
Chapter 1

The Complex Plane

1.1. The Complex Numbers

A complex number is an expression of the form

z = x+ iy = x+ yi,

where x, y are real numbers and i is a symbol satisfying

i2 = ii = i · i = −1.

Here, x is called the real part of z and y the imaginary part of z and we denote

x = Rez, y = Imz.

We identify two complex numbers z and w if and only if Rez = Rew and Imz = Imw. We
also write

x+ 0i = x, 0 + yi = yi.

In this way, real numbers are exactly those complex numbers whose imaginary part is zero.

The modulus, or absolute value, of z is defined by

|z| =
√
x2 + y2 if z = x+ iy.

The complex conjugate of z = x+ iy is defined by

z̄ = x− iy.

Obviously,

Rez =
1

2
(z + z̄) = Rez̄, Imz =

1

2i
(z − z̄) = −Imz̄

and, for z = x+ iy,

|x| ≤ |z|, |y| ≤ |z|; |z̄| = |z|.

The addition, subtraction, multiplication and division of complex numbers are
defined as follows: for z = x+ iy and w = s+ it,

(a) z + w = (x+ s) + i(y + t); z − w = (x− s) + i(y − t);
(b) zw = (xs− yt) + i(xt+ ys);
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2 1. The Complex Plane

(c) if s2 + t2 6= 0 then

z

w
=
w̄z

w̄w
=

(xs+ yt) + i(ys− xt)
s2 + t2

.

These operations will follow the same ordinary rules of arithmetic of real numbers.
Under these operations, the set of all complex numbers becomes a field, with 0 = 0 + 0i
and 1 = 1 + 0i.

Note that for all complex numbers z, w

zz̄ = |z|2; z + w = z̄ + w̄; zw = z̄w̄; |zw| = |z||w|.

Complex Numbers as Vectors in the Complex Plane. A complex number z = x+ iy
can be identified as a point P (x, y) in the xy-plane, and thus can be viewed as a vector OP
in the plane. All the rules for the geometry of the vectors can be recast in terms of complex
numbers. For example, let w = s + it be another complex number. Then the point for
z +w becomes the vector sum of P (x, y) and Q(s, t), and |z −w| is exactly the distance
between P (x, y) and Q(s, t). Henceforth, then, we refer to the xy-plane as the complex
plane, and the x-axis as the real axis, y-axis the imaginary axis. (See the figure below.)

x

y

|z|

O

z = x+ iy

Figure 1.1. Complex numbers as vectors

Polar Representation. The identification of z = x+ iy with the point P (x, y) also gives
the polar representation of z: for z 6= 0,

z = r cos θ + ir sin θ = |z|(cos θ + i sin θ),

where θ is any angle verifying this equality. (See the figure below.)

Given a z 6= 0, if θ is such a angle then θ + 2πk also verifies this representation for all
integers k. The set of all such θ’s is called the argument of z and is denoted by argz.

A concrete choice of argz can be defined by requiring the angle θ to be in the interval
[−π, π); we define this value to the principal argument of z and denote it as

θ = Argz ∈ [−π, π).

This is well-defined for all z 6= 0 as the unique angle θ ∈ [−π, π) such that

z = |z|(cos θ + i sin θ).
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z = |z|(cos θ + i sin θ)
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Figure 1.2. Polar representation

The use of polar representation of complex numbers gives a simple and easy way for multi-
plication and division and powers.

Example 1.

−1 + i =
√

2

(
cos

3π

4
+ i sin

3π

4

)
so Arg(−1 + i) =

3π

4
.

Multiplication and division through polar representation. Let

z = |z|(cos θ + i sin θ), w = |w|(cosψ + i sinψ).

Then, by the definition of multiplication and conjugation, using the trigonometric identities
for the sine and cosine of the sum and difference of two angles, we have

zw = |z||w|(cos(θ + ψ) + i sin(θ + ψ)), z̄ = |z|(cos θ − i sin θ),

and, if w 6= 0,
z

w
=
|z|
|w|

(cos(θ − ψ) + i sin(θ − ψ)) .

Theorem 1.1 (De Moivre’s Theorem). Let z = |z|(cos θ + i sin θ) 6= 0. Then, for
n = 0,±1,±2, · · · ,

zn = |z|n(cosnθ + i sinnθ).

Proof. Use induction. �

Example 2. (1) Find the polar representation of z = −1 + i and w =
√

3 + i.

(2) Find in polar representation (−1 + i)(
√

3 + i) and
−1 + i√

3 + i
.

(3) Find in polar representation (
√

3+i)n for all integers n. In particular, find (
√

3+i)6.

Solution. (1) As above, −1 + i =
√

2(cos 3π
4 + i sin 3π

4 ). The polar representation of w is

w =
√

3 + i = 2(cos
π

6
+ i sin

π

6
).

(2) In polar representation,

(−1 + i)(
√

3 + i) = 2
√

2

[
cos(

3π

4
+
π

6
) + i sin(

3π

4
+
π

6
)

]
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= 2
√

2

[
cos

11π

12
+ i sin

11π

12

]
and

−1 + i√
3 + i

=

√
2

2

[
cos(

3π

4
− π

6
) + i sin(

3π

4
− π

6
)

]
=

√
2

2

[
cos

7π

12
+ i sin

7π

12

]
.

(3) In polar representation,

(
√

3 + i)n = 2n
[
cos

nπ

6
+ i sin

nπ

6

]
.

In particular, find (
√

3 + i)6 = 26(cosπ + i sinπ) = −26. �

Exercises. Problems 1, 2, 3, 5, 6, 11.

1.2. Some Geometry

The Triangle Inequality. From the vector representation of complex numbers, we can
easily have the following triangle inequality:

|z + w| ≤ |z|+ |w|.

This inequality can be proved directly as follows. Given z and w,

|z + w|2 = (z + w)(z̄ + w̄) = zz̄ + zw̄ + wz̄ + ww̄

= |z|2 + |w|2 + 2Re(zw̄) ≤ |z|2 + |w|2 + 2|zw̄|
= |z|2 + |w|2 + 2|z||w| = (|z|+ |w|)2.

