Chapter 5

The Wave Equation

In this chapter we investigate the wave equation

(5.1) ug — Au =0
and the nonhomogeneous wave equation

(5.2) uy — Au = f(z,t)

subject to appropriate initial and boundary conditions. Here x € Q C R™, ¢t > 0; the
unknown function v = u(z,t) : Q x [0,00) — R.

We shall discover that solutions to the wave equation behave quite differently from solu-
tions of Laplaces equation or the heat equation. For example, these solutions are generally
not C*° and exhibit the finite speed of propagation of given disturbances.

5.1. Derivation of the wave equation

The wave equation is a simplified model for a vibrating string (n = 1), membrane (n = 2),
or elastic solid (n = 3). In this physical interpretation u(z,t) represents the displacement
in some direction of the point at time ¢ > 0.

Let V represent any smooth subregion of 2. The acceleration within V is then

d2
— udx:/ upde,
)=

/ F-vdS,

ov

where F denoting the force acting on V' through 9V, v is the unit outnormal on AV.
Newton’s law says (assume the mass is 1) that

/utt/ F-vdS.
ov

This identity is true for any region, hence the divergence theorem tells that

and the net force is

Ut = divF.

HI
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For elastic bodies, F' is a function of Du, i.e., F = F(Du). For small u and small Du,
we use the linearization aDu to approximate F'(Du), and so

uy — aldu =0,

when a = 1, the resulting equation is the wave equation. The physical interpretation
strongly suggests it will be mathematically appropriate to specify two initial conditions,
u(x,0) and w(x,0).

5.2. One-dimensional wave equations and d’Alembert’s formula

This section is devoted to solving the Cauchy problem for one-dimensional wave equation:

(5.3) Ut — Ugy = 0 in R x (0,00),
' u(x,0) =g(z), w(x,0)=h(x), zecR,
where g, h are given functions.
Note that
Ut — Uzg = (W — Uz )t + (Ut — U)o = Vp + Vg

where v = uy — uz. So v(x,0) = w(x,0) — uy(x,0) = h(z) — ¢'(z) := a(x). From vy +v, =0,
we have v(z,t) = a(x — t). Then u solves the nonhomogeneous transport equation

up — uy = v(z,t), u(zx,0)=g(z).

Solve this problem for u to obtain

u(x,t):g(x—i-t)—i—/o v(x+t—s,)ds

t T+t
:g(:z:—|—t)+/0 a(m—i—t—Qs)ds:g(x—Ft)—{—;/_t a(y) dy
1 r+t
—glart)+g [ () - g W),

from which we deduce d’Alembert’s formula:

glx+t)+glx—t) 1 /“‘t
_‘_7

(5.4) u(z,t) = 5 5

This formula defines a classical solution u € C? if and only if g € C? and h € C'.

Remark 5.1. (i) When the initial data g and h are not smooth, we still use formula (5.4)
to define a (weak) solution to the Cauchy problem. If g € C* and h € C*~1, then u € C*.
Thus the wave equation does not have the smoothing effect like the heat equation has.

(ii) Any solution to the wave equation uy = g, has the form
u(z,t) =F(zx+1t)+ Gz —t)
for appropriate functions F' and G. Usually, F\(z + t) is called a traveling wave to the
left with speed 1; G(z —t) is called a traveling wave to the right with speed 1.

(iii) The value u(xg, tg) depends only on the values of initial data from zg—tg to zo+ to;
in this sense, the interval [zg — to, 2o + o] is called the domain of dependence for the
point (xg,%p). The Cauchy data at (zp,0) influence the value of u in the set

I(zg,to) = {(x,t) | mo — t <z < z0+t,t >0},
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which is called the domain of influence for (z¢,0). The domain of determinacy of
[x1, z2]; that is, the set of points (x,t) at which the solution is completely determined by
the values of initial data on [x7, z2], is given by

D@hw)z{wi)hq+t§x§xg—ute[axQxﬂ}.

2

Lemma 5.1 (Parallelogram property). Let 2 be an open set in R x RT. Then any solution
u of the one-dimensional wave equation in §2 satisfies

(5.5) u(A) +u(C) = u(B) +u(D),

where ABCD is any parallelogram contained in Q with the slope 1 or —1, with A and C
being two opposite points as shown in Figure 5.1.

Figure 5.1. Parallelogram ABCD in Lemma 5.1.

We may use this property to solve certain initial and boundary problems.

ExXAMPLE 5.2. Solve the initial boundary value problem:

Ut — Ugg = 0, x>0,1t>0,
u(z,0) = g(x), w(x,0)=h(z), x>0,
u(0,t) = k(t), t>0,

where g, h, k are given functions satisfying certain smoothness and compatibility conditions.

Solution. (See Figure 5.2.) If point F = (x,t) is in the region (I); that is, z > ¢ > 0, then
u(z,t) is given by (5.4):

T T — T+t
m%w:9(+”;“ ”+;/ h(y) dy.

In particular,
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Figure 5.2. Mixed-value problem in = > 0, ¢ > 0.

If point A = (z,1) is in the region (II); that is, 0 < = < ¢, then we use the parallelogram
ABCD as shown in the figure to obtain u(x,t) = u(B) + u(D) — u(C'), where

u(B) = u(0,t — ) = k(t — x),

T T T x+t
u(D) = u(* ! +5=g(+“+“”+1A h(y) dy,

2 7 2 2 2
u(c):u(t;x’t;x):g(t—:r;+g(0)+;/0_xh(y)dy‘

Hence, for 0 < z < t,

u(z,t) = k(t —x) + + =

glx+t)—gt—2a) 1 [*F
2 Q/t

Therefore the solution to this problem is given by

gz +t)+g(xz—1) L1y

3 Joy My) dy 0<t<a),
66 wlmi)= sat ) —glt—a) ) o
k(t—z) + 5 +5 [ hy)dy (0<z<t).
Of course, some smoothness and compatibility conditions on g, h, k are needed in order for
u(x,t) to be a true solution of the problem. Derive such conditions as an exercise. O

EXAMPLE 5.3. Solve the initial-boundary value problem

Ut — Uge = 0, IG(Oaﬂ-)a t>0,
u(z,0) = g(z), w(z,0) = h(z), z€(0,7),
u(0,t) = u(m, t) =0, t>0.

