
Chapter 2

Basic Properties of
Analytic Functions

2.1. Analytic and Harmonic Functions; the Cauchy-Riemann Equations

A function f defined in a complex domain D is differentiable at a point z0 ∈ D if the
limit

lim
z→z0

f(z)− f(z0)

z − z0
= lim

h→0

f(z0 + h)− f(z0)

h

exists; the limit, if it exists, is called the complex derivative of f at z0 and denoted by
f ′(z0); that is,

f ′(z0) = lim
z→z0

f(z)− f(z0)

z − z0
= lim

h→0

f(z0 + h)− f(z0)

h
.

If f is differentiable at each point of the domain D then f is called analytic in D; in this
case, the derivative function is defined by

f ′(z) = lim
h→0

f(z + h)− f(z)

h
.

(Note that h is complex number.) A function analytic on the whole complex plane is called
an entire function.

Note that the limit f ′(z0) above is required to exist (and thus is equal to the same
number) no matter how z approaches z0 or h approaches 0 in the complex plane. Also,
clearly, if f is differentiable at z0 then it is continuous at z0.

Like in Calculus, the procedure of finding f ′(z) is called differentiation of f . Differ-
entiation follows the usual rules for differentiation of real variable functions. For example,
if f and g are differentiable at z0 then so are functions af + bg (a, b are constant complex
numbers), fg and f/g (if g(z0) 6= 0) at z0, and the derivatives can be found by the usual
formulas:

(af + bg)′(z0) = af ′(z0) + bg′(z0);

(fg)′(z0) = f(z0)g′(z0) + f ′(z0)g(z0);(
f

g

)′
(z0) =

f ′(z0)g(z0)− f(z0)g′(z0)

(g(z0))2
if g(z0) 6= 0.
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2 2. Basic Properties of Analytic Functions

Furthermore, the chain rule for differentiation is also valid: If f is analytic in the range
of a function g defined in a domain D and if g is differentiable at a point z0 ∈ D, then
f(g(z)) is differentiable at z0 and

(f(g(z)))′(z0) = f ′(g(z0))g′(z0).

Example 1. (1) Let f(z) = zn, where n is a positive integer. Then f is entire and f ′(z)
can be found as follows.

f ′(z) = lim
h→0

(z + h)n − zn

h

= lim
h→0

(zn + nzn−1h+ · · ·+ hn)− zn

h
= nzn−1.

(2) Let f(z) = ez. Then f is an entire function. We now compute f ′(z). Note that

f ′(z) = lim
h→0

ez+h − ez

h
= lim

h→0

ezeh − ez

h

= lim
h→0

ez
eh − 1

h
= ez lim

h→0

eh − 1

h
.

We want to show the limit

lim
h→0

eh − 1

h
= 1.

This is a limit as complex variable h→ 0. So let h = σ + iτ 6= 0. Then

eh − 1− h = [eσ cos τ − 1− σ] + i[eσ sin τ − τ ]

= eσ(cos τ − 1) + (eσ − 1− σ) + ieσ(sin τ − τ) + iτ(eσ − 1).

Since |h| ≥ |σ| and |h| ≥ |τ |, we have by the triangle inequality that∣∣∣∣eh − 1

h
− 1

∣∣∣∣ =

∣∣∣∣eh − 1− h
h

∣∣∣∣
≤ eσ

∣∣∣∣1− cos τ

τ

∣∣∣∣+

∣∣∣∣eσ − 1− σ
σ

∣∣∣∣+ eσ
∣∣∣∣sin τ − ττ

∣∣∣∣+ |eσ − 1|.

As |h| → 0, we have both σ → 0 and τ → 0, and hence the limit of each of the four terms
in the last expression is zero by elementary calculus of real variable functions (l’Hǒpital’s
Rule). Therefore

lim
h→0

eh − 1

h
= 1.

Hence

(ez)′ = ez.

The Cauchy–Riemann Equations. Let f(z) = u(x, y) + iv(x, y) with z = x + iy in a
domain D of complex plane, where u, v are real-valued functions of (x, y). Suppose f is
differentiable at a point z0 = x0 + iy0 ∈ D. This means the limit

L = lim
h→0

f(z0 + h)− f(z0)

h

exists. Let h = σ + iτ 6= 0. Then the quotient of difference

f(z0 + h)− f(z0)

h
=

[u(x0 + σ, y0 + τ)− u(x0, y0)] + i[v(x0 + σ, y0 + τ)− v(x0, y0)]

σ + iτ
.



2.1. Analytic and Harmonic Functions; the Cauchy-Riemann Equations 3

The point is that this quotient of difference has limit L as h = σ + iτ → 0 and there are
many ways in the complex plane where h = σ + iτ can approach 0. First, by choosing
h = σ → 0 (τ = 0), we have

L = lim
σ→0

[
u(x0 + σ, y0)− u(x0, y0)

σ
+ i

v(x0 + σ, y0)− v(x0, y0)

σ

]
=
∂u

∂x
(x0, y0) + i

∂v

∂x
(x0, y0),

where the two partial derivatives must also exist. Secondly, by choosing h = iτ → 0 (σ = 0),
we have

L = lim
τ→0

[
u(x0, y0 + τ)− u(x0, y0)

iτ
+ i

v(x0, y0 + τ)− v(x0, y0)

iτ

]
= −i∂u

∂y
(x0, y0) +

∂v

∂y
(x0, y0),

where the two partial derivatives must also exist. Therefore, since L = L, we must have

(2.1)
∂u

∂x
(x0, y0) =

∂v

∂y
(x0, y0),

∂u

∂y
(x0, y0) = −∂v

∂x
(x0, y0).

This is the Cauchy-Riemann equations. Therefore, we have proved the following

Theorem 2.1. If f = u + iv is differentiable at z0 = x0 + iy0 in a domain D, then all
the partial derivatives ux, vx, uy and vy exist at (x0, y0) and satisfy the Cauchy-Riemann
equations

(2.2) ux = vy, uy = −vx at (x0, y0).

The converse is also valid. We have the following result under some additional condi-
tions.

Theorem 2.2. Suppose f = u + iv and all of the partial derivatives ux, uy, vx and vy
exist and are continuous in a domain D containing z0 = x0 + iy0. If the Cauchy-Riemann
equations

ux = vy, uy = −vx
hold at (x0, y0), then f is differentiable at z0 with f ′(z0) = ux(x0, y0) + ivx(x0, y0).

Proof. Let h = σ + iτ with sufficiently small real numbers σ, τ. By Taylor’s Theorem,

u(x0 + σ, y0 + τ) = u(x0, y0) + σux(x0, y0) + τuy(x0, y0) + σE1 + τE2,

where E1, E2 depend on σ, τ and approach zero as σ and τ approach zero. Likewise,

v(x0 + σ, y0 + τ) = v(x0, y0) + σvx(x0, y0) + τvy(x0, y0) + σE3 + τE4,

where E3, E4 depend on σ, τ and approach zero as σ and τ approach zero. By the Cauchy–
Riemann equations at z0 = x0 + iy0, we can write

f(z0 + h) = f(z0) + [ux(x0, y0) + ivx(x0, y0)]h+ σ(E1 + iE3) + τ(E2 + iE4).

From this and the fact that |σ| ≤ |h|, |τ | ≤ |h|, we obtain

lim
h→0

f(z0 + h)− f(z0)

h
= ux(x0, y0) + ivx(x0, y0)

exists. This is exactly the statement that f is differentiable at z0, with f ′(z0) = ux(x0, y0)+
ivx(x0, y0). �
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Laplace’s Equation, Harmonic Functions and Harmonic Conjugates. Note that
from the Cauchy-Riemann equations (2.2) it follows that if the real and imaginary parts u,
v of an analytic function f = u+ iv have second-order partial derivatives at every point in
a domain D, then they must satisfy the Laplace’s equation:

∆u ≡ uxx + uyy = 0, ∆v ≡ vxx + vyy = 0

in D. Such functions u, v are called the harmonic functions in D.

If u and v satisfy the Cauchy-Riemann equations (2.2) at every point in a domain D,
then v is called the harmonic conjugate of u in D. Note that the harmonic conjugate
is uniquely determined up to an additive constant. Therefore, the imaginary part of an
analytic function is uniquely determined by the real part of the function up to additive
constants.

Example 2. Show u(x, y) = x3 − 3xy2 is harmonic and find its harmonic conjugate.

Solution. It is easy to check

∆u = uxx + uyy = 6x− 6x = 0,

hence u is harmonic. To find the harmonic conjugate of u, we need to solve for v that
satisfies the Cauchy-Riemann equations

vx = −uy = 6xy, vy = ux = 3x2 − 3y2.

From the first equation, integrate 6xy with respect to x and find v(x, y) = 3x2y+p(y), where
p(y) is independent of x. To determine this p(y) we need to use the second equation above.
Since vy = 3x2 +p′(y), the second equation implies p′(y) = −3y2 and hence p(y) = −y3 +C,
where C is a constant. Hence the harmonic conjugate of u is given by

v(x, y) = 3x2y − y3 + C,

where C is any constant. Note that the complex function f(z) = u + iv = x3 − 3xy2 +
i(3x2y − y3 + C) = (x+ iy)3 + iC = z3 + iC is certainly analytic. �

Theorem 2.3. Suppose that f = u + iv is analytic on a domain D. If either Ref = u is
constant on D or Imf = v is constant on D, or |f |2 = u2 + v2 is constant on D, then f is
constant (that is, both u and v are constants) on D.