Hence

|z + w| ≤ |z|+ |w|.
From this inequality, one also obtains

||ζ| − |ξ|| ≤ |ζ − ξ| ∀ ζ, ξ,

which is also called a triangle inequality.

Locus of Points. The locus of points is the set of points that satisfy a general equation
F (z) = 0. It is sometime easier to use the xy-coordinates by setting z = x+ iy and to study
the equations defined by F (x+ iy) = 0.

Straight Lines and Circles. The equation of a straight line can be written as

|z − p| = |z − q|,

where p and q are two distinct complex numbers. This line is the bisecting line of the line
segment joining p and q. This is the geometric way for the line equation. Also, the algebraic
equation for a straight line is

Re(az + b) = 0,

where a and b are two complex numbers and a 6= 0. Note that a, b are not unique and we
can take b to be real.

In the xy-coordinates, the line has an equation of the form

Ax+By = C,

where A,B,C are real constants and A2 +B2 6= 0.



1.2. Some Geometry 5

A circle is the set (locus) of points equidistant from a given point (center); the distance
is called the radius of the circle. The equation for a circle of radius r and center z0 is

|z − z0| = r.

A useful characterization of circles and lines. A circle is also a locus of points satis-
fying the equation

(1.1) |z − p| = ρ|z − q|,

where p, q are distinct complex numbers and ρ 6= 1 is a positive real number. To see
this, suppose 0 < ρ < 1. Let z = w + q and c = p − q; then the equation (1.1) becomes
|w − c| = ρ|w|. Upon squaring and transposing terms, this can be written as

|w|2(1− ρ2)− 2Re(wc̄) + |c|2 = 0.

Dividing by 1 − ρ2, completing the square of the left side, and taking the square root will
yield that ∣∣∣∣w − c

1− ρ2

∣∣∣∣ = |c| ρ

1− ρ2
.

Therefore (1.1) is equivalent to∣∣∣∣z − q − p− q
1− ρ2

∣∣∣∣ = |p− q| ρ

1− ρ2
.

This is the equation of the circle centered at the point z0 = p−ρ2q
1−ρ2 of radius R = ρ|p−q|

1−ρ2 .

Note that if we allow ρ = 1 in (1.1) we have the equation of lines as well. Therefore
(1.1) with ρ > 0 represents the equation for circles or lines.

Example 3. The locus of points z with |z − i| = 1
2 |z − 1|.

Solution. Here p = i, q = 1 and ρ = 1
2 ; so we know the locus is a circle of center

z0 = p−ρ2q
1−ρ2 = −1

3 + 4
3 i and radius R = ρ|p−q|

1−ρ2 = 2
√

2
3 . To confirm this, we multiply the

equation by 2 and then square both sides to obtain

4[|z|2 − 2Re(zī) + |i|2] = |z|2 − 2Rez + 1,

which simplifies to

3|z|2 − 8y + 2x = −3

and to that

3x2 + 2x+ 3y2 − 8y = −3.

This is the equation of the circle

(x+
1

3
)2 + (y − 4

3
)2 =

8

9

of center z0 = −1
3 + 4

3 i and radius 2
√

2
3 . �
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Roots of Complex Numbers. Let n = 1, 2, · · · and z 6= 0. Any number w satisfying
wn = z is called an nth root of z. We shall see there exist exactly n distinct nth roots of z
if n ≥ 2; the notation z1/n is usually to denote the set of all nth roots of z, not a particular
one.

To find all nth roots of z 6= 0, write z in polar representation: z = |z|(cos θ + i sin θ).
Let w = |w|(cosψ+ i sinψ) be an nth root of z; that is, wn = z. By De Moivre’s Theorem,

|w|n(cosnψ + i sinnψ) = |z|(cos θ + i sin θ).

Hence |w|n = |z| and nψ = θ + 2πk for some integer k = 0,±1,±2, · · · . Therefore

|w| = n
√
|z|; ψ = ψk =

θ

n
+

2πk

n
.

Here, for a positive number t > 0 we use s = n
√
t to denote the unique positive number

satisfying sn = t. Note that for any integer k the value of ψk differs from one of the n values
{ψ0, ψ1, · · · , ψn−1} by an integer multiple of 2π. Therefore, there exist exactly n distinct
values of w for the nth roots of z given by

wk = n
√
|z|(cosψk + i sinψk), k = 0, 1, · · · , n− 1,

where ψk is defined above.

Example 4. (1) Find all 12th roots of 1.

(2) Find all 5th roots of 1 + i.

(3) Solve the equation

z4 − 4z2 + 4− 2i = 0.

Solution. (1) Since 1 = 1(cos 0 + i sin 0), it follows that all 12th roots of 1 are given by

cos(
2πk

12
+ i sin

2πk

12
) = cos(

πk

6
+ i sin

πk

6
), k = 0, 1, · · · , 11,

which are 12 different numbers.

(2) Since 1 + i =
√

2(cos π4 + i sin π
4 ), it follows that all 5th roots of 1 + i are given by

21/10

[
cos(

π

20
+

2πk

5
) + i sin(

π

20
+

2πk

5
)

]
, k = 0, 1, 2, 3, 4,

which are five points on the circle of radius 21/10 that start at the angle π
20 and have equal

distances on the circle.

(3) By completing the square, z4 − 4z2 + 4− 2i = (z2 − 2)2 − 2i and so the equation is
equivalent to (z2 − 2)2 = 2i = (1 + i)2, which is equivalent to

z2 − 2 = 1 + i or z2 − 2 = −1− i,

that is,

z2 = 3 + i or z2 = 1− i.
Hence the solutions are the square roots of 3 + i and 1− i. They are in the form of

z = ±z1, z = ±z2,

where z2
1 = 3 + i and z2

2 = 1− i can be found in polar representation.