Solution. (See Figure 5.3.) We divide the strip (0, 7) x (0, 00) by line segments of slope £1
starting first at (0,0) and (7,0) and then at all the intersection points with the boundaries.
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Figure 5.3. Mixed-value problem in 0 < x < m, t > 0.

We can solve u in the region (I) by formula (5.4). In all other regions we use the
parallelogram formula (5.5).

Another way to solve this problem is the method of separation of variables. First
try u(z,t) = X (x)T'(t), then we should have
X"(@)T(t) = T"() X (2), X(0) = X(x) =0,
which implies that
T”(t) B X”(IE)
() X))

where A is a constant. From
X"(z) = XX (z), X(0)=X(m)=0,
we find that A = —j2 with all j = 1,2,..., and
X;(z) =sin(jz), Tj(t) = a;cos(jt) + bjsin(jt).

To make sure that u satisfies the initial condition, we consider

o

(5.7) u(z,t) = [a; cos(jt) + b; sin(jt)] sin(jz).
j=1

To determine coefficients a; and b;, we use
o0 o0
u(z,0) = g(z) = Zaj sin(jx), w(x,0)=h(z)= Zjbj sin(jx).
j=1 j=1

i.e., the a; and jb; are Fourier coefficients of functions g(x) and h(z). That is,

s 2 ™

a; = / g(x)sin(jx)dx, bj = — h(z)sin(jz)dx.
T Jo JT Jo

Substitute these coefficients into (5.7) and we obtain a formal solution « in terms of trigono-

metric series; the issue of convergence will not be discussed here. O



6 5. The Wave Equation

5.3. The method of spherical means

Suppose u solves the Cauchy problem of n-dimensional wave equation

(5.8) Uy — Au = 0, (z,t) € R" x RT,
‘ u(z,0) = g(z), ut(x,0) = h(z), =eR™

The idea is to reduce the problem to a problem of one-dimensional wave equation. This
reduction requires the method of spherical means.

For x e R, » > 0, t > 0, define

U(x;r,t) = ][ u(y,t) dSy = My(.p(z,7),
0B(z,r)

G(z;r) = ][ g(y)dSy = My(x,r), H(z;r)= ][ h(y) dSy = Mp(x,r).
dB(z,r) OB(z,r)
Note that
Ul t) = ——— / u(y,1)dS, = ][ w(e + €, £)dS.
OB(z,r)

1
noy " 8B(0,1)

So, for fixed x, the function U(x;r,t) extends as a function of r € R and t € R*. One can
recover u(z,t) from U(x;r,t) in terms of

u(z,t) = lim U(z;r,t).

r—0t

5.3.1. The Euler-Poisson-Darboux equation. Let u(z,t) be a smooth solution to
(5.8). We show that, for each z € R", the function U(z;r,t) solves a PDE for (r,t) €
Rt x RT.

Theorem 5.4 (Euler-Poisson-Darboux equation). Let u € C™(R™ x [0,00)) with m > 2
solve (5.8). Then, for each x € R™, the function U(x;r,t) € C™([0,00) x [0,00)) and solves
the Cauchy problem of the Euler-Poisson-Darboux equation

(5.9) Uy — Uy — ”TAUT =0 n (0,00) x (0,00),
‘ U=G, U;=H on (0,00) x {t = 0}.

Proof. 1. Note that, for each x € R", the regularity of U on (r,t) follows easily as

U(fU;Ta t) = ][ U(CC—FTf,t)ng.
8B(0,1)

2. Using the formula above, we have

r 1
Ur = ][ Au(y,t)dy = ——— / u(y, t) dy.
nJ B(x,r) nan” B(z,r)

1 T
rly, = / (/ utt(y,t)dSy> dp
n@n Jo dB(z,p)

and so, differentiating with respect to r yields
1 _
/ ug(y,t)dSy = r" Uy,
oB(z,r)

noy,
which expands into the Euler-Poisson-Darboux equation. The initial condition is satisfied
easily; this completes the proof of the theorem. O

Hence

(TnilUr)T’ =
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5.3.2. Solutions in R3 and Kirchhoff’s formula. For the most important case of three-
dimensional wave equations, we can easily see that the Euler-Poisson-Darboux equation
implies

1
(T‘U)m« =rU, +2U, = ;(TQUT)T‘ =rUy = (TU)tt'

That is, for fixed x € R3, the function 17(7', t) = rU(x;r,t) solves the 1-D wave equation
Uy =U, inr > 0,t >0, with

U(0,t)=0, U(r,0)=rG:=G, U(r,0)=rH:=H.

This is the mixed-value problem studied in Example 5.2; hence, by (5.6) we have

5 1 - 5 1 t+r
U(r,t)zi[G(r+t)fG(t7T)]+§ H(y)dy (0<r<t).
t—r
We recover u(z,t) by
u(z,t) = lim U(z;r,t) = lim Ulr,t)
r—0+ r—0+ r
, Gr+t)—Gt—r) 1 [ . o 5
= 1 - H — H .
70_1>r(r)1Jr o + 5 ) it (y) dy G'(t) + H(t)

Therefore, we have obtained the so-called Kirchhoff’s formula for 3-D wave equation:

9
we =g (tf  gwds, | +if  wwds,
ot OB(x.1) OB(x,1)

(5.10) - ][BB( ((H0) +.9(6) + D(s) - (v~ ),

1

T dn? /83(%“ (th(y) + g(y) + Dg(y) - (y — x))dS, (x €R®, ¢>0).