Proof. This theorem will be used later; so we give a proof. We first prove that f must be
a constant on D if Ref = u is constant on D. To show this, we use the Cauchy–Riemann
equations to deduce that vx = −uy = 0 and vy = ux = 0 on D, and hence v must be
constant on each horizontal and vertical line segments lying in D. Since D is connected,
this shows that v must be constant on D and hence f = u + iv is constant on D. Now
assume that Imf = v is constant on D. Then Re(if) = −v is constant on D, and hence by
the result just proved, if is constant on D.

We now assume |f |2 = u2 + v2 is constant on D and would like to show f is itself
constant on D. If |f | = 0 on D then f = 0. Assume |f | = c > 0 on D. Then f(z) 6= 0 for
all z ∈ D. Hence 1

f(z) is also analytic on D. Note that

|f(z)|2 = f(z) f(z) = c2 6= 0 hence f(z) =
c2

f(z)
.

Therefore f̄ = c2/f is analytic on D. This implies that g(z) = f(z) + f(z) is analytic on
D. For this analytic function g, we have Img = 0. By the conclusion just proved, g must
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be constant on D. However, since g = 2Ref , this implies Ref is constant on D. Again by
the result proved above, f itself must be constant on D. �

Exercises. Page 84. 1(a, b), 3, 4, 5, 8, 9, 10, 18, 19, 20(a, b, c), 23.

2.2. Power Series

A power series in z is an infinite series of the special form
∞∑
n=0

an(z − z0)n,

where a0, a1, · · · , are complex numbers, called the coefficients of the series; z0 is fixed and
is called the center of the series.

The first major result on power series is as follows.

Theorem 2.4. Suppose there is some z1 6= z0 such that the series
∑
an(z1−z0)n converges.

Then for each z with |z − z0| < |z1 − z0|, the series
∑
an(z − z0)n is absolutely convergent.

Proof. Since
∑
an(z1 − z0)n converges, it follows that

lim
n→∞

an(z1 − z0)n = 0.

Hence, there exists a number M > 0 such that |an||z1− z0|n ≤M for all n = 1, 2, · · · . Note
that

|an(z − z0)n| = |an||z − z0|n

= |an||z1 − z0|n
(
|z − z0|
|z1 − z0|

)n
≤Mρn,

where ρ = |z−z0|
|z1−z0| . Therefore

∑
an(z − z0)n converges absolutely if 0 ≤ ρ < 1; that is,

|z − z0| < |z1 − z0|. �

The Radius of Convergence. Given a power series
∑
an(z − z0)n, define

S = {z :
∑

an(z − z0)n converges}.

Then, there are three mutually exclusive cases:

(a) S = {z0}; (b) S = C; (c) S 6= {z0}, C.

In any cases, define

R = sup{|z − z0| : z ∈ S}.
Of course, R = 0 in the case (a) and R =∞ in the case (b) above. In the case (c), we have
0 < R < ∞ and that the series

∑
an(z − z0)n converges absolutely on |z − z0| < R and

diverges on |z − z0| > R. For, if z1 ∈ S and z2 /∈ S then 0 < |z1 − z0| ≤ R ≤ |z2 − z0| <∞;
also, for any z with |z − z0| < R, there is z′ ∈ S such that |z − z0| < |z′ − z0| and hence
by Theorem 2.4,

∑
an(z − z0)n converges absolutely. On the other hand, it is easy to see

that S ⊂ {|z − z0| ≤ R} and hence any z with |z − z0| > R does not belong to S; that is∑
an(z − z0)n diverges.

The number R so defined is called the radius of convergence of the power series∑
an(z − z0)n.

Therefore the radius of convergence of a power series is the radius of the open disc inside
which the series converges and outside which the series diverges; note that such a disc is
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unique, and there is no information about the convergence on the boundary of the disc.
This disc is sometimes called the disc of convergence for the power series.

Theorem 2.5. Let R be the radius of convergence of the power series
∑
an(z − z0)n.

(a) (Ratio Test) If L = lim
n→∞

|an+1

an
| exists, then R = 1

L .

(b) (Root Test) If L = lim
n→∞

n
√
|an| exists, then R = 1

L .

(c) In general,

R =
1

lim sup
n→∞

n
√
|an|

.

Example 3. (1) The power series
∞∑
n=0

(z − z0)n

has the coefficients an = 1 and hence the radius of convergence R = 1 by any of the tests
in the above theorem. This means this power series (called the geometric series of ratio
z− z0) converges (absolutely) for all |z− z0| < 1 and diverges for all |z− z0| > 1. Note that
the series diverges also for all |z − z0| = 1. We also know the value of this series is given by

(2.3)

∞∑
n=0

(z − z0)n =
1

1− (z − z0)
=

1

1 + z0 − z
∀ |z − z0| < 1.

(2) Find the radius of convergence of power series
∑∞

0 5n(z − 1)n and find a closed
form (that is a simplified value) for the series in its disc of convergence.

Solution. Since an = 5n, we have

R = 1/ lim
n→∞

n
√

5n = 1/5.

To find a closed form for the convergent series, we have that, for all |z − 1| < 1
5 ,

∞∑
n=0

5n(z − 1)n =

∞∑
n=0

(5z − 5)n

=
1

1− (5z − 5)
=

1

6− 5z
by (2.3) above since |5z − 5| < 1.

�

(3) Find the radius of convergence of the power series
∞∑
n=0

4n(−1)nzn.

Solution. Note that an = 4n(−1)n ; that is,

an =

{
4n if n = 0, 2, 4, · · ·
1

4n if n = 1, 3, 5, · · · .

Note that the ratio and root tests do not work in this case. However the test (c) in the
theorem above gives

R =
1

lim sup
n→∞

n
√

4n(−1)n
=

1

4
.
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�

(4) Find the radius of convergence of the power series

∞∑
n=0

4nz3n.

Solution. If we write the series out, it becomes

∞∑
n=0

4nz3n = 1 + 4z3 + 42z6 + 43z9 + 44z12 + · · · =
∞∑
m=0

amz
m,

where am = 4m/3 if m = 0, 3, 6, 9, · · · and am = 0 for all other m. So technically, we cannot
use either tests. But if we let w = z3 then the series becomes a power series for w:

∞∑
n=0

4nwn =
∞∑
n=0

(4w)n,

which is a geometric series with ratio r = 4w. Hence this series converges when |4w| < 1 and
diverges when |4w| ≥ 1; therefore the original series converges if 4|z3| < 1 that is |z| < 1/ 3

√
4

and diverges if |z| ≥ 1/ 3
√

4. Hence the radius of convergence is R = 1/ 3
√

4. �

The Derivative of a Power Series. We can now study some properties of the function
defined by a power series on its disc of convergence.

Theorem 2.6. Let the radius of convergence of power series
∑
an(z−z0)n be R > 0. Then

the function defined by

f(z) =

∞∑
n=0

an(z − z0)n

is infinitely differentiable within the disc |z − z0| < R, each derivative being again given by
a power series which is obtained from the original series by term-by-term differentiation;
that is,

f (k)(z) =
∞∑
n=k

n(n− 1) · · · (n− k + 1)an(z − z0)n−k, k = 1, 2, · · · .

In particular, by setting z = z0, we have

(2.4) ak =
f (k)(z0)

k!
, k = 0, 1, 2, · · · .

We shall not prove this theorem, but remark that if a function f can be written as a
power series around z0 then this power series must be the Taylor series of f :

f(z) =

∞∑
n=0

f (n)(z0)

n!
(z − z0)n.

Example 4. Show that
∞∑
n=0

zn

n!
= ez for all complex number z.
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Proof. Let

f(z) =
∞∑
n=0

zn

n!
.

Then f(0) = 1. Since the radius of this series is R = ∞, by the theorem above, f(z) is
infinitely differentiable at all z and

f ′(z) =

∞∑
n=1

n
zn−1

n!
=

∞∑
k=0

zk

k!
= f(z).

Therefore

(e−zf(z))′ = −e−zf(z) + e−zf ′(z) = 0 ∀z.
Hence e−zf(z) must be a constant C for all z and so f(z) = Cez. But f(0) = 1 so C = 1.
Therefore f(z) = ez, as needed. �

Example 5. Find the power series of sin z and cos z about z = 0.

Solution. Since

ez =
∞∑
n=0

zn

n!
,

we have

cos z =
1

2
(eiz + e−iz) =

1

2

( ∞∑
n=0

(iz)n

n!
+
∞∑
n=0

(−iz)n

n!

)

=

∞∑
k=0

(−1)k
z2k

(2k)!
= 1− z2

2!
+
z4

4!
− · · · ∀ z.