�

Exercises. Page 20. Problems 1, 2, 3, 7, 11, 12, 15, 21, 23, 24, 25.
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1.3. Subsets of the Plane

The definitions are the same as for the subsets of the Euclidean space R2, such as interior
points, boundary points, open sets, closed sets, closure, connected sets, etc.

An open disc in the complex plane is the set of complex numbers defined by

{z : |z − z0| < r}.

A half open plane is the set defined by

{z : Re(az + b) > 0}.

Given two distinct points p and q, the directed line segment pq with starting point p
and ending point q is the set defined by

pq = {(1− t)p+ tq : 0 ≤ t ≤ 1}.

Essentially, we need to know the following definitions and facts:

(1) We say that z0 is an interior point of a set D if there is a number r > 0 such
that the open disc z : |z − z0| < r is contained in D. We say set D is open if every
point of D is an interior point of D.

(2) We say that z0 is a boundary point of a set D if every open disc centered at z0

contains both points in D and points not in D. The set of all boundary points of
D is called the boundary of D, usually denoted by ∂D.

(3) For a set D in the complex plain, the union D ∪ ∂D is called the closure of D,
usually denoted by D̄. Set D is called closed if D = D̄; that is, if ∂D ⊆ D.

(4) Theorem: A set D is open if and only if it contains no boundary points. A set C
is closed if and only if its complement D = {z : z /∈ C} is open.

(5) A polygonal curve is the union of a finite number of directed line segments
P1P2, P2P3, · · · , Pn−1Pn, where P1 is called the starting point and Pn is called the
ending point.

(6) An open set D is called connected if for each pair of points p, q in D, there exists
a polygonal curve lying entirely in D with starting point p and ending point q.
(This definition works only for open sets; for general sets, the connectedness is
defined differently!)

(7) A domain in the complex plane is an open and connected set.

(8) A set S is called convex if for each pair of points p, q in S the line segment pq lies
also in S.

(9) a set D is said to contain the point at infinity in its interior if there exists a
number M > 0 such that {|z| > M} ⊆ D.

Example 5. (1) Each open disc D = {z : |z−z0| < r} is open and connected. The boundary
of disc D is the circle {z : |z − z0| = r}.

(2) The set R = {z : Rez > 0} is open. The set {z : |Imz| ≤ 1} is closed, so is the set
{z : Rez ≤ 6}.

(3) The boundary of the set {z = x+ iy : x2 < y} is the parabola {z = x+ iy : y = x2}.
(4) The open set {z : Rez > 0} is connected, so is the open set {z : 0 < |z − z0| < r}.
(5) The set {z : Rez 6= 0} is open but not connected.



8 1. The Complex Plane

(6) The open set {z : Rez > 0} is convex, but the open set {z : 0 < |z − z0| < r} is not
convex.

(7) The set {z : Rez > 0} does not contain the point at infinity in its interior, for, given
any M > 0, there are points z with |z| > M but Rez ≤ 0.
But the set D = {z : |z + 1| + |z − 1| > 1} does contain the point at infinity in its interior
because, for all z with |z| > 1.5, it follows from the triangle inequality that |z+1|+ |z−1| ≥
(|z| − 1) + (|z| − 1) = 2|z| − 2 > 1 and hence these z are contained in the set D.

Exercises. Page 28. Problems 1–8, 10, 11.

1.4. Functions and Limits

A function of the complex variable z, written as w = f(z), is a rule that assigns a complex
number w to each complex number z in a given subset D of the complex plane. The set D
is called the domain of definition of the function. The collection of all possible values w
of the function is called the range of the function.

A function w = f(z) is called one-to-one on a set D if from f(z1) = f(z2) with
z1, z2 ∈ D it must follow z1 = z2. A function w = f(z) is called onto a set R if R is a
subset of the range of this function.

Example 6. Show the range of the function w = T (z) = (1 + z)/(1− z) on the disc |z| < 1
is the set of those w whose real part is positive.

Proof. Let D = {z : |z| < 1} and S = {w : Rew > 0}. We show T : D → S is onto
(surjective).

(1) Given any z ∈ D, let w = T (z) = 1+z
1−z . Compute

Rew = Re
1 + z

1− z
= Re

(1 + z)(1− z̄)
|1− z|2

=
1− |z|2

|1− z|2
> 0

since |z| < 1. Hence the range of T is inside S.

(2) Given any w ∈ S, we want to show that there is z ∈ D such that w = T (z). Solve
for z from T (z) = w and we have z = w−1

w+1 (this shows that T is one-to-one). We need to

show that this z belongs to D; that is, |z| < 1. This is the same as |w − 1| < |w + 1| or
|w− 1|2 < |w+ 1|2. We expand |w− 1|2 = (w− 1)(w̄− 1) and |w+ 1|2 = (w+ 1)(w̄+ 1) to
obtain

|w − 1|2 = |w|2 + 1− 2Rew; |w + 1|2 = |w|2 + 1 + 2Rew.

Since Rew > 0, it follows easily that |w−1|2 < |w+1|2; this proves |z| < 1, hence w = T (z)
is in the range of T . �

Limits, Continuity and Convergence. The concepts of the limit of a sequence of com-
plex numbers and the limit and continuity of a complex variable function and the conver-
gence of an infinite series of complex numbers are all identical to those for a real variable.

All the rules about the limit and the convergence for a real variable theory are also
true for the complex variable theory. We mention some of these below as a review of such
materials learned in the calculus.

A sequence {zn} is a list of complex numbers, usually starting with n = 1, 2, 3, · · · . We
say {zn} converges to a complex number A and write

lim
n→∞

zn = A or simply zn → A,
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if, given any positive number ε, there exists an integer N such that

|zn −A| < ε ∀ n ≥ N.

Fact. If zn = xn + iyn and A = s+ it, then zn → A if and only if xn → s and yn → t.

Fact. If zn → A then |zn| → |A|.

Theorem. Let zn → A and wn → B. Then, for any constants λ, µ,

λzn + µwn → λA+ µB,

znwn → AB,

zn
wn
→ A

B
if B 6= 0.