5.3.3. Solutions in R? by Hadamard’s method of descent. Assume u € C?(R? x
[0, 00)) solves problem (5.8) with n = 2. We would like to derive a formula of u in terms of
g and h. The trick is to consider u as a solution to a 3-dimensional wave problem with one
added dimension z3 and then to use Kirchhoff’s formula to find u. This is the well-known
Hadamard’s method of descent.

Define @(%,t) = u(x,t) for & = (z,73) € R®, t > 0, where z = (z1,72) € R%. Then @
solves

)
a(z,0) = §(&), a(z,0) = h(Z), ZecR3,

where A is the Laplacian in R?, §(#) = g(x) and k(%) = h(z). Let Z = (2,0) € R3. Then,
by Kirchhoff’s formula,

0 N
w(z,t) = i, t) = 2 t][ @) ds; +t][ h(G)ds;
ot OB(z,1) 0B(x,t)

where B(Z,t) is the ball in R® centered at Z
parametrize OB(Z,t) by parameter z = (z1,29) € B(x,t) C R? as

j=(z41(2), 1) =VEE-|z—=z> (z€ B(x,1)).

{ﬁtt—Aﬁ:O, (#,t) € R3 x (0, 00),

of radius t. To evaluate this formula, we
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Note that Dy(z) = (z — 2)//t? — |z — x|? and thus

tdz
o 2 7, — )
dS; = 1+ |Dvy(2)|?dz = = =

— |z — =

hence, noting that dB(Z,t) has the top and bottom parts with y3 = +v(z2),

1 / .
=1 9(y) dSy
][ Amt? Jop(z.e) (9)d5;

2 g(2)tdz
Amt? ) /12 — |2 — x]?

1 (z)dz
2t /B(:r,t) V2 — |z —xf?
ot g(z)dz

a 2][B(x,t) 2z -2

Similarly, we obtain the formula for -f, Bz t)fl(g) dSy; finally, we have obtained the so-called

Poisson’s formula for 2-D wave equation:

w5 (5f, U)o
(5.11) ot \2) penE—lz—al)  2JpenVB—|z—aP
1 / tg(z) + t2h(z) + tDg(z) - (z — ) .
B(z,t)

T 2m? V2 — |z —x]?

Remark 5.2. (i) There are some fundamental differences for the wave equation between
the one dimension and the dimensions n = 2,3. In both Kirchhoff’s formula (n = 3) and
Poisson’s formula (n = 2), the solution u depends on the derivative Dg of the initial data
u(x,0) = g(x). For example, if g € C™, h € C™! for some m > 1 then v is only C™~! and
hence u; is only C™2 (but us(w,0) = h(z) € C™1); therefore, there is loss of regularity
for the wave equation when n = 2,3 (in fact for all n > 2). However, this does not happen
when n = 1, in which u, u; are at least as smooth as g, h.

(z € R?, t > 0).

(ii) There are also some fundamental differences between the 3-D wave equation and
the 2-D wave equation. In R?, we need the information of initial data g, h in the whole disc
B(xz,t) to compute the value u(x,t); that is, the domain of dependence for (z,t) is the
whole disc B(z,t), while in R? we only need the information of g, h on the sphere B (x,t)
to compute the value u(z,t); that is, the domain of dependence for (z,t) is the sphere
OB(z,t), not the solid ball B(x,t). In R?, a “disturbance” initiated at zo propagates along
the sharp wavefront dB(z,t) and does not affect the value of u elsewhere; this is known
as the strong Huygens’s principle. In R?, a “disturbance” initiated at zq will affect the
values u(zx,t) in the whole region |z —xo| < t. In both cases n = 2,3 (in fact all cases n > 1),
the domain of influence of the initial data grows (with time ¢) at speed 1; therefore, the
wave equation has the finite speed of propagation.

(iii) To illustrate the differences between n = 2 and n = 3 of the wave equation, imagine
you are at position x in R™ and there is a sharp initial disturbance at position xy away from
you at time ¢ = 0. If n = 3 then you will only feel the disturbance (e.g., hear a screaming)
once, exactly at time ¢ = |z — x¢|; however, if n = 2, you will feel the disturbance (e.g., you
are on a boat in a large lake and feel the wave) at all times ¢t > |x — x|, although the effect
on you will die out at t — oo.
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5.4. Solutions of the wave equation for general dimensions

We now try to find the solution u(x,t) of problem (5.8) in R™ x R* by solving its spherical
mean U(xz;r,t) from the Euler-Poisson-Darboux equation. We need the following useful
result.

Lemma 5.5. Let f : R — R be C™!, where m > 1. Then fork=1,2,...,m,

& 1d 1d .
() ()G ) = )R ()
(“) (ii)k 1 2k lf szﬁk j+1 ;lr{ ’

Q

where BE = (2k — ) = (2k — 1)(2k —3)---3- 1 and B]k are independent of f.
Proof. Homework. O

5.4.1. Solutions for the odd-dimensional wave equation. Assume that n = 2k + 1
(k> 1) and u € C*1(R™ x [0,00)) is a solution to the problem (5.8) in R” x R+,

As above, let U(z;7,t) be the spherical mean of u(z,t). Then for each x € R" the
function U(x;r,t) is C**1in (r,t) € [0,00) x [0,00) and solves the Euler-Poisson-Darboux
equation. Let

10
Virt) =(—-—
)= (o

Lemma 5.6. We have that Vyy = V. and V(0T,t) =0 forr >0, t > 0.

)k_l(r%_lU(w;r, t)) (r>0,t>0).