Since sin z = −(cos z)′, we obtain

sin z =
∞∑
k=0

(−1)k
z2k+1

(2k + 1)!
= z − z3

3!
+
z5

5!
− · · · ∀ z.

�

Multiplication and Substitution of Power Series. Sometimes, we can find the power
series of product, quotient and composition of power series. This can be done just like
polynomials. For example,( ∞∑

n=0

an(z − z0)n

)( ∞∑
n=0

bn(z − z0)n

)
=

∞∑
n=0

cn(z − z0)n,

where

cn = a0bn + a1bn−1 + · · ·+ anb0 =
n∑
k=0

akbn−k.

In particular, we may just need the following: for all k = 1, 2, · · · ,

(z − z0)k
∞∑
n=0

an(z − z0)n =
∑
n=0

an(z − z0)n+k.

When finding the power series (Taylor’s series) of a function of type f(g(z)) at z = z0,
where g(z) has power series at z0 and f(w) has power series at w = w0 = g(z0) as follows:

g(z) =
∞∑
n=0

an(z − z0)n, f(w) =
∞∑
n=0

bn(w − w0)n.
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We can replace w = g(z) into the power series of f(w) to obtain the power series of f(g(z))
at z0. This is especially useful when one of f and g is a polynomial of z − z0.

Example 6. (1) Find the power series of ez/(1− z) about z0 in |z| < 1.

Solution. We know

ez = 1 + z +
z2

2!
+
z3

3!
+ · · · , all z

and
1

1− z
= 1 + z + z2 + z3 + · · · , |z| < 1.

Hence
ez

1− z
= 1 + 2z +

5

2
z2 +

8

3
z3 +

65

24
z4 + · · · , |z| < 1.

�

(2) By substitution, we have

ez
3

=
∞∑
n=0

z3n

n!
.

(3) Find the power series of (1− z2) sin z about z0 = 0.

(1− z2) sin z = (1− z2)
∞∑
n=0

(−1)n+1 z2n+1

(2n+ 1)!
= (1− z2)

(
z − z3

6
+

z5

120
− · · ·

)

= z − 7

6
z3 +

21

120
z5 − · · · .

Exercises. Page 103. Problems 1, 2, 3, 7, 8, 9, 14, 15, 18

2.3. Cauchy’s Theorem and Cauchy’s Formula

The Cauchy’s Theorem and Cauchy’s Formula are the linchpin of complex variables.

Theorem 2.7 (Cauchy’s Theorem). Let f be analytic in a domain D and let γ be a
piecewise smooth simple closed curve in D whose inside Ω also lies in D. Then

(2.5)

∫
γ
f(z) dz = 0.

Proof. The proof of this theorem under the additional assumption that f ′ is continuous
in D follows directly from the Green’s Theorem above. For example, in this case, one can
apply Green’s Theorem to obtain∫

γ
f(z) dz = i

∫∫
Ω

(fx + ify) dxdy.

Now, if f = u+ iv then, by the Cauchy-Riemann equations,

fx + ify = (ux + ivx) + i(uy + ivy) = (ux − vy) + i(uy + vx) = 0 + i0 = 0 in D.

Hence (2.5) holds.

However, without the hypothesis of continuity of f ′, we cannot apply Green’s Theorem;
so we must use a more sophisticated technique to prove this theorem. This starts with the
following Cauchy-Goursat Theorem. �
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Theorem 2.8 (Cauchy-Goursat Theorem). Suppose f is analytic in a domain D. If Γ
is a triangle in D whose inside ∆ is also in D, then∫

Γ
f(z) dz = 0.

Proof*. Let I = |
∫

Γ f(z) dz|. So I ≥ 0, and we want to show I = 0. Divide the solid
triangle Γ ∪∆ into four triangles by joining the midpoints of the three sides of Γ. Orient
the boundaries of all triangles positively, call the four small solid triangles Ω1, · · · ,Ω4 and
let their boundaries be γ1, · · · , γ4, respectively. Then

I =

∣∣∣∣∫
Γ
f(z) dz

∣∣∣∣ =

∣∣∣∣∣∣
4∑
j=1

∫
γj

f(z) dz

∣∣∣∣∣∣
≤

4∑
j=1

∣∣∣∣∣
∫
γj

f(z) dz

∣∣∣∣∣ ≤ 4

∣∣∣∣∫
γm

f(z) dz

∣∣∣∣ ,
where m ∈ {1, 2, 3, 4} is chosen so that

I1 =

∣∣∣∣∫
γm

f(z) dz

∣∣∣∣ = max

{∣∣∣∣∣
∫
γj

f(z) dz

∣∣∣∣∣ : j = 1, 2, 3, 4

}
.

Let then ∆1 = Ωm and Γ1 = γm. Then divide the solid triangle ∆1 into four triangles
by joining the midpoints of its sides as above to obtain a solid triangle ∆2 with positively
oriented boundary Γ2 such that

I1 ≤ 4I2 = 4

∣∣∣∣∫
Γ2

f(z) dz

∣∣∣∣ .
Continuing in this way, we obtain a sequence of solid triangles {∆j} with positively oriented
boundary Γj , j = 1, 2, · · · , such that

(i) ∆j+1 is a subset of ∆j

(ii) length(Γj+1) =
1

2
length(Γj)

(iii) the diameter of ∆j+1 =
1

2
{the diameter of ∆j}

(iv) if Ij = |
∫

Γj
f(z) dz|, then Ij ≤ 4Ij+1.

In particular, for j = 1, 2, · · ·

(ii)′ length(Γj) =
1

2j
length(Γ)

(iii)′ diameter(∆j) =
1

2j
diameter(∆)

(iv)′ I ≤ 4jIj .

Therefore, there exists a unique point z0 in D that lies in all the ∆j . Since f is differentiable
at z0 so, given ε > 0, there is a small δ > 0 such that the disc {|z − z0| < δ} is in D and∣∣∣∣f(z)− f(z0)

z − z0
− f ′(z0)

∣∣∣∣ < ε for all 0 < |z − z0| < δ.

Equivalently,

|f(z)− [f(z0) + f ′(z0)(z − z0)]| ≤ ε|z − z0| ∀ |z − z0| < δ.
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We know there exists j0 such that the triangles ∆j lies within the disc {|z− z0| < δ} for all
j ≥ j0. By the direct computation or Green’s Theorem, we know that∫

Γj

dz =

∫
Γj

z dz = 0

(or by the Cauchy’s Theorem just proved under the additional assumption). Therefore, for
all j ≥ j0,

Ij =

∣∣∣∣∣
∫

Γj

f(z) dz

∣∣∣∣∣ =

∣∣∣∣∣
∫

Γj

(
f(z)− [f(z0) + f ′(z0)(z − z0)]

)
dz

∣∣∣∣∣
≤ ε max

z∈Γj
|z − z0| · length(Γj)

≤ εdiameter(∆j) · length(Γj)

≤ ε 1

4j
diameter(∆) · length(Γ).

Finally by (iv)′ above, we find, for all j ≥ j0,

0 ≤ I ≤ 4jIj ≤ εdiameter(∆) · length(Γ)

for arbitrary ε > 0. This proves I = 0. �

We now introduce a class of special domains. A domain D is called simply-connected
if, whenever γ is a simple closed curve in D, the inside of γ is also in D.

Theorem 2.9. Let D be a simply-connected domain and let f be an analytic function in
D. Then ∫

γ
f(z) dz = 0

for any closed polygonal curve γ in D.

Proof. By connecting some vertices to form certain triangles, γ can be separated into the
sum of closed triangles with line integrals on overlapping sides counted and thus cancelled
in opposite directions. Therefore this theorem follows from the Cauchy–Goursat theorem
proved above. �

Theorem 2.10. Let D be a simply-connected domain and let f be an analytic function in
D. Then there exists an analytic function F in D such that F ′(z) = f(z) for all z ∈ D.

Proof. Fix a point z0 in D and define a function F in D as follows. Given any z ∈ D let
γ be any polygonal curve connecting z0 to z. Define

F (z) =

∫
γ
f(ζ) dζ.

First, we claim F (z) is independent of the choice of the polygonal curve γ and hence F
is well-defined. To see this, let δ be another polygonal curve joining z0 to z in D. Let
Γ = γ ∪ (−δ) be the closed polygonal curve consisting of γ and the reversed curve of δ.
Then, by the previous theorem,

0 =

∫
Γ
f(ζ) dζ =

∫
γ
f(ζ) dζ −

∫
δ
f(ζ) dζ.

Hence
∫
γ f(ζ) dζ =

∫
δ f(ζ) dζ; this proves that F (z) is independent of the curve γ.
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Next we show that F is differentiable at every point z ∈ D and F ′(z) = f(z). This is to
prove

lim
h→0

[
F (z + h)− F (z)

h
− f(z)

]
= 0.

To prove this, assume the disc {|ζ−z| < δ} is contained in D for some δ > 0. Let z = x+ iy
and h = σ+ iτ with 0 < |h| < δ. Let L be the line segment joining z to z+ h. Then L is in
D since it is in the disc {|ζ − z| < δ}. Let γ be any polygonal curve γ joining z0 to z in D
and let γ ∪ L be the polygonal curve consisting of γ and L. Then since F (z) and F (z + h)
are independent of the curves, we have

F (z + h) =

∫
γ∪L

f(ζ) dζ; F (z) =

∫
γ
f(ζ) dζ.