Suppose next that f is a function defined on a subset S of the complex plane. Let z0

be a point either in S or in the boundary of S. We say that f has limit L at the point z0

and we write

lim
z→z0

f(z) = L or f(z)→ L as z → z0

if, given any ε > 0, there is a δ > 0 such that

|f(z)− L| < ε whenever z ∈ S and 0 < |z − z0| < δ.

We say that a function f has limit L at ∞, and we write

lim
z→∞

f(z) = L

if

lim
z→0

f(
1

z
) = L,

which means that, given any ε > 0, there is a large number M such that

|f(z)− L| < ε whenever z ∈ S and |z| ≥M .

It is easy to see

lim
z→∞

1

zm
= 0

for all m = 1, 2, · · · .

Example 7. 1) The function f(z) = |z|2 has limit 4 at the point z0 = 2i.

2) The function g(z) = 1
z−1 has limit L = 1+i

2 at z0 = i.

3) The function f(z) = z4−1
z−i is not defined at z = i, but has limit −4i at z0 = i, since

f(z) =
z4 − 1

z − i
=

(z + 1)(z − 1)(z + i)(z − i)
z − i

= (z + 1)(z − 1)(z + i) = (z2 − 1)(z + i),

and so f(z) = (z2 − 1)(z + i)→ (i2 − 1)(2i) = −4i as z → i.

4) The function f(z) = z
z̄ has no limit at z0 = 0. For if z is real, f(z) = 1, while if z = iy

(purely imaginary), then f(z) = f(iy) = −1. Such a function cannot have limit at z0 = 0.

5)

lim
z→∞

z4 + 1

2z4 + 5z2 + 3
= lim

z→∞

1 + 1
z4

2 + 5
z2

+ 3
z4

=
1

2
.
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6) Let z = x+ iy and f(z) = x+y3

x2+y3
. Then limz→∞ f(z) does not exist; for

lim
z=x→∞

f(z) = lim
x→∞

1

x
= 0; lim

z=iy→∞
f(z) = lim

y→∞
1 = 1.

Suppose f is a function defined on a set S. Let z0 ∈ S. Then we say that f is continuous
at z0 if

lim
z→z0

f(z) = f(z0).

If f is continuous at every point of S then we say f is continuous on S. The function f
is continuous at ∞ if f(∞) is defined and limz→∞ f(z) = f(∞).

Polynomials are continuous functions on the whole plane. Rational functions are quo-
tients of two polynomials. All rational functions are continuous wherever the denominator
is not zero.

Infinite Series. Like real variables, an infinite series of complex numbers is written as

∞∑
j=1

zj .

We can define the partial sums, convergence, sum, divergence, absolute conver-
gence of such series in the same way as the real variable theories.

A special kind of infinite series is the power series of the form

∞∑
n=0

cn(z − z0)n.

Facts. 1. If
∑
|zn| converges, then

∑
zn converges.

2. Let zn = xn+ iyn. Then
∑
zn converges if and only if both

∑
xn and

∑
yn converge,

and the sum is given by
∞∑
n=1

zn =
∞∑
n=1

xn + i
∞∑
n=1

yn.

In this way, the convergence problems for
∑
zn become the corresponding problems

for two real series
∑
xn and

∑
yn, or become the problem for one real series

∑
|zn|. For

example, we can use the ratio test and root test for these real series.

However, the ratio and root tests can also be applied directly to the complex series
∑
zn

(see Exercises 42 and 43 in this section).

A useful identity is the geometric series formula:

k∑
n=0

αn =
1− αk+1

1− α
∀ α 6= 1.

Therefore
∞∑
n=0

αn =
1

1− α
∀ |α| < 1.

Example 8. 1) The series
∞∑
n=1

n(
1 + 2i

3
)n
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converges, since ∣∣∣∣n(1 + 2i

3

)n∣∣∣∣ = n

(√
5

3

)n
and hence

∑
|zn| converges.

2) The series
∞∑
n=1

in

n

can be written as

∞∑
n=1

in

n
= (−1

2
+

1

4
− 1

6
+ · · · ) + i(1− 1

3
+

1

5
− 1

7
+ · · · )

and hence converges by the alternating-series test.

3) If
∑
zn converges then zn → 0. This is very useful for showing the divergence of a

series.

Exercises. Page 41. Problems 1–10, 13, 14, 31, 33, 36.

1.5. The Exponential, Logarithm, and Trigonometric Functions

The Exponential Function. The exponential function ez is one of the most important
functions in complex analysis and is defined as follows: Given z = x+ iy,

ez = ex(cos y + i sin y).

We also use exp(z) to denote ez, especially when z itself is a complicated expression. From
the definition, it is direct to verify the following important properties for the exponential
function:

ez+w = ezew (using the sum formulas for sine and cosine);

|ez| = eRez > 0 (in particular, |eiy| = 1 for all real numbers y);

ez+2πki = ez ∀k = 0,±1,±2, · · · (that is, ez is periodic of period 2πi).

We also have eit = cos t+ i sin t for all real t; hence we have the interesting formula relating
five most important numbers: eiπ + 1 = 0. Also for z 6= 0,

z = |z|eiθ, where θ ∈ argz, or z = |z|eiArg z.

The function w = f(z) = ez is never zero and it maps the z-plane onto the w-plane
with the origin 0 removed but is not one-to-one (see the logarithm function below). The
function w = ez maps the vertical line x = Rez = x0 onto the circle |w| = ex0 and maps
the horizontal line y = Imz = y0 onto a ray from origin with fixed argument y0.

The function w = ez carries each strip y0 ≤ Imz < y0 + 2π, −∞ < Rez < ∞, one-to-
one and onto the w-plane with the origin removed. For, if ez1 = ez2 and z1, z2 are in the
strip, then z1− z2 = 2πik for some integer k; but then 2π|k| = |Imz1− Imz2| < 2π for z1, z2

in the strip, so k must be zero and hence z1 = z2.
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xx0

y0

y

y0 + 2π

y

O

w = ez

τ

O σ

y
y0

y0 + 2π

ex0

Figure 1.3. The mapping w = ez

The Logarithmic Function. The logarithm function is the inverse of the exponential
function (but it is not a well-defined function). For a nonzero complex number z, any
number w satisfying ew = z is called a logarithm of z; the set of all logarithms of z is
denoted by log z (this is not a single valued function).