Proof. By part (i) of Lemma 5.5, we have

.19 D NN
Vi = <W><T8r> ) = (R
10 2k 10 \k1p 2n-1
= (PP = G ) = Vi,
where we have used the Euler-Poisson-Darboux equation (Tkur)r = r2kU,. Finally, it
follows from part (ii) of Lemma 5.5 that V(07,¢) = 0. O
Now that
_16k,12k,1 . _1ak12kl — O
V(r,0) = (A 0 s, 0) = (- 2 My (o, )] = )
and
Vi(r,0) = (22 (210 5, 0)) = (2o p 20 ()] o= (1),
’ ror ror
Hence, by (5.6), we have
1 - 5 1 r+t
(5.12) V(rt) =SlGr+1) -Gt =r)]+ 5 H(y)dy (0<r<t).
t—r

By (ii) of Lemma 5.5,

LAY

Vit = (o)t

( 2k~ 1U (z;7,t)) ZB’“WH U(x;r,t)
orJ
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and hence

Vir,t
ulayt) = Ufas0%,0) = tim L)
r o’

1 Gr+t)—G@t—r) 1 [
BO r1—>0+ 2r + 2 /t—r H(y)dy]
=5 [G( )+ H(1)).

Therefore, we obtain the formula for C*+1-solution of (2k + 1)-dimensional wave equa-
tion:

(5.13) u(x,t)zﬁlg{a [(1;)’@ (M t))] +(1§t)k (P o, t))}

Note that when n = 3 (so k = 1) this formula agrees with Kirchhoff’s formula derived
earlier.

In fact, the formula (5.13) defines indeed a classical solution to problem (5.8) under
some smoothness assumption on initial data.

Theorem 5.7 (Solution of wave equation in odd-dimensions). If n = 2k+1 > 3, g €
CF+2(R™) and h € C*1(R™), then the function u(z,t) defined by (5.13) belongs to C%(R™ x
(0,00)), solves the wave equation uy = Au in R™x(0,00), and satisfies the Cauchy condition
in the sense that, for each xg € R",

lim  wu(z,t) = g(xo), lim  w(z,t) = h(xg).

r—xo, t—07T r—x0, t—07F

Proof. We may separate the proof in two cases: (a) g = 0, and (b) h = 0. The proof in
case (a) is given in the text. Here we give a similar proof for case (b) by assuming h = 0.

1. The function u(z,t) defined by (5.13) becomes
1010
)= o |0

61{? 8t t 8t)k71 (tZle(x;t)>:| ) G(l‘;t) = Mg(x,t).
0
By Lemma 5.5(ii),

k . .
;G N ARTE:
Z% [ jH D+ ¢/t s ] — G(0,0™) = g(o)

Opr‘ =

as (z,t) = (z9,07). Also from this formula,

2
lim  w(z,t) = — lm  Gi(z,1).

r—x0,t—0t 0 TT0 4—0t

Note that
1

t
Gi(z,t) = n][B(x t)Ag(y) dy = nontZk /B(x ) Ag(y) dy.

Hence uy(z,t) — 0 as (z,t) — (29,07).
2. By Lemma 5.5(i),

1(18

k
(5.14) ut(:c,t):ﬂ—g 7) Gy,  uy(x,t) =

10 /10\k o
t Ot B§6t(t6t> (t7G).
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Since

1 1 t
A S Agv)dy = ——— Ag(y)dsS, | d
Gy(z,t) T2 /B - g(y) dy LIS /0 ( /a o) 9(y) Sy> 0,

we have

Gy, = t** ][ Ag(y) dS,.
OB(z,t)

Hence

wto) = g (o) GO00) = (i) (F7F g, 20%)

On the other hand,

Bk ot \t ot
and
AG(x;1) 2][ Ag(y) dSy
OB(z,t)
This proves uy = Au in R™ x (0, 00). O

Remark 5.3. (i) In the above theorem, the solution u(z,t) defined by (5.13) can be ex-
tended to t < 0 in the same way as My(z,t) and Mjy(z,t). Then the extended function u €
C?(R™ x [0, 00)) takes the initial data in the classical sense: u(x,0) = g(x), us(z,0) = h(z).

(ii) Let n = 2k 4+ 1 > 3. To compute u(z,t) we need the information of g, Dy, --- , D¥g
and that of h, Dh,--- , D*"1h only on 0B(x,t), not on the whole ball B(x,t). Therefore,
for the odd-dimensional wave equations, the domain of dependence for (x,t) is also the
sharp wavefront OB(z,t); so one still has the strong Huygens’ principle.

(iii) If n = 1, in order for u to be C?, we need g € C? and h € C'. However, if
n =2k +1> 3, in order for u to be C?, we need g € C**2 and h € C¥*1. So, the solutions
in general lose k-orders of smoothness from the initial data.

5.4.2. Solutions for the even-dimensional wave equation. Assume that n = 2k is
even. Suppose u is a C¥*! solution to the Cauchy problem (5.8). Again we use Hadamard’s
method of descent similarly as in the case n = 2.