Hence

F (z + h)− F (z) =

∫
L
f(ζ) dζ.

Note that, by an easy computation,∫
L
f(z) dζ = f(z)

∫
L
dζ = f(z)h.

Therefore
F (z + h)− F (z)

h
− f(z) =

1

h

∫
L

[f(ζ)− f(z)] dζ.

So ∣∣∣∣F (z + h)− F (z)

h
− f(z)

∣∣∣∣ ≤ 1

|h|
max
|ζ−z|≤|h|

|f(ζ)− f(z)| · length(L)

= max
|ζ−z|≤|h|

|f(ζ)− f(z)| → 0 as |h| → 0.

Therefore, F ′(z) = f(z) for all z ∈ D. �

Theorem 2.11. Let f and F be analytic in a domain D and F ′(z) = f(z) for all z ∈ D.
Let Γ be any piecewise smooth curve in D with starting point A and ending point B. Then∫

Γ
f(z) dz = F (B)− F (A).

In particular, if γ is a piecewise smooth closed curve in D, then∫
γ
f(z) dz = 0.

Proof. Assume Γ itself is smooth with parameterization γ(t) with a ≤ t ≤ b and γ(a) =
A, γ(b) = B. It is easy to see

[F (γ(t))]′ = F ′(γ(t))γ′(t) = f(γ(t))γ′(t) ∀ t ∈ [a, b].

Hence, by definition of the line integral and the Fundamental Theorem of Calculus,∫
Γ
f(z) dz =

∫ b

a
f(γ(t))γ′(t) dt

=

∫ b

a
[F (γ(t))]′ dt = F (γ(b))− F (γ(a)) = F (B)− F (A).

This integral would be zero if B = A, which is the case when Γ is closed. �
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Final Proof of Cauchy’s Theorem. Let D be any domain and a simple closed curve γ
along with its inside be contained in D. Then there exists a simply-connected subdomain
D′ in D that contains γ and its inside. Since D′ is simply-connected, by the theorem above,
there exists an analytic function F in D′ such that F ′(z) = f(z) for all z ∈ D′. Hence by
the previous theorem ∫

γ
f(z) dz = 0

since γ is a closed curve in D′. This completes the proof of Cauchy’s Theorem. �

Theorem 2.12 (Cauchy’s Formula). Let f be analytic in a domain D and γ a piecewise
smooth positively oriented simple closed curve in D whose inside Ω also lies in D. Then

(2.6) f(a) =
1

2πi

∫
γ

f(z)

z − a
dz for all a ∈ Ω.

Proof. Let Bε = {|z − a| < ε} ⊂⊂ Ω and Ωε = Ω \ B̄ε. Let CD be a fixed diameter on the
circle |z − a| = ε; let E,F be two other points on the circle so that the closed arc CEDFC
represents the positively oriented circle δε = {|z− a| = ε}. Let A,B be the first intersecting
point with γ of ray aC and ray aD, respectively; let G,H be two other points on γ so
that the closed loop AGBHA along γ represents the positively oriented simple closed curve
γ. Finally, let Γ1 = AGBDECA and Γ2 = ACFDBHA be two closed piece-wise smooth
curves. (See the figure below.)

C D

E

A B

G

H

a

F

G2

G1

G2

G1

G2

G1G1
G1

G2

Ε

closed

curve Γ

Figure 2.1. The proof of Cauchy’s Formula

Let g(z) = f(z)
z−a . Then, by Cauchy’s Theorem above,∫

Γ1

g(z) dz = 0,

∫
Γ2

g(z) dz = 0.

Add the two integrals, cancel the line integrals on segments AC with CA and BD with DB,
and note that the line integrals on arc DEC and CFD are combined to the line integral on
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the reversed circle −δε. Hence we have∫
γ
g(z) dz =

∫
δε

g(z) dz.

Therefore

1

2πi

∫
γ

f(z)

z − a
dz =

1

2πi

∫
δε

f(z)

z − a
dz

→ f(a) as ε→ 0, by Example (3) of §1.6.

�

Applications of Cauchy’s Theorem/Formula. Cauchy’s Theorem and Formula can be
used to evaluate certain line integrals and definite integrals. See more applications later in
§2.6.

Example 7. Evaluate the integral ∫
γ

z

z + 1
dz,

where γ is any curve in the domain {z : Imz > 0} joining the points −1 + 2i and 1 + 2i.
(Or replace this example by any of Exercises 9, 11, 12 to avoid the logarithmic function.)

Solution. The integrand

f(z) =
z

z + 1
= 1− 1

z + 1

is analytic in the domain {z : Imz > 0}, which is simply connected. Therefore, there exists
an analytic function F (z) on the domain such that F ′(z) = f(z). But what is F (z) then?
In fact, let

F (z) = z − Log(z + 1),

where Log(z + 1) is defined and is analytic on the whole plane with the ray (−∞,−1]
deleted, and hence F (z) is analytic on the given domain {z : Imz > 0}, and it can be seen
that F ′(z) = f(z) on the domain. Therefore,∫

γ
f(z) dz = F (B)− F (A) = F (1 + 2i)− F (−1 + 2i)

= [1 + 2i− Log(2 + 2i)]− [−1 + 2i− Log(2i)]

= 2− [ln(
√

8) + i
π

4
] + [ln 2 + i

π

2
] = 2− ln 2

2
+ i

π

4
.

�

Example 8. Evaluate ∫
|z+1|=2

z2

z2 − 4
dz.

Solution. The integrand z2

z2−4
can be written as f(z)

z+2 , where f(z) = z2

z−2 . Since f(z) is

analytic on |z+ 1| ≤ 2 and −2 is inside the circle |z+ 1| = 2, by Cauchy’s Formula, we have∫
|z+1|=2

z2

z2 − 4
dz =

∫
|z+1|=2

f(z)

z + 2
dz = 2πif(−2) = 2πi(−1) = −2πi.

�
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Example 9. Evaluate ∫ 2π

0

1

2 + sin θ
dθ.

Solution. We try to write this integral as the defining integral for a line integral
∫
γ g(z) dz

for some complex function g and a closed curve γ. If the curve γ has the smooth parame-
terization γ(θ) with θ ∈ [0, 2π], then∫

γ
g(z) dz =

∫ 2π

0
g(γ(θ))γ′(θ) dθ.

We would like to choose γ(θ) so that the right-hand side definite integral is exactly the one
we need to compute. Usually, for the definite integral involving sin θ or cos θ, we always
choose γ(θ) = eiθ and hence γ is the unit circle. Introduce

z = γ(θ) = eiθ, 0 ≤ θ ≤ 2π,

then

sin θ =
1

2i
(eiθ − e−iθ) =

1

2i
(z − 1

z
),

dz = γ′(θ) dθ = ieiθ dθ = iz dθ

and hence

dθ =
1

iz
dz.

The interval θ ∈ [0, 2π] is transformed to the simple closed positively oriented unit circle
|z| = 1. Hence∫ 2π

0

1

2 + sin θ
dθ =

∫
|z|=1

1

2 + 1
2i(z −

1
z )

1

iz
dz =

∫
|z|=1

2

z2 + 4iz − 1
dz.

Therefore, we need to evaluate the line integral∫
|z|=1

2

z2 + 4iz − 1
dz.

We try to use Cauchy’s Formula. Note that

z2 + 4iz − 1 = (z − p)(z − q); p = i(
√

3− 2), q = −i(
√

3 + 2),

and that p is inside the circle |z| = 1 and q is outside |z| = 1. Hence

2

z2 + 4iz − 1
=

2

(z − p)(z − q)
=

f(z)

z − p
,

where f(z) = 2
z−q is analytic on and inside the circle |z| = 1. Therefore, by Cauchy’s

Formula, ∫
|z|=1

2

z2 + 4iz − 1
dz =

∫
|z|=1

f(z)

z − p
dz = 2πif(p)

= 2πi
2

p− q
= 2πi

2

2
√

3
=

2π√
3
.

Finally we have ∫ 2π

0

1

2 + sin θ
dθ =

∫
|z|=1

2

z2 + 4iz − 1
dz =

2π√
3
.

�
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Example 10. Let 0 < a < 1 be a given real number. Evaluate∫ 2π

0

dθ

1− 2a cos θ + a2
.

Solution. Use the same substitution z = eiθ as above and we have

cos θ =
1

2

(
z +

1

z

)
, dθ =

1

iz
dz

and hence ∫ 2π

0

dθ

1− 2a cos θ + a2
=

∫
|z|=1

1

1− a(z + 1
z ) + a2

1

iz
dz

= − 1

ai

∫
|z|=1

1

(z − a)(z − 1
a)
dz = − 1

ai

∫
|z|=1

f(z)

z − a
dz (where f(z) = 1

z− 1
a

)

= − 1

ai
[2πif(a)] =

2π

1− a2
.

The function

Pa(θ) =
1

2π

1− a2

1− 2a cos θ + a2
, 0 < a < 1, 0 ≤ θ ≤ 2π,

is called the Poisson kernel and satisfies∫ 2π

0
Pa(θ) dθ = 1, 0 < a < 1.

�

Exercises. Page 116. Problems 1–7, 9, 11, 12.

2.4. Consequences of Cauchy’s Theorem

Theorem 2.13. Suppose that f is analytic in a domain D and z0 ∈ D. If the disc
{z : |z − z0| < R} lies in D, then

f(z) =
∞∑
k=0

ak(z − z0)k ∀ |z − z0| < R,

where the coefficients ak are given by

ak =
1

2πi

∫
γ

f(ζ)

(ζ − z0)k+1
dζ k = 0, 1, 2, · · · ,

where γ is the positively oriented circle {ζ : |ζ − z0| = r} for any 0 < r < R.

Proof. First, by Cauchy’s Theorem, the number ak defined above is independent of r for
all 0 < r < R. Given any z with |z − z0| < R, let r > 0 be a fixed number such that
|z − z0| < r < R, and let γ be the positively oriented circle |ζ − z0| = r. Then by Cauchy’s
Formula,

f(z) =
1

2πi

∫
γ

f(ζ)

ζ − z
dζ.

Note that, for all ζ ∈ γ; that is |ζ− z0| = r > |z− z0|, it follows by the geometric series that

1

ζ − z
=

1

(ζ − z0)− (z − z0)
=

1

ζ − z0

1

1− z−z0
ζ−z0
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=
1

ζ − z0

∞∑
k=0

(
z − z0

ζ − z0

)k
=

∞∑
k=0

(z − z0)k

(ζ − z0)k+1
.

Since this infinite series converges absolutely and uniformly on ζ ∈ γ, the interchange of
orders of integration and summation is legitimate and yields that

f(z) =
1

2πi

∫
γ

f(ζ)

ζ − z
dζ =

1

2πi

∫
γ

( ∞∑
k=0

f(ζ)
(z − z0)k

(ζ − z0)k+1

)
dζ

=
∞∑
k=0

(z − z0)k
1

2πi

∫
γ

f(ζ)

(ζ − z0)k+1
dζ =

∞∑
k=0

ak(z − z0)k.

�

From this theorem, we obtain the following important facts about the analytic functions.

FACT 1. If f is analytic in a domain D then f has all orders of derivatives in D and each
higher order derivative f (k) is also analytic in D.

This is due to the fact that an analytic function can be written as a power series at each
of the points in the domain. In fact, by the formula for ak and the property of Taylor’s
formula, we have the following generalized Cauchy’s Formula: If f is analytic in a
domain D and z0 ∈ D, then

f (k)(z0) =
k!

2πi

∫
γ

f(ζ)

(ζ − z0)k+1
dζ k = 0, 1, 2, · · ·

for all piecewise smooth positively oriented simple closed curve γ in D whose inside con-
taining z0 is also in D.

FACT 2. If f is analytic in a domain D and f (k)(z0) = 0 for all k = 0, 1, 2, · · · at some
point z0 ∈ D, then f(z) = 0 for all z ∈ D.

Proof. Let z1 be any point in D. Let Γ be a polygonal curve in D joining z0 to z1. One can
finds a finite number of closed discs in D, say, ∆1, · · · ,∆N with the property: the center of
∆1 is z0 and the centers of all ∆k are on the polygonal curve and the center of ∆k is inside
∆k−1 for all k = 2, 3, · · · , N and z1 ∈ ∆N . Since ∆1 is a disc in D with center z0, by the
theorem above, f(z) = 0 for all z ∈ ∆1, and hence f (k) is zero for all k = 0, 1, 2, · · · at the
center of ∆2 hence f ≡ 0 on ∆2. Repeating in this way we have f ≡ 0 on ∆N ; in particular,
f(z1) = 0. �

FACT 3: The order of zero. Suppose that f is analytic in a domain D and f(z0) = 0
at some z0 ∈ D. Suppose that f is not identically zero in D. By Fact 2 above, there must
be a positive integer m such that

f (k)(z0) = 0 k = 0, 1, · · · ,m− 1; f (m)(z0) 6= 0.

In this case, near z0 in D

f(z) =
∞∑
k=m

ak(z − z0)k = (z − z0)m[am + am+1(z − z0) + · · · ],

where am 6= 0. In this case, we say f has a zero of order m at z0.
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It is easy to see that an analytic function f in D has a zero of order m at z0 ∈ D if and
only if

f(z) = (z − z0)mg(z) where g is analytic in D and g(z0) 6= 0.

Morera’s Theorem. The following theorem shows that Cauchy-Goursat Theorem exactly
characterizes the analytic functions.

Theorem 2.14 (Morera’s Theorem). Let f be continuous in a domain D. If∫
γ
f(z) dz = 0

holds for all triangles γ in D whose inside also lies in D, then f is analytic in D.

Proof. Let z0 ∈ D and let disc ∆ = {ζ : |ζ− z0| < R} be also in D. Define a function F (z)
in ∆ as follows:

F (z) =

∫ z

z0

f(ζ) dζ,

where the notation means the line integral on the line segment joining z0 to z. By the
definition, we can easily show that F is analytic in ∆ and F ′(z) = f(z) in ∆. This proves
that F is analytic in ∆; so by Fact 1 above f is also analytic in ∆. Hence f is analytic in
D. �

Theorem 2.15 (Liouville’s Theorem). Let f be an entire and bounded function. Then
f must be a constant.

Proof. By Theorem 2.13 above,

f(z) =

∞∑
k=0

akz
k for all z,

where

ak =
1

2πi

∫
|z|=R

f(z)

zk+1
dz k = 0, 1, 2 · · · ,

where R is any positive number. Let |f(z)| ≤M for all z. Then, for all k = 1, 2, · · · ,

|ak| =
1

2π

∣∣∣∣∣
∫
|z|=R

f(z)

zk+1
dz

∣∣∣∣∣
≤ 1

2π
max
|z|=R

∣∣∣∣ f(z)

zk+1

∣∣∣∣ · (Length of circle |z| = R)

≤ 1

2π

M

Rk+1
2πR =

M

Rk
→ 0

as R→∞. Hence ak = 0 for all k = 1, 2, · · · . Therefore f(z) = a0 is constant. �
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Analytic Logarithms. Let f be analytic in a simply-connected domain D and f(z) 6= 0
for all z ∈ D. Then there exists an analytic function g in D such that

f(z) = eg(z) ∀ z ∈ D.

Proof. Since the function f ′(z)
f(z) is analytic in the simply-connected domain D, by Theorem

2.10 above, there exists an analytic function F in D such that

F ′(z) =
f ′(z)

f(z)
∀ z ∈ D.

Hence

[e−F (z)f(z)]′ = e−F (z)f ′(z)− e−F (z)F ′(z)f(z) = 0 ∀ z ∈ D.

Therefore e−F (z)f(z) is constant in D; let e−F (z)f(z) = C be a constant. Hence

f(z) = CeF (z) = eLogCeF (z) = eg(z), g(z) = LogC + F (z),

and g(z) is analytic in D and satisfies f(z) = eg(z) in D. Note that function g(z) is not
unique, for g(z) + 2πki with any integer k will provide another analytic function satisfying
the same requirement. Any such function g(z) is called an analytic logarithm of f(z). �

Exercises. Page 133. Problems 1, 2, 3, 9, 12, 17, 18, 21.

2.5. Isolated Singularities

A function f is said to have an isolated singularity at a point z0 if f is analytic in a
punctured disc {0 < |z − z0| < r} for some r > 0. The meaning of “isolated” is that in the
full disc {|z − z0| < r}, z0 is the only (possible) point at which f is not differentiable. The
isolated singularities play an important role in the applications of complex variables.

There are precisely three possible distinct cases for a function f to have an isolated
singularity at z0:

(a) |f(z)| is bounded in 0 < |z − z0| < r′ < r for some 0 < r′ < r.

(b) lim
z→z0

|f(z)| = +∞.

(c) Neither (a) nor (b) holds. This is equivalent to the following conditions:

(c)’

lim sup
z→z0

|f(z)| = +∞; lim inf
z→z0

|f(z)| <∞.

In case (a), we say f has a removable singularity at z0 (see below for the reason); in
case (b) we say f has a pole at z0; while in case (c), we say f has an essential singularity
at z0.

We shall only study the first two cases; the essential singularities will not be studied.

Removable Singularities. Assume case (a) holds; that is, assume |f(z)| ≤ M for all
0 < |z − z0| < r′, where r′ ∈ (0, r) is a constant. Let

g(z) =

{
(z − z0)2f(z) 0 < |z − z0| < r

0 z = z0.
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Then g is defined in the full disc D = {|z − z0| < r}, and we show that g is analytic in D.
This is to say that g is differentiable at every point in D. Certainly, g is differentiable at
each z ∈ D \ {z0}. At z0

g′(z0) = lim
z→z0

g(z)− g(z0)

z − z0
= lim

z→z0
(z − z0)f(z) = 0

since |f(z)| is bounded near z0. Therefore g is analytic in D and g(z0) = g′(z0) = 0. Let m
be the order of zero of g at z0. Then m ≥ 2 and

g(z) = (z − z0)mh(z) where h is analytic in D and h(z0) 6= 0.

Let

f̃(z) = (z − z0)m−2h(z) z ∈ D.
Then f̃ is analytic in D and for all z ∈ D \ {z0}

f̃(z) = (z − z0)m−2 g(z)

(z − z0)m
=

g(z)

(z − z0)2
= f(z).

Therefore, f can be extended to the whole disc as an analytic function f̃ . Hence, in this
case, z0 is called a removable singularity for f .

Poles. In case (b) above, |f(z)| → ∞ as z → z0; without loss of generality, assume

|f(z)| ≥ 1 ∀ 0 < |z − z0| < r.

In this case, function g(z) = 1
f(z) is a bounded analytic function in 0 < |z − z0| < r; that

is, g has a removable singularity at z0. Therefore there exists an analytic function g̃ in the
full disc D = {|z − z0| < r} such that g̃(z) = g(z) for z ∈ D \ {z0}. Note that

|g̃(z0)| = lim
z→z0

|g(z)| = lim
z→z0

1

|f(z)|
= 0

by the assumption in case (b). Hence g̃ has a zero at z0 and let m be the order of zero of g̃
at z0. Then

g̃(z) = (z − z0)mh(z) where h is analytic in D and h(z0) 6= 0.

Therefore, for all 0 < |z − z0| < r, we have

f(z) =
1

g(z)
=

1

(z − z0)m
1

h(z)
=

H(z)

(z − z0)m
,

where H(z) is analytic in D = {|z − z0| < r} and H(z0) 6= 0.

In this case, we say f has a pole of order m at the singularity z0. Therefore, the order
of pole of f at z0 is the same as the order of zero of 1

f at z0.

The Residue at a Singularity. Assume f is analytic in a punctured disc {0 < |z−z0| < r}
for some r > 0. Then the number

1

2πi

∫
|z−z0|=s

f(z) dz

is independent of the number s as long as 0 < s < r. This can be easily seen from the
Green’s Theorem or an application of Cauchy’s Theorem. We define this number to be the
residue of f at z0 and denote it by the notation

(2.7) Res(f ; z0) =
1

2πi

∫
|z−z0|=s

f(z) dz.
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This is the definition of residue and does not give the most effective way to compute it. We
shall study some more effective ways to compute residues.

The Computation of Residues. Assume

f(z) =
H(z)

(z − z0)m
,

where H is analytic in a disc {|z − z0| < r} and m is a positive integer. We claim

(2.8) Res(f ; z0) = Res

(
H(z)

(z − z0)m
; z0

)
=
H(m−1)(z0)

(m− 1)!
.

To see this, since H is analytic in {|z − z0| < r} we have

H(z) =

∞∑
k=0

ck(z − z0)k, |z − z0| < r,

where

ck =
H(k)(z0)

k!
∀ k = 0, 1, 2, · · · .

Therefore

f(z) =
c0

(z − z0)m
+ · · ·+ cm−1

z − z0
+ cm + cm+1(z − z0) + · · ·

=
c0

(z − z0)m
+ · · ·+ cm−1

z − z0
+ g(z),

where g(z) is analytic in |z − z0| < r. Hence by the definition of residue and generalized
Cauchy’s Formula,

Res(f ; z0) =
1

2πi

∫
|z−z0|=s

(
c0

(z − z0)m
+ · · ·+ cm−1

z − z0

)
dz

= cm−1 =
H(m−1)(z0)

(m− 1)!
.

In particular, when m = 1, we have

(2.9) Res

(
H(z)

z − z0
; z0

)
= H(z0).

Laurent Series. Suppose that f(z) is analytic in an annulus D = {z : r < |z − z0| < R},
where 0 ≤ r < R are given numbers. Then f can be written as the following Laurent
series at z0 :

(2.10) f(z) =

∞∑
k=1

bk(z − z0)−k +

∞∑
k=0

ak(z − z0)k, r < |z − z0| < R,

where bk = a−k for k = 1, 2, · · · and all ak’s are given by

ak =
1

2πi

∫
|z−z0|=s

f(z)

(z − z0)k+1
dz ∀k = 0,±1,±2, · · ·

with s ∈ (r,R) being any given number.
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Proof. Given z with r < |z − z0| < R, select two numbers r1, R1 with

r < r1 < |z − z0| < R1 < R.

Let Γ be the circle |w−z0| = R1 oriented counterclockwise and let γ be the circle |w−z0| = r1

oriented clockwise. Choose a radius of the circle |w − z0| = R that does not contain z and
let P,Q be the intersection points of the radius with Γ and γ, respectively. Cut the annulus
{r1 < |w − z0| < R1} along PQ, and this makes two simple closed curves. From this and
using Cauchy’s Formula, we have

f(z) =
1

2πi

∫
Γ

f(w)

w − z
dw +

1

2πi

∫
γ

f(w)

w − z
dw.

Then, on γ and Γ, we express 1
w−z as series around z0. This will eventually prove the

theorem. See Text for details. �

Now assume f(z) is analytic in the punctured disc {0 < |z − z0| < R}. Then

Res(f ; z0) = b1 = the coefficient of (z − z0)−1 in the Laurent series (2.10).

It can also be shown that

(1) f has a removable singularity at z0 if and only if the coefficient bk of (z− z0)−k in
the Laurent series equals zero for all k ≥ 1.

(2) f has a pole of order m at z0 if and only if the coefficient bk of (z − z0)−k in the
Laurent series equals zero for all k ≥ m + 1 and bm 6= 0. In this case the sum
involving all negative powers of z− z0 in the Laurent series is called the principal
part of f at z0. This is exactly a polynomial of order m without constant term
in 1

z−z0 :

P

(
1

z − z0

)
=

m∑
k=1

bk
(z − z0)k

.

(3) f has an essential singularity at z0 if and only if there are infinitely many nonzero
coefficients bk of negative power terms (z − z0)−k in the Laurent series.

Example 11. (1)

Res

(
z2 + 3z − 1

z + 2
;−2

)
= (−2)2 + 3(−2)− 1 = −3.

(2)

Res

(
ez

(z − 1)3
; 1

)
=

(ez)
′′

2!

∣∣∣
z=1

=
e

2
.

(3) Find the residues of

R(z) =
z + 1

(z2 + 4)(z − 1)3

at each of its poles.

Solution. The poles are the zeros of the denominator and thus are −2i, 2i and 1 with the
order 1, 1 and 3, respectively. Note that

R(z) =
z + 1

(z − 2i)(z + 2i)(z − 1)3
=

f(z)

z − 2i
=

g(z)

z + 2i
=

h(z)

(z − 1)3
,
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where

f(z) =
z + 1

(z + 2i)(z − 1)3
, g(z) =

z + 1

(z − 2i)(z − 1)3
, h(z) =

z + 1

z2 + 4
.

Hence

Res(R; 2i) = f(2i) =
2i+ 1

(2i+ 2i)(2i− 1)3
=

24− 7i

500
;

Res(R;−2i) = g(−2i) =
−2i+ 1

(−2i− 2i)(−2i− 1)3
=

24 + 7i

500
;

Res(R; 1) =
h′′(1)

2!
= − 12

125
.

�

(4) Suppose that F and G are analytic in the disc {|z − z0| < r} with G(z0) = 0 but
G′(z0) 6= 0. Then

Res

(
F

G
; z0

)
=
F (z0)

G′(z0)
.

To see this, write G(z) = (z−z0)g(z), where g is analytic in the disc and g(z0) = G′(z0) 6= 0.
Hence

Res

(
F

G
; z0

)
= Res

(
F (z)

(z − z0)g(z)
; z0

)
=
F (z0)

g(z0)
=
F (z0)

G′(z0)
.

(5) Find the Laurent series at z0 = 0 for f(z) = (sin z)/z3.

Solution.

f(z) =
sin z

z3
=
z − z3

3! + z5

5! − · · ·
z3

=
1

z2
− 1

3!
+
z2

5!
− · · · , z 6= 0.

This is the Laurent series of f(z) and the principal part is 1
z2

and coeffient b1 of term 1
z is

zero and hence the residue of f at z0 = 0 is zero. �

(6) The Laurent series of e1/z can be easily obtained by the power series expansion of
ez as follows:

e1/z =

∞∑
n=0

1

n!
(1/z)n =

∞∑
n=0

1

n!
z−n

= 1 +
1

z
+

1

2!z2
+

1

3!z3
+ · · · .

Therefore

Res(e1/z; 0) = 1.

Note that e1/z has an essential singularity at z0 = 0 since the Laurent series has infinitely
many negative powers.

(7) (Exercise #12.) Find the Laurent series of
1

ez − 1
at z0 = 0 with first four terms.
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Solution. Since ez = 1 + z + z2

2! + z3

3! + z4

4! + · · · , we have

1

ez − 1
=

1

z + z2

2! + z3

3! + z4

4! + · · ·

=
1

z

1

1 + z
2! + z2

3! + z3

4! + · · ·
=

1

z
(a0 + a1z + a2z

2 + a3z
3 + · · · ),

where
1

1 + z
2! + z2

3! + z3

4! + · · ·
= a0 + a1z + a2z

2 + a3z
3 + · · · .

We can determine a0, a1, a2, a3, · · · by multiplication of power series(
1 +

z

2
+
z2

6
+
z3

24
+ · · ·

)
(a0 + a1z + a2z

2 + a3z
3 + · · · ) = 1.

For example, this equality becomes

a0 +
(
a1 +

a0

2

)
z +

(
a2 +

a1

2
+
a0

6

)
z2 +

(
a3 +

a2

2
+
a1

6
+
a0

24

)
z3 + · · · = 1.

Hence

a0 = 1, a1 = −1

2
, a2 =

1

12
, a3 = 0.

Therefore,

1

ez − 1
=

1− 1
12z + 1

12z
2 + · · ·

z
=

1

z
− 1

12
+

z

12
+ · · · .

This is the Laurent series for
1

ez − 1
at z0 = 0. Easily we see the residue of the function at

the pole is 1. �

Exercises. Page 150. Problems 1, 3, 5–8, 11, 14, 15, 22(a, b).

2.6. The Residue Theorem and Its Applications

Theorem 2.16 (The Residue Theorem). Suppose f is analytic in a simply-connected
domain D except for a finite number of isolated singularities at points z1, z2, · · · , zN of D.
Let γ be a piecewise smooth positively oriented simple closed curve in D that does not pass
through any of the points z1, z2, · · · , zN . Then

(2.11)

∫
γ
f(z) dz = 2πi

∑
all zk inside γ

Res(f ; zk),

where the sum is taken over all those singularities zk lying inside γ.

Proof. Let Ω be the inside of γ and z′1, z
′
2, · · · , z′n are the isolated singularities that lie

in Ω. Let ∆j be the closed disc with center z′j that is contained in Ω and be disjoint for

j = 1, · · · , n. Let U be the domain Ω \ ∪nj=1∆j . Then the positively oriented boundary of
U is

∂U = γ ∪ (−∂∆1) ∪ · · · ∪ (−∂∆n).

By Green’s Theorem ∫
∂U
f(z) dz = 0.
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z1

z2

zN

Γ

U

D

Figure 2.2. The proof of Residue Theorem

Hence ∫
γ
f(z) dz =

n∑
j=1

∫
∂∆j

f(z) dz =

n∑
j=1

(2πi) Res(f ; z′j).

�

Applications of The Residue Theorem for Evaluating Integrals. We will apply the
Residue Theorem to compute real variable integrals of the following type.

Application 1: Suppose that P , Q are polynomials of real coefficients and degQ ≥ degP+2.
Assume Q(x) 6= 0 for all real numbers x. Then

(2.12)

∫ ∞
−∞

P (x)

Q(x)
dx = 2πi

∑
Q(zj)=0;Imzj>0

Res

(
P (z)

Q(z)
; zj

)
.

R-R

DR

ΓR

Figure 2.3. The integral path in Application 1
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Proof. Since Q(z) has finitely many zeros (a property of polynomials) and has no zeros on
the real axis, we assume that all zeros of Q in the upper half plane are inside the semi-disc
DR = {z : Imz > 0, |z| < R}, for all sufficiently large R > 0. (See Figure 2.3 given.) Let
γR be the positively oriented boundary of DR. Then by the Residue Theorem

(2.13)

∫
γR

P (z)

Q(z)
dz = 2πi

∑
Q(zj)=0;Imzj>0

Res

(
P (z)

Q(z)
; zj

)
.

However,

(2.14)

∫
γR

P (z)

Q(z)
dz =

∫ R

−R

P (x)

Q(x)
dx+

∫
|z|=R,Imz>0

P (z)

Q(z)
dz.

Let P (z) = anz
n + · · · + a0 (an 6= 0) and Q(z) = bmz

m + · · · + b0 (bm 6= 0). Then, by the
assumption on degrees, m− n ≥ 2. Therefore

P (z)

Q(z)
=
anz

n + · · ·+ a0

bmzm + · · ·+ b0
=

zn(an + an−1

z + · · ·+ a0
zn )

zm(bm + bm−1

z + · · ·+ b0
zm )

= zn−mf(z),

where

f(z) =
an + an−1

z + · · ·+ a0
zn

bm + bm−1

z + · · ·+ b0
zm

→ an
bm

as |z| → ∞.

Hence there is a constant M > 0 such that, for R sufficiently large,∣∣∣∣P (z)

Q(z)

∣∣∣∣ = |z|n−m|f(z)| ≤M Rn−m ∀ |z| = R.

Therefore, for such R’s,∣∣∣∣∣
∫
|z|=R,Imz>0

P (z)

Q(z)
dz

∣∣∣∣∣ ≤MRn−m(πR) = πMRn−m+1.

From this, since n−m+ 1 ≤ −1, we have

lim
R→∞

∫
|z|=R,Imz>0

P (z)

Q(z)
dz = 0.

In (2.14), letting R→∞, we have

lim
R→∞

∫ R

−R

P (x)

Q(x)
dx = 2πi

∑
Q(zj)=0;Imzj>0

Res

(
P (z)

Q(z)
; zj

)
.

However, we also know that P (x)
Q(x) ≈ |x|

n−m and thus is bounded by x−2, which has finite

improper integral at ±∞, for all large |x|, so the imporper integral
∫∞
−∞

P (x)
Q(x) dx converges

and ∫ ∞
−∞

P (x)

Q(x)
dx = lim

R→∞

∫ R

−R

P (x)

Q(x)
dx = 2πi

∑
Q(zj)=0;Imzj>0

Res

(
P (z)

Q(z)
; zj

)
.

�

Example 12. (1) Compute ∫ ∞
−∞

x2

(1 + x2)(4 + x2)
dx =

π

3
.
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Solution. Here P (z) = z2 and Q(z) = (1 + z2)(4 + z2), and Q(z) = 0 has two solutions
z1 = i and z2 = 2i in the upper half-plane Im z > 0. Note that

P (z)

Q(z)
=

z2

(z − i)(z + i)(4 + z2)
=

z2

(1 + z2)(z − 2i)(z + 2i)
.

Hence

Res (
P

Q
; i) =

i2

(i+ i)(4 + i2)
= − 1

6i
;

Res (
P

Q
; 2i) =

(2i)2

(1 + (2i)2)(2i+ 2i)
=

1

3i
.

Therefore, by (2.12), ∫ ∞
−∞

P (x)

Q(x)
dx = 2πi(− 1

6i
+

1

3i
) =

π

3
.

�

(2) ∫ ∞
−∞

dx

(1 + x2)2
=
π

2
.

Proof. Note that 1 + z2 = 0 has one solution z0 = i in the upper half-plane and that

1

(1 + z2)2
=

1

(z − i)2(z + i)2
=

H(z)

(z − i)2
,

where

H(z) =
1

(z + i)2
; H ′(z) = − 2

(z + i)3
.

Hence

Res (
1

(1 + z2)2
; i) = H ′(i) = − 2

(i+ i)3
=

1

4i
.

Therefore, by (2.12),∫ ∞
−∞

dx

(1 + x2)2
= 2πiRes

(
1

(1 + z2)2
; i

)
= 2πi

1

4i
=
π

2
.

�

Application 2: Compute the integrals of the type

(2.15)

∫ ∞
−∞

P (x) cosx

Q(x)
dx;

∫ ∞
−∞

P (x) sinx

Q(x)
dx,

where P , Q are polynomials of real coefficients and Q(x) 6= 0 for all real x.

Note that if x is real, then

cosx = Re(eix); sinx = Im(eix).

Therefore to compute (2.15) we can compute the value of the integral

(2.16)

∫ ∞
−∞

P (x)eix

Q(x)
dx

and then take the real and imaginary parts of this value to get the integrals in (2.15). Note
that the improper integral (2.16) converges if degQ ≥ degP + 2 and∫ ∞

−∞

P (x)eix

Q(x)
dx = lim

R→∞

∫ R

−R

P (x)eix

Q(x)
dx.
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Theorem. If degQ ≥ degP + 1, then

(2.17) lim
R→∞

∫ R

−R

P (x)eix

Q(x)
dx = 2πi

∑
Q(zj)=0;Imzj>0

Res

(
P (z)eiz

Q(z)
; zj

)
.

We define this value to be the Cauchy’s principal value of the improper integral (2.16)
and denote it by

(P.V.)

∫ ∞
−∞

P (x)eix

Q(x)
dx = lim

R→∞

∫ R

−R

P (x)eix

Q(x)
dx.

Note that if an improper integral
∫∞
−∞ f(x) dx converges then∫ ∞

−∞
f(x) dx = (P.V.)

∫ ∞
−∞

f(x) dx.

Proof. Again, we use the integral path γR in Figure 2.3 inside which all zeros of Q(z) in
the upper half plane lie. Let δR = {z : Imz > 0, |z| = R}. As above, we only need to show

(2.18) lim
R→∞

∫
δR

P (z)eiz

Q(z)
dz = 0.

We parameterize δR using z(θ) = Reiθ with 0 ≤ θ ≤ π. Then dz = iReiθ dθ and

|eiz(θ)| = eRe(iz(θ)) = e−R sin θ.

Therefore ∣∣∣∣∫
δR

P (z)eiz

Q(z)
dz

∣∣∣∣ =

∣∣∣∣∫ π

0

P (z(θ))

Q(z(θ))
eiz(θ)iReiθ dθ

∣∣∣∣
≤
∫ π

0

∣∣∣∣P (Reiθ)

Q(Reiθ)

∣∣∣∣Re−R sin θ dθ.

As above, there is a constant M such that, for all sufficiently large R,∣∣∣∣P (Reiθ)

Q(Reiθ)

∣∣∣∣ ≤MRn−m.

Also, ∫ π

0
e−R sin θ dθ =

∫ π/2

0
e−R sin θ dθ +

∫ π

π/2
e−R sin θ dθ

= 2

∫ π/2

0
e−R sin θ dθ (using substitution θ = π − τ in the second integral).

Note that the function h(θ) = sin θ
θ is decreasing on (0, π/2) (checking h′(θ) ≤ 0) and hence

sin θ ≥ 2

π
θ ∀ 0 ≤ θ ≤ π/2.

Hence

e−R sin θ ≤ e−(2R/π)θ ∀ 0 ≤ θ ≤ π/2
and thus ∫ π/2

0
e−R sin θ dθ ≤

∫ π/2

0
e−(2R/π)θ dθ =

e−(2R/π)θ

−2R/π

∣∣∣π/2
0

=
π

2R

(
1− e−R

)
.

So

(2.19)

∫ π

0
e−R sin θ dθ <

π

R
.
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Combining these estimates, we have∫ π

0

∣∣∣∣P (Reiθ)

Q(Reiθ)

∣∣∣∣Re−R sin θ dθ < πMRn−m → 0 as R→∞

since n−m ≤ −1. This completes the proof. �

Example 13. (1) Compute ∫ ∞
−∞

cosx

x2 + α2
dx = π

e−α

α
, α > 0.

Solution. First of all, ∫ ∞
−∞

cosx

x2 + α2
dx = Re

∫ ∞
−∞

eix

x2 + α2
dx

and the integral is convergent; second, z2 + α2 = 0 has only one solution z0 = αi in the
upper half-plane and

Res

(
eiz

z2 + α2
;αi

)
=
eiz0

2z0
=
e−α

2αi
.

Hence ∫ ∞
−∞

cosx

x2 + α2
dx = Re

[
2πi

e−α

2αi

]
= π

e−α

α
.

�

(2) Compute

(P.V.)

∫ ∞
−∞

x3 sinx

x4 + 16
dx = πe−

√
2 cos(

√
2).

Solution. We set

f(z) = eiz
z3

z4 + 16
=

eizz3

z4 + 16
.

The function f has two poles in the upper half plane U at z1 =
√

2(1 + i) = 2eiπ/4 and

z2 =
√

2(−1 + i) = 2e3iπ/4 (by finding the 4-th roots of −16 = 24eiπ). Therefore, the
residues are

Res(f ; z1) =
eizz3

(z4 + 16)′

∣∣∣
z=z1

=
eizz3

4z3

∣∣∣
z=z1

=
1

4
eiz1 =

1

4
e
√

2(−1+i)

and

Res(f ; z2) =
eizz3

(z4 + 16)′

∣∣∣
z=z2

=
eizz3

4z3

∣∣∣
z=z2

=
1

4
eiz2 =

1

4
e
√

2(−1−i)

By the Residue Theorem and the result above,

(P.V.)

∫ ∞
−∞

x3 sinx

x4 + 16
dx = Im

[
(P.V.)

∫ ∞
−∞

eixx3

x4 + 16
dx

]
= Im[2πi(Res(f ; z1) + Res(f ; z2)]

= πe−
√

2 cos(
√

2).

�
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Application 3: Compute the integrals of type∫ 2π

0
R(cos θ, sin θ) dθ,

where R(z) = P (z)
Q(z) are certain rational functions.

We have done such problems directly using Cauchy’s Formula in some special cases
before. As before, we use the substitution: z = eiθ so that

dθ =
1

iz
dz, cos θ =

1

2
(z +

1

z
), sin θ =

1

2i
(z − 1

z
).

Therefore

(2.20)

∫ 2π

0
R(cos θ, sin θ) dθ =

∫
|z|=1

R

(
1

2
(z +

1

z
),

1

2i
(z − 1

z
)

)
1

iz
dz.

Then one can use the Residue Theorem to compute this line integral by studying the poles
of function

f(z) = R

(
1

2
(z +

1

z
),

1

2i
(z − 1

z
)

)
1

iz

inside the unit disc |z| = 1.

Example 14. Compute ∫ 2π

0

1

2 + cos2 θ
dθ =

2π√
6
.

Solution. With z = eiθ, it follows that dθ = dz/iz and cos θ = 1
2(z + 1

z ). Therefore∫ 2π

0

1

2 + cos2 θ
dθ =

∫
|z|=1

dz

iz
(
2 + 1

4(z2 + 2 + 1
z2

)
)

=

∫
|z|=1

4z

i(z4 + 10z2 + 1)
dz

=

∫
|z|=1

f(z) dz,

where

f(z) =
4z

i(z4 + 10z2 + 1)
=

F (z)

iG(z)

has two poles inside the circle {|z| = 1} at

z1 = i

√
5− 2

√
6; z2 = −i

√
5− 2

√
6

by solving G(z) = z4 +10z2 +1 = (z2 +5)2−24 = 0. (Note that G(z) = 0 has four solutions

±i
√

5± 2
√

6, but only z1, z2 defined above are inside the unit circle; the other two are
outside the circle.) The residues are

Res(f ; z1) =
F (z1)

iG′(z1)
=

4z1

i(4z3
1 + 20z1)

=
1

i(z2
1 + 5)

=
1

i2
√

6

and

Res(f ; z2) =
F (z2)

iG′(z2)
=

4z2

i(4z3
2 + 20z2)

=
1

i(z2
2 + 5)

=
1

i2
√

6
.

Hence ∫ 2π

0

1

2 + cos2 θ
dθ =

∫
|z|=1

f(z) dz
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= 2πi[Res(f ; z1) + Res(f ; z2)] =
2π√

6
.

�

Theorem 2.17. ∫ ∞
0

sin2 x

x2
dx =

π

2
.

Proof. The proof is a little tricky. We use the identity 2 sin2 x = 1− cos 2x = Re(1− e2ix)
to write ∫ ∞

0

sin2 x

x2
dx =

1

2
Re

(∫ ∞
0

1− e2ix

x2
dx

)
and compute the following improper integral using the complex variable method discussed
above ∫ ∞

0

1− e2ix

x2
dx.

Let

f(z) =
1− e2iz

z2
.

This function has only the pole at z = 0. We integrate f(z) along the path γε,R given below:
Since f is analytic inside γε,R, we have

∆R

R-R Ε-Ε

ΡΕ

ΓΕ,R

Figure 2.4. The path γε,R

(2.21) 0 =

∫
γε,R

f(z) dz =

∫ −ε
−R

f(x) dx+

∫ R

ε
f(x) dx+

∫
δR

f(z) dz +

∫
ρε

f(z) dz.

Note that on the semi-circle δR = {|z| = R, Imz > 0}, z = Reiθ with 0 ≤ θ ≤ π, and hence

|f(Reiθ)| ≤ 1 + e−2R sin θ

R2
≤ 2

R2

and so ∣∣∣∣∫
δR

f(z)dz

∣∣∣∣ ≤ 2

R2
πR→ 0 as R→∞.

Also note that

f(z) =
1−

[
1 + 2iz + (2iz)2

2! + · · ·
]

z2

=
−2i

z
+ g(z),
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where g(z) = 2− 4i
3 z + · · · is an entire function. Therefore∫

ρε

f(z)dz = −
∫ π

0
f(εeit)iεeit dt

= −
∫ π

0

−2i

εeit
iεeit dt−

∫ π

0
g(εeit)iεeit dt

= −2π + a term that goes to zero as ε→ 0.

In (2.21), taking the real part first and then letting R→∞ and ε→ 0 we have

0 = 2Re

(∫ ∞
0

f(x)dx

)
− 2π

and hence

Re

(∫ ∞
0

f(x)dx

)
= π

and so ∫ ∞
0

sin2 x

x2
dx =

1

2
Re

(∫ ∞
0

1− e2ix

x2
dx

)
=
π

2
.

�

Exercises. Page 167. Problems 1–11.

Homework Problems for Chapter 2. (From Textbook)

2.1 1(a, b), 3, 4, 5, 8, 9, 10, 18, 19, 20(a, b, c), 23

2.2 1, 2, 3, 7, 8, 9, 14, 15, 18

2.3 1–7, 9, 11, 12

2.4 1, 2, 3, 9, 12, 17, 18, 21

2.5 1, 3, 5–8, 11, 14, 15, 22(a, b)

2.6 1–11


