR = {u ∈ H1
0 (Ω) : g(u) = R}.

Then CR is nonempty because, given any w 6= 0 in H1
0 (Ω), we have tw ∈ CR for some t > 0.

2. We show that there exists a u0 ∈ CR such that f(u0) = minu∈CR f(u). We prove this
by the direct method. Take a minimizing sequence uj ∈ CR, so that

lim
j→∞

f(uj) = inf
u∈CR

f(u) <∞.

By Hölder’s inequality we have∫
Ω
|u|2dx ≤

(∫
Ω
|u|τ+1dx

) 2
τ+1

|Ω|
τ−1
τ+1 ≤ C(g(u))

2
τ+1 .

Thus f(u) ≥ 1
2‖Du‖

2
L2(Ω)−C

′(g(u))
2
τ+1 . From this, by Poincaré’s inequality and g(uj) = R,

we have

‖uj‖2H1
0 (Ω) ≤ C

′′(f(uj) +R
2
τ+1 ).
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Hence {uj} is bounded in H1
0 (Ω). By reflexivity and compact embedding, we assume via a

subsequence (denoted by uj again) uj ⇀ u0 in H1
0 (Ω) and uj → u0 in L2(Ω) and in Lτ+1(Ω)

(since τ + 1 < 2n
n−2 = 2∗ by the condition τ < n+2

n−2), where u0 ∈ H1
0 (Ω) is a function. From

the strong convergence we have g(u0) = R and hence u0 ∈ CR. Moreover, since

lim
j→∞

∫
Ω
k(x)|uj |2 dx =

∫
Ω
k(x)|u0|2 dx.

and so, by the weak lower semicontinuity of norm,

f(u0) ≤ lim
j→∞

f(uj) = inf
u∈CR

f(u).

This proves uR := u0 ∈ CR is a minimizer of f . Since g′(u0)u0 = (τ + 1)g(u0) 6= 0, we
have u0 6= 0, g′(u0) 6= 0. Hence by Theorem 3.15, there exists a number λ = λR such
that f ′(u0) = λg′(u0). Thus uR = u0 ∈ H1

0 (Ω) is a weak solution to (3.29) with λ = λR.

Moreover, if βR = f(uR) = minu∈CR f(u), then λR = 2βR
(τ+1)R . (Exercise!) �

Remark 3.4. The problem (3.29) is called a nonlinear eigenvalue problem; any nonzero
weak solution u of (3.29) is called an eigenfunction corresponding to the eigenvalue λ.

Corollary 3.17. For each 1 < τ < (n+ 2)/(n− 2), there exists a nontrivial weak solution
of

(3.30) ∆u+ |u|τ−1u = 0 in Ω, u|∂Ω = 0.

Proof. By Theorem 3.16, with k(x) = 0, l(x) = 1 and R = 1, there exist a function u1 6= 0
in H1

0 (Ω) and a number λ1 ∈ R such that

∆u1 + λ1|u1|τ−1u1 = 0 in Ω, u1|∂Ω = 0,

∫
Ω
|u1|τ+1dx = (τ + 1).

Thus, testing with u1 ∈ H1
0 (Ω) gives∫

Ω
|Du1|2dx = λ1

∫
Ω
|u1|τ+1dx = λ1(τ + 1),

and hence λ1 > 0. Set u1 = ku with k > 0 to be determined. Then k∆u+λ1k
τ |u|τ−1u = 0,

and so if we choose k to satisfy λ1k
τ−1 = 1, then u = u1/k is a nontrivial weak solution of

(3.30). �
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Remark 3.5. (i) Let n ≥ 3 and Ω be star-shaped. Then problem (3.30) has no nontrivial
smooth solutions if τ > n+2

n−2 and has no positive smooth solutions in Ω if τ = n+2
n−2 .

(ii) However, for certain non star-shaped domains, such as an annulus, (3.30) always has
nontrivial solutions for all τ > 1. For example, let b > a > 0, Ω = {x ∈ Rn | a < |x| < b}
and τ > 1. Then a nontrivial weak solution u of (3.30) in the radial form u(x) = v(|x|) can
be obtained by minimizing

f(v) =

∫ b

a
(v′)2rn−1dr

on the set C =
{
v ∈ H1

0 (a, b)
∣∣∣ ∫ ba |v|τ+1rn−1dr = 1

}
. (Exercise.)
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3.3.3. Obstacle Problems. We study minimization with certain pointwise, unilateral
constraints. Many important applied problems can be formulated as such a problem. To
discuss the main ideas, we only consider a simple example. Let

I(u) =

∫
Ω

(1

2
|Du|2 − f(x)u

)
dx

and

A = {u ∈ ϕ+H1
0 (Ω) |u(x) ≥ h(x) a.e. x ∈ Ω},

where f ∈ L2(Ω), ϕ ∈ H1(Ω), and h : Ω→ R is a given function called the obstacle.

Theorem 3.18. (Existence of minimizers with obstacle) Assume the admissible class
A is nonempty. Then there exists a unique function u ∈ A satisfying

I(u) = min
w∈A

I(w).

Proof. 1. The existence of minimizer follows easily from the direct method, considering
the fact that I is coercive and A is weakly closed in H1(Ω).

2. The uniqueness of minimizer follows essentially from the strict convexity of I and
the convexity of the set A. For instance, notice that

I
(u+ v

2

)
=
I(u) + I(v)

2
− 1

8

∫
Ω
|Du−Dv|2 dx (u, v ∈ H1(Ω)).