Let & = (2,7,41) € R", where 2 € R". Set

W@ = u(e,t), §(F) = g(), h(E) = hz).
Then @ is a C**! solution to the wave equation in ™! x (0, 00) with initial data @(Z,0) =
(), 4(z,0) = h(Z). Since n + 1 = 2k + 1 is odd, we use (5.13) to obtain @(Z,¢) and then
u(x,t) = w(x,t), where 7 = (x,0) € R""!. In this way, we obtain

u(a,t) = (%11)” {gt {(1;)“(9“%@;0)} + (1;)k1<t2klM,~l(x;t))} .
Note that
1

M;(z,t) = / 9(Y; Yn+1)dS
g tn(n + 1)Oén+1 y%+1+|$_y|2:t2 n

_ 2 9(y)
- -1 dy>
" n+ Dantt Sy 12 — |y — ]2
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t

mdy on the surface yELH + |y — x|? = t2. Similarly we have
P

since dS =

2
M; (z,t) = / —d
i (T:1) t"=L(n + D)ant1 Jpes /2 — |y — a2 Y

Therefore, we have the following representation formula for even n:
2 dr,10 n—2 g(y) dy
uwt) = o { GG [ ]
(n+ DNay4q Lot Lt Ot Blat) /12 — |y — x?
10 n-2 h(y) dy
el BEREC T
tot Blat) V1* = |y —

When n = 2, this reduces to Poisson’s formula for 2-D wave equation obtained above.

(5.15)

Theorem 5.8 (Solution of wave equation in even-dimensions). Ifn = 2k > 2, g € C*+2(R")
and h € C*1(R™), then the function u(x,t) defined by (5.15) belongs to C*(R™ x (0, 00)),
solves the wave equation uy = Au in R™ x (0,00), and satisfies the Cauchy condition in the
sense that, for each xoy € R",

lim  u(z,t) = g(zo), lim  w(z,t) = h(xg).
T—x0, t—0T r—x0,t—07T
Proof. This follows from the theorem in odd dimensions. O

Remark 5.4. (i) In the theorem, note that

/ (y) dy _tn—l/ g(x +tz)dz
B(a,t) V12— |y — x|? BO,1) /1 -]z

and that the function G(z,t) fB 0.1) %Z is in C*2(R" x R). Hence, the solution

u(x,t) defined by (5.15) can be extended to t < 0 and the extended function u € C?(R" x
[0,00)) takes the initial data in the classical sense: u(x,0) = g(z), u(z,0) = h(x).

(ii) Let n = 2k > 2. To compute u(x,t) we need the information of g, Dg,--- , D¥g and
that of h, Dh,--- , D*~1h in the solid ball B(z,t). Therefore, for the even-dimensional wave
equations, the domain of dependence for (z,t) is the whole solid ball B(x,t).

(iii) If n = 2k > 2, in order for u to be C?, we need g € C**2 and h € C**+1. So, again,
the solutions in general lose k-orders of smoothness from the initial data.

5.4.3. Solution of the wave equation from the heat equation*. We study another
method of solving the odd-dimensional wave equations by the heat equation.

Suppose u is a bounded, smooth solution to the Cauchy problem

(5.16) {utt —Au=0 in R™ x (0, 00)

u(x,0) =g(z), w(x,0)=0 onxeR",

where n is odd and g is smooth with nice decay at co. We extend u to negative times by
even extension of t and then define

1 0 2 .
v(z,t)zw/_mu(x,s)e ds (xeR" t>0).
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Then v is bounded,

1 & _s?
Av(z,t) = (47Tt)1/2/—oo Au(z,s)e” 4 ds

1 &0 _s2
= (471']5)1/2/ USS(Z‘,S)C 1t (s

1 & 52
= / us(x,s)ie_ft ds

(4rt)1/2 J_ o 2t
1 > 52 1\ _s2
= )i / _ulz (g~ )¢ s
and
1 o0 2 1N\ _s2
’Ut(ﬂ?,t) = W /OO ’U/(x,S) (@ — %)6 1 (ds.
Moreover

lim v(x,t) =g(z) (x€R™).
t—0+
Therefore, v solves the Cauchy problem for the heat equation:

v—Av=0 inR" x (0,00)
v(x,0) = g(x) onzeR™

As v is bounded, by uniqueness, we have

_ly—=|?

1 n
U(x,t):w/ﬂ{ng(y)e # dy (zeR" t>0).

We have two formulas for v(z,t) and take 4¢ = 1/ in the two formulas to obtain

/ u(z, s)e ds:i(—> ’ / e =g (y) dy
0 n

™

(5.17) noy, (A " [ 2
== (*) ° / e T”_IG(m;T) dr
0

2 \7
for all A > 0, where

G(z;r) = My(x,r) = ][ g(y) dSy.
0B(z,r)
So far, we have not used the odd dimension assumption. We will solve for u from (5.17)

when n = 2k + 1 > 3 is odd. Noticing tha —%%(e*)"ﬂ) = Xe | we have

A"El/ e G ) dr:/ NeeM G ) dr
0 0

_ (;}C)k /Ooo [(%%)k(ﬁ”)}ﬁm(w;m dr
= 2% /OOOrK?lnaar)k(r%_lG(x;r))} e~ dr,

where we integrated by parts k times (be careful with the operator (%%)k). We can then
write (5.17) as

> N2, NOp o }ﬁ ko ookt . —Ar?
/0 u(z,r)e dr_wk2k+1/0 r[(r&”) (r G(x,r))]e dr
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for all A > 0. If we think of 72 as 7, then this equation says that the Laplace transforms of
two functions of 7 are the same; therefore, the two functions of 7 must be the same, which
also implies the two functions of  are also the sam. So we obtain

nn LONF o R L7 A P AV e .
ot(5 ) G ) = ot () (G ) |
which, except for the constant, agrees with the formula (5.13) with A = 0. In fact the

constant here, using o, = %, I'(3) =742 and I'(s + 1) = sT'(s) for all s > 0,
2

nay, (2k + 1)7!/? 1 1

(5.18) wu(x,t) =

ah2RHL ok (k4 14 1) T (k-1 gE

is also in agreement with the constant in (5.13).

5.5. Nonhomogeneous wave equations and Duhamel’s principle

We now turn to the initial value problem for nonhomogeneous wave equation

(5.19) up — Au = f(x,t) in R™ x (0, 00)
' u(z,0) =0, u(z,0)=0 onzeR",

where f(x,t) is a given function.

Motivated by Duhamel’s principle used to solve the nonhomogeneous heat equations,
for each s > 0, let U(x,t; s) be the solution to the homogeneous Cauchy problem

(5.20) Up(x,t;8) — AU(z,t;8) =0 in R" x (s, 00),
‘ U(z,s;8) =0, Ugz,s;s) = f(x,s) onxeR™
Define

(5.21) u(x,t):/o U(z,t;s)ds

Note that if v = v(x,t;s) is the solution to the Cauchy problem

(5.22) vy —Av =0 in R™ x (0, 00),
. v(z,0) =0, v(z,0)= f(x,s) onzeR™,

then U(z,t;s) = v(z,t — s;s) for all z € R™, t > s. Therefore,
t t
u(z,t) = / U(z,t;s)ds = / v(xz,t—s;s)ds (ze€R"™ t>0).
0 0

Theorem 5.9. Assume n > 2 and f € CIZFHR™ x [0,00)). Let U(x, t;s) be the solution
of (5.20). Then the function u defined by (5.21) is in C2(R™ x [0,00)) and a solution to
(5.19).

Proof. 1. The regularity of f guarantees a solution U (x,t;s) is given by (5.13) if n is odd
or (5.15) if n is even. In either case, u € C%(R" x [0, 00)).

2. A direct computation shows that

t t
ut(x,t) =Ul(x, t;t) + / Ui(z,t;s)ds = / U(z,t; s)ds,
0 0

¢ ¢
ug(z,t) = Ug(x, t;t) + / Uu(x,t;8)ds = f(z,t) + / U (x,t; s)ds,
0 0
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u(x,t) /AUxts

Hence uy — Au = f(x,t). Clearly u(x,0) = u(z,0) = 0. O

ExaMPLE 5.10. Find a solution of the following problem

Ut — Ugy = te”, (z,t) € R x (0,00),
u(z,0) =0, u(z,0) =0.

Solution. First, for each s > 0 solve
{vtt = Vg in R x (0, 00),
v(z,0) =0, v(z,0) = se”.
From d’Alembert’s formula, we have

1 T+t 1
v=uov(z,t;s) = 2/ seldy = 53(69”” — "),
T—t

Hence U(z,t;s) = v(z,t — s;5) = 2s5(e” 75 — e T571) and so

t 1 t
u(l’, t) = / U(x7 t, S)ds — 2/ S(€$+t—8 _ 6x+5_t) ds
0 0

1

= §[ez+t(—te*t —e Tt 1) — et (el — et 1)
1

= 5(—27563” 4"t e,

ExAMPLE 5.11. Find a solution of the Cauchy problem

uy — Au = f(z,t), z€R3, t>0,
u(z,0) =0, wu(z,0)=0, zcR3

Solution. By Kirchhoff’s formula, the solution v of the Cauchy problem
{vtt—szo, zeR3 t>0,
u(r,0) =0, wu(z,0)= f(z,s), x=ecR3
is given by
v:v(m,t;s)zlf f(y,s)dS, (z€R3 t>0).
A7t JoB(a,)

U(xat):/t”(xt_ //6th s) U
//83 T‘ )der

“’Mm) ly — x|
Note that the domain of dependence (on f) is the finite set {(y,t — |y — z|) | vy € B(z,t)},
which is the boundary of a solid cone in R? x RT; the integrand on the right is called a
retarded potential. ]

Hence

Y.
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5.6. Energy method and the uniqueness

There are some subtle issues about the uniqueness of the Cauchy problem of wave equations.
The formulas (5.13) for odd n or (5.15) for even n hold under more and more smoothness
conditions of the initial data g,h as the dimension n gets larger and larger. For initial
data not too smooth we cannot use such formulas to claim the uniqueness. Instead, we
use certain quantities that behave nicely for the wave equation. One such quantity is the
energy.

5.6.1. Domain of dependence. Let u € C? be a solution to the wave equation u; = Au
in R" x (0,00). Fix 29 € R™, ty > 0, and consider the backward wave cone with apex

(zo,t0):
K(J?o,t()) = {(l’,t)|0§t§t0, ‘iL'—.%'0| Sto—t}.

Theorem 5.12 (Domain of dependence). Let u € C?(R" x [0,0)) solve the wave equation

ug = Au in R™ x (0,00). If u = up = 0 on B(xq,to) X {t = 0}, then u = 0 within K(xo,to).

Proof. Define the local energy

1

=3 [ (. 0) + Due, ) )dz (0<t <o)
2 B(l‘o,to—t)

Then

1 to—t
() = / / (w3 1) + [ Du(a, 1)) dS,. dp
2Jo JoB(ap

and so, by the divergence theorem,

to—t
e(t) = / / (ututt(x,t) + Du - Duy(x, t))dSmdp
0 OB(z0,p)

1
= / (wd(@,t) + |Du(e, 1)) dS,
2 OB(z0,to—t)

= / (uguy + Du - Dug)dx — 1/ (u%(a},t) + |Du<x,t)‘2) dsS
B(Io,toft) BB(Io,toft)

(5.23) 5
u
B(zo,to—t) 9B(zo,to—t) I
1
_ / (u3(z.t) + [ Duz, )?)ds
2 BB(.to,to—t)

ou 1 4 1 9
= u— — —ui(z,t) — =|Du(x,t)|” )dS <0
/83(170@_“(% Jud(e, 1) — 5 |Du(, 1))

because the last integrand is less than zero; in fact,

ou 1 1 ou, 1 1 1
Ut g 5“? - §|Du]2 < ’Ut|’$| - 5“? - §’DU\2 < —§(|Ut\ —[Dul)? <0.
Now that ¢/(t) < 0 implies that e(t) < e(0) = 0 for all 0 < ¢ < tg. Thus uv; = Du = 0, and
consequently u = 0 in K (xg, tg). O

Theorem 5.13 (Uniqueness of Cauchy problem for wave equation). Given any f,g,h the
Cauchy problem

ug — Au = f(x,t), z€R™ t>0,
u(z,0) = g(z), uz,0)=nh(z), zeR"
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can have at most one solution u in C*(R" x [0, 00)).

EXAMPLE 5.14. (a) Show that there exists a constant K such that
K
lu(z, t)] < TU(O) Vo<t<T

whenever T' > 0 and u is a smooth solution to the Cauchy problem of 3-D wave equation
Uy — Au =0, reR3 0<t<T,
u(z,0) = g(x), w(x,0)=h(x), z€R3

where U(0) = [gs(lg| + [A| +|Dg| + |Dh| + |D?g) dy.

(b) Let u be a smooth solution to the wave equation uy = Au in R? x (0, 00) satisfying

1
lim — (|lu(z, t)| + |[Du(z, t)| + |ui(x, t)| + [Dug(z, t)| + |D2u(x,t)|) dx = 0.

t—oo t R3
Show that u =0 on R? x (0, 0).

Proof. The details are left as Homework. Part (b) follows from (a) by considering a(x,t) =
u(z, T —t) on R™ x (0,7T). O

5.6.2. Energy method for mixed-value problem of wave equation. Let ) be a
bounded smooth domain in R™ and let Q7 = Q x (0,77]. Let

I'r = 8/QT = QiT\ Qr.
We are interested in the uniqueness of initial-boundary value problem (mixed-value problem)
ug — Au = f in Qp,

(5.24) u=yg on I'p,
ug =h on 2 x {t =0}.

Theorem 5.15 (Uniqueness of mixed-value problem for wave equation). There exists at
most one solution u € C%(Qr) of mixed-value problem (5.24).

Proof. Let uj,us be any two solutions; then v = u; — ug is in C?(Qr) and solves

v —Av =0 in Qp,
v=0 onlIp,
vy =0 onQx{t=0}

Define the energy

e(t) = 2/9 (s2(.1) + Do( ) dx (0 <t<T)

Then, by the divergence theorem

ov

e(t) = /(vtvtt + Dv - Dv)dx = / v(vy — Av)dzx + / vp—dS =0
9) Q o Ov

since v = 0 on 92 for all 0 < ¢t < T implies that v; = 0 on 91 for all 0 < t < T. Therefore
v=0fromv=0onI7. O
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5.6.3. Other initial and boundary value problems. Uniqueness of wave equation can
be used to find the solutions to some mixed-value problems. Since solution is unique, any
solution found in special forms will be the unique solution.

EXAMPLE 5.16. Solve the Cauchy problem of the wave equation
uy — Au =0 in R? x (0, 00),
U(IE,O) =0, Ut(l’,O) :h(|l’|),

where h(r) is a given function.

Solution. In theory, we could use Kirchhoff’s formula to find the solution; however, the
computation would be too complicated. Instead, we can try to find a solution in the form
of u(z,t) = v(|z|,t) by solving an equation for v, which becomes exactly the Euler-Poisson-
Darboux equation that can be solved easily when n = 3; some condition on h is needed in
order to have a classical solution. Details are left as an exercise. O

ExXAMPLE 5.17. Let A € R and A # 0. Solve
ug — Au+ Au =0 in R" x (0,00),
U(l’,O) = g(ﬂf), ut(ac,O) = h(x)

Solution. We use the idea of Hadamard’s descent method. We first make v a solution to
the wave equation in R"*! x (0, 00) and recover u by this solution.

If A\ = u? > 0 (the equation is called the Klein-Gordon equation), let v(%,t) =
u(w,t) cos(pxni1), where & = (z,2,41) € R™! and x € R™.

If A= —u? <0, let v(Z,t) = u(z,t)erT+1. Then, in both cases, v(Z,t) solves the wave
equation and can be solved by using the formula (5.13) or (5.15). Then we recover u(x,t)

in both cases by u(z,t) = v(Z,t), where z = (z,0) € R**1. O
EXAMPLE 5.18. Solve

up(x,t) — Au(z,t) =0, r=(2',2,) ER"I xR ¢t >0,

U(.’L‘,O) = g(l‘), Ut($,0) = h(l?), Tp > 0>

u(z’,0,t) =0, ' e R

Solution. We extend the functions g, h to odd functions § and & in z,; e.g., g2, —xy,) =
—g(a',zy,) for all 2, € R and g(2/, z,,) = g(2/, x,) when x,, > 0. We then solve

’ELtt—A’ELZO, xE]R”,t>O,

a(x,0) = g(x), @(x,0)=h(z), zcR"
Since V(z,t) = a(2’, xp, t) + a(z’, —xn, t) solves

Vie — AV = 0, V(CL‘,O) =0, V;g(x,()) =0,

the uniqueness result implies V' = 0, i.e., @ is an odd function in z,. Hence u = |,,~¢ is
the solution to the original problem. O
ExaMPLE 5.19. Let Q be a bounded domain. Solve

uy — Au = f(x,t) in 2 x (0,00),

U(ZE,O) :g(l'), ut(a:,O) :h(‘r)7 $€Qa

u(z,t) =0, x e, t>0.
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Solution. Use the method of separation variables and try to find the solution of the form
o0
u=" w@T),
j=1

where
—Auj = Ajuj, ujlon =0,
Tj(t) = AT (t) = wy(t), Tj(0) = aj, Tj(0) =10y,
By the elliptic theory, eigenfunctions {u;(z)}32; form an orthonormal basis of L?(2), and
wj(t), aj, b; are the Fourier coefficients of w(x,t), g(x) and h(x) with respect to u;(z),
respectively.

The question is whether the series gives indeed a true solution; we do not study such
questions in this course.

0

5.7. Finite speed of propagation for second-order linear hyperbolic
equations

We study a class of special second-order linear partial differential equations of the form
upg +Lu=0 (zeR" t>0),

where L has a special form
n

Lu=— Z a’(z)Djju,
ij=1

with smooth symmetric coefficients (a*/(z)) satisfying uniform ellipticity condition on R™.
In this case, we say the operator dy + L is uniformly hyperbolic.

Let (xg,t0) € R™ x (0,00). Assume ¢(z) is a continuous function on R™, positive and
smooth in R™ \ {zo} and ¢(z¢) = 0. Consider a curved backward cone

C ={(z,t) e R" x (0,t9) | q(z) < to — t}
and for each 0 <t < t; let
Cy={x e R"| q(x) < to — t}.

Assume 0C; = {z € R"| ¢(x) = tp — t} is a smooth surface for each ¢ € [0, ). In addition,

we assume
n

(5.25) > a(x)Dig(x)Djq(x) <1 (z € R™\ {zo}).
i,j=1

Lemma 5.20. Let §(x,t) be a smooth function and

at) = Bz, t)dx (0 <t<tp).
Cy
Then Bl t)
ot)= [ Bz, t)dz —/ © dsS;.
( ol ( ac, 1Dq(z)]
Proof. This follows from the co-area formula. OJ

Theorem 5.21 (Domain of dependence). Let u be a smooth solution to uy + Lu = 0 in
R™ x [0,00). If u = uz = 0 on Cy, then u =0 with the cone C.
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Proof. Define the local energy

1 L
e(t) = 2/0 (uf + Z a”DiuDju)d:U (0 <t <tp).
t

1,j7=1

Then the lemma above implies

oo 1
e(t) = / (ututt + a”DiuD-ut> dx — / (u + a’ DjuD; u) dS
Ct Z ! 2 oC ! Z |D |

,j=1 ¢ 1,j=1

= A — B.

Note that a” D;uDjus = Dj(a"uyDiju) —u;Dj(a®” Diu) (no sum); hence, integrating by parts
and by the equation uy + Lu = 0, we have

A= /ut utt—ZD ”Du dx—i—/ Zuta (Dju)vidS

oCt ;
——/ utZDuDa]dx+/ Zuta (Diu)v;dS,
Ct 1,7=1 aCt 1,7=1
where v = (1,19, -+ ,vy) is the outer unit normal on 9C;. In fact,
D;q .
vi=—— (j=1,2,---,n) on dC}.

Since (v, w) = 2?,3:1 av;w; defines an inner product on v, w € R™, by Cauchy-Schwartz’s
inequality,

1/2 1/2
‘Z Duuj‘_<ZaJDuDu) (Za UZV])
7] 1 ,] 1 7] 1
Therefore

|A| < Ce(t) +/ac, |ut|( Z a DjuD; u>1/2< Z a 1/11/])

7.7 1 ,] 1
1 9 . L 1/2
< Ce(t) + 2/ (ut + Z a”DiuDju)< Z a”uiuj) ds.
oC ij=1 ij=1
However, since v; = (D;q)/|Dq|, by (5.25), we have
1/2 1
( Z a’ I/ZZ/J) m on 0C;.
1,j=1
Consequently, we derive that |A| < Ce(t) + B and thus
e(t) < Ce(t) (0<t<tp).

Sine €(0) = 0, this gives e(t) = 0. Hence u = 0 within C. O



5.7. Finite speed of propagation for second-order linear hyperbolic equations 21

5.7.1. Energy method for mixed-value problems. Let 2 be a bounded smooth do-
main in R™ and let Qp = Q x (0,7]. Let

Ty =00 =Q7r\ Qr.
We are interested in the uniqueness of initial-boundary value problem (mixed-value problem)
(5.26) uy + Lu + B(z,t) - Du+ c(z,t)u = f in Qp,
' u=gonlr, w =hon®Qx{t=0},

where Lu is defined as above, B and c are bounded functions on Qr, and g, h are given
functions.

Theorem 5.22 (Uniqueness of mixed-value problem). There exists at most one solution
u € C?(Qr) of mixed-value problem (5.26).

Proof. Let u;,us be any two solutions; then v = u; — uz is in C?(Qr) and solves
vy + Lv + B(z,t) - Dv + c(z,t)v =0 in Qp,
{v:O on I'r, v, =0 onQx{t=0}.
Define the energy

1 LI
o) =5 [ [Fe+ @i+ Y al@e,]de 0<i<T),
2Ja ij=1 ’
Then
(5.27) et) = /Q (Utvtt + v + Z aijvxiijt) dx.
ij=1

Since aijvxivxjt = (aijvxivt)a;j — a%vmivt — aijvmﬂjvt and sincev =0on 0Q forall0 <t < T
implies that vy = 0 on 012 for all 0 < ¢ < T, it follows by the divergence theorem that

/Qaw(‘r)vxivxjt dx = /(99 a”’Umi’Uth ds — /Q(a;:’]jvxivt + awvxixjvt) dx

= — / (agvzivt + aijvxﬂjvt) dx.
Q
Therefore, using the equation vy + Lv = —B - Dv — cv, by (5.27), we obtain that

n
e’(t):/ﬂvt<v—B-Dv—cv— Zagvxi) dx

ij=1

n
< C/ (v2 + 0% 4 |Dv|?) dz < C’/ (vf + 02 + Z aijvxivxj>dm,
@ @ ij=1
where the last inequality follows from the uniform positivity of matrix (a”). Hence €/(t) <
Ce(t) on (0,T). Note that e(t) > 0 and e(0) = 0; this implies e(t) = 0 on [0, 7], proving
v =0 on Q. ]