We now compute log z. Write z = |z|(cos θ + i sin θ) with any θ being an argument of z
and let w = s+ it be such that ew = z. Then

es(cos t+ i sin t) = |z|(cos θ + i sin θ).

Hence

s = ln |z|, t = θ + 2πk ∈ arg z.

Therefore all values of log z are given as

log z = ln |z|+ i arg z.

Since arg z is not single-valued, neither is log z; but we can define the principal logarithm
function using Argz to be

Logz = ln |z|+ iArgz.

This is a well-defined function for all z 6= 0.

There is a way to make log z a well-defined (and nice, say, continuous) function if we
delete a ray starting the origin from the the z-plane and use a continuous range of arguments
for arg z in the definition of log z. For example, if D is the open domain in the complex plane
with the origin and the negative x-axis deleted, then Logz becomes a continuous (even later
analytic) function in D.

Given two complex numbers z and a with z 6= 0, the power za is defined by

za = ea log z,

which is not single-valued (unless a is an integer). When a = 1
n for positive integers n this

definition agrees with the nth roots of z defined before.

Example 9. Find (−1)i.

Solution. Since log(−1) = ln | − 1|+ i arg(−1) = (2n+ 1)πi, n = 0,±1,±2, · · · , we obtain

(−1)i = ei log(−1) = e−(2n+1), n = 0,±1,±2, · · · .
�
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Example 10. Solve z1+i = 4.

Solution. Write the equation as

e(1+i) log z = 4,

so (1 + i) log z = log 4 = ln 4 + 2πni, n = 0,±1, · · · . Hence

log z =
log 4

1 + i
=

1− i
2

[ln 4 + 2πni]

= (1− i)[ln 2 + πni] = (ln 2 + πn) + i(πn− ln 2).

Thus

z = elog z = eln 2+πn[cos(πn− ln 2) + i sin(πn− ln 2)]

= 2eπn[(−1)n cos ln 2 + i(−1)n+1 sin ln 2]

= (−1)n2eπn[cos ln 2− i sin ln 2], n = 0,±1,±2, · · · .

�

Example 11. Establish the formula

lim
n→∞

(
1 +

z

n

)n
= ez ∀ z.

Proof. Look at nLog(1 + z/n) for large n. Write

nLog(1 +
z

n
) = n ln |1 +

z

n
|+ inArg(1 +

z

n
).

The real part satisfies

n ln |1 +
z

n
| = 1

2
n ln(1 +

2x

n
+
x2 + y2

n2
)→ x

as n → ∞. Next, to handle the imaginary part, let z = r(cos θ + i sin θ) and ψn =
Arg(1 + z/n); then from the geometry,

tanψn =
r
n sin θ

1 + r
n cos θ

,

from which it follows that ψn → 0 and

n tanψn → r sin θ = y

as n→∞. Hence nψn → y as n→∞. Consequently,

nLog
(

1 +
z

n

)
→ x+ iy = z

as n→∞. This proves that(
1 +

z

n

)n
= exp

[
nLog

(
1 +

z

n

)]
→ ez

as n→∞, as intended. �
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Trigonometric Functions. The trigonometric functions of z are defined in terms of
the exponential function ez as follows:

cos z =
1

2

(
eiz + e−iz

)
; sin z =

1

2i

(
eiz − e−iz

)
.

tan z =
sin z

cos z
; cot z =

cos z

sin z
; sec z =

1

cos z
; csc z =

1

sin z
,

wherever the denominator is not zero.

It is easy to see that

cos(z + 2πk) = cos z, sin(z + 2πk) = sin z

for z and all k = 0,±1,±2, · · · . Furthermore, 2πk is the only numbers α for which cos(z +
α) = cos z holds for all z; the same is true for sin z. For ifcos(z+α) = cos z for all complex
numbers z then

eizeiα + e−ize−iα = eiz + e−iz ∀ z.
So eiz(eiα − 1) = e−ize−iα(eiα − 1) for all z. Set z = 0 to obtain (eiα − 1)2 = 0 and hence
eiα = 1, which gives α = 2kπ for some integer k.

For this reason, 2π is called the basic period of sin z and cos z.

The mapping property of w = sin z. Note that

sin(x+ iy) = sinx cosh y + i cosx sinh y,

where, sinhu and coshu are hyperbolic-sine and hyperbolic-cosine functions for real
numbers u,

sinhu =
1

2
(eu − e−u), coshu =

1

2
(eu + e−u).

These hyperbolic functions can also be defined for all complex numbers u by the same
formulas.

xπ
2

x0

y

O

z = x0 + iy

S

y0

w = sin z

σ1

τ

O

w = σ + iτ

sin(x0) cosh(y0)

sinh(y0)

Figure 1.4. The mapping w = sin z

We now restrict z = x+ iy to the half-strip S = {z : 0 < x < π/2, y > 0}. Note that

sin(iy) = i sinh y, sin(
π

2
+ iy) = cosh y.

The function w = sin z is one-to-one from S onto the open first quadrant of the w-plane, with
the boundary of S being mapped onto the boundary of the first quadrant in an interesting
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way. The vertical half line {z = x0 + iy, y > 0} in S is mapped onto the portion of the
hyperbola

σ2

sin2 x0
− τ2

cos2 x0
= 1

in the first quadrant of the w plane, while the horizontal line segment {z = x + iy0, 0 <
x < π/2} in S is mapped onto the portion of the ellipse

σ2

cosh2 y0

+
τ2

sinh2 y0

= 1

in the first quadrant of the w plane. Note that the hyperbola and ellipse given above is
perpendicular at their intersection point z0 = x0 + iy0.

Exercises. Page 53. Problems 1, 3, 4, 10, 23, 27, 28.

1.6. Line Integrals and Green’s Theorem

The fundamental theorems of complex variables are built on Cauchy’s Theorem and For-
mula, which depend on line integrals and Green’s Theorem. So we review and discuss
these materials now.

A curve γ is defined to be a continuous function from an finite closed interval [a, b] to
the complex plane. This function γ(t) is sometime also called a parameterization of the
curve. The natural orientation of the curve γ is defined by tracing the point γ(t) starting
with t = a and ending with t = b.
A curve γ is called simple if γ(t1) 6= γ(t2) for all a ≤ t1 < t2 < b.
A curve γ is called closed if γ(a) = γ(b); that is, if its starting and ending points coincide.

Theorem 1.2 (Jordan’s Theorem). Let γ be a simple and closed curve. Then the com-
plement of its range consists of two domains, one of which is bounded and the other is
unbounded. The bounded one is called the inside of γ and the unbounded one the outside
of γ.

Example 12. (1) Given any two distinct complex numbers z0 and z1, the (directed) line
segment from z0 to z1 is a curve with parameterization

γ(t) = (1− t)z0 + tz1, 0 ≤ t ≤ 1.

(2) The curve with function

γ(t) = z0 +Reit, 0 ≤ t ≤ 2π

represents the simple closed positively oriented circle with center z0 and radius R.

However, if we change the parameter interval to 0 ≤ t ≤ 4π, this curve is also closed
but not simple; but the range (imagine) of the curve is the same circle.

Let f(t) = x(t)+iy(t) be a complex-valued function defined on [a, b], where x(t), y(t) are
the real and imaginary parts of f(t). If both x and y are differentiable at a point t0 ∈ [a, b]
then we say f is differentiable at t0, and define

f ′(t0) = x′(t0) + iy′(t0).

We say f is differentiable on [a, b] if f is differentiable at every point of [a, b]; we say f is
smooth on [a, b] or C1 on [a, b] if f is differentiable on [a, b] and f ′ is continuous on [a, b].
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The differentiation of complex-valued functions of one real variable is consistent with the
differentiation of vector-valued functions studied in the vector calculus. Many differentiation
rules also hold for this differentiation. But we want to emphasize the following product rule:

(f(t)g(t))′ = f(t)g′(t) + f ′(t)g(t)

holds for differentiable complex-valued functions f and g. Therefore we have by induction

[(f(t))m]′ = m(f(t))m−1f ′(t), m = 1, 2, · · · .

A curve γ is said to be a smooth curve if its parametrization γ(t) is smooth on its
interval [a, b].

A curve can also be defined by joining a finite number of curves together; this is a piece-
wisely defined curve. The parametrization may have several independent parameters on
different intervals, but the only requirement is that the end point of one piece coincides
with the starting point of the following piece. Therefore, if γ is a piece-wisely defined curve
if there exist intervals [ak, bk] (k = 1, 2, · · · , n) and continuous function γk on [ak, bk] such
that

γ(bk) = γ(ak+1) ∀ k = 1, 2, · · · , n− 1.

The starting point of the curve is γ1(a1) and the ending point is γn(bn). A curve is called
piecewise smooth if each piece of the curve γk|[ak,bk] is smooth for all k = 1, 2, · · · , n.

If γ(t), a ≤ t ≤ b, is a curve, then the curve −γ defined by

−γ(t) = γ(a+ b− t), a ≤ t ≤ b,

is called the reversed curve of γ. This is the curve with the same range as γ but starting
with γ(b) and ending with γ(a); the orientation is exactly reversed.

A simple closed curve γ is called positively oriented if you trace the points γ(t) while
increasing the parameter from a to b the inside of γ is always on your left; this is equivalent
to saying that the γ is traced counterclockwise.

Example 13. (1) The square with vertices at points z0, iz0, −z0 and −iz0 can be made a
simple closed curve by the following parameterization:

γ(t) =


tiz0 + (1− t)z0, 0 ≤ t ≤ 1

(t− 1)(−z0) + (2− t)iz0, 1 ≤ t ≤ 2

(t− 2)(−iz0) + (3− t)(−z0), 2 ≤ t ≤ 3

(t− 3)z0 + (4− t)(−iz0), 3 ≤ t ≤ 4.

Of course, one can also define the same square as piecewisely defined curve as follows:

γ(t) =


tiz0 + (1− t)z0, 0 ≤ t ≤ 1

t(−z0) + (1− t)iz0, 0 ≤ t ≤ 1

t(−iz0) + (1− t)(−z0), 0 ≤ t ≤ 1

tz0 + (1− t)(−iz0), 0 ≤ t ≤ 1.

(2) The curve

γ :

{
z = Reiθ, 0 ≤ θ ≤ π
z = t, −R ≤ t ≤ R

is piece-wisely defined and represents the simple closed piecewise smooth curve which con-
sists a semicircle and a diameter.
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(3) The curve shown in the figure below has a parametrization given by

γ :


z = Reiθ, 0 ≤ θ ≤ π
z = x, −R ≤ x ≤ −ε
z = εei(π−θ), 0 ≤ θ ≤ π
z = x, ε ≤ x ≤ R.

Note that the third formula is different from the text because we trace the curve always
along the increasing direction of the parameter.

O Rε−R −ε

Figure 1.5. A piecewise simple closed curve with separate parameterizations

Definite Integrals. Suppose g(t) = σ(t) + iτ(t) is a continuous complex-valued function
on the interval [a, b]. We define the definite integral of g over [a, b] by∫ b

a
g(t) dt =

∫ b

a
σ(t) dt+ i

∫ b

a
τ(t) dt.

This definition is consistent with the definition of the definite integral of a vector-valued
function of the real variable t in the vector calculus, and so many rules of integration also
hold. From this definition, it is easy to have

Re

(∫ b

a
g(t) dt

)
=

∫ b

a
Re(g(t)) dt, Im

(∫ b

a
g(t) dt

)
=

∫ b

a
Im(g(t)) dt.

We also have the following estimate:

(1.2)

∣∣∣∣∫ b

a
g(t) dt

∣∣∣∣ ≤ ∫ b

a
|g(t)| dt.

Proof. The inequality is obviously true if
∫ b
a g(t) dt = 0, so we may assume z0 =

∫ b
a g(t)dt 6=

0 and let θ = Argz0. Define h(t) = e−iθg(t), a ≤ t ≤ b. Then∣∣∣∣∫ b

a
g(t) dt

∣∣∣∣ = |z0| = e−iθz0

= e−iθ
(∫ b

a
g(t) dt

)
=

∫ b

a
h(t) dt

= Re

(∫ b

a
h(t) dt

)
=

∫ b

a
(Reh(t)) dt

≤
∫ b

a
|h(t)| dt =

∫ b

a
|g(t)| dt.

�
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Line Integrals. Suppose that γ is a piece-wise smooth curve with smooth parameteriza-
tions on intervals [ak, bk], k = 1, · · · , n, and that u is a continuous function on the range of
γ. We define the line integral along γ of u by

(1.3)

∫
γ
u(z) dz =

n∑
k=1

∫ bk

ak

u(γ(t)) γ′(t) dt.

Recall that if a smooth plane curve γ is parametrized by γ(t) = (x(t), y(t)) on [a, b] then
for a real valued continuous function p = p(x, y) we have the definition of line integral:∫

γ
p dx =

∫ b

a
p(x(t), y(t))x′(t) dt,

∫
γ
p dy =

∫ b

a
p(x(t), y(t))y′(t) dt.

Then it is easy to see that the definition (1.3) above agrees with this definition under the
convention that dz = dx+ idy and γ′(t) = x′(t) + iy′(t).

Line integrals have the familiar properties of definite integrals studied in calculus. For
example

(1.4)

∫
γ
[Au(z) +Bv(z)] dz = A

∫
γ
u(z) dz +B

∫
γ
v(z) dz

if A,B are constants of complex numbers and u, v are continuous functions on the range of
curve γ.

For the reversed curve −γ we have∫
−γ
u(z) dz = −

∫
γ
u(z) dz.

Furthermore, we have the following important estimate:

(1.5)

∣∣∣∣∫
γ
u(z) dz

∣∣∣∣ ≤ (max
z∈γ
|u(z)|

)
Length (γ).

Proof. We can assume γ consists of simply one smooth curve with parameterization γ(t) =
x(t) + iy(t), t ∈ [a, b]. Then, by (1.2) and definition (1.3),∣∣∣∣∫

γ
u(z) dz

∣∣∣∣ =

∣∣∣∣∫ b

a
u(γ(t))γ′(t) dt

∣∣∣∣
≤
∫ b

a
|u(γ(t))||γ′(t)| dt ≤

(
max
z∈γ
|u(z)|

)∫ b

a
|γ′(t)| dt

=

(
max
z∈γ
|u(z)|

)
Length (γ),

because ∫ b

a
|γ′(t)| dt =

∫ b

a

√
(x′(t))2 + (y′(t))2 dt = Length of γ.

�

Example 14. (1) Compute
∫
γ(z2 − 3|z|+ Imz) dz, where γ(t) = 2eit, 0 ≤ t ≤ π/2.

Let u(z) = z2 − 3|z|+ Imz. Then

u(γ(t)) = 4e2it − 3 · 2 + 2 sin t; γ′(t) = 2ieit(informally, but true).

Hence
u(γ(t))γ′(t) = 8ie3it − 12ieit + 4ieit sin t

= 8ie3it − 12ieit + 2ieit(eit − e−it) = 8ie3it − 12ieit + 2e2it − 2.



1.6. Line Integrals and Green’s Theorem 19

So, by definition, ∫
γ
u(z) dz =

∫ π
2

0
u(γ(t)) γ′(t) dt

=

∫ π
2

0
(8ie3it − 12ieit + 2e2it − 2) dt

=

(
8

3
e3it − 12eit +

1

i
e2it − 2t

) ∣∣∣π2
0

=
28

3
− π − 38

3
i.

(2) Show ∣∣∣∣∣
∫
|z|=R

1

z2 + 4
dz

∣∣∣∣∣ ≤ 2πR

R2 − 4

if R > 2.

Proof. On the circle |z| = R, by the triangle inequality, |z2 + 4| ≥ |z|2 − 4 = R2 − 4, so

max
|z|=R

∣∣∣∣ 1

z2 + 4

∣∣∣∣ ≤ 1

R2 − 4

and the length of the circle is 2πR. Hence this estimate follows from (1.5) above. �

(3) Let u be continuous in |z − z0| < r and γε be the simple closed positively oriented
circle |z − z0| = ε with 0 < ε < r. Show that

lim
ε→0

1

2πi

∫
γε

u(z)

z − z0
dz = u(z0).

Proof. The curve γε is parameterized by z = z0 + εeit, 0 ≤ t ≤ 2π; hence γ′ε(t) = εieit. So∫
γε

u(z)

z − z0
dz =

∫ 2π

0

u(z0 + εeit)

εeit
· εieit dt

= i

∫ 2π

0
u(z0 + εeit) dt

= i

∫ 2π

0
[u(z0 + εeit)− u(z0)] dt+ i

∫ 2π

0
u(z0) dt

→ 2πiu(z0) as ε→ 0.

�

(4) Let γ be any piece-wise smooth curve with starting point A and ending point B.
Then, for all m = 0, 1, · · · , ∫

γ
zm dz =

1

m+ 1
(Bm+1 −Am+1).

Therefore, the line integral is independent of the curve γ but only dependent on the end-
points of the curve.
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Proof. Note that for complex-valued differentiable functions z(t) and w(t) the product rule
of differentiation is also valid:

[z(t)w(t)]′ = z′(t)w(t) + z(t)w′(t).

Therefore the power chain rule is valid:

[zm(t)]′ = mzm−1(t) z′(t), m = 1, 2, · · · .

Therefore, if γ(t) is smooth, then

γm(t)γ′(t) =

[
1

m+ 1
γm+1(t)

]′
, m = 0, 1, 2, · · · .

Let γ be a piece-wise smooth curve with smooth parameterizations on intervals [ak, bk],
k = 1, 2, · · · , n, and γ(a1) = A and γ(bn) = B. Then∫

γ
zm dz =

n∑
k=1

∫ bk

ak

γm(t) γ′(t) dt

=
n∑
k=1

∫ bk

ak

[
1

m+ 1
γm+1(t)

]′
dt

=

n∑
k=1

[
1

m+ 1
γm+1(t)

]bk
ak

=
1

m+ 1
(Bm+1 −Am+1).

�

Green’s Theorem. The most important result on line integrals is Green’s Theorem,
which is a reformulation of the theorems in vector calculus. To state the theorem, we need
to consider domains with certain properties.

W

Γ1

Γ2
Γn

W

Figure 1.6. The domain Ω with positively oriented boundaries.
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Let Ω be a domain whose boundary Γ = ∂Ω consists of a finite number of disjoint,
piece-wise smooth, simple and closed curves γ1, γ2, · · · , γn. We say that the boundary Γ is
positively oriented if Ω remains always on our left if we walk along Γ. Thus, if positively
oriented, the outer piece of Γ is oriented counterclockwise, and each of the inner pieces of
Γ is oriented clockwise. In this case, if f is a continuous complex-valued function on Γ, we
define the line integral of f over Γ by∫

Γ
f(z) dz =

n∑
j=1

∫
γj

f(z) dz,

where, of course, we already know how to compute each
∫
γj
f(z) dz.

Green’s Theorem relates the line integral of a function f over Γ to the (area) integral of
a certain combination of partial derivatives of f over domain Ω. In order to state it properly,
we introduce the following notation.

Let f(z) = p(z) + iq(z) be a function of complex variable z = x+ iy in some domain D
containing Ω̄ = Γ∪Ω, where p, q are real and imaginary parts of f , considered as functions
of (x, y). We then define

fx = px + iqx, fy = py + iqy,

where px, py, qx, and qy are partial derivatives, that are assumed to exist.

Theorem 1.3 (Green’s Theorem). Let f(z) be a function of complex variable which has
continuous partial derivatives in some domain D containing Ω̄ = Γ∪Ω, where Ω is a domain
as described above with positively oriented boundary Γ. Then

(1.6)

∫
Γ
f(z) dz = i

∫∫
Ω

(fx + ify) dxdy.

Recall that in multi-variable calculus, Green’s Theorem was stated as

(1.7)

∫
Γ
(u dx+ v dy) =

∫∫
Ω

(vx − uy) dxdy

for any two continuously differentiable real-valued functions u, v of two real variables x, y.
It is a good exercise to verify that the complex variable formula (1.6) in Green’s Theorem
above is equivalent to Formula (1.7). (See Exercises #10, #11.)

Example 15. Let γ be a piece-wise smooth positively oriented simple closed curve and p
be a point not on γ. Compute

1

2πi

∫
γ

1

z − p
dz.

Proof. Let Ω be the inside of γ. Let f(z) = 1
z−p for all z 6= p. If z = x + iy 6= p then

f(z) = 1
x+iy−p and one can compute

fx = − 1

(x+ iy − p)2
, fy = − i

(x+ iy − p)2
;

hence fx + ify = 0 at all points z 6= p.

If p /∈ Ω and thus p /∈ Ω̄ (since p /∈ γ), then by Green’s Theorem,∫
γ
f(z) dz = i

∫∫
Ω

(fx + ify) dxdy = 0.
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Therefore
1

2πi

∫
γ

1

z − p
dz = 0 if p /∈ Ω.

Now assume p ∈ Ω. Let Dε be the closed disc centered p of radius ε > 0. Assume ε is
sufficiently small so that Dε ⊂ Ω. Let Ωε = Ω \Dε. The positively oriented boundary Γε of
Ωε consists of two parts: γ and circle δε = {|z − p| = ε} oriented clockwise. Since p /∈ Ω̄ε,
by Green’s Theorem, ∫

γε

f(z) dz = i

∫∫
Ωε

(fx + ify) dxdy = 0.

Hence ∫
γ
f(z) dz = −

∫
δε

f(z) dz =

∫
−δε

f(z) dz.

We can parameterize −δε (which is the circle oriented counter clockwise) by z = p + εeit

with 0 ≤ t ≤ 2π, and hence∫
−δε

f(z) dz =

∫ 2π

0

1

εeit
iεeit dt = 2πi.

Therefore
1

2πi

∫
γ

1

z − p
dz = 1 if p ∈ Ω.

�

Example 16. Let γ be the simple positively oriented unit circle |z| = 1. Compute∫
γ
z̄ dz.

Solution. Let Ω be the unit disc |z| < 1 and f(z) = z̄ = x− iy. Then

fx + ify = (x− iy)x + i(x− iy)y = 1− i2 = 2.

Hence, by Green’s Theorem,∫
γ
f(z) dz = i

∫∫
Ω

(fx + ify) dxdy = i

∫∫
Ω

2 dxdy = 2iArea of Ω = 2πi.

We can also compute the line integral directly by definition. Let γ(t) = eit, 0 ≤ t ≤ 2π.
Then ∫

γ
z̄ dz =

∫ 2π

0
eit (eit)′ dt =

∫ 2π

0
e−itieit dt = i

∫ 2π

0
dt = 2πi.

As expected, we got the same answer. �

Exercises. Page 73. Problems. 1, 2, 3, 7, 8, 9, 12.

Homework Problems for Chapter 1.

1.1 1, 2, 3, 5, 6, 11

1.2 1, 2, 3, 7, 11, 12, 15, 21, 23, 24, 25

1.3 1–8, 10, 11

1.4 1-10, 13, 14, 31, 33, 36

1.5 1, 3, 4, 10, 23, 27, 28

1.6 1, 2, 3, 7, 8, 9, 12