Hence any two minimizers u, v in A will satisfy, since u+v
2 ∈ A,

1

8

∫
Ω
|Du−Dv|2 dx =

I(u) + I(v)

2
− I
(u+ v

2

)
≤ 0;

so u = v in ϕ+H1
0 (Ω). �

Theorem 3.19. (Variational inequality for minimizers) u ∈ A is a minimizer of I
over A if and only if the variational inequality holds:

(3.31)

∫
Ω
Du ·D(v − u) dx ≥

∫
Ω

(v − u)f dx ∀ v ∈ A.

Proof. Given u, v ∈ A and 0 ≤ τ ≤ 1, let

h(τ) = I((1− τ)u+ τv) = I(u+ τ(v − u)).

Then h : [0, 1] → R is convex. Since (1 − τ)u + τv ∈ A, it follows that u is a minimizer of
I over A if and only if h(0) ≤ h(τ) for all τ ∈ [0, 1]; that is, h(0) is the minimum of h on
[0, 1]. Since h is convex on [0, 1], it follows that h(0) is the minimum of h on [0, 1] if and
only if h′(0+) ≥ 0; however,

h′(0+) = lim
τ→0+

h(τ)− h(0)

τ
=

∫
Ω

(Du ·D(v − u)− (v − u)f)dx.

This proves the result. �
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The Free Boundary Problem. We now assume f , ϕ, h and ∂Ω are all smooth. Then a
regularity result (not proved here) asserts that the minimizer u ∈W 2,∞(Ω).

Theorem 3.20. Let U = {x ∈ Ω |u(x) > h(x)}. Then the unique minimizer u determined
above is in W 2,∞(Ω) and satisfies u ∈ C∞(U) and solves the following free boundary
problem:

(3.32)


u = h, −∆u ≥ f a.e. on Ω \ U ,

−∆u = f in U,

u = ϕ on ∂Ω.

The set F = Ω ∩ ∂U is called the free boundary of the free boundary problem.

Proof. We first claim that in fact u ∈ C∞(U) and solves Poisson’s equation −∆u = f in U .
To see this, fix any test function w ∈ C∞0 (U). Then if |τ | is sufficiently small, w = u+τw ≥ h
in Ω and hence v ∈ A. Then by (3.31) we have

τ

∫
Ω

(Du ·Dw − wf) dx ≥ 0.

This is valid for both sufficiently small positive and negative τ , and so we have∫
U

(Du ·Dw − wf) dx = 0 (w ∈ C∞0 (U)).

This proves that u is a weak solution to equation −∆u = f in U ; thus, by regularity,
u ∈ C∞(U).

If we assume w ∈ C∞0 (Ω) satisfies w ≥ 0 and if τ ∈ (0, 1], then with v = u + τw ∈ A
as test function in (3.31) we have

∫
Ω(Du · Dw − wf) dx ≥ 0. But since u ∈ W 2,∞(Ω), we

deduce that ∫
Ω

(−∆u− f)wdx ≥ 0

for all w ∈ C∞0 (U) and w ≥ 0. This implies −∆u ≥ f a.e. in Ω. Therefore, u solves the
free boundary problem (3.32).

Note that as part of the problem the free boundary F = Ω ∩ ∂U is unknown. �

3.3.4. Harmonic Maps. We now consider the Dirichlet energy

I(u) =
1

2

∫
Ω
|Du|2 dx

for vector u ∈ H1(Ω;RN ) with point-wise constraint |u(x)| = 1 for almost every x ∈ Ω.

Let C = {u ∈ Dϕ | |u(x)| = 1 a.e. in Ω}, where Dϕ is a Dirichlet class, and assume C is
non-empty. Then C is weakly closed in H1(Ω;RN ).

We have the following result.

Theorem 3.21. There exists u ∈ C satisfying I(u) = minv∈C I(v). Moreover, u is a weak
solution to the harmonic map equation

−∆u = |Du|2u in Ω

in the sense that |u(x)| = 1 a.e. in Ω and

(3.33)

∫
Ω
Du : Dv dx =

∫
Ω
|Du|2u · v dx
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for each v ∈ H1
0 (Ω;RN ) ∩ L∞(Ω;RN ). Any weak solution of the harmonic map equation is

called a harmonic map from Ω into SN−1.

Remark 3.6. In this case, the Lagrange multiplier corresponding to the constraint |u(x)| =
1 appears as a function λ = |Du|2.

Proof. 1. The existence of minimizers follows by the direct method as above. Given any
v ∈ H1

0 (Ω;RN ) ∩ L∞(Ω;RN ), let ε be such that |ε|‖v‖L∞(Ω) ≤ 1
2 . Define

wε(x) =
u(x) + εv(x)

|u(x) + εv(x)|
, h(ε) = I(wε).

Note that wε ∈ C and h(0) = I(u) = minC I ≤ h(ε) for sufficiently small ε; hence, h′(0) = 0.

2. Note that

h′(0) =

∫
Ω
Du : D

∂wε

∂ε
|ε=0 dx.

Computing directly we have

∂wε

∂ε
=

v

|u + εv|
− [(u + εv) · v](u + εv)

|u + εv|3
,

hence ∂wε
∂ε |ε=0 = v − (u · v)u. Inserting this into h′(0) = 0, we find

(3.34)

∫
Ω

(
Du : Dv −Du : D((u · v)u)

)
dx = 0.

However, using |u|2 = 1 we have (Du)Tu = 0; namely, Diu
kuk = 0 for all i. Hence, using

indices, we have the identity

Du : D((u · v)u) = |Du|2(u · v) a.e. in Ω.

This identity combined with (3.34) proves (3.33). �


